JP2005194547A - High carbon extra-fine grain steel and its producing method - Google Patents

High carbon extra-fine grain steel and its producing method Download PDF

Info

Publication number
JP2005194547A
JP2005194547A JP2003435976A JP2003435976A JP2005194547A JP 2005194547 A JP2005194547 A JP 2005194547A JP 2003435976 A JP2003435976 A JP 2003435976A JP 2003435976 A JP2003435976 A JP 2003435976A JP 2005194547 A JP2005194547 A JP 2005194547A
Authority
JP
Japan
Prior art keywords
steel
ferrite
mpa
carbon
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003435976A
Other languages
Japanese (ja)
Inventor
Toshihiro Hanamura
年裕 花村
Yoshiyuki Furuya
佳之 古谷
Saburo Matsuoka
三郎 松岡
Shiro Toritsuka
史郎 鳥塚
Hisashi Nagai
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003435976A priority Critical patent/JP2005194547A/en
Publication of JP2005194547A publication Critical patent/JP2005194547A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new steel material having such merit so as not to use expensive trace elements, and excellent recycling characteristic by which compared with the conventional S45C.QT (quenching and tempering) steel having about 0.4% C content and 800-1,200 MPa assumed strength used for car parts, such as axle, gear, crank shaft; in this new material, C content is the same level and regarding other alloy elements, added elements are held to the degree as the plain steel and the present 400 MPa class Fe-C-Mn-Si base ferrite-pearite steel is changed to the high strength by making fine grain of the ferrite. <P>SOLUTION: The steel containing 0.35-1.0 wt% C and having the structure of at least one or more kinds of ferrite, austenite, pearite, cementite and martensite, of ≤10μm average grain diameter, is processed to ≥0.7 strain in the temperature range from 550°C to Ae1 point +50°C to produce the high carbon extra-fine grain steel having fine structure of ≤ 3μm average grain diameter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は、高C(炭素)添加超微細粒鋼とその製造方法に関するものである。さらに詳しくは、この出願の発明は、建築用鋼材、自動車用鋼材等として有用な、高強度、高靭性の高C(炭素)添加超微細粒鋼とその製造方法に関するものである。   The invention of this application relates to a high C (carbon) added ultra fine grain steel and a method for producing the same. More specifically, the invention of this application relates to a high-strength, high-toughness, high C (carbon) -added ultrafine-grained steel useful as a structural steel material, automotive steel material, and the like, and a method for producing the same.

従来より、車軸、歯車、クランクシャフト等の自動車部品においては、規定強度800MPa〜1200MPa程度の特性をもつS45CQT鋼が用いられている。そしてこのS45CQT鋼においては、0.4%程度の高含有率でC(炭素)が添加されている。   Conventionally, S45CQT steel having a characteristic of a specified strength of about 800 MPa to 1200 MPa is used in automobile parts such as an axle, a gear, and a crankshaft. In this S45CQT steel, C (carbon) is added at a high content of about 0.4%.

しかしながら、このS45CQT鋼の場合には、その化学組成は特殊であって、高価な微量元素が添加されていることから普通鋼に比べてリサイクルの点に難点があり、また、QT処理も必要とされていることからコスト高で、製造上の負担が問題になっていた。   However, in the case of this S45CQT steel, its chemical composition is special, and expensive trace elements are added, so there are difficulties in recycling compared to ordinary steel, and QT treatment is also necessary. As a result, the cost is high and the manufacturing burden has become a problem.

このような状況において、その組成において高価な微量元素の添加を必要とせずにリサイクル性を向上させ、しかもコストや製造上の負担を軽減するための方策として組織の微細粒化による高強度化が注目されている。   In such a situation, as a measure for improving recyclability without adding expensive trace elements in the composition and reducing the burden on cost and manufacturing, increasing the strength by making the structure finer Attention has been paid.

実際、400MPa級のFe−C−Mn−Si系フェライトパーライト鋼のフェライト粒の微細化による高強度化がすでに実現されてきており、この出願の発明者らも、すでに、フェライト平均粒径2μm以下の高強度の高靭性鋼材とその製造方法を提案している(特許文献1)。   Actually, the strength of the 400 MPa class Fe—C—Mn—Si ferritic pearlite steel has already been increased by refining ferrite grains, and the inventors of this application have already achieved an average ferrite grain size of 2 μm or less. Have proposed a high-strength, high-toughness steel material and a method for producing the same (Patent Document 1).

だが、現状においては、組織の微細粒化によってS45CQT鋼と同等以上の特性を有する普通鋼組成をベースとした鋼材は依然として実現されていないのが実情である。
特開2000−309850号公報
However, at present, steel materials based on a normal steel composition having characteristics equal to or higher than those of S45CQT steel have not been realized due to the refinement of the structure.
JP 2000-309850 A

この出願の発明は以上のとおりの背景を踏まえてなされたものであり、S45CQT鋼のように高価な微量元素を添加することも、その製造においてQT処理を必須とすることもなく、普通鋼の組成をベースとして、リサイクル性に優れ、安価であって、しかもS45CQT鋼と同等以上の特性を有する新しい微細粒鋼とその製造方法を提供することを課題としている。   The invention of this application was made on the basis of the background as described above, and it is not necessary to add expensive trace elements as in S45CQT steel, nor to make QT treatment essential in its production. Based on the composition, the object is to provide a new fine-grained steel that is excellent in recyclability, is inexpensive, and has the same or better characteristics as S45CQT steel, and a method for producing the same.

この出願の発明は、上記の課題を解決するものとして、第1には、化学組成において、0.35〜1.0重量%のC(炭素)を含有し、平均粒径が10μm以下のフェライトとオーステナイト、パーライト、セメンタイト、およびマルテンサイトの少くとも1種以上の組織を有する鋼を、550℃からAel点+50℃までの温度範囲で、ひずみ0.7以上の加工を行い、平均粒径3μm以下の微細組織を有する鋼とすることを特徴とする高C(炭素)添加超微細粒鋼の製造方法を提供する。   The invention of this application solves the above-mentioned problems. First, a ferrite having a chemical composition containing 0.35 to 1.0% by weight of C (carbon) and an average particle size of 10 μm or less. And steel having at least one structure of austenite, pearlite, cementite, and martensite at a temperature range of 550 ° C. to Ael point + 50 ° C., and processing with a strain of 0.7 or more, an average particle size of 3 μm Provided is a method for producing a high-C (carbon) -added ultrafine-grained steel characterized in that the steel has the following microstructure.

また、この出願の発明は、化学組成において、0.35〜1.0重量%のC(炭素)を含有し、平均粒径が3μm以下のフェライト粒組織を有し、引張強度が900MPa以上で全延びが20%以上であることを特徴とする高C(炭素)添加超微細粒鋼を提供する。   Further, the invention of this application has a chemical composition containing 0.35 to 1.0% by weight of C (carbon), a ferrite grain structure having an average particle size of 3 μm or less, and a tensile strength of 900 MPa or more. Provided is a high C (carbon) -added ultrafine grained steel characterized by having a total elongation of 20% or more.

以上のようなこの出願の第1の発明によって、S45CQT鋼のように高価な微量元素を添加することも、その製造においてQT処理を必須とすることもなく、普通鋼の組成をベースとして、リサイクル性に優れ、安価であって、しかもS45CQT鋼と同等以上の特性を有する新しい微細粒鋼の製造が可能とされる。   According to the first invention of this application as described above, it is possible to recycle based on the composition of ordinary steel without adding expensive trace elements as in S45CQT steel and making QT treatment essential in the production. It is possible to produce a new fine-grained steel that is excellent in properties, is inexpensive, and has the same or better properties as S45CQT steel.

また、この出願の第2の発明によって、強度、靭性がともに優れた、フェライト微細粒鋼が提供される。   In addition, according to the second invention of this application, a ferrite fine grain steel having both excellent strength and toughness is provided.

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

この出願の発明は、従来の車軸、歯車、クランクシャフト等自動車部品に使用されている想定強度800MPa〜1200MPaの0.4%C程度のS45CQT鋼に比べ、C量は同等レベル以上であるが、それ以外の合金元素については普通鋼の添加元素に留め、現行の400MPa級のFe−C−Mn−Si系フェライトパーライト鋼をフェライトの微細粒化により高強度化することにより、高価な微量元素を使用しなくても良い等の利点を有してリサイクル性に優れた新しい鉄鋼材料を提供するものである。   In the invention of this application, the amount of C is equal to or higher than the S45CQT steel of about 0.4% C with an assumed strength of 800 MPa to 1200 MPa used for automobile parts such as conventional axles, gears, and crankshafts. Other alloy elements are limited to the additive elements of ordinary steel, and the current 400 MPa class Fe-C-Mn-Si ferritic pearlite steel is strengthened by making the ferrite finer, thereby reducing expensive trace elements. The present invention provides a new steel material that has the advantage of not being used and has excellent recyclability.

すなわち、この出願の発明では、前記のとおり、化学組成において、0.35〜1.0重量%のC(炭素)を含有し、平均粒径が10μm以下のフェライトとオーステナイト、パーライト、セメンタイト、およびマルテンサイトの少くとも1種以上の組織を有する鋼を、550℃からAel点+50℃までの温度範囲で、ひずみ0.7以上の加工を行い、平均粒径3μm以下の微細組織を有する高C(炭素)添加超微細粒鋼を製造する。   That is, in the invention of this application, as described above, in the chemical composition, 0.35 to 1.0% by weight of C (carbon) and an average particle size of 10 μm or less of ferrite and austenite, pearlite, cementite, and A steel having a microstructure of at least one kind of martensite is processed at a strain of 0.7 or more in a temperature range from 550 ° C. to an Ael point + 50 ° C., and has a fine structure with an average grain size of 3 μm or less. (Carbon) added ultra fine grain steel is manufactured.

化学組成において、C(炭素)含有量を0.35〜1.0%の範囲とすることはこの出願の発明において必須である。0.35%未満の場合には、S45CQT鋼との比較として、強度、靱性ともに必ずしも充分な改善効果が得られず、また1.0%を超える場合には、靱性の低下等の不具合が生じることになる。   In the chemical composition, it is essential in the invention of this application that the C (carbon) content is in the range of 0.35 to 1.0%. If it is less than 0.35%, sufficient improvement effect on strength and toughness is not necessarily obtained as compared with S45CQT steel, and if it exceeds 1.0%, problems such as a decrease in toughness occur. It will be.

C(炭素)以外の元素組成としては普通鋼の組成をベースとすることができる。たとえば、重量%として、
Si:0.8%以下
Mn:0.05〜3.0%
Al:0.1%以下
Cu:2.5%以下
Ni:3.0%以下
Ti:0.1%以下
Cr:3.0%以下
Mo:1.0%以下
W:0.5%以下
Nb:0.1%以下
V:0.1%以下
等を考慮することができる。
The elemental composition other than C (carbon) can be based on the composition of ordinary steel. For example, as weight percent,
Si: 0.8% or less Mn: 0.05 to 3.0%
Al: 0.1% or less Cu: 2.5% or less Ni: 3.0% or less Ti: 0.1% or less Cr: 3.0% or less Mo: 1.0% or less W: 0.5% or less Nb : 0.1% or less V: 0.1% or less can be considered.

ひずみ0.7以上の加工についての手段も様々に考慮されてよい。たとえば溝ロール加工、圧延、鍛造等が考慮される。   Various means for processing with a strain of 0.7 or more may be considered. For example, groove roll processing, rolling, forging, etc. are considered.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が
限定されることはない。
Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.

化学組成(重量%)として次の2種(a)(b);   The following two types (a) and (b) as chemical compositions (% by weight);

Figure 2005194547
Figure 2005194547

のものの鋼材を、各々について、次の2種の方法によって処理した。 Each steel was processed by the following two methods.

Figure 2005194547
Figure 2005194547

この場合の方法Aおよび方法Bについては次のように一般的に特徴づけられる。すなわち、方法Aは方法Bに比較して、最終仕上げが550℃と低い温度であり、粒径がより細粒化することになる。   The method A and method B in this case are generally characterized as follows. That is, the method A has a final finish at a temperature as low as 550 ° C. as compared with the method B, and the particle size becomes finer.

また、歪みの残留量が多く、そのため引張強度が大きくなる。一方、その反面、延性お
よびシャルピー試験の上部棚エネルギーが低下する。
In addition, there is a large amount of residual strain, which increases the tensile strength. On the other hand, the ductility and the upper shelf energy of the Charpy test are lowered.

この方法Aおよび方法Bの加工処理によって、この出願の2種の発明材:A−b、B−bと、2種の比較材:A−a、B−aとを作製した。   By the processing of the method A and the method B, two kinds of invention materials of this application: Ab and Bb and two kinds of comparative materials: Aa and Ba were produced.

添付した図1および図2は、各々、発明材B−bと、比較材B−aの微視組織を示した顕微鏡写真である。C(炭素)濃度が0.15%の比較材B−a(図2)の場合に比べ、発明材B−b(図1)では、C(炭素)濃度0.45%に高まったことにより、微細なFe3 C粒子がより多く均一に分散しており、フェライト粒径が1μm以下であることがわかる。   1 and 2 attached herewith are micrographs showing the microstructures of the inventive material B-b and the comparative material Ba, respectively. Compared to the comparative material Ba (FIG. 2) having a C (carbon) concentration of 0.15%, the inventive material B-b (FIG. 1) increased to a C (carbon) concentration of 0.45%. It can be seen that more fine Fe 3 C particles are uniformly dispersed and the ferrite particle diameter is 1 μm or less.

なお、発明材B−bの加工前の初期組織は、1100℃からWQ(ウォータークウェン
チ)したマルテンサイト組織である。
Note that the initial structure before processing of the inventive material Bb is a martensitic structure that is WQ (water quench) from 1100 ° C.

そして、発明材B−bと比較材B−aの場合の応力−ひずみ曲線を示したものが図3お
よび図4である。
FIG. 3 and FIG. 4 show the stress-strain curves for the inventive material B-b and the comparative material Ba.

また、発明材A−bと比較材A−aの各々について応力−ひずみ曲線を示したものが図5および図6である。   Moreover, what showed the stress-strain curve about each of invention material Ab and comparative material Aa is FIG. 5 and FIG.

そこで、以上の応力−ひずみ曲線から得られる諸特性を表3に示した。   Therefore, Table 3 shows various characteristics obtained from the above stress-strain curve.

Figure 2005194547
Figure 2005194547

A−aおよびB−aは0.15%C含有の比較材の場合を示しているが、方法Aの場合には、本発明材(A−b)はTSが834.9MPaから970.8MPaと131.4MPaも上昇しており、全伸びは23.8%と維持されている。方法Bの場合には、本発明材(B−b)はTSが571.9MPaから734MPaと162MPaも上昇しており、全伸びは32.4%と維持されていることがわかる。   Although Aa and Ba show the case of a comparative material containing 0.15% C, in the case of method A, the present invention material (Ab) has a TS of 834.9 MPa to 970.8 MPa. 131.4 MPa, and the total elongation is maintained at 23.8%. In the case of Method B, it can be seen that the TS of the present invention material (B-b) is increased from 571.9 MPa to 734 MPa and 162 MPa, and the total elongation is maintained at 32.4%.

たとえば以上の結果から、引張強度が900MPa以上であって、全延びが20%以上である高C(炭素)添加超微細粒鋼が提供されることになる。   For example, from the above results, a high C (carbon) -added ultrafine grain steel having a tensile strength of 900 MPa or more and a total elongation of 20% or more is provided.

また、図7には、シャルピー衝撃試験特性を示した。本発明材(A−b、B−b)はC濃度が高いため、上部棚エネルギーが低い傾向が認められる。しかしながら、強度を130MPa以上高め、自動車の足回り部材としての適応を考えた場合、従来のQT処理を必要とするS45C等の高合金鋼とトータルバランスの特性比較を行うと、図8に示す如く、本発明材はQT材全般の特性の更に上位位置を占めていることがわかる。このことは、この出願の発明の大変に重要な特徴である。   FIG. 7 shows the Charpy impact test characteristics. Since this invention material (Ab, Bb) has high C density | concentration, the tendency for an upper shelf energy to be low is recognized. However, when the strength is increased by 130 MPa or more and the application as an undercarriage member of an automobile is considered, a comparison of the characteristics of the total balance with a conventional high alloy steel such as S45C that requires QT treatment, as shown in FIG. It can be seen that the material of the present invention occupies a higher position in the overall characteristics of the QT material. This is a very important feature of the invention of this application.

以上詳しく説明したとおり、この出願の発明によって、従来の車軸、歯車、クランクシャフト等自動車部品に使用されている想定強度800MPa〜1200MPaの0.4%C程度のS45CQT鋼に比べ、C量は同等レベルであるが、それ以外の合金元素については普通鋼の添加元素に留め、現行の400MPa級のFe−C−Mn−Si系フェライトパーライト鋼をフェライトの微細粒化により高強度化することにより、高価な微量元素を使用しなくても良い等の利点を有してリサイクル性に優れた新しい鉄鋼材料が提供される。   As explained in detail above, according to the invention of this application, the amount of C is the same as that of S45CQT steel of about 0.4% C with an assumed strength of 800 MPa to 1200 MPa used in conventional automotive parts such as axles, gears, and crankshafts. Although it is a level, other alloy elements are limited to the additive elements of ordinary steel, and the current 400 MPa class Fe—C—Mn—Si based ferrite pearlite steel is increased in strength by refining ferrite, Provided is a new steel material that has the advantage that it is not necessary to use expensive trace elements and that is excellent in recyclability.

発明材(B−b)の微視組織を示した顕微鏡写真である。It is the microscope picture which showed the micro structure of invention material (Bb). 比較材(B−a)の微視組織を示した顕微鏡写真である。It is the microscope picture which showed the micro structure of the comparative material (Ba). 発明材(B−b)の応力−ひずみ曲線を示した図である。It is the figure which showed the stress-strain curve of invention material (Bb). 比較材(B−a)の応力−ひずみ曲線を示した図である。It is the figure which showed the stress-strain curve of the comparative material (Ba). 発明材(A−b)の応力−ひずみ曲線を示した図である。It is the figure which showed the stress-strain curve of invention material (Ab). 比較材(A−a)の応力−ひずみ曲線を示した図である。It is the figure which showed the stress-strain curve of the comparative material (Aa). シャルピー衝撃試験の結果を示した図である。It is the figure which showed the result of the Charpy impact test. トータルバランスの比較を示した図である。It is the figure which showed the comparison of total balance.

Claims (2)

化学組成において、0.35〜1.0重量%のC(炭素)を含有し、平均粒径が10μm以下のフェライトとオーステナイト、パーライト、セメンタイト、およびマルテンサイトの少くとも1種以上の組織を有する鋼を、550℃からAel点+50℃までの温度範囲で、ひずみ0.7以上の加工を行い、平均粒径3μm以下の微細組織を有する鋼とすることを特徴とする高C(炭素)添加超微細粒鋼の製造方法。   In the chemical composition, it contains 0.35 to 1.0% by weight of C (carbon), and has an average particle size of at least one structure of ferrite, austenite, pearlite, cementite, and martensite having a particle size of 10 μm or less. Addition of high C (carbon), characterized in that the steel is processed into a steel having a microstructure with an average grain size of 3 μm or less by processing at a strain of 0.7 or more in a temperature range from 550 ° C. to Ael point + 50 ° C. Manufacturing method of ultra fine grain steel. 化学組成において、0.35〜1.0重量%のC(炭素)を含有し、平均粒径が3μm以下のフェライト粒組織を有し、引張強度が900MPa以上で全延びが20%以上であることを特徴とする高C(炭素)添加超微細粒鋼。   In the chemical composition, it contains 0.35 to 1.0% by weight of C (carbon), has a ferrite grain structure with an average particle size of 3 μm or less, has a tensile strength of 900 MPa or more and a total elongation of 20% or more. A high-C (carbon) -added ultrafine-grained steel.
JP2003435976A 2003-12-26 2003-12-26 High carbon extra-fine grain steel and its producing method Pending JP2005194547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435976A JP2005194547A (en) 2003-12-26 2003-12-26 High carbon extra-fine grain steel and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435976A JP2005194547A (en) 2003-12-26 2003-12-26 High carbon extra-fine grain steel and its producing method

Publications (1)

Publication Number Publication Date
JP2005194547A true JP2005194547A (en) 2005-07-21

Family

ID=34815856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435976A Pending JP2005194547A (en) 2003-12-26 2003-12-26 High carbon extra-fine grain steel and its producing method

Country Status (1)

Country Link
JP (1) JP2005194547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098172A1 (en) * 2009-02-25 2010-09-02 独立行政法人産業技術総合研究所 Hydrogen fatigue resistant ferrite steel and manufacturing method thereof
WO2013114723A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Processes for producing gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098172A1 (en) * 2009-02-25 2010-09-02 独立行政法人産業技術総合研究所 Hydrogen fatigue resistant ferrite steel and manufacturing method thereof
WO2013114723A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Processes for producing gear

Similar Documents

Publication Publication Date Title
CN110546290B (en) Austenitic wear-resistant steel plate
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
KR20010074896A (en) Cold workable steel bar or wire and process
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP7190216B2 (en) Method of heat treating high strength steel and products obtained therefrom
CN108350538B (en) Steel having high hardness and excellent toughness
KR100979796B1 (en) High Strength Hot Rolled Steel Plate For Automobil Excellent In Enlargeability and Ductility and Method for Production thereof
CA2792615A1 (en) Tool steel for extrusion
JP5323679B2 (en) Cold work steel
KR20190128654A (en) Hot rolled steel products with very high strength of at least 1100 MPa and excellent elongation 21%
JP6819624B2 (en) Iron-based mixed powder for powder metallurgy, its manufacturing method, and sintered body with excellent tensile strength and impact resistance
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
CN107541665B (en) Steel material containing film-like retained austenite
JP2008248341A (en) Ultrahigh strength steel sheet, and automobile strength component using the same
JP4369250B2 (en) High temperature carburizing steel and method for producing the same
JP2005194547A (en) High carbon extra-fine grain steel and its producing method
KR101795278B1 (en) Ultra high strength spring steel
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JP5747243B2 (en) Warm working steel
JP6930590B2 (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JP2017071859A (en) Non-heat-treated steel and method for producing the same
KR20230048109A (en) Steel forged parts and manufacturing method thereof
JP2012102390A (en) High strength/high toughness non-heat treated hot-forged component and method for producing the same
JP6743720B2 (en) Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017