JP2013155423A - Method for producing gear - Google Patents
Method for producing gear Download PDFInfo
- Publication number
- JP2013155423A JP2013155423A JP2012018749A JP2012018749A JP2013155423A JP 2013155423 A JP2013155423 A JP 2013155423A JP 2012018749 A JP2012018749 A JP 2012018749A JP 2012018749 A JP2012018749 A JP 2012018749A JP 2013155423 A JP2013155423 A JP 2013155423A
- Authority
- JP
- Japan
- Prior art keywords
- forging
- less
- gear
- temperature range
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/28—Making machine elements wheels; discs
- B21K1/30—Making machine elements wheels; discs with gear-teeth
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/32—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Forging (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、鋼製部品の鍛造技術に係り、具体的には、疲労強度及び衝撃強度に優れた歯車の鍛造による製造方法に関するものである。 The present invention relates to a forging technology for steel parts, and more specifically to a manufacturing method by forging a gear excellent in fatigue strength and impact strength.
鍛造品の強度、例えば疲労強度や衝撃強度を向上させるため、さらには表面強度を向上するための表面改質として、浸炭焼入れ焼戻しが一般的に行われているが、エネルギーコスト、熱処理による製品品質(寸法精度)の悪化や、この修正に伴うコスト、所要時間の増加という問題を有している。 Carburizing, quenching and tempering are generally used to improve the strength of forgings, such as fatigue strength and impact strength, and as a surface modification to improve surface strength. There is a problem of deterioration in (dimensional accuracy), cost associated with this correction, and increase in required time.
このため、例えば特許文献1には、高レベルの強度が必要な部位に、熱間鍛造後の冷却過程において、Ar1変態点以下〜200℃の温度域で鍛造加工を施すことによって、所望の強度を確保することが開示されている。 For this reason, for example, Patent Document 1 discloses that a desired strength is obtained by performing forging processing in a temperature range from the Ar1 transformation point to 200 ° C. in a cooling process after hot forging in a site that requires a high level of strength. It is disclosed to ensure.
しかしながら、鍛造加工が青熱脆性域で施される場合、脆化回復のために熱処理が必要となり、製造コストの増加を招く。一方、600℃以上の温度域で鍛造加工が施される場合、A1変態点に近い温度での加工となるため、先に得られたフェライト+パーライト組織が成長を始め、パーライト粒の粗大化が始まる。また、加工後の歪を基点としてパーライト粒内にフェライト析出が起こることにより、目標とする強度を得ることが難しい。 However, when the forging process is performed in a blue-hot brittle region, heat treatment is necessary for embrittlement recovery, resulting in an increase in manufacturing cost. On the other hand, when forging is performed in a temperature range of 600 ° C. or higher, processing is performed at a temperature close to the A1 transformation point, and thus the previously obtained ferrite + pearlite structure starts to grow, and pearlite grains are coarsened. Begins. Moreover, it is difficult to obtain the target strength due to the precipitation of ferrite in the pearlite grains based on the strain after processing.
また、歯車などのように、内部には疲労強度と衝撃強度が、表面には耐磨耗性や耐疲労性が必要な部品においては、浸炭焼入れ焼戻しなどによる表面改質熱処理を行っている。 しかし、処理温度が900℃以上で、しかも焼入れ(急冷)を行うことによる熱処理歪が避けられず、品質悪化の修正、雰囲気温度加熱、焼入れ後焼戻し再加熱によるエネルギーの大量消費、10時間を越える熱処理時間など、コストの低減が困難である。 Moreover, surface modification heat treatment such as carburizing, quenching, and tempering is performed on components that require fatigue strength and impact strength inside, such as gears, and that require wear resistance and fatigue resistance on the surface. However, when the processing temperature is 900 ° C. or higher, and heat treatment distortion due to quenching (rapid cooling) is unavoidable, correction of quality deterioration, atmospheric temperature heating, mass consumption of energy by tempering and reheating after quenching, over 10 hours It is difficult to reduce costs such as heat treatment time.
本発明は、従来の鍛造方法における上記のような課題を解決するためになされたものであって、その目的とするところは、良好な強度を有し、しかも安価な鍛造歯車の製造方法を提供することにある。 The present invention has been made to solve the above-described problems in the conventional forging method, and the object of the present invention is to provide a method for producing a forged gear having good strength and low cost. There is to do.
本発明者らは、上記目的を達成すべく鋭意検討を繰り返した結果、鋼種に応じて、A3変態点以上に加熱した素材もしくは加熱しない素材に、又は熱間もしくは冷間鍛造して得られた中間鍛造品に、350〜600℃の温度域で鍛造加工を施すことによって、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of repeating earnest studies to achieve the above object, the present inventors have obtained a material heated or not heated to the A3 transformation point or higher, or hot or cold forging depending on the steel type. It has been found that the above object can be achieved by subjecting the intermediate forged product to a forging process in a temperature range of 350 to 600 ° C., and the present invention has been completed.
すなわち、本発明はこのような知見に基づくものであって、本発明の歯車の製造方法は、C:0.10〜0.60質量%、Si:0.05〜1.50質量%、Mn:0.30〜2.0質量%を含有し、残部がFe及び不可避的不純物から成る鋼をA3変態点以上に加熱した後、350〜600℃の温度域で鍛造加工を施すことを特徴としている。
このとき、上記鋼には、必要に応じて、V:0.30%以下、S:0.10%以下及びBi:0.30%以下よりなる群から選ばれる少なくとも1種を添加することができる。
That is, the present invention is based on such knowledge, and the gear manufacturing method according to the present invention includes C: 0.10 to 0.60 mass%, Si: 0.05 to 1.50 mass%, Mn : A steel containing 0.30 to 2.0% by mass, with the balance being Fe and inevitable impurities, heated to the A3 transformation point or higher, and then forged in a temperature range of 350 to 600 ° C. Yes.
At this time, if necessary, at least one selected from the group consisting of V: 0.30% or less, S: 0.10% or less, and Bi: 0.30% or less may be added to the steel. it can.
また、C:0.10〜0.60質量%、Si:0.05〜1.50質量%、Mn:0.30〜2.0質量%と、Ni:2.50質量%以下、Cr:2.0質量%以下及びMo:1.00質量%以下よりなる群から選ばれる少なくとも1種を含有し、残部がFe及び不可避的不純物から成るフェライト+パーライト鋼に350〜600℃の温度域で鍛造加工を施すことによっても、歯車を製造することができる。 Further, C: 0.10 to 0.60 mass%, Si: 0.05 to 1.50 mass%, Mn: 0.30 to 2.0 mass%, Ni: 2.50 mass% or less, Cr: It contains at least one selected from the group consisting of 2.0% by mass or less and Mo: 1.00% by mass or less, and a ferrite + pearlite steel consisting of Fe and unavoidable impurities in the temperature range of 350 to 600 ° C. A gear can also be manufactured by forging.
さらに、本発明の歯車の製造方法は、C:0.10〜0.60%、Si:0.05〜1.50%、Mn:0.30〜2.0%と、必要に応じて、さらにV:0.30%以下、S:0.10%以下及びBi:0.30%以下よりなる群から選ばれる少なくとも1種を含有し、残部がFe及び不可避的不純物から成る鋼、あるいはC:0.10〜0.60質量%、Si:0.05〜1.50質量%、Mn:0.30〜2.0質量%と、Ni:2.50質量%以下、Cr:2.0質量%以下及びMo:1.00質量%以下よりなる群から選ばれる少なくとも1種を含有し、残部がFe及び不可避的不純物から成る鋼を熱間鍛造して得られるフェライト・パーライト組織を有する中間鍛造品に350〜600℃の温度域で鍛造加工を施すことを特徴とする。 Furthermore, the manufacturing method of the gear of the present invention is as follows: C: 0.10 to 0.60%, Si: 0.05 to 1.50%, Mn: 0.30 to 2.0%, Further, steel containing at least one selected from the group consisting of V: 0.30% or less, S: 0.10% or less, and Bi: 0.30% or less, with the balance being Fe and inevitable impurities, or C : 0.10 to 0.60 mass%, Si: 0.05 to 1.50 mass%, Mn: 0.30 to 2.0 mass%, Ni: 2.50 mass% or less, Cr: 2.0 An intermediate having a ferrite pearlite structure obtained by hot forging a steel containing at least one selected from the group consisting of less than mass% and Mo: 1.00 mass%, with the balance being Fe and inevitable impurities It is characterized by forging a forged product in a temperature range of 350 to 600 ° C. That.
そして、本発明の歯車の製造方法は、C:0.10〜0.60質量%、Si:0.05〜1.50質量%、Mn:0.30〜2.0質量%と、Ni:2.50質量%以下、Cr:2.0質量%以下及びMo:1.00質量%以下よりなる群から選ばれる少なくとも1種を含有し、残部がFe及び不可避的不純物から成る鋼を冷間鍛造して得られる中間鍛造品に350〜600℃の温度域で鍛造加工を施すことを特徴としている。 And the manufacturing method of the gear of this invention is C: 0.10-0.60 mass%, Si: 0.05-1.50 mass%, Mn: 0.30-2.0 mass%, Ni: 2. Cold containing steel containing at least one selected from the group consisting of 50% by mass or less, Cr: 2.0% by mass or less, and Mo: 1.00% by mass or less, with the balance being Fe and inevitable impurities It is characterized in that a forging process is performed in a temperature range of 350 to 600 ° C. on an intermediate forged product obtained by forging.
本発明によれば、鋼種に応じて、A3変態点以上に加熱した素材や、加熱することなくそのままの素材に、熱間鍛造あるいは冷間鍛造を施して得られた中間鍛造品に、350〜600℃の温度域で鍛造加工を施すようにしたため、安価で、良好な強度を有する歯車を製造することができる。 According to the present invention, depending on the steel type, the intermediate forged product obtained by performing hot forging or cold forging on the raw material heated to the A3 transformation point or higher, or the raw material without heating, is 350 to Since the forging process is performed in the temperature range of 600 ° C., it is possible to manufacture a gear that is inexpensive and has good strength.
以下に、本発明の歯車の製造方法について、これに用いる鋼成分などと共に、さらに詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を意味するものとする。 Below, the manufacturing method of the gear of this invention is demonstrated still in detail with the steel component etc. which are used for this. In the present specification, “%” means mass percentage unless otherwise specified.
図1は、本発明の歯車の製造方法の手順を示す工程図であって、当該製造方法は、切断工程、鍛造工程及び機械加工工程に大別できる。
すなわち、切断工程においては、後述する成分の鋼材が切断されて、各種歯車、例えばディファレンシャルギヤにおけるサイドギヤやピニオンメイトギヤ、ハイポイドギヤにおけるドライブピニオンやリングギヤなどの素材が得られる。
FIG. 1 is a process diagram showing the procedure of the gear manufacturing method of the present invention, and the manufacturing method can be roughly divided into a cutting process, a forging process, and a machining process.
That is, in the cutting step, steel materials having components described later are cut to obtain materials such as various gears, such as side gears and pinion mate gears in differential gears, and drive pinions and ring gears in hypoid gears.
鍛造工程においては、後述するように、切断された素材に対して、その素材鋼成分に応じて、図1(a)〜(d)に示すような種々の工程から成る鍛造が施され、母材や目的部位の疲労強度や衝撃強度が向上する。 In the forging process, as will be described later, forging consisting of various processes as shown in FIGS. 1 (a) to 1 (d) is applied to the cut material according to the material steel components. The fatigue strength and impact strength of the material and target part are improved.
そして、機械加工工程においては、鍛造工程を経た常温の鍛造品に対して、切削加工及び研削加工が施されて、各種の歯車が得られる。切削加工においては、例えば、張り出しているバリ等が除去される。研削加工においては、例えば、傘歯、はすばなどが形成される。 And in a machining process, with respect to the normal temperature forged product which passed through the forging process, cutting and grinding are given, and various gears are obtained. In the cutting process, for example, protruding burrs and the like are removed. In the grinding process, for example, a bevel tooth or a helical is formed.
この後、さらなる表面強度を必要とする場合には、表面硬化処理、例えば窒化処理(500〜600℃)を施すことが望ましく、これによって本発明方法の特長を最大限に発揮させることができる。
すなわち、窒化処理は、変態点以下の温度で行われるため、相変態による膨張を防止することができ、熱処理歪の影響の少ない形状品質の高い歯車とすることができる。また、浸炭処理に較べて、処理温度が低く、短い時間での処理ができるため、エネルギー消費を抑え、低コストでの処理が可能となる。なお、窒化処理に替えて、DLCコーティングや、めっき処理などを施すことも適宜可能である。
Thereafter, when further surface strength is required, it is desirable to perform surface hardening treatment, for example, nitriding treatment (500 to 600 ° C.), whereby the features of the method of the present invention can be maximized.
That is, since nitriding is performed at a temperature below the transformation point, expansion due to phase transformation can be prevented, and a gear having high shape quality with little influence of heat treatment strain can be obtained. In addition, since the processing temperature is low and processing can be performed in a short time compared to carburizing processing, energy consumption can be suppressed and processing can be performed at low cost. Note that DLC coating, plating, or the like can be appropriately performed instead of nitriding.
次に、図1(a)〜(d)及び図2(a)、(b)を参照して、上記した鍛造工程について、ディファレンシャルギヤを構成するサイドギヤの製造を例にとって詳述する。 Next, with reference to FIGS. 1A to 1D and FIGS. 2A and 2B, the forging process described above will be described in detail by taking as an example the manufacture of a side gear that constitutes a differential gear.
まず、素材鋼として、0.10〜0.60%のC、0.05〜1.50%のSi、0.30〜2.0%のMnを含有する鋼(以下、『第1の鋼』と称することがある)が適用される場合には、図1(a)に示す工程が採用される。 First, steel containing 0.10 to 0.60% C, 0.05 to 1.50% Si, and 0.30 to 2.0% Mn (hereinafter referred to as “first steel”) Is applied), the process shown in FIG. 1A is employed.
すなわち、切断工程において所定形状に切断されたギヤ素材は、図1(a)に示すように、まず、A3変態点を上回る温度に加熱される。
次に、素材温度が350〜600℃の温度域に到達したところで鍛造加工が施され、例えば、図2(b)に示すような形状の鍛造粗材となり、これによって高い強度を与えることができる。この鍛造加工は、例えば、1分程度の時間で、0.1mm/mm以上の相対歪みが付与される。
That is, the gear material cut into a predetermined shape in the cutting step is first heated to a temperature exceeding the A3 transformation point, as shown in FIG.
Next, forging is performed when the raw material temperature reaches a temperature range of 350 to 600 ° C., for example, a forged rough material having a shape as shown in FIG. 2 (b), which can give high strength. . In this forging process, for example, a relative strain of 0.1 mm / mm or more is given in a time of about 1 minute.
そして、上記温度域で鍛造加工された鍛造粗材は、常温に冷却され、機械加工工程において、切削加工及び研削加工が施される。
そして、必要に応じて、窒化処理などの表面硬化処理が施され、サイドギヤが完成する。
And the forge rough material forged in the said temperature range is cooled to normal temperature, and a cutting process and a grinding process are given in a machining process.
And if necessary, surface hardening treatment such as nitriding treatment is performed to complete the side gear.
なお、上記素材を変態点を超える温度に加熱した後、350〜600℃の温度域に下がるまでの冷却過程においては、冷却速度が5℃/秒以下として、フェライトとパーライト混合組織が得られるような冷却を実施することが好ましい。5℃/秒を超える冷却速度では、ベイナイト組織となり鍛造性や機械加工性を著しく損ねてしまう可能性があることによる。 In the cooling process after the material is heated to a temperature exceeding the transformation point and then lowered to a temperature range of 350 to 600 ° C., the cooling rate is 5 ° C./second or less so that a mixed structure of ferrite and pearlite is obtained. It is preferable to perform proper cooling. This is because at a cooling rate exceeding 5 ° C./second, a bainite structure may be formed and forgeability and machinability may be significantly impaired.
上記素材鋼(第1の鋼)、すなわち、0.10〜0.60%のC、0.05〜1.50%のSi、0.30〜2.0%のMnを含有する鋼には、必要に応じて、0.30%以下のV、0.10%以下のS及び0.30%以下のBiよりなる群から選ばれる少なくとも1種を添加することができる(以下、この鋼を『第2の鋼』と称することがある)。
この場合にも、上記同様に、図1(a)に示した工程が採用される。
In the above steel material (first steel), that is, steel containing 0.10 to 0.60% C, 0.05 to 1.50% Si, 0.30 to 2.0% Mn If necessary, at least one selected from the group consisting of V of 0.30% or less, S of 0.10% or less, and Bi of 0.30% or less can be added (hereinafter referred to as “steel”). Sometimes called "second steel").
Also in this case, the process shown in FIG. 1A is adopted as described above.
素材鋼として、0.10〜0.60%のC、0.05〜1.50%のSi、0.30〜2.0%のMnと、2.50%以下のNi、2.0%以下のCr及び1.00%以下のMoよりなる群から選ばれる少なくとも1種を含有する鋼(以下、『第3の鋼』と称することがある)が適用される場合には、図1(b)に示す工程が採用される。
すなわち、この場合には、所定形状に切断されたギヤ素材をA3変態点を上回る温度に加熱する必要はなく、素材は、そのまま350〜600℃の温度に加熱され、当該温度域で鍛造加工が施される。これ以外は、上記同様の工程によって、サイドギヤが完成する。
As the material steel, 0.10 to 0.60% C, 0.05 to 1.50% Si, 0.30 to 2.0% Mn, 2.50% or less Ni, 2.0% When a steel containing at least one selected from the group consisting of the following Cr and 1.00% or less Mo (hereinafter sometimes referred to as “third steel”) is applied, FIG. The process shown in b) is employed.
That is, in this case, it is not necessary to heat the gear material cut into a predetermined shape to a temperature exceeding the A3 transformation point, and the material is heated as it is to a temperature of 350 to 600 ° C., and forging is performed in the temperature range. Applied. Other than this, the side gear is completed by the same process as described above.
上記第1〜3の鋼を適用する場合、図1(c)に示す工程を採用することもできる。
すなわち、所定形状に切断されたギヤ素材には、まず、変態点を下回らない温度域において、例えば1分間程度の熱間鍛造が施される。その後、上記したように、5℃/秒以下の冷却速度で制御冷却されることによって、図2(a)に示すような形状の、フェライト+パーライト組織を有する中間鍛造品が得られる。
When the first to third steels are applied, the step shown in FIG.
That is, the gear material cut into a predetermined shape is first subjected to hot forging for about 1 minute, for example, in a temperature range that does not fall below the transformation point. Thereafter, as described above, controlled cooling is performed at a cooling rate of 5 ° C./second or less, whereby an intermediate forged product having a ferrite + pearlite structure having a shape as shown in FIG. 2A is obtained.
そして、1〜10分経過して、中間鍛造品の温度が350〜600℃の温度域に到達したところで、中間鍛造品における目的部位、すなわち歯が形成される部分に鍛造加工が施され、図2(b)に示すような鍛造粗材が得られ、歯部に高い強度を与えることができる。なお、350〜600℃の温度域での上記鍛造加工においては、例えば、上記同様に、1分程度で、0.1mm/mm以上の相対歪が付与される。 Then, after 1 to 10 minutes have passed, when the temperature of the intermediate forged product reaches the temperature range of 350 to 600 ° C., the forging process is performed on the target portion in the intermediate forged product, that is, the portion where the teeth are formed. A rough forged material as shown in 2 (b) is obtained, and high strength can be imparted to the tooth portion. In the forging process in the temperature range of 350 to 600 ° C., for example, as described above, a relative strain of 0.1 mm / mm or more is applied in about 1 minute.
この後、常温となった鍛造粗材には、同様に、機械加工と、必要に応じて、表面硬化処理が施され、サイドギヤが完成する。 Thereafter, the forged rough material at room temperature is similarly machined and, if necessary, surface hardened to complete the side gear.
なお、上記製造方法においては、中間鍛造品の熱間鍛造時の余熱を利用して、その温度が350〜600℃の温度域に低下したところで、鍛造加工を施すようにしていることから、熱エネルギーを節約することができ、低コストの製造が可能になる。
これに対して、熱間鍛造後の中間鍛造品の温度を常温にまで低下させた後に、再度上記温度域に加熱して鍛造加工を施すようにすることもでき、鍛造工程の自由度が向上することになる。
In addition, in the said manufacturing method, since it is trying to perform a forging process when the temperature falls to the temperature range of 350-600 degreeC using the residual heat at the time of the hot forging of an intermediate forging product, Energy can be saved and low-cost manufacturing is possible.
On the other hand, after lowering the temperature of the intermediate forged product after hot forging to room temperature, it can be heated again in the above temperature range to perform forging, improving the freedom of the forging process Will do.
素材鋼として、Ni、Cr、Moのうちの1種以上を含有する第3の鋼を用いる場合には、中間鍛造品の鍛造を冷間で行うことができ、図1(d)に示す工程が採用される。
すなわち、所定形状に切断されたギヤ素材には、200℃程度以下の温度で冷間鍛造が施され、図2(a)に示すような形状の中間鍛造品が得られる。
When the third steel containing one or more of Ni, Cr, and Mo is used as the material steel, the forging of the intermediate forged product can be performed cold, and the process shown in FIG. 1 (d) Is adopted.
That is, the gear material cut into a predetermined shape is cold forged at a temperature of about 200 ° C. or lower, and an intermediate forged product having a shape as shown in FIG. 2A is obtained.
冷間鍛造された上記中間鍛造品は、そのまま、あるいは一旦常温にまで冷却された後、350〜600℃の温度に加熱され、当該温度域で、中間鍛造品における歯型形成部分に鍛造加工が施され、上記同様に、図2(b)に示すような鍛造粗材が得られる。 The intermediate forged product that has been cold forged is either directly or once cooled to room temperature, and then heated to a temperature of 350 to 600 ° C., and the forging process is performed on the tooth mold forming portion of the intermediate forged product in the temperature range. The forged coarse material as shown in FIG. 2B is obtained in the same manner as described above.
この後、常温となった鍛造粗材には、同様に、機械加工と、必要に応じて、表面硬化処理が施され、サイドギヤが完成する。 Thereafter, the forged rough material at room temperature is similarly machined and, if necessary, surface hardened to complete the side gear.
本発明の歯車の製造方法では、上記いずれの場合においても、素材鋼あるいは中間鍛造品に施す鍛造加工が600℃以下での加工であるため、当該鍛造加工によって発熱したとしても、オーステナイトが析出する温度に到達することはない。また、パーライト粗大化やパーライト粒内のフェライト成長が抑制されるため、鍛造加工により目標とする強度(疲労強度、衝撃強度)を得ることができる。
そして、350℃以上の温度での鍛造加工であるため、青熱脆性域より高温であり、脆化回復のための熱処理(例えば、焼戻しやサブゼロ処理)が不要となって、製造コストを低減することができ、良好な強度を有し、しかも安価な歯車を製造することが可能となる。
In the gear manufacturing method of the present invention, in any of the above cases, since the forging process applied to the raw steel or the intermediate forged product is a process at 600 ° C. or lower, austenite precipitates even if heat is generated by the forging process. The temperature is never reached. Further, since pearlite coarsening and ferrite growth in pearlite grains are suppressed, target strengths (fatigue strength and impact strength) can be obtained by forging.
And since it is a forging process at a temperature of 350 ° C. or higher, the temperature is higher than that of the blue-hot brittle region, and heat treatment (for example, tempering and sub-zero treatment) for recovery from embrittlement is unnecessary, thereby reducing manufacturing costs. Therefore, it is possible to manufacture a gear having good strength and inexpensive.
また、上記鍛造加工の温度は、相対的に低く、材料熱膨張率が小さいため、寸法精度が向上する。また、鍛造加工における材料変形抵抗は、冷間に比べて小さくなるため、設備規模を縮小したり、変形量を上げること(例えば、芯部まで歪付与できる強加工)も可能となる。 In addition, since the forging temperature is relatively low and the material thermal expansion coefficient is small, the dimensional accuracy is improved. In addition, since the material deformation resistance in the forging process is smaller than that in the cold, it is possible to reduce the equipment scale and increase the deformation amount (for example, strong processing capable of imparting strain to the core part).
本発明の歯車製造方法には、上記したように、第1の鋼(C:0.10〜0.60%、Si:0.05〜1.50%、Mn:0.30〜2.0%を含有し、残部がFe及び不可避的不純物)、第2の鋼(C:0.10〜0.60%、Si:0.05〜1.50%、Mn:0.30〜2.0%と、V:0.30%以下、S:0.10%以下及びBi:0.30%以下よりなる群から選ばれる少なくとも1種を含有し、残部がFe及び不可避的不純物)、及び第3の鋼(C:0.10〜0.60%、Si:0.05〜1.50%、Mn:0.30〜2.0%と、Ni:2.50%以下、Cr:2.0%以下及びMo:1.00%以下よりなる群から選ばれる少なくとも1種を含有し、残部がFe及び不可避的不純物)が素材として用いられる。
以下に、これらの鋼における各成分の作用を、成分値の限定理由と共に説明する。
As described above, the gear manufacturing method of the present invention includes the first steel (C: 0.10 to 0.60%, Si: 0.05 to 1.50%, Mn: 0.30 to 2.0. %, The balance being Fe and inevitable impurities), second steel (C: 0.10-0.60%, Si: 0.05-1.50%, Mn: 0.30-2.0 %, V: 0.30% or less, S: 0.10% or less and Bi: 0.30% or less, and the balance is Fe and inevitable impurities), and 3 steel (C: 0.10 to 0.60%, Si: 0.05 to 1.50%, Mn: 0.30 to 2.0%, Ni: 2.50% or less, Cr: 2. It contains at least one selected from the group consisting of 0% or less and Mo: 1.00% or less, with the balance being Fe and inevitable impurities).
Below, the effect | action of each component in these steel is demonstrated with the reason for limitation of a component value.
C:0.10〜0.60%
Cは、強度向上元素として重要な成分であり、0.10%未満では強度不足となることがあり、0.60%を超えると、靱延性が低下すると共に、引張強度が過度に大きくなり、切削性の低下を招く虞がある。したがって、Cの含有量は0.10〜0.60%が好ましい。
C: 0.10 to 0.60%
C is an important component as a strength-enhancing element, and if it is less than 0.10%, the strength may be insufficient, and if it exceeds 0.60%, the toughness decreases and the tensile strength becomes excessively large. There is a possibility that the machinability is lowered. Therefore, the content of C is preferably 0.10 to 0.60%.
Si:0.05〜1.50%
Siは、脱酸性元素として作用し、また、フェライト地に固溶して耐力や疲労強度の向上に有効であるが、0.05%未満では効果が顕著でなく、1.50%を超えると、切削性の低下や熱間鍛造後の脱炭を増加させる虞がある。したがって、Siの含有量は0.05〜1.50%が好ましい。
Si: 0.05 to 1.50%
Si acts as a deoxidizing element and is effective in improving the yield strength and fatigue strength by dissolving in ferrite ground, but if it is less than 0.05%, the effect is not significant, and if it exceeds 1.50% There is a concern that the machinability is lowered and decarburization after hot forging is increased. Therefore, the content of Si is preferably 0.05 to 1.50%.
Mn:0.30〜2.0%
Mnは、熱間鍛造後の強度や靱性を高める元素であるが、0.30%未満では効果が顕著でなく、2.00%を超えると、ベイナイトが生成して切削性が低下する虞がある。したがって、Mnの含有量は、0.30〜2.0%が好ましい。
Mn: 0.30 to 2.0%
Mn is an element that increases the strength and toughness after hot forging. However, if it is less than 0.30%, the effect is not significant, and if it exceeds 2.00%, bainite may be generated and machinability may be reduced. is there. Therefore, the content of Mn is preferably 0.30 to 2.0%.
V:0.30%以下
Vは、熱間鍛造後に炭化物を析出し、強度及び耐力の向上に寄与するが、その作用は、0.30%程度で飽和し、それを超える添加はコスト上昇を招くことから、Vを添加する場合には、その含有量は0.30%以下とする。
V: 0.30% or less V precipitates carbides after hot forging and contributes to improvement of strength and proof stress, but its action is saturated at about 0.30%, and addition exceeding it increases the cost. Therefore, when V is added, the content is made 0.30% or less.
S:0.10%以下
Sは、Biと同様に、鋼の切削性を向上させるために、必要に応じて添加するが、0.10%を超える添加は、熱間鍛造時に割れが生じやすくなることがあるので、0.10%以下の含有量とする。
S: 0.10% or less S is added as necessary to improve the machinability of steel, as with Bi. However, addition over 0.10% tends to cause cracking during hot forging. Therefore, the content is made 0.10% or less.
Bi:0.30%以下
Biも、鋼の切削性を向上させるために、必要に応じて添加する成分であるが、0.30%を超えて添加しても、効果が飽和し、無駄となるので、その含有量は0.30%以下とする。なお、切削性向上元素としては、これらの他にPbが知られているが、環境負荷低減の観点から、添加しないことが望ましい。
Bi: 0.30% or less Bi is also a component added as necessary to improve the machinability of steel, but even if added over 0.30%, the effect is saturated and wasted Therefore, the content is made 0.30% or less. In addition to these, Pb is known as an element for improving machinability, but it is desirable not to add it from the viewpoint of reducing the environmental load.
Ni:2.50%以下
Cr:2.0%以下
Mo:1.00%以下
これら成分は、焼入硬化性並びに靭性を向上させ、鋼の強度を増し、耐摩耗性や耐衝撃性を向上させる作用を有することから、上記各元素の1種以上を必要に応じて添加する。
Ni: 2.50% or less Cr: 2.0% or less Mo: 1.00% or less These components improve quench hardenability and toughness, increase steel strength, and improve wear resistance and impact resistance. Therefore, one or more of the above elements are added as necessary.
しかし、Niの含有量が2.50%を超えると、機械加工性を著しく損ねるため、Ni含有量については2.50%以下とする。
また、Crの含有量が過剰となると、ベイナイトが生成し、切削性を低下させることがあるので、Crの含有量は、2.0%以下とする。Moについては、Cr、Niと比較し高価であることから、1.00%以下とする。
However, if the Ni content exceeds 2.50%, the machinability is significantly impaired, so the Ni content is set to 2.50% or less.
In addition, when the Cr content is excessive, bainite is generated and the machinability may be reduced. Therefore, the Cr content is set to 2.0% or less. About Mo, since it is expensive compared with Cr and Ni, it is made into 1.00% or less.
本発明において、Nは、時効後の固溶Nに水素が吸着することによって、水素脆化を引き起こすことから、本発明に用いる素材鋼にNを故意に添加することはなく、N含有量は不可避的レベルとする。 In the present invention, N causes hydrogen embrittlement by adsorbing hydrogen to the solute N after aging, so N is not intentionally added to the material steel used in the present invention, and the N content is Inevitable level.
以下、本発明を実施例に基づいて詳細に説明する。なお、本発明はこれらの実施例のみに限定されないことは言うまでもない。 Hereinafter, the present invention will be described in detail based on examples. Needless to say, the present invention is not limited to these examples.
(1)実施例1
〔発明例1、比較例1〕
表1に示した成分組成を有する鋼A(第3の鋼相当)から、歯車素材を切り出し、それぞれ900℃、750℃、500℃の加熱、および常温にて鍛造し、図2(b)の形状(下面径:約70mm、上面径:約40mm、高さ:約30mm、内径:約25mm)を得た。900℃、750℃、500℃で加工した鍛造品は約4℃/秒の冷却速度で放冷した。
なお、得られた鍛造品については、フェライト+パーライト組織となっていることが確認された。
(1) Example 1
[Invention Example 1, Comparative Example 1]
A gear material is cut out from steel A (corresponding to the third steel) having the component composition shown in Table 1, and forged at 900 ° C., 750 ° C. and 500 ° C., and at room temperature, respectively, as shown in FIG. A shape (lower surface diameter: about 70 mm, upper surface diameter: about 40 mm, height: about 30 mm, inner diameter: about 25 mm) was obtained. Forgings processed at 900 ° C., 750 ° C., and 500 ° C. were allowed to cool at a cooling rate of about 4 ° C./second.
The obtained forged product was confirmed to have a ferrite + pearlite structure.
なお、表1に示した各鋼におけるP含有量、Cu含有量、Ni含有量、鋼B及びCにおけるCr含有量、鋼A、C及びDにおけるS含有量については、スクラップなどの原料に由来するものであって、故意に添加したものではなく、いずれも不可避的不純物に該当することになる。
また、上記各鋼には、窒素を添加しておらず、N含有量については、JISに準拠した活性ガス溶解−熱伝導度法(TDC法)により分析した結果、いずれも0.0030%未満であることが確認された。
In addition, about P content in each steel shown in Table 1, Cu content, Ni content, Cr content in steel B and C, S content in steel A, C, and D originates in raw materials, such as scrap However, they are not intentionally added, and all of them correspond to inevitable impurities.
In addition, nitrogen was not added to each of the above steels, and the N content was analyzed by an active gas dissolution-thermal conductivity method (TDC method) in accordance with JIS. It was confirmed that.
そして、上記によって得られた各鍛造粗材について、歯部及び歯底部の内部硬さ(ロックウェル硬度Bスケール)及び衝撃強度をそれぞれ調査した。
なお、歯部における硬さ測定位置及び衝撃試験片(□1mm×20mmサイズ)の採取位置を図3(a)に、歯底部における測定位置及び採取位置を図3(b)にそれぞれ示す。
And about each forged rough material obtained by the above, the internal hardness (Rockwell hardness B scale) and impact strength of a tooth part and a tooth bottom part were investigated, respectively.
In addition, the hardness measurement position in the tooth part and the sampling position of the impact test piece (□ 1 mm × 20 mm size) are shown in FIG. 3A, and the measurement position and sampling position in the tooth bottom part are shown in FIG.
上記試験結果として、歯部及び歯底部の内部硬さに及ぼす鍛造加工温度の影響を図4に示す。また、歯部及び歯底部の衝撃強度に及ぼす鍛造加工温度の影響を図5に示す。 As the test results, the influence of the forging temperature on the internal hardness of the tooth part and the tooth bottom part is shown in FIG. FIG. 5 shows the influence of the forging temperature on the impact strength of the tooth part and the tooth bottom part.
図4及び図5に示す結果から以下のことが言える。
すなわち、750℃や900℃といった高温度で鍛造加工を施した場合には、衝撃強度は高いものの、硬さが低く、表面及び内部硬さを増すためには浸炭焼入れ焼戻しが必要となり、熱処理歪みによって製品品質(精度)が劣化することが予測される。
The following can be said from the results shown in FIGS.
That is, when forging is performed at a high temperature such as 750 ° C. or 900 ° C., the impact strength is high, but the hardness is low, and carburizing, quenching and tempering are necessary to increase the surface and internal hardness, and the heat treatment distortion It is predicted that product quality (accuracy) will deteriorate.
一方、100℃における鍛造加工では、冷間加工硬化の結果として、高い硬度を示している。しかし、表面硬化処理を窒化処理とした場合には、加工硬化品は窒化温度域では焼きなまし効果により大幅に母材硬さが低下してしまうことから、浸炭焼入れ焼戻しを採用せざるを得ず、その場合には、上記同様に、製品品質が劣化することになる。 On the other hand, forging at 100 ° C. shows high hardness as a result of cold work hardening. However, when the surface hardening treatment is a nitriding treatment, the work-hardened product has a significant decrease in the base material hardness due to the annealing effect in the nitriding temperature range, so carburizing quenching and tempering must be adopted, In that case, the product quality deteriorates as described above.
これに対して、本発明の温度範囲である500℃で鍛造加工を行った場合には、硬さが冷間同等レベルまで向上しながら、衝撃強度も上昇しており、硬さ(疲労強度)と衝撃強度のバランスに優れていることが確認された。
また、衝撃値が向上していることから回復(時効)現象を起しており、焼戻し処理は不要となり、すでに窒化処理温度で内部形成(時効)されているため、窒化処理を行っても硬さが大幅に下がることはなく、窒化による表面硬化処理が可能と考えられる。
In contrast, when forging is performed at 500 ° C., which is the temperature range of the present invention, the impact strength is increased while the hardness is improved to a cold equivalent level, and the hardness (fatigue strength) is increased. It was confirmed that the balance of impact strength was excellent.
In addition, since the impact value has improved, a recovery (aging) phenomenon has occurred, tempering treatment is no longer necessary, and internal formation (aging) has already been performed at the nitriding temperature. It is considered that surface hardening treatment by nitriding is possible.
(2)実施例2
〔発明例2〕
表1に示した成分組成を有する鋼B(第2の鋼相当)、鋼C(第1の鋼相当)及び鋼D(第3の鋼相当)から、素材をそれぞれ切り出し、400℃から600℃まで100℃ごとに鍛造加工温度を設定し、加工温度に100℃を加えた温度まで加熱したのち、設定温度まで低下するのを待って、鍛造加工を施すことによって、図6に示す試験片形状をなす鍛造粗材を得た。なお、このときの鍛造時間は、1分、相対歪は0.1〜0.5mm/mmとなるような形状とした。
そして、得られた各鍛造粗材について、相対歪0.1mm/mmとなる部位の中心部の内部硬さをそれぞれ調査した。この結果を図7に示す。また、鋼Dによる鍛造粗材の衝撃強度を調査し、その結果を図8に示す。
(2) Example 2
[Invention Example 2]
From the steel B (corresponding to the second steel), steel C (corresponding to the first steel) and steel D (corresponding to the third steel) having the composition shown in Table 1, the raw materials were cut out from 400 ° C. to 600 ° C., respectively. The forging process temperature is set every 100 ° C., heated to a temperature obtained by adding 100 ° C. to the processing temperature, and after waiting for the temperature to fall to the set temperature, forging is performed, the test piece shape shown in FIG. A forged rough material was obtained. The forging time at this time was 1 minute, and the relative strain was 0.1 to 0.5 mm / mm.
And about each obtained forging rough material, the internal hardness of the center part of the site | part used as a relative strain of 0.1 mm / mm was investigated, respectively. The result is shown in FIG. Moreover, the impact strength of the forged rough material by the steel D was investigated, and the result is shown in FIG.
〔比較例2〕
表1に示した鋼B、C及びDからそれぞれ素材を切り出し、鍛造加工温度を300℃としたこと以外は、上記実施例2と同様の操作を繰り返すことによって、図6に示す同様の鍛造粗材を得た。なお、このときの鍛造時間も1分とした。
そして、得られた各鍛造粗材について、相対歪0.1mm/mmとなる部位の中心部の内部硬さ上記同様に調査した。この結果を図7に併せて示す。また、鋼Dによる鍛造粗材の衝撃強度の調査結果を図8に示す。
[Comparative Example 2]
The same forging rough as shown in FIG. 6 is repeated by repeating the same operation as in Example 2 except that the raw materials are cut out from the steels B, C and D shown in Table 1 and the forging temperature is set to 300 ° C. The material was obtained. The forging time at this time was also 1 minute.
And about each obtained forged rough material, internal hardness of the center part of the site | part used as a relative strain of 0.1 mm / mm was investigated similarly to the above. The results are also shown in FIG. Moreover, the investigation result of the impact strength of the forged rough material by the steel D is shown in FIG.
〔比較例3〕
また、表1に示した鋼B、C及びDからそれぞれ素材を切り出し、鍛造加工温度を700℃から1000℃まで100℃ごととし、それぞれ加工温度に100℃を加えた温度まで加熱したのち、設定温度まで約4℃/秒の冷却速度で放冷することによって、フェライト+パーライト組織を有する冷却条件を経て試験片形状をなす鍛造粗材を得た。約4℃/秒の冷却速度で放冷したこと以外は、上記実施例2と同様の操作を繰り返すことによって、同様の鍛造粗材を得た。なお、このときの鍛造時間も1分とした。
そして、得られた各鍛造粗材について、相対歪0.1mm/mmとなる部位の中心部の内部硬さ上記同様に調査した。この結果を図7に併せて示す。そして、鋼Dによる鍛造粗材の衝撃強度の調査結果を図8に示す。
[Comparative Example 3]
Moreover, each material is cut out from each of steels B, C and D shown in Table 1, the forging temperature is set to 100 ° C. from 700 ° C. to 1000 ° C., and each is heated to a temperature obtained by adding 100 ° C. to the processing temperature. By allowing to cool to a temperature at a cooling rate of about 4 ° C./second, a forged coarse material having a test piece shape was obtained through cooling conditions having a ferrite + pearlite structure. A similar forged coarse material was obtained by repeating the same operation as in Example 2 except that the material was allowed to cool at a cooling rate of about 4 ° C./second. The forging time at this time was also 1 minute.
And about each obtained forged rough material, internal hardness of the center part of the site | part used as a relative strain of 0.1 mm / mm was investigated similarly to the above. The results are also shown in FIG. And the investigation result of the impact strength of the forge rough material by the steel D is shown in FIG.
しかし、鋼B、C、Dにおいて鍛造加工温度を700℃から1000℃とした試験片においては、成形時に金型による吸熱により急激に温度が低下したためベイナイト組織となり、硬さは高くなるものの、機械加工性を損なうことが予測される結果となった。 However, in steel B, C, and D, the test piece having a forging temperature of 700 ° C. to 1000 ° C. has a bainite structure because the temperature rapidly decreases due to heat absorption by the mold during molding. It was predicted that the workability was impaired.
〔発明例3〕
表1に示した鋼Dから、素材を切り出し、800℃まで加熱したのち、500℃の温度に低下するまで約4℃/秒の冷却速度で放冷したのちに鍛造加工することによって、フェライト+パーライト組織を有する図6に示したような試験片形状をなす鍛造粗材を得た。 このときの鍛造時間は、1分、相対歪は0.1〜0.5mm/mmであった。
そして、得られた各鍛造粗材について、内部硬さ及び衝撃強度を上記同様の要領でそれぞれ調査した。内部硬さの結果を図7中に白抜き◇として示す。また、衝撃強度については、同じく白抜き◇として、図8中に示す。
[Invention Example 3]
From the steel D shown in Table 1, the material was cut out, heated to 800 ° C., allowed to cool at a cooling rate of about 4 ° C./second until lowered to a temperature of 500 ° C., and then forged. A forged rough material having a specimen shape as shown in FIG. 6 having a pearlite structure was obtained. The forging time at this time was 1 minute, and the relative strain was 0.1 to 0.5 mm / mm.
And about each obtained forged rough material, internal hardness and impact strength were investigated in the same way as the above, respectively. The result of the internal hardness is shown as white ◇ in FIG. Also, the impact strength is shown in FIG.
図7、図8の結果から、鋼成分におけるC量の違いで絶対値と極点加工温度が異なるものの、炭素鋼、合金鋼といった鋼の種類、加熱、冷却(余熱)の熱履歴に関わりなく、硬さ及び衝撃強度を満足する加工温度範囲が存在することが確認された。 From the results of FIG. 7 and FIG. 8, although the absolute value and the extreme point processing temperature are different due to the difference in the amount of C in the steel components, regardless of the type of steel such as carbon steel or alloy steel, heating, cooling (residual heat) It was confirmed that there exists a processing temperature range that satisfies the hardness and impact strength.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012018749A JP2013155423A (en) | 2012-01-31 | 2012-01-31 | Method for producing gear |
PCT/JP2012/081500 WO2013114723A1 (en) | 2012-01-31 | 2012-12-05 | Processes for producing gear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012018749A JP2013155423A (en) | 2012-01-31 | 2012-01-31 | Method for producing gear |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013155423A true JP2013155423A (en) | 2013-08-15 |
Family
ID=48904785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012018749A Withdrawn JP2013155423A (en) | 2012-01-31 | 2012-01-31 | Method for producing gear |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013155423A (en) |
WO (1) | WO2013114723A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013114553A1 (en) * | 2012-01-31 | 2015-05-11 | 日産自動車株式会社 | Manufacturing method of forged products |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5080708B2 (en) * | 2001-08-09 | 2012-11-21 | 株式会社神戸製鋼所 | Non-tempered steel forged product, method for producing the same, and connecting rod component for internal combustion engine using the same |
JP2004263199A (en) * | 2003-01-17 | 2004-09-24 | Jfe Steel Kk | High strength steel having excellent fatigue strength, and its production method |
JP2005194547A (en) * | 2003-12-26 | 2005-07-21 | National Institute For Materials Science | High carbon extra-fine grain steel and its producing method |
JP5282501B2 (en) * | 2008-09-17 | 2013-09-04 | 大同特殊鋼株式会社 | Manufacturing method of high strength non-tempered forged parts |
JP2012020298A (en) * | 2010-07-12 | 2012-02-02 | Nissan Motor Co Ltd | Method for manufacturing forging |
-
2012
- 2012-01-31 JP JP2012018749A patent/JP2013155423A/en not_active Withdrawn
- 2012-12-05 WO PCT/JP2012/081500 patent/WO2013114723A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013114553A1 (en) * | 2012-01-31 | 2015-05-11 | 日産自動車株式会社 | Manufacturing method of forged products |
Also Published As
Publication number | Publication date |
---|---|
WO2013114723A1 (en) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5378512B2 (en) | Carburized parts and manufacturing method thereof | |
JP6098732B2 (en) | Manufacturing method of carburized steel parts and carburized steel parts | |
EP2135962B1 (en) | Case-hardened steel pipe excellent in workability and process for production thereof | |
JP4385019B2 (en) | Manufacturing method for steel nitrocarburized machine parts | |
KR101726251B1 (en) | Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component | |
JP6680142B2 (en) | High-strength seamless oil country tubular good and method for manufacturing the same | |
US20180245172A1 (en) | Age-hardenable steel, and method for manufacturing components using age-hardenable steel | |
JP3915710B2 (en) | Carburized differential gear with excellent low cycle impact fatigue resistance | |
JP2019183215A (en) | Carburization machine component and manufacturing method therefor | |
JPH06172867A (en) | Production of gear excellent in impact fatigue life | |
JP6477904B2 (en) | Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same | |
JP4328924B2 (en) | Manufacturing method of high-strength shaft parts | |
JP2012052218A (en) | Spring steel wire, method for producing the same, and spring | |
JPH08170146A (en) | Nitrided and non-heattreated steel for forming and nitrided and non-heattreated forged product | |
JP5365477B2 (en) | Steel for surface hardening treatment | |
KR101795401B1 (en) | Carburizing steel and mrthod for manufacturing the same | |
JP2016074951A (en) | Manufacturing method of case hardened steel | |
WO2013114723A1 (en) | Processes for producing gear | |
JP7263796B2 (en) | RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF | |
JP3623313B2 (en) | Carburized gear parts | |
JP2001032037A (en) | Low distortion steel for gear, excellent in pitting resistance, and manufacture of gear using the steel | |
KR101535971B1 (en) | Steel for automotive gear set with high strength for outline induction hardening | |
JPWO2002044435A1 (en) | Carburizing steel and carburizing gear | |
JPH10265841A (en) | Production of high strength cold forging parts | |
JP3242336B2 (en) | Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141126 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20150603 |