JP2013155391A - Recovery method of ruthenium - Google Patents

Recovery method of ruthenium Download PDF

Info

Publication number
JP2013155391A
JP2013155391A JP2012014606A JP2012014606A JP2013155391A JP 2013155391 A JP2013155391 A JP 2013155391A JP 2012014606 A JP2012014606 A JP 2012014606A JP 2012014606 A JP2012014606 A JP 2012014606A JP 2013155391 A JP2013155391 A JP 2013155391A
Authority
JP
Japan
Prior art keywords
ruthenium
solution
reaction
tank
tetroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012014606A
Other languages
Japanese (ja)
Other versions
JP5843065B2 (en
Inventor
Daigo Ikuta
大悟 生田
Satoshi Okada
智 岡田
Hiroshi Takazawa
寛 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012014606A priority Critical patent/JP5843065B2/en
Publication of JP2013155391A publication Critical patent/JP2013155391A/en
Application granted granted Critical
Publication of JP5843065B2 publication Critical patent/JP5843065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Gas Separation By Absorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recovery method of ruthenium, which secures a high recovery rate of ruthenium even when using a large reaction tank, and is suitable for practical use.SOLUTION: The recovery method of ruthenium includes the steps of: distilling ruthenium tetroxide from a platinum group metal-containing solution including ruthenium; and absorbing the ruthenium tetroxide in hydrochloric acid to recover a ruthenium chloride acid solution. The ruthenium tetroxide is distilled by dripping the platinum group metal-containing solution into a heated oxidant aqueous solution.

Description

本発明は白金族金属を含む溶液からルテニウムを効率よく回収する方法に関する。 The present invention relates to a method for efficiently recovering ruthenium from a solution containing a platinum group metal.

白金族金属を含む溶液からルテニウムを分離し回収する方法として、ルテニウムの揮発性を利用した酸化蒸留方法が知られている。白金族金属のうち、ルテニウム(Ru)とオスミウム(Os)の酸化物は揮発性を有するので他の白金族金属から蒸留して分離することができる。例えば特公平01−30896号公報(特許文献1)には、白金族金属を含む溶液に臭素酸ナトリウムを加えてルテニウム等を四酸化物にし、これを蒸留して分離回収する方法が記載されている。 As a method for separating and recovering ruthenium from a solution containing a platinum group metal, an oxidative distillation method using the volatility of ruthenium is known. Of the platinum group metals, ruthenium (Ru) and osmium (Os) oxides are volatile and can be separated from other platinum group metals by distillation. For example, Japanese Patent Publication No. 01-30896 (Patent Document 1) describes a method in which sodium bromate is added to a solution containing a platinum group metal to form ruthenium or the like into a tetraoxide, and this is distilled and separated and recovered. Yes.

このルテニウムの酸化蒸留法について、蒸留した四酸化ルテニウムを臭素酸ナトリウム溶液のトラップ槽に導入して白金等のミストを捕集すると共に四酸化ルテニウムの還元を防止して収率を高める方法が知られている(特開2006−161096号公報:特許文献2)。また、ルテニウムの酸化蒸留法を利用してルテニウム含有スクラップからルテニウムを回収する方法も知られている(特開2009−203486号公報:特許文献3)。 As for this ruthenium oxidative distillation method, a method is known in which distilled ruthenium tetroxide is introduced into a trap tank of a sodium bromate solution to collect mist such as platinum and prevent the reduction of ruthenium tetroxide to increase the yield. (Japanese Patent Laid-Open No. 2006-161096: Patent Document 2). Also known is a method of recovering ruthenium from ruthenium-containing scraps using an oxidation distillation method of ruthenium (Japanese Patent Laid-Open No. 2009-203486: Patent Document 3).

特公平01−30896号公報Japanese Patent Publication No. 01-30896 特開2006−161096号公報JP 2006-161096 A 特開2009−203486号公報JP 2009-203486 A

従来のルテニウム酸化蒸留法では、反応槽にルテニウム含有溶液を入れておき、そこに酸化剤を添加してルテニウムを酸化蒸留させていた。ところが、この方法では、実用段階で反応槽が大型になるとルテニウムの回収率は80%程度が限度になると云う問題がある。この理由は、反応槽が大型になると溶液の撹拌効率や加熱効率の低下によって、反応槽内に昇温が不十分な部分が生じ、酸化反応が不均一になることが影響している。 In the conventional ruthenium oxidative distillation method, a ruthenium-containing solution is placed in a reaction tank, and an oxidizing agent is added thereto to oxidatively distill ruthenium. However, this method has a problem that the recovery rate of ruthenium is limited to about 80% when the reaction tank becomes large in practical use. The reason for this is that when the reaction tank becomes large, a portion where the temperature rise is insufficient in the reaction tank due to a decrease in the stirring efficiency and heating efficiency of the solution, and the oxidation reaction becomes uneven.

また、ルテニウム酸化蒸留法では、酸化剤の必要量を一度に全量添加すると、酸化剤が十分に溶解せずに底部に固まってしまい、反応槽底部のドレイン口が詰まってしまうと云う問題を生じるので、酸化剤はゆっくり少量づつ添加する必要があり、また、発生する四酸化ルテニウムは腐食性ガスであるので、酸化剤の添加口は小さく形成されており、少量の酸化剤がゆっくり添加される。このため、従来のルテニウム酸化蒸留法では、溶液中のルテニウムが十分な量の酸化剤に接する状態を形成し難い。 In addition, in the ruthenium oxidative distillation method, if the necessary amount of oxidant is added all at once, the oxidant is not sufficiently dissolved and solidifies at the bottom, and the drain port at the bottom of the reaction tank is clogged. Therefore, it is necessary to add the oxidant slowly in small amounts, and since the generated ruthenium tetroxide is a corrosive gas, the addition port of the oxidant is formed small, and a small amount of oxidant is slowly added. . For this reason, in the conventional ruthenium oxidative distillation method, it is difficult to form a state in which ruthenium in the solution is in contact with a sufficient amount of the oxidizing agent.

さらに、従来のルテニウムの酸化蒸留法では、酸化蒸留反応の終点は原料溶液量や蒸留温度などの反応条件に基づいて経験的に判定し、あるいは酸化反応槽や回収槽の溶液の色変化を目視観察して判断していた。しかし、反応時間を経験的に定めると、反応元液中のルテニウムの量が変動した場合などに対応できず、また反応槽や回収槽の溶液の色変化を目視確認する方法では微少な変化が分かり難く、作業者による誤差も大きいなどの問題があった。 Furthermore, in the conventional ruthenium oxidative distillation method, the end point of the oxidative distillation reaction is determined empirically based on the reaction conditions such as the amount of the raw material solution and the distillation temperature, or the color change of the solution in the oxidation reaction tank and the recovery tank is visually observed. I was observing and judging. However, if the reaction time is determined empirically, it cannot cope with the case where the amount of ruthenium in the reaction source solution fluctuates, and the method of visually confirming the color change of the solution in the reaction tank or the recovery tank causes a slight change. It was difficult to understand and there were problems such as large errors by the workers.

一方、酸化蒸留によって発生する四酸化ルテニウム蒸気は非常に不安定な腐食性ガスであるため、反応槽で四酸化ルテニウム量などを測定すると器具の腐食が進み、信頼性ある測定を長期間行うことが難しく、酸化反応を安定に制御し難しい問題があった。このような問題を解決するため、四酸化ルテニウムガスの吸収工程で副生するガスを利用して酸化反応の終点を把握する方法が検討されている(特願2010−148929号)。 On the other hand, ruthenium tetroxide vapor generated by oxidative distillation is a very unstable and corrosive gas. It was difficult to control the oxidation reaction stably. In order to solve such a problem, a method of grasping the end point of the oxidation reaction using a gas by-produced in the ruthenium tetroxide gas absorption process has been studied (Japanese Patent Application No. 2010-148929).

本発明は、大型の反応槽を用いても酸化反応の効率が良く、ルテニウムの回収率を高めることができるルテニウム回収方法を提供する。また、この回収方法にルテニウムの酸化反応の終点を把握する上記方法を組み込み、安定に酸化反応を制御することができるルテニウム回収方法を提供する。 The present invention provides a ruthenium recovery method capable of improving the efficiency of oxidation reaction and increasing the recovery rate of ruthenium even when a large reaction tank is used. Further, the above method for grasping the end point of the ruthenium oxidation reaction is incorporated in this recovery method, and a ruthenium recovery method capable of stably controlling the oxidation reaction is provided.

本発明は以下の構成からなるルテニウムの回収方法に関する。
〔1〕ルテニウムを含む白金族金属含有溶液から四酸化ルテニウムを蒸留させる工程、この四酸化ルテニウムを塩酸に吸収させて塩化ルテニウム酸溶液を回収する工程を有するルテニウムの回収方法において、加熱した酸化剤水溶液に上記白金族金属含有溶液を滴下することによって四酸化ルテニウムを蒸留させることを特徴とするルテニウムの回収方法。
〔2〕酸化剤として臭素酸ナトリウムを用い、反応槽に臭素酸ナトリウム水溶液を入れ、該水溶液のpHを1〜5に調整しながら、加熱した臭素酸ナトリウム水溶液に上記白金族金属含有溶液を滴下して酸化ルテニウムを蒸留させる上記[1]に記載するルテニウムの回収方法。
〔3〕蒸留した四酸化ルテニウムを塩酸に吸収させる工程において、該吸収工程から排出される副生ガスをアルカリ溶液に吸収させ、このアルカリ溶液の酸化還元電位の経時変化を測定することによってルテニウムの酸化反応の終点を把握する上記[1]または上記[2]に記載するルテニウムの回収方法。
〔4〕塩酸による吸収工程から排出される副生ガスを吸収したアルカリ溶液の酸化還元電位について、電位変化率が0.5mV/min以下の状態が30分以上継続した段階を蒸留反応の終点とする上記[1]〜上記[3]の何れかに記載するルテニウムの回収方法。
The present invention relates to a ruthenium recovery method having the following configuration.
[1] In a ruthenium recovery method comprising a step of distilling ruthenium tetroxide from a platinum group metal-containing solution containing ruthenium, and a step of absorbing the ruthenium tetroxide in hydrochloric acid to recover a ruthenium chloride solution, a heated oxidant A method for recovering ruthenium, wherein ruthenium tetroxide is distilled by dropping the platinum group metal-containing solution into an aqueous solution.
[2] Using sodium bromate as an oxidizing agent, adding a sodium bromate aqueous solution to the reaction vessel, and dropping the platinum group metal-containing solution into the heated sodium bromate aqueous solution while adjusting the pH of the aqueous solution to 1 to 5 The ruthenium recovery method according to the above [1], wherein the ruthenium oxide is distilled.
[3] In the step of absorbing distilled ruthenium tetroxide in hydrochloric acid, the by-product gas discharged from the absorption step is absorbed in an alkaline solution, and the change in oxidation-reduction potential of the alkaline solution with time is measured. The method for recovering ruthenium according to the above [1] or [2], wherein the end point of the oxidation reaction is grasped.
[4] Regarding the oxidation-reduction potential of the alkaline solution that has absorbed the by-product gas discharged from the absorption step with hydrochloric acid, the stage in which the potential change rate is 0.5 mV / min or less continues for 30 minutes or more is defined as the end point of the distillation reaction. The method for recovering ruthenium according to any one of [1] to [3] above.

本発明の回収方法は、加熱した酸化剤水溶液にルテニウムを含む白金族金属含有溶液(元液)を滴下するので、大型の反応槽でも、ルテニウムが酸化剤に均一に接触して十分に酸化され、酸化反応の効率がよく、ルテニウムの回収率を高めることができる。また、酸化剤が加熱されているので、生成した四酸化ルテニウムがすぐに蒸留し、反応が早い。 In the recovery method of the present invention, since a platinum group metal-containing solution containing ruthenium (original solution) is dropped into a heated oxidant aqueous solution, ruthenium is uniformly contacted with the oxidant and sufficiently oxidized even in a large reaction vessel. The efficiency of the oxidation reaction is good, and the recovery rate of ruthenium can be increased. Further, since the oxidizing agent is heated, the produced ruthenium tetroxide is immediately distilled and the reaction is fast.

また、元液を供給するので、供給速度を調節して四酸化ルテニウムのガス発生をコントロールすることができ、反応槽内の突発的な泡立ちやガス発生などの過剰反応を防止することができる。さらに、反応効率が良いので酸化剤の必要量を従来の方法よりも少なくすることができる。 Further, since the original solution is supplied, it is possible to control the gas generation of ruthenium tetroxide by adjusting the supply rate, and it is possible to prevent excessive reactions such as sudden foaming and gas generation in the reaction tank. Furthermore, since the reaction efficiency is good, the required amount of the oxidizing agent can be reduced as compared with the conventional method.

従来の方法では、作業員が粉末の酸化剤を反応槽に供給しているが、本発明の方法では、反応槽に酸化剤水溶液を入れておき、これに元液を管路を通じて供給することができるので、作業が安全である。 In the conventional method, the worker supplies the powdered oxidant to the reaction tank. However, in the method of the present invention, the oxidant aqueous solution is placed in the reaction tank, and the original solution is supplied to the reaction tank through the pipeline. Work is safe.

さらに、本発明の回収方法では、蒸留した四酸化ルテニウムを塩酸に吸収させる際に副生するガスをアルカリ溶液に吸収させ、このアルカリ溶液の電位変化を測定して酸化蒸留の終点を把握する方法を採用すれば、酸化反応を制御するための測定器具を腐食性の四酸化ルテニウムに接触させる必要がなく、測定器具の腐食を避けることができ、酸化蒸留反応の進行を安定かつ正確に把握することができる。 Furthermore, in the recovery method of the present invention, a gas produced as a by-product when absorbing distilled ruthenium tetroxide into hydrochloric acid is absorbed in an alkali solution, and the potential change of the alkali solution is measured to grasp the end point of oxidative distillation. This eliminates the need for the measuring instrument to control the oxidation reaction to contact corrosive ruthenium tetroxide, avoids corrosion of the measuring instrument, and provides a stable and accurate grasp of the progress of the oxidative distillation reaction. be able to.

本発明に係るルテニウム回収方法の装置例を示す模式図。The schematic diagram which shows the apparatus example of the ruthenium collection | recovery method concerning this invention.

以下、本発明を具体的に説明する。
〔ルテニウムの回収方法〕
本発明の回収方法は、ルテニウムを含む白金族金属含有溶液から四酸化ルテニウムを蒸留させる工程、この四酸化ルテニウムを塩酸に吸収させて塩化ルテニウム酸溶液を回収する工程を有するルテニウムの回収方法において、加熱した酸化剤水溶液に上記白金族金属含有溶液を滴下することによって四酸化ルテニウムを蒸留させることを特徴とするルテニウムの回収方法である。
Hereinafter, the present invention will be specifically described.
[Ruthenium recovery method]
The recovery method of the present invention includes a step of distilling ruthenium tetroxide from a platinum group metal-containing solution containing ruthenium, and a step of recovering the ruthenium chloride solution by absorbing the ruthenium tetroxide in hydrochloric acid. A ruthenium tetroxide recovery method, wherein ruthenium tetroxide is distilled by dropping the platinum group metal-containing solution into a heated aqueous oxidizing agent solution.

また、本発明の回収方法は、加熱した酸化剤水溶液にルテニウムを含む白金族金属含有溶液を滴下して四酸化ルテニウムを蒸留させ、この四酸化ルテニウムを塩酸に吸収させて塩化ルテニウム酸溶液を回収するルテニウムの回収方法において、該吸収工程で排出される副生ガスをアルカリ溶液に吸収させ、このアルカリ溶液の酸化還元電位の経時変化を測定することによってルテニウムの酸化反応の終点を把握するルテニウムの回収方法である。 In addition, the recovery method of the present invention is a method in which a ruthenium-containing platinum group metal-containing solution is dropped into a heated aqueous oxidizing agent solution to distill ruthenium tetroxide, and the ruthenium tetroxide is absorbed by hydrochloric acid to recover a ruthenium chloride solution. In the ruthenium recovery method, the by-product gas discharged in the absorption step is absorbed into an alkaline solution, and the end point of the ruthenium oxidation reaction is determined by measuring the change over time in the oxidation-reduction potential of the alkaline solution. It is a collection method.

本発明の回収方法において、ルテニウムを含む白金族金属含有溶液は、例えば、銅電解スライムの塩酸浸出後液、使用済みスパッタリング用ターゲット材の塩酸浸出液などを用いることができる。 In the recovery method of the present invention, the platinum group metal-containing solution containing ruthenium can be, for example, a solution after copper electrolyte leaching of hydrochloric acid, a hydrochloric acid leaching solution of a used sputtering target material, or the like.

ルテニウムを含む白金族金属含有溶液からルテニウムを酸化して蒸留させる。四酸化ルテニウム(RuO4)の沸点は約130℃であり、揮発性を有するので、ルテニウムを酸化して蒸留することによって他の白金族金属から分離することができる。 Ruthenium is oxidized and distilled from a platinum group metal-containing solution containing ruthenium. Since ruthenium tetroxide (RuO 4 ) has a boiling point of about 130 ° C. and is volatile, it can be separated from other platinum group metals by oxidizing and distilling ruthenium.

ルテニウムを酸化する酸化剤としては、アルカリ金属の塩素酸塩や臭素酸塩が好適に用いられ、例えば臭素酸ナトリウム(NaBrO3)が用いられる。 As the oxidizing agent for oxidizing ruthenium, alkali metal chlorates and bromates are preferably used. For example, sodium bromate (NaBrO 3 ) is used.

本発明の回収方法は、ルテニウムを含む白金族金属含有溶液(元液)に酸化剤を添加する従来の方法に代えて、反応槽に酸化剤溶液、例えば臭素酸ナトリウム水溶液を入れておき、該溶液のpHを1〜5、好ましくはpH1〜4に調整しながら、加熱した酸化剤溶液にルテニウムを含む白金族金属含有溶液(元液)を滴下し、ルテニウムを酸化して蒸留させる。 In the recovery method of the present invention, instead of the conventional method of adding an oxidizing agent to a platinum group metal-containing solution (original solution) containing ruthenium, an oxidizing agent solution such as a sodium bromate aqueous solution is put in a reaction vessel, While adjusting the pH of the solution to 1 to 5, preferably pH 1 to 4, a platinum group metal-containing solution (original solution) containing ruthenium is dropped into the heated oxidant solution, and ruthenium is oxidized and distilled.

元液に酸化剤を添加する従来の方法では、反応槽が大型化すると、反応槽での元液の撹拌や加熱効果が不均一になりやすく、元液に含まれるルテニウムが十分に酸化剤に接触することができ難くなるので、酸化反応の効率が低く、ルテニウムの回収率が低下する。 In the conventional method of adding an oxidizing agent to the original solution, if the reaction vessel is enlarged, the stirring and heating effects of the original solution in the reaction vessel tend to be uneven, and the ruthenium contained in the original solution becomes a sufficient oxidizing agent. Since it becomes difficult to make contact, the efficiency of the oxidation reaction is low, and the ruthenium recovery rate decreases.

一方、本発明の回収方法では、加熱した酸化剤溶液に元液を滴下するので、滴下された元液に含まれるルテニウムが十分な量の酸化剤に接触することができ、大型の反応槽でも酸化反応の効率がよく、ルテニウムの回収率が向上する。さらに、酸化剤溶液が加熱されているので、生成した四酸化ルテニウム(RuO4)をすぐに揮発させることができる。 On the other hand, in the recovery method of the present invention, since the original solution is dropped into the heated oxidant solution, ruthenium contained in the dropped original solution can contact a sufficient amount of the oxidant, and even in a large reaction tank. The efficiency of the oxidation reaction is good and the recovery rate of ruthenium is improved. Furthermore, since the oxidant solution is heated, the produced ruthenium tetroxide (RuO 4 ) can be volatilized immediately.

反応槽内のpHを1〜5、好ましくはpH1〜4に調整しながら、加熱した酸化剤溶液に元液を滴下してルテニウムを酸化し、蒸留させる。酸化剤として臭素酸ナトリウム水溶液を用いる場合、この溶液のpHは6以上なので、そのまま元液を滴下すると、元液に含まれるルテニウムの多くは加水分解して水酸化物沈殿になり、酸化反応の効率が低下する。 While adjusting the pH in the reaction vessel to 1 to 5, preferably pH 1 to 4, the original solution is dropped into the heated oxidant solution to oxidize and distill ruthenium. When using a sodium bromate aqueous solution as the oxidizing agent, the pH of this solution is 6 or more. Therefore, when the original solution is added as it is, most of the ruthenium contained in the original solution is hydrolyzed to form a hydroxide precipitate. Efficiency is reduced.

また、臭素酸イオンはプロトン(水素イオン等)と反応することによって酸化剤として作用するので(2BrO3 - + 12H+ + 10e- → Br2 + 6H2O)、反応槽内はプロトンが存在するように酸性にすることが必要である。反応槽内がpH5を超えると、酸化剤の機能が低下する。一方、pHが1より低いと臭素酸ナトリウムが酸分解して酸化剤として機能しなくなるので、酸化反応中の反応槽内はpH1以上に調整される。 Further, since the bromate ion acts as an oxidizing agent by reacting with protons (hydrogen ions, etc.) (2BrO 3 - + 12H + + 10e - → Br 2 + 6H 2 O), the reaction vessel is present protons It is necessary to make it acidic. When the inside of the reaction tank exceeds pH 5, the function of the oxidant is lowered. On the other hand, when the pH is lower than 1, sodium bromate is acid decomposed and does not function as an oxidizing agent, so the inside of the reaction tank during the oxidation reaction is adjusted to pH 1 or higher.

ルテニウムの酸化によって生成する四酸化ルテニウムの沸点は約130℃であるので、蓋をした反応槽内の酸化剤溶液を70℃〜90℃、好ましくは80℃〜85℃に加熱して、四酸化ルテニウムを蒸留させるとよい。 Since the boiling point of ruthenium tetroxide produced by ruthenium oxidation is about 130 ° C., the oxidant solution in the capped reaction vessel is heated to 70 ° C. to 90 ° C., preferably 80 ° C. to 85 ° C. Ruthenium should be distilled.

本発明の回収方法において、好ましくは、蒸留した四酸化ルテニウムを塩酸に吸収させて塩化ルテニウム酸溶液を回収する工程において、該吸収工程から排出される副生ガスをアルカリ溶液に吸収させ、このアルカリ溶液の酸化還元電位の経時変化を測定することによってルテニウムの酸化反応の終点を把握するとよい。 In the recovery method of the present invention, preferably, in the step of absorbing the distilled ruthenium tetroxide in hydrochloric acid to recover the ruthenium chloride solution, the by-product gas discharged from the absorption step is absorbed in the alkaline solution, The end point of the ruthenium oxidation reaction may be grasped by measuring the change over time of the oxidation-reduction potential of the solution.

具体的には、反応槽および蒸留した酸化ルテニウムを塩酸に吸収させる工程において、臭素ガスおよび塩素ガスが副生する。この副生ガスを例えば水酸化ナトリウム水溶液に吸収させ、副生ガスを吸収した水酸化ナトリウムの酸化還元電位を測定し、該電位の変化によってルテニウムの酸化反応の終点を把握する。 Specifically, bromine gas and chlorine gas are by-produced in the reaction tank and the step of absorbing distilled ruthenium oxide into hydrochloric acid. This by-product gas is absorbed in, for example, an aqueous sodium hydroxide solution, the oxidation-reduction potential of sodium hydroxide that has absorbed the by-product gas is measured, and the end point of the ruthenium oxidation reaction is grasped by the change in the potential.

例えば、基準値以下の電位変化率が一定時間継続すれば、酸化反応は終了したものと判断することができる。電位変化率〔(電位変化量)/(経過時間)〕は次式(1)によって測定することができる。
電位変化率〔ΔE/Δt〕n=〔En−E(n-1)〕/〔tn−t(n-1)〕… (1)
式中、ΔEは電位変化量、Δtは単位時間、Enはn測定時の電位、E(n-1)は(n-1)測定時の電位、tnはn測定時、t(n-1)は(n-1)測定時。
For example, if the potential change rate below the reference value continues for a certain period of time, it can be determined that the oxidation reaction has ended. The potential change rate [(potential change amount) / (elapsed time)] can be measured by the following equation (1).
Potential change rate [ΔE / Δt] n = [En−E (n−1)] / [tn−t (n−1)] (1)
In the equation, ΔE is a potential change amount, Δt is a unit time, En is a potential at the time of n measurement, E (n-1) is a potential at the time of (n-1) measurement, tn is a potential at the time of n measurement, t (n-1 ) (N-1) when measuring.

電位変化率の基準値および定常状態の継続時間は適用される反応条件や装置構成によって定めればよい。例えば、電位変化率が0.5mV/min以下の状態が30分以上継続した段階を蒸留反応の終点とすることができる。このような方法によって酸化蒸留反応の進行を安定かつ正確に把握することができる。 The reference value of the potential change rate and the duration of the steady state may be determined according to the applied reaction conditions and the apparatus configuration. For example, the end point of the distillation reaction can be a stage where the state where the potential change rate is 0.5 mV / min or less continues for 30 minutes or more. By such a method, the progress of the oxidative distillation reaction can be grasped stably and accurately.

〔装置構成〕
本発明の回収方法は、例えば、図1に示す装置によって実施することができる。
図示するように、反応槽10はマントルヒータに設置されており、約70℃〜90℃に加熱されている。反応槽10には酸化剤水溶液、例えば臭素酸ナトリウム水溶液が入っている。臭素酸ナトリウム水溶液には塩酸が加えられ、pH1〜5、好ましくはpH1〜4に調整されている。
〔Device configuration〕
The recovery method of the present invention can be implemented, for example, by the apparatus shown in FIG.
As shown in the figure, the reaction vessel 10 is installed in a mantle heater and is heated to about 70 ° C. to 90 ° C. The reaction tank 10 contains an oxidizing agent aqueous solution, for example, a sodium bromate aqueous solution. Hydrochloric acid is added to the aqueous sodium bromate solution, and the pH is adjusted to pH 1 to 5, preferably pH 1 to 4.

反応槽10は蓋9によって閉じられており、この蓋9を貫通して撹拌機8、管路7が設けられている。反応槽10には送液ポンプ17を通じて元液の供給槽16が接続している。供給槽16にはルテニウム(Ru)を含む白金族金属を含有する塩酸酸性溶液(元液)が入っている。この元液には水酸化ナトリウム(NaOH)が加えられてpH約1に調整されている。元液は送液ポンプ17を通じて反応槽10に少量づつ供給される。 The reaction tank 10 is closed by a lid 9, and a stirrer 8 and a pipe line 7 are provided through the lid 9. An original solution supply tank 16 is connected to the reaction tank 10 through a liquid feed pump 17. The supply tank 16 contains a hydrochloric acid acidic solution (original solution) containing a platinum group metal containing ruthenium (Ru). Sodium hydroxide (NaOH) is added to the original solution to adjust the pH to about 1. The original liquid is supplied to the reaction tank 10 little by little through the liquid feed pump 17.

反応槽10において、臭素酸ナトリウム水溶液に元液が少量づつ添加され、該元液に含まれるルテニウムは、臭素酸ナトリウムによって酸化されて揮発性の四酸化ルテニウム(RuO4)を生じ、このRuO4がガス化して蒸留し、同時に臭素ガス(Br2)が副生する。 In the reaction vessel 10, the original solution is added little by little to the sodium bromate aqueous solution, and ruthenium contained in the original solution is oxidized by sodium bromate to produce volatile ruthenium tetroxide (RuO 4 ), and this RuO 4 Gasifies and distills, and at the same time, bromine gas (Br 2 ) is by-produced.

反応槽10には管路7を通じて回収槽11が接続している。図示する装置例では回収槽11が三段に設けられている。回収槽11には塩酸が入っており、蒸留したRuO4ガスは回収槽11に導入され、塩酸に吸収されて塩化ルテニウム酸溶液(H2RuCl6)になり、回収される。回収槽11では塩素ガス(Cl2)が副生する。反応槽10において副生したガス(主にBr2)はRuO4ガスと共に回収槽11に導入されるが、酸性であるので塩酸には殆ど吸収されず、回収槽11において副生したガス(主にCl2)と共に槽外に排出される。 A recovery tank 11 is connected to the reaction tank 10 through a pipe line 7. In the illustrated apparatus example, the collection tanks 11 are provided in three stages. The recovery tank 11 contains hydrochloric acid, and the distilled RuO 4 gas is introduced into the recovery tank 11 and absorbed by the hydrochloric acid to become a ruthenic acid chloride solution (H 2 RuCl 6 ) and recovered. Chlorine gas (Cl 2 ) is by-produced in the recovery tank 11. The gas (mainly Br 2 ) produced as a by-product in the reaction tank 10 is introduced into the recovery tank 11 together with the RuO 4 gas. And Cl 2 ).

回収槽11には管路7を通じて吸収槽12が接続している。図示する装置例では吸収槽12が二段に設けられている。吸収槽12にはNaOH溶液(吸収液)が入っている。回収槽11から排出された副生ガスは吸収槽12に導入され、NaOH溶液に吸収される。二段目の吸収槽12にはNaOH溶液の酸化還元電位を測定するORP計15が設置されている。 An absorption tank 12 is connected to the recovery tank 11 through a pipe line 7. In the illustrated apparatus example, the absorption tank 12 is provided in two stages. The absorption tank 12 contains a NaOH solution (absorption liquid). By-product gas discharged from the collection tank 11 is introduced into the absorption tank 12 and absorbed by the NaOH solution. An ORP meter 15 that measures the oxidation-reduction potential of the NaOH solution is installed in the second-stage absorption tank 12.

二段目の吸収槽12には空槽13が接続しており、さらに空槽13には吸気ポンプ14が接続している。反応槽10から回収槽11、吸収槽12、空槽13は管路7を通じて吸気ポンプ14によって吸引されており、RuO4蒸留ガスと副生ガスは吸引されて各槽に導入され、また吸気ポンプ14によって流量が制御される。さらに空槽13では吸引されたガス中のミストなどが捕集される。 An empty tank 13 is connected to the second-stage absorption tank 12, and an intake pump 14 is connected to the empty tank 13. The recovery tank 11, the absorption tank 12, and the empty tank 13 are sucked by the intake pump 14 from the reaction tank 10 through the conduit 7, and RuO 4 distilled gas and by-product gas are sucked and introduced into each tank, and the intake pump 14 controls the flow rate. Further, the mist 13 in the sucked gas is collected in the empty tank 13.

回収槽11から排出された副生ガスは吸収槽12に導かれてNaOH溶液に吸収される。副生ガスを吸収したNaOH溶液の酸化還元電位がORP計15によって測定され、その経時変化、例えば、電位変化率が上記式(1)によって測定される。この電位変化率が基準値以下、例えば0.5mV/min以下であって、この基準値以下の電位変化率が30分継続すれば酸化蒸留反応は終了したものと判断し、反応を停止する。 The by-product gas discharged from the recovery tank 11 is guided to the absorption tank 12 and absorbed by the NaOH solution. The oxidation-reduction potential of the NaOH solution that has absorbed the by-product gas is measured by the ORP meter 15, and the change with time, for example, the potential change rate is measured by the above formula (1). If this potential change rate is not more than a reference value, for example, 0.5 mV / min or less, and if the potential change rate not more than this reference value continues for 30 minutes, it is determined that the oxidative distillation reaction has ended, and the reaction is stopped.

以下、本発明の実施例を示す。図1に示す蒸留装置を用いてルテニウムの酸化蒸留を行なった。ルテニウム回収率はRu回収率(%)=(Ru回収量)/(反応前の元液中のRu量)の式によって求めた。 Examples of the present invention will be described below. Ruthenium was oxidatively distilled using the distillation apparatus shown in FIG. The ruthenium recovery rate was determined by the formula Ru recovery rate (%) = (Ru recovery amount) / (Ru amount in the original solution before reaction).

〔実施例1〕
臭素酸ナトリウム2560gを水10Lに溶解し、これに塩酸を添加してpH4に調整して酸化剤水溶液を調製した。この酸化剤水溶液を反応槽10に入れて80℃に加熱した。一方、供給槽16にはRuおよび白金族金属(Pt,Pd,Rh,Ir)を含む塩酸性溶液にNaOH水溶液を加えてpH1.0に調整した元液(Ru濃度15.2g/L、液量25L)を入れ、この元液の全量を2時間かけて少量づつ反応槽10に滴下した。反応槽10は80℃に加熱しながら撹拌し、送液ポンプ17を用いて元液を供給槽16から吸引して滴下しながら反応させた。反応槽10で発生したRuO4蒸気を含む蒸留ガスは回収槽11(6NのHCl水溶液)に導いてRuO4蒸気をHCl溶液に吸収させ、塩化ルテニウム酸(H2RuCl6)溶液として回収した。回収槽11から排出された副生ガス(Br2およびCl2)は吸収槽12(NaOH水溶液)に導いて吸収させた。元液の全量を滴下して反応終了とした。反応終了後に回収槽11に吸収されたRu量から測定したRu回収率は96.8%であった。反応後の反応槽内液はpH3.0であった。
[Example 1]
2560 g of sodium bromate was dissolved in 10 L of water, and hydrochloric acid was added to adjust the pH to 4 to prepare an aqueous oxidizing agent solution. This oxidizing agent aqueous solution was put into the reaction vessel 10 and heated to 80 ° C. On the other hand, the supply tank 16 is an original solution (Ru concentration 15.2 g / L, liquid solution adjusted to pH 1.0 by adding an aqueous NaOH solution to a hydrochloric acid solution containing Ru and platinum group metals (Pt, Pd, Rh, Ir). 25 L) was added, and the entire amount of the original solution was added dropwise to the reaction vessel 10 in small portions over 2 hours. The reaction tank 10 was stirred while being heated to 80 ° C., and the reaction was carried out while sucking and dropping the original liquid from the supply tank 16 using the liquid feed pump 17. Distilled gas containing RuO 4 vapor generated in the reaction tank 10 was led to a recovery tank 11 (6N HCl aqueous solution), the RuO 4 vapor was absorbed into the HCl solution, and recovered as a ruthenium chloride (H 2 RuCl 6 ) solution. By-product gases (Br 2 and Cl 2 ) discharged from the collection tank 11 were introduced into the absorption tank 12 (NaOH aqueous solution) and absorbed. The whole amount of the original solution was dropped to complete the reaction. The Ru recovery rate measured from the amount of Ru absorbed in the recovery tank 11 after completion of the reaction was 96.8%. The solution in the reaction vessel after the reaction was pH 3.0.

〔比較例1〕
実施例1と同様の元液25Lを先に反応槽に入れ、反応槽の元液に粉末の臭素酸ナトリウム2560gを16分かけて少量づつ添加し、反応槽の温度を80℃に昇温して反応させた。蒸留後の処理は実施例1と同様に行なった。その結果、回収槽11に吸収されたRu量から測定したRu回収率は78.7%であり、実施例1のRu回収率より大幅に低かった。反応後の反応槽内液はpH4.5であった。
[Comparative Example 1]
First, 25 L of the same original solution as in Example 1 was put into the reaction vessel, 2560 g of powdered sodium bromate was added to the original solution of the reaction vessel little by little over 16 minutes, and the temperature of the reaction vessel was raised to 80 ° C. And reacted. The treatment after distillation was carried out in the same manner as in Example 1. As a result, the Ru recovery rate measured from the amount of Ru absorbed in the recovery tank 11 was 78.7%, which was significantly lower than the Ru recovery rate of Example 1. The solution in the reaction vessel after the reaction was pH 4.5.

〔実施例2〕
図1の装置において、吸収槽12(2本目)(内液は4NのNaOH水溶液)の酸化還元電位変化をORP計(vs Ag/AgCl)を用いて5分おきに測定し、上記式(1)に基いて電位変化量(mV/min)を算出し、酸化蒸留の終点を定めた以外は実施例1と同様にして元液の酸化蒸留を行った。電位変化率が0.5mV/min以下になってから30分経過した時点で、反応槽10の蒸気発生はほぼなくなり、電位変化率もほぼ0mV/minに落ち着いたので、反応を終了した。その結果、Ruの回収率は99.2%であった。
[Example 2]
In the apparatus of FIG. 1, the oxidation-reduction potential change of the absorption tank 12 (second) (inner solution is 4N NaOH aqueous solution) is measured every 5 minutes using an ORP meter (vs Ag / AgCl), and the above formula (1 The potential change (mV / min) was calculated based on), and the original solution was oxidatively distilled in the same manner as in Example 1 except that the end point of oxidative distillation was determined. When 30 minutes had elapsed since the potential change rate became 0.5 mV / min or less, the generation of steam in the reaction vessel 10 almost disappeared, and the potential change rate also settled to almost 0 mV / min, so the reaction was terminated. As a result, the recovery rate of Ru was 99.2%.

10−反応槽、11−回収槽、12−吸収槽、13−空槽、14−吸気ポンプ、15−ORP計、16−供給槽、17−送液ポンプ 10-reaction tank, 11-recovery tank, 12-absorption tank, 13-empty tank, 14-intake pump, 15-ORP meter, 16-supply tank, 17-feed pump

Claims (4)

ルテニウムを含む白金族金属含有溶液から四酸化ルテニウムを蒸留させる工程、この四酸化ルテニウムを塩酸に吸収させて塩化ルテニウム酸溶液を回収する工程を有するルテニウムの回収方法において、加熱した酸化剤水溶液に上記白金族金属含有溶液を滴下することによって四酸化ルテニウムを蒸留させることを特徴とするルテニウムの回収方法。
In a ruthenium recovery method comprising a step of distilling ruthenium tetroxide from a platinum group metal-containing solution containing ruthenium, and a step of absorbing the ruthenium tetroxide in hydrochloric acid to recover a ruthenium chloride solution, A method for recovering ruthenium, wherein ruthenium tetroxide is distilled by dropping a platinum group metal-containing solution.
酸化剤として臭素酸ナトリウムを用い、反応槽に臭素酸ナトリウム水溶液を入れ、該水溶液のpHを1〜5に調整しながら、加熱した臭素酸ナトリウム水溶液に上記白金族金属含有溶液を滴下して四酸化ルテニウムを蒸留させる請求項1に記載するルテニウムの回収方法。
Using sodium bromate as an oxidizing agent, placing a sodium bromate aqueous solution in the reaction vessel and adjusting the pH of the aqueous solution to 1 to 5, dropwise adding the platinum group metal-containing solution to the heated sodium bromate aqueous solution. The method for recovering ruthenium according to claim 1, wherein ruthenium oxide is distilled.
蒸留した四酸化ルテニウムを塩酸に吸収させる工程において、該吸収工程から排出される副生ガスをアルカリ溶液に吸収させ、このアルカリ溶液の酸化還元電位の経時変化を測定することによってルテニウムの酸化反応の終点を把握する請求項1または請求項2に記載するルテニウムの回収方法。
In the process of absorbing distilled ruthenium tetroxide in hydrochloric acid, the by-product gas discharged from the absorption process is absorbed in an alkali solution, and the change in oxidation-reduction potential of this alkali solution over time is measured to measure the oxidation reaction of ruthenium. The method for recovering ruthenium according to claim 1 or 2, wherein the end point is grasped.
塩酸による吸収工程から排出される副生ガスを吸収したアルカリ溶液の酸化還元電位について、電位変化率が0.5mV/min以下の状態が30分以上継続した段階を蒸留反応の終点とする請求項1〜請求項3の何れかに記載するルテニウムの回収方法。 The end point of the distillation reaction is the stage in which the state of potential change of 0.5 mV / min or less continues for 30 minutes or more with respect to the oxidation-reduction potential of the alkaline solution that has absorbed the by-product gas discharged from the absorption step with hydrochloric acid. The method for recovering ruthenium according to any one of claims 1 to 3.
JP2012014606A 2012-01-26 2012-01-26 Ruthenium recovery method Active JP5843065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014606A JP5843065B2 (en) 2012-01-26 2012-01-26 Ruthenium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014606A JP5843065B2 (en) 2012-01-26 2012-01-26 Ruthenium recovery method

Publications (2)

Publication Number Publication Date
JP2013155391A true JP2013155391A (en) 2013-08-15
JP5843065B2 JP5843065B2 (en) 2016-01-13

Family

ID=49050885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014606A Active JP5843065B2 (en) 2012-01-26 2012-01-26 Ruthenium recovery method

Country Status (1)

Country Link
JP (1) JP5843065B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043611A (en) * 2012-08-27 2014-03-13 Asahi Pretec Corp Method for recovering ruthenium
CN103725903A (en) * 2013-12-31 2014-04-16 新疆中泰化学股份有限公司 Mercury-containing hydrochloric acid recovery plant
JP2018103078A (en) * 2016-12-22 2018-07-05 住友金属鉱山株式会社 Detoxification equipment and detoxification method
CN114981473A (en) * 2020-06-01 2022-08-30 岩谷产业株式会社 Platinum group metal recovery method, method for producing platinum group metal-containing film, and film forming apparatus
CN115028536A (en) * 2022-06-27 2022-09-09 昆明贵金属研究所 Preparation method of tetra-n-propyl ammonium perruthenate (VII)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524672A (en) * 2007-04-26 2010-07-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for recovering ruthenium from a ruthenium-containing supported catalyst material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524672A (en) * 2007-04-26 2010-07-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for recovering ruthenium from a ruthenium-containing supported catalyst material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043611A (en) * 2012-08-27 2014-03-13 Asahi Pretec Corp Method for recovering ruthenium
CN103725903A (en) * 2013-12-31 2014-04-16 新疆中泰化学股份有限公司 Mercury-containing hydrochloric acid recovery plant
JP2018103078A (en) * 2016-12-22 2018-07-05 住友金属鉱山株式会社 Detoxification equipment and detoxification method
CN114981473A (en) * 2020-06-01 2022-08-30 岩谷产业株式会社 Platinum group metal recovery method, method for producing platinum group metal-containing film, and film forming apparatus
CN115028536A (en) * 2022-06-27 2022-09-09 昆明贵金属研究所 Preparation method of tetra-n-propyl ammonium perruthenate (VII)

Also Published As

Publication number Publication date
JP5843065B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5843065B2 (en) Ruthenium recovery method
JP5153728B2 (en) Precious metal melting equipment
US7709135B2 (en) Efficient process for previous metal recovery from cell membrane electrode assemblies
US20090191106A1 (en) PROCESSES AND DEVICES FOR REMOVING RUTHENIUM AS RuO4 FROM RUTHENATE-CONTAINING SOLUTIONS BY DISTILLATION
JP2009057611A (en) Method for recovering ruthenium
JP2006161096A (en) METHOD FOR SEPARATING AND COLLECTING Ru FROM SOLUTION CONTAINING PLATINUM GROUP ELEMENT
CN107915210A (en) A kind of active oxygen generator device
JP6652741B2 (en) Leaching method of valuable metals contained in copper removal slime
JP5636769B2 (en) Manufacturing method and equipment that generate corrosive gas such as ruthenium tetroxide
JP6730672B2 (en) How to dissolve gold
JP6026179B2 (en) Ruthenium recovery method
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP5859287B2 (en) Method for measuring the concentration of trace hydrogen peroxide in ultrapure water
AU2018263392B2 (en) Apparatus, systems and methods for in situ measurement of an oxidation / reduction potential and pH of a solution
CN104018178B (en) Method for recovering iodine from iodine-containing sewage
Dong et al. Speciation study of the aqueous Fe-Cu-As-Sb-Bi-H2SO4 system and prediction of redox potential in copper electrorefining from 25° C to 70° C
JP6192645B2 (en) Method for concentrating metal compounds
JP2005264227A (en) Method for leaching sediment in copper electrolysis
JP5747872B2 (en) Nitric acid recovery method
JP2020196921A (en) Chlorination leaching method
JP2019127627A (en) Method for recovering noble metal
JP2012188755A (en) Treating method for bromic acid aqueous solution containing platinum group element
JP3845578B2 (en) Method and apparatus for recovering nitric acid component from aqueous nitric acid solution
Kusakabe et al. Direct formation of hydrogen peroxide over a palladium catalyst based on water electrolysis
JP5339067B2 (en) Method for separating ruthenium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151103

R150 Certificate of patent or registration of utility model

Ref document number: 5843065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250