JP2013155364A - Solvent separation method - Google Patents

Solvent separation method Download PDF

Info

Publication number
JP2013155364A
JP2013155364A JP2012019488A JP2012019488A JP2013155364A JP 2013155364 A JP2013155364 A JP 2013155364A JP 2012019488 A JP2012019488 A JP 2012019488A JP 2012019488 A JP2012019488 A JP 2012019488A JP 2013155364 A JP2013155364 A JP 2013155364A
Authority
JP
Japan
Prior art keywords
solvent
water
coal
temperature
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012019488A
Other languages
Japanese (ja)
Other versions
JP5839567B2 (en
Inventor
Koji Sakai
康爾 堺
Noriyuki Okuyama
憲幸 奥山
Shigeru Kinoshita
繁 木下
Takuya Yoshida
拓也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012019488A priority Critical patent/JP5839567B2/en
Priority to KR1020147021286A priority patent/KR101633204B1/en
Priority to AU2013216554A priority patent/AU2013216554B2/en
Priority to CN201380007250.1A priority patent/CN104080893B/en
Priority to US14/372,584 priority patent/US20150013215A1/en
Priority to PCT/JP2013/050180 priority patent/WO2013114920A1/en
Publication of JP2013155364A publication Critical patent/JP2013155364A/en
Application granted granted Critical
Publication of JP5839567B2 publication Critical patent/JP5839567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0205Separation of non-miscible liquids by gas bubbles or moving solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0214Separation of non-miscible liquids by sedimentation with removal of one of the phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/042Breaking emulsions by changing the temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/326Coal-water suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/52Hoppers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/544Extraction for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/547Filtration for separating fractions, components or impurities during preparation or upgrading of a fuel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method (solvent separation method) which can easily separate solvent-containing water generated in a process to produce ashless coal into a solvent and water, without using an adsorbent or the like.SOLUTION: A solvent separation method includes: a solvent-containing water feeding step of feeding solvent-containing water to a pressure container 11 for solvent separation; and a temperature holding step of holding the temperature of the solvent-containing water fed to the pressure container 11 for solvent separation at a predetermined temperature (e.g. 100-180°C). In the pressure container 11 for solvent separation, liquid water descends and the solvent ascends by the difference between density of water and density of the solvent at the predetermined temperature, thus the solvent-containing water is separated into the solvent and water.

Description

本発明は、石炭から灰分を除去した無灰炭を製造するプロセスで生じる溶剤含有水を溶剤と水とに分離する方法に関する。   The present invention relates to a method for separating solvent-containing water produced in a process for producing ashless coal from which ash is removed from coal into solvent and water.

無灰炭の製造方法としては、例えば特許文献1に記載されたものがある。特許文献1には、石炭と溶剤とを混合してスラリーを調製し、得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出し、石炭成分が抽出されたスラリーから溶剤に可溶な石炭成分を含む溶液を分離した後、分離された溶液から溶剤を回収して無灰炭を得る、という無灰炭の製造方法が記載されている。溶剤としては、石炭由来の油分が用いられている。   As a manufacturing method of ashless coal, there exists a thing described in patent documents 1, for example. In Patent Literature 1, a slurry is prepared by mixing coal and a solvent, and the resulting slurry is heated to extract a coal component soluble in the solvent, and soluble in the solvent from the slurry from which the coal component is extracted. A method for producing ashless coal is described in which a solution containing various coal components is separated, and then a solvent is recovered from the separated solution to obtain ashless coal. As the solvent, oil derived from coal is used.

特開2005−120185号公報Japanese Patent Laid-Open No. 2005-120185

ここで、上記したような無灰炭を製造するプロセスにおいて、原料の石炭から水(HO)が生じる。石炭成分の抽出において、例えば300〜420℃の温度にスラリーは加熱される。このような高温下においては、石炭は熱分解反応を起こし、メタン(CH)、二酸化炭素(CO)、水(HO)などが発生する。また、原料の石炭は、そもそも水分を含んでおり、溶剤による石炭成分の抽出に際し、石炭から水分が分離する。 Here, in the process for producing ashless coal as described above, water (H 2 O) is generated from the raw coal. In the extraction of the coal component, the slurry is heated to a temperature of, for example, 300 to 420 ° C. Under such a high temperature, coal undergoes a thermal decomposition reaction, and methane (CH 4 ), carbon dioxide (CO 2 ), water (H 2 O), and the like are generated. In addition, the raw material coal originally contains moisture, and moisture is separated from the coal when the coal component is extracted by the solvent.

熱分解により石炭から発生した水(HO)、および石炭成分の抽出に際し石炭から分離した水分(HO)は、無灰炭製造設備の系外にガス(水蒸気)として排出されるのであるが、ガス中には溶剤が多く混入している(溶剤含有水)。そのため、当該ガスを全て廃棄してしまうと溶剤のロスが非常に大きくなり、新たに多くの溶剤を補充する必要が生じる。その結果、ランニングコストが増加してしまう。 Water generated from coal by thermal decomposition (H 2 O), and moisture separated from the coal upon extraction of coal components (H 2 O), so is discharged as a gas (steam) to the outside of the ash-free coal production facility There is a lot of solvent in the gas (solvent-containing water). For this reason, if all of the gas is discarded, the loss of the solvent becomes very large, and it becomes necessary to replenish a lot of solvent. As a result, the running cost increases.

また、溶剤を含有するガスを廃棄するには、例えば吸着剤を用いてガス中から溶剤を除去する処理が必要となり、ガス中に含まれる溶剤の量が多い場合、処理コストが非常に大きくなってしまう。また、吸着剤に吸着させた溶剤を、吸着剤から分離することは容易でなく、すなわち、吸着処理した吸着剤を再利用することは難しい。   Further, in order to discard the gas containing the solvent, for example, it is necessary to remove the solvent from the gas by using an adsorbent. When the amount of the solvent contained in the gas is large, the treatment cost becomes very high. End up. Further, it is not easy to separate the solvent adsorbed on the adsorbent from the adsorbent, that is, it is difficult to reuse the adsorbent that has been subjected to the adsorption treatment.

本発明は、上記事情に鑑みてなされたものであって、その目的は、無灰炭を製造するプロセスで生じる溶剤含有水を、吸着剤などを用いることなく、溶剤と水とに容易に分離することができる方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to easily separate solvent-containing water generated in the process of producing ashless coal into solvent and water without using an adsorbent or the like. It is to provide a way that can be done.

本発明は、石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する抽出工程と、前記抽出工程で得られたスラリーから溶剤に可溶な石炭成分を含む溶液を分離する分離工程と、前記分離工程で分離された溶液から溶剤を蒸発分離して無灰炭を得る無灰炭取得工程と、を備える、無灰炭を製造するプロセスで生じる溶剤含有水を溶剤と水とに分離する溶剤分離方法である。この溶剤分離方法は、前記溶剤含有水を溶剤分離用圧力容器に供給する溶剤含有水供給工程と、前記溶剤分離用圧力容器に供給された前記溶剤含有水の温度を所定の温度に保持する温度保持工程と、を備え、前記所定の温度における水の密度と溶剤の密度との差により、前記溶剤分離用圧力容器内で液体の水を下降させるとともに溶剤を上昇させることで、前記溶剤含有水を溶剤と水とに分離することを特徴とする。   The present invention includes an extraction step of extracting a coal component soluble in a solvent by heating a slurry obtained by mixing coal and a solvent, and a coal component soluble in a solvent from the slurry obtained in the extraction step. A separation step of separating the solution containing, and an ashless coal acquisition step of obtaining ashless coal by evaporating and separating the solvent from the solution separated in the separation step, and containing a solvent produced in the process of producing ashless coal This is a solvent separation method for separating water into a solvent and water. The solvent separation method includes a solvent-containing water supply step of supplying the solvent-containing water to a solvent separation pressure vessel, and a temperature at which the temperature of the solvent-containing water supplied to the solvent separation pressure vessel is maintained at a predetermined temperature. And holding the solvent-containing water by lowering the liquid water and raising the solvent in the solvent separation pressure vessel due to the difference between the density of the water at the predetermined temperature and the density of the solvent. Is separated into a solvent and water.

なお、「溶剤含有水」とは、液体状態か気体状態かを問わず、溶剤と水とが混合された状態(混在状態)のもののことをいう。また、「無灰炭を製造するプロセスで生じる」とは、無灰炭製造プロセスのいずれかの部分において副産物として生じる、という意味である。   “Solvent-containing water” refers to water in a state where a solvent and water are mixed (mixed state) regardless of whether it is in a liquid state or a gas state. Also, “occurs in the process of producing ashless coal” means that it occurs as a by-product in any part of the ashless coal production process.

本発明によれば、無灰炭を製造するプロセスで生じる溶剤含有水を、吸着剤などを用いることなく、溶剤と水とに容易に分離することができる。その結果、吸着剤を再利用することができ溶剤のロスを抑えることができるとともに、水の廃棄処理コストも抑えることができる。   According to the present invention, solvent-containing water generated in the process of producing ashless coal can be easily separated into a solvent and water without using an adsorbent or the like. As a result, the adsorbent can be reused, the solvent loss can be suppressed, and the water disposal cost can be reduced.

溶剤含有水を溶剤と水とに分離するための溶剤分離用圧力容器を備える無灰炭製造設備を示すブロック図である。It is a block diagram which shows the ashless coal manufacturing equipment provided with the pressure vessel for solvent separation for isolate | separating solvent containing water into a solvent and water. 溶剤含有水を溶剤と水とに分離する分離試験の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the separation test which isolate | separates solvent containing water into a solvent and water. 分離試験の結果を示すグラフである。It is a graph which shows the result of a separation test.

以下、本発明を実施するための形態について図面を参照しつつ説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1に示すように、無灰炭製造設備100は、無灰炭(HPC)製造工程の上流側から順に、石炭ホッパ1・溶剤タンク2、スラリー調製槽3、移送ポンプ4、予熱器5、抽出槽6、重力沈降槽7、フィルターユニット8、および溶剤分離器9を備えている。溶剤分離器9は、重力沈降槽7で分離された溶液(上澄み液)から溶剤を蒸発分離するためのものである。   As shown in FIG. 1, the ashless coal production facility 100 includes a coal hopper 1, a solvent tank 2, a slurry preparation tank 3, a transfer pump 4, a preheater 5, in order from the upstream side of the ashless coal (HPC) production process. An extraction tank 6, a gravity sedimentation tank 7, a filter unit 8, and a solvent separator 9 are provided. The solvent separator 9 is for evaporating and separating the solvent from the solution (supernatant liquid) separated in the gravity settling tank 7.

また、重量沈降槽7の下流側には、当該重量沈降槽7で分離された溶剤不溶成分濃縮液(固形分濃縮液)から溶剤を蒸発分離するための(固形分濃縮液から溶剤を分離・回収するための)溶剤分離器10が配置されている。   Further, on the downstream side of the weight sedimentation tank 7, the solvent is separated from the solvent-insoluble component concentrate (solid content concentrate) separated in the weight sedimentation tank 7 (the solvent is separated from the solid content concentrate). A solvent separator 10 (for recovery) is arranged.

また、無灰炭製造設備100は、溶剤含有水を溶剤と水とに分離するための溶剤分離用圧力容器11を備えている。この溶剤分離用圧力容器11は、抽出槽6に管25で接続されている。すなわち、本実施形態では、無灰炭を製造するプロセスのうち抽出工程で生じる気体の溶剤含有水を、抽出槽6から溶剤分離用圧力容器11に供給して液体の溶剤と液体の水とに分離している。   The ashless coal production facility 100 includes a solvent separation pressure vessel 11 for separating the solvent-containing water into a solvent and water. The solvent separation pressure vessel 11 is connected to the extraction tank 6 by a pipe 25. That is, in this embodiment, gaseous solvent-containing water generated in the extraction step in the process of producing ashless coal is supplied from the extraction tank 6 to the pressure vessel 11 for solvent separation into liquid solvent and liquid water. It is separated.

なお、溶剤分離用圧力容器11は、抽出槽6ではなく重力沈降槽7に管などで接続されていてもよい。すなわち、抽出工程で生じる気体の溶剤含有水(溶剤は液体であり、水蒸気に溶剤が混入している)を、重力沈降槽7から溶剤分離用圧力容器11に供給して溶剤と水とに分離してもよい。また、溶剤分離用圧力容器11を重力沈降槽7に接続することで、重力沈降槽7で微量の水分が発生した場合、ここで生じた溶剤含有水を溶剤分離用圧力容器11にて溶剤と水とに分離することができる。   The solvent separation pressure vessel 11 may be connected to the gravity settling tank 7 instead of the extraction tank 6 by a pipe or the like. That is, gaseous solvent-containing water (solvent is liquid and solvent is mixed in water vapor) generated in the extraction process is supplied from the gravity settling tank 7 to the solvent separation pressure vessel 11 and separated into solvent and water. May be. Further, by connecting the solvent separation pressure vessel 11 to the gravity settling tank 7, when a small amount of water is generated in the gravity settling tank 7, the solvent-containing water generated here is used as a solvent in the solvent separation pressure vessel 11. It can be separated into water.

さらには、1つの溶剤分離用圧力容器11が、抽出槽6および重力沈降槽7の両方に接続されていてもよいし、抽出槽6および重力沈降槽7のそれぞれに1つずつ溶剤分離用圧力容器11が接続されていてもよい。重力沈降槽7に供給されたスラリーに水分が残存する場合には、重力沈降槽7から溶剤分離用圧力容器11に溶剤を含有する気体の溶剤含有水を排出することで水分を除去することができる。   Further, one solvent separation pressure vessel 11 may be connected to both the extraction tank 6 and the gravity settling tank 7, and one solvent separation pressure is provided for each of the extraction tank 6 and the gravity settling tank 7. The container 11 may be connected. When moisture remains in the slurry supplied to the gravity settling tank 7, the moisture can be removed by discharging the solvent-containing water containing the solvent from the gravity settling tank 7 to the pressure vessel 11 for solvent separation. it can.

また、溶剤分離用圧力容器11は、スラリー調整槽3に管などで接続されていてもよい。水分を多く含んだ石炭を扱う場合には、スラリー調整槽3を水の沸点付近である100〜120℃に加温して石炭から水分を蒸発回収し、抽出工程へ送液するスラリー中の水分濃度を減らすことができるためである。ここで生じた溶剤含有水をスラリー調整槽3から溶剤分離用圧力容器11に供給して溶剤と水とに分離することができる。   Further, the solvent separation pressure vessel 11 may be connected to the slurry adjusting tank 3 by a pipe or the like. When handling coal containing a lot of moisture, the slurry adjustment tank 3 is heated to 100-120 ° C. near the boiling point of water to evaporate and recover moisture from the coal, and the moisture in the slurry sent to the extraction process This is because the concentration can be reduced. The solvent-containing water generated here can be supplied from the slurry adjusting tank 3 to the solvent separation pressure vessel 11 to be separated into the solvent and water.

また、溶剤分離用圧力容器11に接続されている管25の途中にタンクを設置してもよい。当該タンクの中で溶剤含有水を一旦液体に凝縮させ(溶剤含有水の温度を低下させることで溶剤含有水を凝縮させる)、その後に再度水の沸点以上の温度に加温することで溶剤含有水から水分を蒸発させる。これにより得られた水分濃度を濃縮させた蒸気(溶剤が混入している)を溶剤分離用圧力容器11に当該タンクから送る。この工程により、溶剤分離用圧力容器11に送られる溶剤含有水中の溶剤濃度が低下し、溶剤のロス率をより低下させることができる。なお、当該タンクに残った溶剤は、タンクから抜き出されて再使用される。   A tank may be installed in the middle of the pipe 25 connected to the solvent separation pressure vessel 11. In the tank, the solvent-containing water is once condensed into a liquid (the solvent-containing water is condensed by lowering the temperature of the solvent-containing water), and then heated again to a temperature higher than the boiling point of the water. Evaporate water from the water. The vapor | steam (solvent is mixed) which concentrated the water concentration obtained by this is sent to the pressure vessel 11 for solvent separation from the said tank. By this step, the solvent concentration in the solvent-containing water sent to the solvent separation pressure vessel 11 is reduced, and the solvent loss rate can be further reduced. The solvent remaining in the tank is extracted from the tank and reused.

ここで、無灰炭の製造方法(無灰炭を製造するプロセス)は、抽出工程、分離工程、および無灰炭取得工程を有する。以下、これらの各工程について説明しつつ、無灰炭を製造するプロセスで生じる溶剤含有水を溶剤と水とに分離する方法について説明する。なお、無灰炭の製造において原料とする石炭に、特に制限はなく、抽出率(無灰炭回収率)の高い瀝青炭を用いてもよいし、より安価な劣質炭(亜瀝青炭、褐炭)を用いてもよい。また、無灰炭とは、灰分が5重量%以下、好ましくは3重量%以下のもののことをいう。   Here, the method for producing ashless coal (process for producing ashless coal) includes an extraction step, a separation step, and an ashless coal acquisition step. Hereinafter, a method for separating the solvent-containing water produced in the process of producing ashless coal into a solvent and water will be described while explaining each of these steps. In addition, there is no restriction | limiting in particular in the coal used as a raw material in manufacture of ashless coal, You may use bituminous coal with a high extraction rate (ashless coal recovery rate), and cheaper inferior quality coal (subbituminous coal, lignite) It may be used. The ashless coal means ash content of 5% by weight or less, preferably 3% by weight or less.

(抽出工程)
抽出工程は、石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する工程である。本実施形態において、この抽出工程は、石炭と溶剤とを混合してスラリーを調製するスラリー調製工程と、スラリー調製工程で調製されたスラリーを加熱して溶剤に可溶な石炭成分を抽出する(溶剤に溶解させる)溶剤可溶成分抽出工程とに分かれている。
(Extraction process)
An extraction process is a process of extracting the coal component soluble in a solvent by heating the slurry obtained by mixing coal and a solvent. In this embodiment, this extraction process mixes coal and a solvent to prepare a slurry, and heats the slurry prepared in the slurry preparation process to extract coal components soluble in the solvent ( It is divided into a solvent-soluble component extraction step (which is dissolved in a solvent).

石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出するにあたっては、石炭に対して大きな溶解力を持つ溶媒、多くの場合、芳香族溶剤(水素供与性あるいは非水素供与性の溶剤)と、石炭とを混合して、それを加熱し、石炭中の有機成分を抽出することになる。   When extracting coal components that are soluble in the solvent by heating the slurry obtained by mixing coal and solvent, a solvent with a large dissolving power for coal, often an aromatic solvent (hydrogen donating property) Alternatively, a non-hydrogen-donating solvent) and coal are mixed and heated to extract organic components in the coal.

非水素供与性溶剤は、主に石炭の乾留生成物から精製した、2環芳香族を主とする溶剤である石炭誘導体である。この非水素供与性溶剤は、加熱状態でも安定であり、石炭との親和性に優れているため、溶剤に抽出される可溶成分(ここでは石炭成分)の割合(抽出率ともいう)が高く、また、蒸留などの方法で容易に回収可能な溶剤である。非水素供与性溶剤の主な成分としては、2環芳香族であるナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレンなどが挙げられ、その他の非水素供与性溶剤の成分として、脂肪族側鎖を有するナフタレン類、アントラセン類、フルオレン類、また、これらにビフェニルや長鎖脂肪族側鎖を有するアルキルベンゼンが含まれる。   The non-hydrogen donating solvent is a coal derivative which is a solvent mainly composed of a bicyclic aromatic and purified mainly from a coal carbonization product. Since this non-hydrogen donating solvent is stable even in a heated state and has an excellent affinity with coal, a high ratio of soluble components (here, coal components) extracted into the solvent is high. In addition, it is a solvent that can be easily recovered by a method such as distillation. Main components of the non-hydrogen donating solvent include bicyclic aromatic naphthalene, methyl naphthalene, dimethyl naphthalene, trimethyl naphthalene and the like, and other non-hydrogen donating solvent components have aliphatic side chains. Naphthalenes, anthracenes, fluorenes, and these include biphenyl and alkylbenzenes having long aliphatic side chains.

なお、上記の説明では非水素供与性化合物を溶剤として用いる場合について述べたが、テトラリンを代表とする水素供与性の化合物(石炭液化油を含む)を溶剤として用いてもよいことは勿論である。水素供与性溶剤を用いた場合、無灰炭の収率が向上する。   In the above description, the case where a non-hydrogen-donating compound is used as a solvent has been described, but it is needless to say that a hydrogen-donating compound (including coal liquefied oil) typified by tetralin may be used as a solvent. . When a hydrogen donating solvent is used, the yield of ashless coal is improved.

これら溶剤の比重(同体積の水の重さとの比)は、室温(常温)で約1である。   The specific gravity of these solvents (ratio with the weight of water of the same volume) is about 1 at room temperature (normal temperature).

また、溶剤の沸点は特に制限されるものではない。抽出工程および分離工程での圧力低減、抽出工程での抽出率、無灰炭取得工程などでの溶剤回収率などの観点から、例えば、180〜300℃、特に240〜280℃の沸点の溶剤が好ましく使用される。   Further, the boiling point of the solvent is not particularly limited. From the viewpoints of pressure reduction in the extraction step and separation step, extraction rate in the extraction step, solvent recovery rate in the ashless coal acquisition step, etc., for example, a solvent having a boiling point of 180 to 300 ° C., particularly 240 to 280 ° C. Preferably used.

<スラリー調製工程>
スラリー調製工程は、図1中、スラリー調製槽3で実施される。原料である石炭が石炭ホッパ1からスラリー調製槽3に投入されるとともに、溶剤タンク2からスラリー調製槽3に溶剤が投入される。スラリー調製槽3に投入された石炭および溶剤は、攪拌機3aで混合されて石炭と溶剤とからなるスラリーとなる。
<Slurry preparation process>
The slurry preparation step is performed in the slurry preparation tank 3 in FIG. Coal as a raw material is charged into the slurry preparation tank 3 from the coal hopper 1, and a solvent is charged into the slurry preparation tank 3 from the solvent tank 2. The coal and solvent charged into the slurry preparation tank 3 are mixed by the stirrer 3a to become a slurry composed of coal and solvent.

溶剤に対する石炭の混合比率は、例えば、乾燥炭基準で10〜50重量%であり、より好ましくは、20〜35重量%である。   The mixing ratio of coal with respect to the solvent is, for example, 10 to 50% by weight on the basis of dry coal, and more preferably 20 to 35% by weight.

<溶剤可溶成分抽出工程>
溶剤可溶成分抽出工程は、図1中、予熱器5および抽出槽6で実施される。スラリー調製槽3にて調製されたスラリーは、移送ポンプ4によって、一旦、予熱器5に供給されて所定温度まで加熱された後、抽出槽6に供給され、攪拌機6aで攪拌されながら所定温度で保持されて抽出が行われる。
<Solvent soluble component extraction process>
The solvent-soluble component extraction step is performed in the preheater 5 and the extraction tank 6 in FIG. The slurry prepared in the slurry preparation tank 3 is once supplied to the preheater 5 by the transfer pump 4 and heated to a predetermined temperature, then supplied to the extraction tank 6, and stirred at the predetermined temperature while being stirred by the stirrer 6a. It is retained and extracted.

溶剤可溶成分抽出工程でのスラリーの加熱温度は、溶剤可溶成分が溶解され得る限り特に制限されず、溶剤可溶成分の十分な溶解と抽出率の向上の観点から、例えば、300〜420℃であり、より好ましくは、360〜400℃である。   The heating temperature of the slurry in the solvent-soluble component extraction step is not particularly limited as long as the solvent-soluble component can be dissolved. From the viewpoint of sufficient dissolution of the solvent-soluble component and improvement of the extraction rate, for example, 300 to 420 It is 360 degreeC, More preferably, it is 360-400 degreeC.

また、加熱時間(抽出時間)もまた特に制限されるものではないが、十分な溶解と抽出率の向上の観点から、例えば、10〜60分間である。加熱時間は、図1中、予熱器5および抽出槽6での加熱時間を合計したものである。   Also, the heating time (extraction time) is not particularly limited, but is, for example, 10 to 60 minutes from the viewpoint of sufficient dissolution and improvement of the extraction rate. The heating time is the total heating time in the preheater 5 and the extraction tank 6 in FIG.

なお、溶剤可溶成分抽出工程は、窒素などの不活性ガスの存在下で行う。抽出槽6内の圧力は、抽出の際の温度や用いる溶剤の蒸気圧にもよるが、1.0〜2.0MPaが好ましい。抽出槽6内の圧力が溶剤の蒸気圧より低い場合には、溶剤が揮発して液相に閉じ込められず、抽出できない。溶剤を液相に閉じ込めるには、溶剤の蒸気圧より高い圧力が必要となる。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。   The solvent-soluble component extraction step is performed in the presence of an inert gas such as nitrogen. The pressure in the extraction tank 6 is preferably 1.0 to 2.0 MPa, although it depends on the temperature at the time of extraction and the vapor pressure of the solvent used. When the pressure in the extraction tank 6 is lower than the vapor pressure of the solvent, the solvent volatilizes and is not confined in the liquid phase, so that extraction cannot be performed. In order to confine the solvent in the liquid phase, a pressure higher than the vapor pressure of the solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.

(溶剤と水との分離方法)
上記したように、石炭成分の抽出において、例えば300〜420℃の温度にスラリーは加熱される。ここで、このような高温下においては、石炭は熱分解反応を起こし、メタン(CH)、二酸化炭素(CO)、水(HO)などが発生する。また、原料の石炭は、そもそも水分を含んでおり、水は溶剤に不溶なので、溶剤による石炭成分の抽出に際し、石炭から水分が分離する。
(Method for separating solvent and water)
As described above, in the extraction of the coal component, the slurry is heated to a temperature of, for example, 300 to 420 ° C. Here, under such a high temperature, coal undergoes a thermal decomposition reaction, and methane (CH 4 ), carbon dioxide (CO 2 ), water (H 2 O), and the like are generated. In addition, since the raw material coal originally contains water and water is insoluble in the solvent, the water is separated from the coal when the coal component is extracted by the solvent.

(溶剤含有水供給工程)
溶剤含有水供給工程は、溶剤含有水を溶剤分離用圧力容器に供給する工程である。熱分解により石炭から発生した水(HO)、および石炭成分の抽出に際し石炭から分離した水分(HO)は、溶剤を含有したガス状態(溶剤含有水蒸気の状態)で、管25を介して溶剤分離用圧力容器11に供給される(排出される)。溶剤分離用圧力容器11内の温度は、抽出槽6内の温度よりも低くされるため、水蒸気は凝縮して液体となる。
(Solvent-containing water supply process)
The solvent-containing water supply step is a step of supplying solvent-containing water to the pressure vessel for solvent separation. Water generated from coal by thermal decomposition (H 2 O), and moisture separated from the coal upon extraction of coal components (H 2 O) is in gaseous state containing a solvent (state of the solvent-containing steam), the tube 25 And supplied (discharged) to the pressure vessel 11 for solvent separation. Since the temperature in the solvent separation pressure vessel 11 is lower than the temperature in the extraction tank 6, the water vapor is condensed into a liquid.

(温度保持工程)
温度保持工程は、溶剤分離用圧力容器11に供給された溶剤含有水の温度を所定の温度に保持する工程であり、図1中、溶剤分離用圧力容器11で実施される。抽出槽6から溶剤分離用圧力容器11に供給された溶剤含有水は、水の密度と溶剤の密度との差が大きくなる温度で一定となるように、当該溶剤分離用圧力容器11内にて加温器11aにより加温される。例えば、100℃以上180℃以下の温度(100〜180℃の温度範囲の中の所定の温度)で保持される。これにより、当該温度における水の密度と溶剤の密度との差により、溶剤分離用圧力容器11内の下部へ液体の水が下降し、溶剤分離用圧力容器11内の上部へ液体の溶剤が上昇することで、溶剤と水とが分離する。溶剤と水との分離性を向上させるために、溶剤含有水を所定の時間、静置することが好ましい。また、溶剤分離用圧力容器11は、溶剤含有水の温度を所定の温度以上に保持するために、保温材で保温されていることが好ましい。なお、「静置する」とは、攪拌などを行わず、静止した状態に置くこと、をいう。
(Temperature holding process)
The temperature holding step is a step of holding the temperature of the solvent-containing water supplied to the solvent separation pressure vessel 11 at a predetermined temperature, and is performed in the solvent separation pressure vessel 11 in FIG. The solvent-containing water supplied from the extraction tank 6 to the solvent separation pressure vessel 11 is constant in the solvent separation pressure vessel 11 so that the difference between the water density and the solvent density becomes constant. Heated by the heater 11a. For example, the temperature is maintained at a temperature of 100 ° C. or higher and 180 ° C. or lower (a predetermined temperature in a temperature range of 100 to 180 ° C.). Thereby, due to the difference between the density of water and the density of the solvent at the temperature, the liquid water descends to the lower part in the solvent separation pressure vessel 11 and the liquid solvent rises to the upper part in the solvent separation pressure vessel 11. By doing so, the solvent and water are separated. In order to improve the separability between the solvent and water, it is preferable that the solvent-containing water is allowed to stand for a predetermined time. In addition, the solvent separation pressure vessel 11 is preferably kept warm by a heat insulating material in order to keep the temperature of the solvent-containing water at a predetermined temperature or higher. “Standing” refers to placing in a stationary state without stirring.

溶剤分離用圧力容器11内の上部に溜まった溶剤は、溶剤分離用圧力容器11の上部から抜き出され、溶剤分離用圧力容器11内の下部に溜まった水は、溶剤分離用圧力容器11の下部から抜き出される。抜き出された溶剤は溶剤タンク2に戻されて再使用され、抜き出された水は廃棄される。   The solvent collected in the upper part of the solvent separation pressure vessel 11 is extracted from the upper part of the solvent separation pressure vessel 11, and the water accumulated in the lower part of the solvent separation pressure vessel 11 is removed from the solvent separation pressure vessel 11. Extracted from the bottom. The extracted solvent is returned to the solvent tank 2 and reused, and the extracted water is discarded.

また、温度保持工程は、窒素などの不活性ガスの存在下で行うことが好ましい。すなわち、溶剤分離用圧力容器11内に窒素などの不活性ガスが充填されていることが好ましい。溶剤分離用圧力容器11内の圧力は、水蒸気が凝縮して凝縮した水が液体の状態を保つように、水の飽和蒸気圧よりも高い圧力にされ、例えば、圧力容器内への窒素ガスの導入により0.3〜2.0MPaの圧力に調整される。   Moreover, it is preferable to perform a temperature holding process in presence of inert gas, such as nitrogen. That is, the solvent separation pressure vessel 11 is preferably filled with an inert gas such as nitrogen. The pressure in the solvent separation pressure vessel 11 is set to a pressure higher than the saturated vapor pressure of water so that the water condensed by the condensation of water vapor is kept in a liquid state, for example, nitrogen gas into the pressure vessel. The pressure is adjusted to 0.3 to 2.0 MPa by introduction.

また、溶剤分離用圧力容器11に供給された溶剤含有水を攪拌機などで攪拌した後、所定の温度で一定となった時点で攪拌を止めて、静置してもよい。   In addition, after the solvent-containing water supplied to the solvent separation pressure vessel 11 is stirred with a stirrer or the like, the stirring may be stopped when the water becomes constant at a predetermined temperature, and left still.

なお、抽出槽6内にてスラリーは、例えば300〜420℃の温度に加熱される。抽出槽6から溶剤分離用圧力容器11に供給された溶剤含有水の温度を、加温なしで所定の時間、例えば120℃以上の温度に保持できるのであれば、加温器11aは不要である。   In the extraction tank 6, the slurry is heated to a temperature of 300 to 420 ° C., for example. If the temperature of the solvent-containing water supplied from the extraction tank 6 to the solvent separation pressure vessel 11 can be maintained at a temperature of 120 ° C. or higher for a predetermined time without heating, the heater 11a is unnecessary. .

(抽出槽6がない場合)
抽出槽6を省略して、予熱器5と重力沈降槽7との間の管内で、溶剤に可溶な石炭成分を抽出する場合もある。例えば、予熱器5と重力沈降槽7との間の管を、石炭成分の抽出に十分な長さのものなどとして、予熱器5と重力沈降槽7との間の管内で石炭成分の抽出を行う。石炭は、予熱器5と重力沈降槽7との間の加熱された高温(例えば380℃)の溶剤が流れる管内に直接供給される。この場合、溶剤分離用圧力容器11を重力沈降槽7に接続し、重力沈降槽7から溶剤分離用圧力容器11に溶剤含有水を供給して(排出して)、溶剤含有水を溶剤と水とに分離する。
(When there is no extraction tank 6)
In some cases, the extraction tank 6 may be omitted and a solvent-soluble coal component may be extracted in a tube between the preheater 5 and the gravity settling tank 7. For example, assuming that the pipe between the preheater 5 and the gravity settling tank 7 is of a length sufficient for the extraction of the coal components, the extraction of the coal components within the pipe between the preheater 5 and the gravity settling tank 7 is performed. Do. Coal is directly supplied into a pipe through which a heated high-temperature (for example, 380 ° C.) solvent flows between the preheater 5 and the gravity settling tank 7. In this case, the solvent separation pressure vessel 11 is connected to the gravity settling tank 7, the solvent-containing water is supplied (discharged) from the gravity settling tank 7 to the solvent separation pressure vessel 11, and the solvent-containing water is mixed with the solvent and water. And to separate.

無灰炭の製造工程に説明を戻す。
(分離工程)
分離工程は、抽出工程で得られたスラリーから、溶剤に溶解している石炭成分を含む溶液を分離する工程である。換言すれば、分離工程は、抽出工程で得られたスラリーを、溶剤に溶解している石炭成分を含む溶液と、溶剤不溶成分濃縮液(固形分濃縮液)とに分離する工程である。この分離工程は、図1中、重力沈降槽7で実施される。抽出工程で得られたスラリーは、重力沈降槽7内で、重力にて、溶液としての上澄み液と、固形分濃縮液とに分離される(重力沈降法)。重力沈降槽7の上部の上澄み液は、必要に応じてフィルターユニット8を経て、溶剤分離器9へ排出されるとともに、重力沈降槽7の下部に沈降した固形分濃縮液は溶剤分離器10へ排出される。
Return to the manufacturing process of ashless coal.
(Separation process)
The separation step is a step of separating a solution containing a coal component dissolved in a solvent from the slurry obtained in the extraction step. In other words, the separation step is a step of separating the slurry obtained in the extraction step into a solution containing a coal component dissolved in a solvent and a solvent-insoluble component concentrate (solid content concentrate). This separation step is performed in the gravity settling tank 7 in FIG. The slurry obtained in the extraction step is separated by gravity into a supernatant liquid as a solution and a solid content concentrated liquid in the gravity sedimentation tank 7 (gravity sedimentation method). The supernatant liquid in the upper part of the gravity settling tank 7 is discharged to the solvent separator 9 through the filter unit 8 as necessary, and the solid concentrate settled in the lower part of the gravity settling tank 7 is sent to the solvent separator 10. Discharged.

重力沈降法は、スラリーを槽内に保持することにより、重力を利用して溶剤不溶成分を沈降・分離させる方法である。スラリーを槽内に連続的に供給しながら、上澄み液を上部から、固形分濃縮液を下部から連続的に排出することにより、連続的な分離処理が可能である。   The gravitational sedimentation method is a method in which a slurry is retained in a tank to settle and separate solvent-insoluble components using gravity. A continuous separation process is possible by continuously discharging the supernatant from the top and the solid concentrate from the bottom while continuously supplying the slurry into the tank.

重力沈降槽7内は、石炭から溶出した溶剤可溶成分の再析出を防止するため、保温または加熱したり、加圧したりしておくことが好ましい。加熱温度は、例えば、300〜380℃であり、槽内圧力は、例えば、1.0〜3.0MPaとされる。   The gravity settling tank 7 is preferably kept warm, heated, or pressurized in order to prevent reprecipitation of solvent-soluble components eluted from coal. The heating temperature is, for example, 300 to 380 ° C., and the tank internal pressure is, for example, 1.0 to 3.0 MPa.

なお、抽出工程で得られたスラリーから、溶剤に溶解している石炭成分を含む溶液を分離する方法として、重力沈降法以外に、濾過法、遠心分離法などがある。   As a method for separating the solution containing the coal component dissolved in the solvent from the slurry obtained in the extraction step, there are a filtration method, a centrifugal separation method, and the like in addition to the gravity sedimentation method.

(無灰炭取得工程)
無灰炭取得工程は、上記した分離工程で分離された溶液(上澄み液)から溶剤を蒸発分離して無灰炭を得る工程である。この無灰炭取得工程は、図1中、溶剤分離器9で実施される。
(Ashless coal acquisition process)
The ashless coal acquisition step is a step of obtaining ashless coal by evaporating and separating the solvent from the solution (supernatant liquid) separated in the separation step described above. This ashless charcoal acquisition process is performed by the solvent separator 9 in FIG.

溶液(上澄み液)から溶剤を分離する方法は、一般的な蒸留法や蒸発法を用いることができ、例えば、フラッシュ蒸留法が用いられる。分離して回収された溶剤はスラリー調製槽3へ循環して繰り返し使用することができる。溶剤の分離・回収により、上澄み液からは、実質的に灰分を含まない(例えば、灰分が3重量%以下)無灰炭(HPC)を得ることができる。無灰炭は、灰分をほとんど含まず、水分は皆無であり、原料石炭よりも高い発熱量を示す。さらに、製鉄用コークスの原料として特に重要な品質である軟化溶融性が大幅に改善され、原料石炭が軟化溶融性を有しなくとも、得られた無灰炭(HPC)は良好な軟化溶融性を有する。したがって、無灰炭は、例えばコークス原料の配合炭として使用することができる。   As a method for separating the solvent from the solution (supernatant liquid), a general distillation method or an evaporation method can be used. For example, a flash distillation method is used. The separated and recovered solvent can be circulated to the slurry preparation tank 3 and used repeatedly. By separating and recovering the solvent, ashless charcoal (HPC) substantially free of ash (for example, 3% by weight or less of ash) can be obtained from the supernatant. Ashless coal contains almost no ash, has no moisture, and exhibits a higher calorific value than raw coal. Furthermore, the softening and melting property, which is a particularly important quality as a raw material for coke for iron making, has been greatly improved, and the obtained ashless coal (HPC) has good softening and melting properties even if the raw material coal does not have softening and melting properties. Have Therefore, ashless coal can be used, for example, as a blended coal for coke raw materials.

(副生炭取得工程)
副生炭取得工程は、重力沈降槽7で分離された溶剤不溶成分濃縮液(固形分濃縮液)から溶剤を蒸発分離して副生炭を得る工程である。この副生炭取得工程は、固形分濃縮液から溶剤を蒸発分離して回収するための工程でもあり、図1中、溶剤分離器10で実施される。なお、副生炭取得工程は、必須の工程ではない。
(By-product coal acquisition process)
The by-product charcoal acquisition step is a step for obtaining by-product charcoal by evaporating and separating the solvent from the solvent-insoluble component concentrate (solid content concentrate) separated in the gravity sedimentation tank 7. This byproduct charcoal acquisition step is also a step for recovering the solvent by evaporating and separating it from the solid concentrate, and is performed by the solvent separator 10 in FIG. In addition, a byproduct charcoal acquisition process is not an essential process.

固形分濃縮液から溶剤を分離する方法は、前記した無灰炭取得工程と同様に、一般的な蒸留法や蒸発法を用いることができる。分離して回収された溶剤は、スラリー調製槽3へ循環して繰り返し使用することができる。溶剤の分離・回収により、固形分濃縮液からは灰分などを含む溶剤不溶成分が濃縮された副生炭(RC、残渣炭ともいう)を得ることができる。副生炭は、灰分が含まれるものの水分が皆無であり、発熱量も十分に有している。副生炭は軟化溶融性を示さないが、含酸素官能基が脱離されているため、配合炭として用いた場合に、この配合炭に含まれる他の石炭の軟化溶融性を阻害するようなものではない。したがって、この副生炭は、通常の非微粘結炭と同様に、コークス原料の配合炭の一部として使用することができ、また、コークス原料炭とせずに、各種の燃料用として使用することも可能である。なお、副生炭は、回収せずに廃棄してもよい。   As a method for separating the solvent from the solid concentrate, a general distillation method or evaporation method can be used as in the above-described ashless coal acquisition step. The separated and recovered solvent can be circulated to the slurry preparation tank 3 and used repeatedly. By separation and recovery of the solvent, by-product coal (also referred to as RC or residual coal) in which solvent-insoluble components including ash and the like are concentrated can be obtained from the solid concentrate. By-product charcoal contains ash, but has no water and has a sufficient calorific value. By-product coal does not exhibit softening and melting properties, but the oxygen-containing functional groups are eliminated, so that when used as a blended coal, it inhibits the softening and melting properties of other coals contained in this blended coal. It is not a thing. Therefore, this by-product coal can be used as a part of the blended coal of the coke raw material, as in the case of ordinary non-slightly caking coal, and is used for various fuels without using the coke raw coal. It is also possible. The by-product coal may be discarded without being collected.

(実施例)
溶剤含有水を溶剤と水とに分離する実験を行った。図2は、溶剤含有水を溶剤と水とに分離する分離試験の概要を説明するための図である。溶剤として、2環芳香族であるメチルナフタレンを主成分とする石炭から精製した油分(石炭誘導体)を用いた。水として、蒸留水を用いた。
(Example)
An experiment was conducted to separate solvent-containing water into solvent and water. FIG. 2 is a diagram for explaining an outline of a separation test for separating solvent-containing water into a solvent and water. As a solvent, an oil component (coal derivative) purified from coal containing methylnaphthalene, which is a bicyclic aromatic compound, as a main component was used. Distilled water was used as water.

実験で用いた縦長のオートクレーブ50は、φ62.3mmの円筒状の圧力容器であり、図2に示したように、オートクレーブ50の底、および底から所定の高さの複数個所から液体を抜ける構造としている。液体のサンプリングは、オートクレーブ50の底を高さ0mmとして、0mm、170mm、380mm、590mm、700mm、800mmの計6箇所で行った。また、オートクレーブ50の内部に攪拌機50aを設置している。オートクレーブ50内に窒素ガスを充填して、オートクレーブ50内の圧力を、1.5MPaに調整した。   A vertically long autoclave 50 used in the experiment is a cylindrical pressure vessel having a diameter of 62.3 mm, and as shown in FIG. 2, a structure that allows liquid to escape from the bottom of the autoclave 50 and a plurality of locations at a predetermined height from the bottom. It is said. The liquid sampling was performed at a total of six locations of 0 mm, 170 mm, 380 mm, 590 mm, 700 mm, and 800 mm with the bottom of the autoclave 50 being 0 mm in height. Further, a stirrer 50 a is installed inside the autoclave 50. The autoclave 50 was filled with nitrogen gas, and the pressure in the autoclave 50 was adjusted to 1.5 MPa.

溶剤:1200gと水:1200gとをオートクレーブ50に入れた。室温(常温)では、溶剤と水とは混じりあった状態で分離性は非常に悪かった。すなわち、室温(常温)では、水の密度と溶剤の密度との間にほとんど差がない。   Solvent: 1200 g and water: 1200 g were placed in the autoclave 50. At room temperature (room temperature), the solvent and water were mixed, and the separability was very poor. That is, at room temperature (normal temperature), there is almost no difference between the density of water and the density of the solvent.

溶剤と水とからなる混合液を攪拌しながら所定の温度まで昇温させた。温度条件は、50℃、90℃、100℃、120℃、150℃、200℃とした。混合液の温度が所定の温度で一定となったところで攪拌を停止した。攪拌停止後、30分間、静置した。そして、サンプリング容器51a〜51fにオートクレーブ50から液体を取り出し、液体の水分濃度を測定した。結果を表1に示す。図3は、表1に示した結果をグラフ化したものであり、縦軸は、オートクレーブ50の底からの高さであり、横軸は、水分濃度である。   While stirring the mixed solution composed of the solvent and water, the temperature was raised to a predetermined temperature. The temperature conditions were 50 ° C, 90 ° C, 100 ° C, 120 ° C, 150 ° C, and 200 ° C. Stirring was stopped when the temperature of the liquid mixture became constant at a predetermined temperature. After stopping stirring, the mixture was allowed to stand for 30 minutes. And the liquid was taken out from the autoclave 50 to the sampling containers 51a-51f, and the moisture concentration of the liquid was measured. The results are shown in Table 1. FIG. 3 is a graph showing the results shown in Table 1. The vertical axis represents the height from the bottom of the autoclave 50, and the horizontal axis represents the water concentration.

Figure 2013155364
Figure 2013155364

表1および図3からわかるように、保持温度が50℃の場合、水分濃度はオートクレーブ50の高さ方向で大きくなったり小さくなったりを繰り返し、目視においても溶剤と水とが分離した傾向はあまり認められなかった。90℃、200℃の場合は、オートクレーブ50の上部において水分濃度が低い値を示したが、底部における水分濃度は十分に高い値ではない(溶剤が混合している)ため分離性能は低い。   As can be seen from Table 1 and FIG. 3, when the holding temperature is 50 ° C., the moisture concentration repeatedly increases and decreases in the height direction of the autoclave 50, and the tendency that the solvent and the water are separated even visually is not so much. I was not able to admit. In the case of 90 ° C. and 200 ° C., the water concentration was low at the top of the autoclave 50, but the water concentration at the bottom was not sufficiently high (the solvent was mixed), so the separation performance was low.

これに対して、保持温度が100℃、120℃、150℃の場合、オートクレーブ50の上部において水分濃度が低い値を示し、底部では高い値を示しており、底から400mm〜600mmにかけて水分濃度の大きな変化が認められた。これより、保持温度が100℃、120℃、150℃の場合、溶剤の分離性能が高いことがわかる。特に、150℃では、底部の水分濃度が最も高い98重量%を示した。これより、保持温度が150℃という温度域は、溶剤の分離条件として最も良い温度域であることがわかった。   On the other hand, when the holding temperature is 100 ° C., 120 ° C., and 150 ° C., the moisture concentration is low at the top of the autoclave 50 and high at the bottom, and the moisture concentration ranges from 400 mm to 600 mm from the bottom. A major change was observed. This shows that when the holding temperature is 100 ° C., 120 ° C., and 150 ° C., the solvent separation performance is high. In particular, at 150 ° C., the bottom moisture content was 98% by weight, which is the highest. From this, it was found that the temperature range where the holding temperature is 150 ° C. is the best temperature range as the solvent separation condition.

この分離試験により、水の密度と溶剤の密度との間の差は、温度により大きく変化する(温度に大きく依存する)ことがわかった。本発明は、このたび判明したこの性質を利用したものである。   This separation test showed that the difference between the density of water and the density of the solvent varies greatly with temperature (it depends greatly on temperature). The present invention makes use of this property that has been found.

(作用・効果)
本発明の溶剤分離方法は、溶剤分離用圧力容器に供給された溶剤含有水の温度を所定の温度に保持する温度保持工程を備え、当該所定の温度における水の密度と溶剤の密度との差を利用して、溶剤分離用圧力容器内で液体の水を下降させるとともに溶剤を上昇させることで、溶剤含有水を溶剤と水とに分離する。なお、容器内で水を液相に閉じ込めるため、圧力容器を用いている。本発明によると、圧力容器内で溶剤含有水の温度を所定の温度に保持することで、吸着剤などを用いることなく、溶剤含有水を溶剤と水とに容易に分離することができる。これにより、石炭成分の抽出に吸着剤を回収して再利用することができ溶剤のロスを抑えることができるとともに、水の廃棄処理コストも抑えることができる。なお、溶剤含有水を溶剤分離用圧力容器に供給する溶剤含有水供給工程は、連続で行われてもよいし、非連続で行われてもよい。
(Action / Effect)
The solvent separation method of the present invention comprises a temperature maintaining step for maintaining the temperature of the solvent-containing water supplied to the pressure vessel for solvent separation at a predetermined temperature, and the difference between the water density and the solvent density at the predetermined temperature. The solvent-containing water is separated into the solvent and the water by lowering the liquid water and raising the solvent in the pressure vessel for solvent separation. A pressure vessel is used to confine water in the liquid phase in the vessel. According to the present invention, by maintaining the temperature of the solvent-containing water at a predetermined temperature in the pressure vessel, the solvent-containing water can be easily separated into the solvent and water without using an adsorbent or the like. As a result, the adsorbent can be recovered and reused for the extraction of the coal component, so that the loss of the solvent can be suppressed and the water disposal cost can also be suppressed. Note that the solvent-containing water supply step of supplying the solvent-containing water to the solvent separation pressure vessel may be performed continuously or discontinuously.

また、前記温度保持工程において、溶剤含有水の温度を所定の温度に保持するとともに溶剤含有水を静置することで、溶剤と水との分離性能を向上させることができる。   Moreover, in the said temperature holding process, the separation performance of a solvent and water can be improved by hold | maintaining the temperature of solvent containing water at predetermined temperature, and leaving solvent containing water still.

また、温度保持工程において、溶剤分離用圧力容器内の溶剤含有水の温度を100℃以上180℃以下の温度に保持することで、溶剤と水との分離性能が非常によくなり、分離時間を短縮できる。溶剤分離用圧力容器の容量を小さくすることができるというメリットもある。より好ましくは、溶剤分離用圧力容器内の溶剤含有水の温度を120℃以上150℃以下の温度に保持することである。   In the temperature holding step, the temperature of the solvent-containing water in the pressure vessel for solvent separation is maintained at a temperature of 100 ° C. or higher and 180 ° C. or lower, so that the separation performance of the solvent and water becomes very good, and the separation time Can be shortened. There is also an advantage that the capacity of the pressure vessel for solvent separation can be reduced. More preferably, the temperature of the solvent-containing water in the solvent separation pressure vessel is maintained at a temperature of 120 ° C. or higher and 150 ° C. or lower.

また、溶剤分離用圧力容器内の圧力が、水の飽和蒸気圧よりも高い圧力にされていることで、圧力容器内で水を確実に液相に閉じ込めることができ、溶剤と水との分離性能がより向上する。   In addition, since the pressure in the solvent separation pressure vessel is higher than the saturated vapor pressure of water, water can be reliably trapped in the liquid phase in the pressure vessel, and the solvent and water can be separated. The performance is further improved.

また、溶剤分離用圧力容器内に不活性ガスが充填されていることで、溶剤の爆発を防止することができる。   Further, since the inert gas is filled in the pressure vessel for solvent separation, the explosion of the solvent can be prevented.

また、無灰炭を製造するプロセスのうち前記した抽出工程で生じる溶剤含有水を溶剤分離用圧力容器に供給することが好ましい。水分が最も多く生じるのは、無灰炭を製造するプロセスのうち抽出工程であり、少なくともこの抽出工程で生じる溶剤含有水を溶剤分離用圧力容器に供給して、溶剤含有水を溶剤と水とに分離することで、水分に混入して系外に排出される溶剤のロスを確実に抑えることができる。   Moreover, it is preferable to supply the solvent containing water which arises at an above-described extraction process among the processes which manufacture ashless coal to the pressure vessel for solvent separation. Most of the water is generated in the extraction step of the process for producing ashless coal. At least the solvent-containing water generated in this extraction step is supplied to the pressure vessel for solvent separation, and the solvent-containing water is mixed with the solvent and water. By separating into two, it is possible to reliably suppress the loss of the solvent mixed into the moisture and discharged out of the system.

以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. .

1:石炭ホッパ
2:溶剤タンク
3:スラリー調製槽
4:移送ポンプ
5:予熱器
6:抽出槽
7:重力沈降槽
8:フィルターユニット
9、10:溶剤分離器溶剤分離器
11:溶剤分離用圧力容器
100:無灰炭製造設備
1: Coal hopper 2: Solvent tank 3: Slurry preparation tank 4: Transfer pump 5: Preheater 6: Extraction tank 7: Gravity settling tank 8: Filter unit 9, 10: Solvent separator Solvent separator 11: Pressure for solvent separation Container 100: Ashless coal production facility

Claims (6)

石炭と溶剤とを混合して得られるスラリーを加熱して溶剤に可溶な石炭成分を抽出する抽出工程と、
前記抽出工程で得られたスラリーから溶剤に可溶な石炭成分を含む溶液を分離する分離工程と、
前記分離工程で分離された溶液から溶剤を蒸発分離して無灰炭を得る無灰炭取得工程と、
を備える、無灰炭を製造するプロセスで生じる溶剤含有水を溶剤と水とに分離する溶剤分離方法であって、
前記溶剤含有水を溶剤分離用圧力容器に供給する溶剤含有水供給工程と、
前記溶剤分離用圧力容器に供給された前記溶剤含有水の温度を所定の温度に保持する温度保持工程と、
を備え、
前記所定の温度における水の密度と溶剤の密度との差により、前記溶剤分離用圧力容器内で液体の水を下降させるとともに溶剤を上昇させることで、前記溶剤含有水を溶剤と水とに分離することを特徴とする、溶剤分離方法。
An extraction step of heating a slurry obtained by mixing coal and a solvent to extract a coal component soluble in the solvent;
A separation step of separating a solution containing a coal component soluble in a solvent from the slurry obtained in the extraction step;
Ashless coal acquisition step of obtaining ashless coal by evaporating and separating the solvent from the solution separated in the separation step;
A solvent separation method for separating solvent-containing water produced in a process for producing ashless coal into a solvent and water,
A solvent-containing water supply step of supplying the solvent-containing water to a pressure vessel for solvent separation;
A temperature maintaining step for maintaining the temperature of the solvent-containing water supplied to the solvent separation pressure vessel at a predetermined temperature;
With
The solvent-containing water is separated into the solvent and the water by lowering the liquid water and raising the solvent in the solvent separation pressure vessel due to the difference between the density of the water at the predetermined temperature and the density of the solvent. Solvent separation method characterized by doing.
請求項1に記載の溶剤分離方法において、
前記温度保持工程において、前記溶剤含有水の温度を所定の温度に保持するとともに前記溶剤含有水を静置することを特徴とする、溶剤分離方法。
The solvent separation method according to claim 1,
In the temperature maintaining step, the temperature of the solvent-containing water is maintained at a predetermined temperature and the solvent-containing water is allowed to stand still.
請求項1または2に記載の溶剤分離方法において、
前記温度保持工程において、前記溶剤分離用圧力容器内の前記溶剤含有水の温度を100℃以上180℃以下の温度に保持することを特徴とする、溶剤分離方法。
The solvent separation method according to claim 1 or 2,
In the temperature maintaining step, the temperature of the solvent-containing water in the solvent separation pressure vessel is maintained at a temperature of 100 ° C. or higher and 180 ° C. or lower.
請求項1〜3のいずれかに記載の溶剤分離方法において、
前記溶剤分離用圧力容器内の圧力が、水の飽和蒸気圧よりも高い圧力にされていることを特徴とする、溶剤分離方法。
In the solvent separation method according to any one of claims 1 to 3,
The solvent separation method, wherein a pressure in the solvent separation pressure vessel is higher than a saturated vapor pressure of water.
請求項1〜4のいずれかに記載の溶剤分離方法において、
前記溶剤分離用圧力容器内に不活性ガスが充填されていることを特徴とする、溶剤分離方法。
In the solvent separation method according to any one of claims 1 to 4,
A solvent separation method, wherein the solvent separation pressure vessel is filled with an inert gas.
請求項1〜5のいずれかに記載の溶剤分離方法において、
無灰炭を製造するプロセスのうち前記抽出工程で生じる前記溶剤含有水を溶剤分離用圧力容器に供給することを特徴とする、溶剤分離方法。
In the solvent separation method according to any one of claims 1 to 5,
A solvent separation method comprising supplying the solvent-containing water produced in the extraction step to a pressure vessel for solvent separation in a process for producing ashless coal.
JP2012019488A 2012-02-01 2012-02-01 Solvent separation method Active JP5839567B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012019488A JP5839567B2 (en) 2012-02-01 2012-02-01 Solvent separation method
KR1020147021286A KR101633204B1 (en) 2012-02-01 2013-01-09 Solvent separation method
AU2013216554A AU2013216554B2 (en) 2012-02-01 2013-01-09 Solvent separation method
CN201380007250.1A CN104080893B (en) 2012-02-01 2013-01-09 Solvent fractionation method
US14/372,584 US20150013215A1 (en) 2012-02-01 2013-01-09 Solvent separation method
PCT/JP2013/050180 WO2013114920A1 (en) 2012-02-01 2013-01-09 Solvent separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019488A JP5839567B2 (en) 2012-02-01 2012-02-01 Solvent separation method

Publications (2)

Publication Number Publication Date
JP2013155364A true JP2013155364A (en) 2013-08-15
JP5839567B2 JP5839567B2 (en) 2016-01-06

Family

ID=48904964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019488A Active JP5839567B2 (en) 2012-02-01 2012-02-01 Solvent separation method

Country Status (6)

Country Link
US (1) US20150013215A1 (en)
JP (1) JP5839567B2 (en)
KR (1) KR101633204B1 (en)
CN (1) CN104080893B (en)
AU (1) AU2013216554B2 (en)
WO (1) WO2013114920A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156789A1 (en) * 2013-03-28 2014-10-02 株式会社神戸製鋼所 Method for producing ashless coal
WO2015182460A1 (en) * 2014-05-27 2015-12-03 株式会社神戸製鋼所 Ashless coal manufacturing apparatus and ashless coal manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003003B2 (en) * 2013-07-30 2016-10-05 株式会社神戸製鋼所 Solvent separation method
JP6203698B2 (en) * 2014-09-30 2017-09-27 株式会社神戸製鋼所 Production method of ashless coal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365442B1 (en) * 2008-05-29 2009-11-18 株式会社神戸製鋼所 Coal reforming method
JP2010083907A (en) * 2008-09-29 2010-04-15 Kobe Steel Ltd Method for manufacturing ashless coal
JP2010235959A (en) * 2010-07-26 2010-10-21 Kobe Steel Ltd Method for manufacturing solid fuel and solid fuel manufactured by the method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508928A (en) * 1982-05-03 1985-04-02 Institute Of Gas Technology Ethanol extraction process
CN2384907Y (en) * 1999-01-25 2000-06-28 陈敏君 Automatic water separating device for pressure oil storage tank
CA2503836C (en) * 2002-10-29 2012-03-13 Ucc Energy Pty Limited Process for demineralising coal
JP4045229B2 (en) * 2003-10-15 2008-02-13 株式会社神戸製鋼所 Production method of ashless coal
CN2672041Y (en) * 2004-01-18 2005-01-19 陈敏君 High efficiency oil/water separator
JP4580011B2 (en) * 2008-10-09 2010-11-10 株式会社神戸製鋼所 Solid fuel production method and solid fuel produced by the production method
JP5453787B2 (en) * 2008-12-03 2014-03-26 パナソニック株式会社 Surface acoustic wave device
CN102126960B (en) * 2010-12-10 2013-11-06 合肥工业大学 High selectivity synthesis method of p-nitrobenzaldehyde

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365442B1 (en) * 2008-05-29 2009-11-18 株式会社神戸製鋼所 Coal reforming method
JP2010083907A (en) * 2008-09-29 2010-04-15 Kobe Steel Ltd Method for manufacturing ashless coal
JP2010235959A (en) * 2010-07-26 2010-10-21 Kobe Steel Ltd Method for manufacturing solid fuel and solid fuel manufactured by the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156789A1 (en) * 2013-03-28 2014-10-02 株式会社神戸製鋼所 Method for producing ashless coal
JP2014189759A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Method of producing ashless coal
US9714394B2 (en) 2013-03-28 2017-07-25 Kobe Steel, Ltd. Method for producing ashless coal
WO2015182460A1 (en) * 2014-05-27 2015-12-03 株式会社神戸製鋼所 Ashless coal manufacturing apparatus and ashless coal manufacturing method
KR101899703B1 (en) 2014-05-27 2018-09-17 가부시키가이샤 고베 세이코쇼 Ashless coal manufacturing apparatus and ashless coal manufacturing method

Also Published As

Publication number Publication date
AU2013216554B2 (en) 2015-07-02
WO2013114920A1 (en) 2013-08-08
KR20140119064A (en) 2014-10-08
JP5839567B2 (en) 2016-01-06
AU2013216554A1 (en) 2014-08-14
KR101633204B1 (en) 2016-06-23
CN104080893A (en) 2014-10-01
CN104080893B (en) 2016-08-17
US20150013215A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
CA2766032C (en) Method for producing carbon materials
JP5839567B2 (en) Solvent separation method
JP5314299B2 (en) Production method of ashless coal
CN102165049A (en) Method for manufacturing hyper-coal
JP5259216B2 (en) Production method of ashless coal
JP2013249360A (en) Method for producing ashless coal
JP6017371B2 (en) Ashless coal manufacturing method and carbon material manufacturing method
JP5328180B2 (en) Production method of ashless coal
JP5990501B2 (en) Production method of ashless coal
AU2014246307B2 (en) Method for producing ashless coal
JP6003003B2 (en) Solvent separation method
AU2014254795B2 (en) Method for producing ash-free coal
JP5998373B2 (en) Production method of by-product coal
WO2012176896A1 (en) Method for producing ashless coal
JP6017356B2 (en) Production method of ashless coal
JP5990505B2 (en) Production method of ashless coal
JP6062320B2 (en) Production method of ashless coal
JP2013136692A (en) Production method for ashless coal
JP6017337B2 (en) Production method of ashless coal
JP5719283B2 (en) Production method of by-product coal molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151106

R150 Certificate of patent or registration of utility model

Ref document number: 5839567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150