JP2013155095A - Method for producing oxygen by means of light irradiation - Google Patents

Method for producing oxygen by means of light irradiation Download PDF

Info

Publication number
JP2013155095A
JP2013155095A JP2012018375A JP2012018375A JP2013155095A JP 2013155095 A JP2013155095 A JP 2013155095A JP 2012018375 A JP2012018375 A JP 2012018375A JP 2012018375 A JP2012018375 A JP 2012018375A JP 2013155095 A JP2013155095 A JP 2013155095A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxygen
copper
oxide particles
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012018375A
Other languages
Japanese (ja)
Other versions
JP5963128B2 (en
Inventor
Mitsutake Oshikiri
光丈 押切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2012018375A priority Critical patent/JP5963128B2/en
Publication of JP2013155095A publication Critical patent/JP2013155095A/en
Application granted granted Critical
Publication of JP5963128B2 publication Critical patent/JP5963128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve oxygen-production efficiency when a powdered titanium oxide is used as a photocatalyst.SOLUTION: Oxygen-production efficiency at a light-irradiated ground is increasingly improved by adding a powdered titanium oxide to a sodium nitrate solution (plot 1). The oxygen-production efficiency is more improved by making the powdered titanium oxide carry platinum or copper oxide (plot 2, 3, 4 and 5).

Description

本発明は酸化チタンを光触媒として用いて従来よりも高い効率で酸素を生成する方法に関する。   The present invention relates to a method for producing oxygen with higher efficiency than before by using titanium oxide as a photocatalyst.

酸化チタンを利用した不均一系光触媒システムで、より効率良く酸素を発生させる方法が従来から提案されている。例えば、酸化チタン粉末に白金(Pt)助触媒を担持させ、その粉末を水に湿らせたり(非特許文献1)、あるいは、白金(Pt)を助触媒として担持させた酸化チタン粉末を、炭酸ナトリウム水溶液に縣濁させ、それらの系に光照射することで、水分解における酸素生成効率を上げる方法(非特許文献2)がその例である。しかしながら、これらの方法は酸素生成効率が低いという問題があった。最近ではリン酸銀を利用した不均一系光触媒システムが比較的高い酸素生成効率を示すことが明らかになっているがリン酸銀自体が化学的に不安定であるという問題があった(非特許文献3)。そこで、より安定でかつより高い効率で酸素を生成できるシステムが望まれてきた。   A method for generating oxygen more efficiently in a heterogeneous photocatalytic system using titanium oxide has been proposed. For example, a titanium (Pt) promoter is supported on titanium oxide powder and the powder is moistened with water (Non-patent Document 1), or a titanium oxide powder supported with platinum (Pt) as a promoter is used as carbonic acid. An example is a method (Non-Patent Document 2) of increasing the oxygen generation efficiency in water splitting by suspending in an aqueous sodium solution and irradiating the system with light. However, these methods have a problem of low oxygen generation efficiency. Recently, it has been clarified that heterogeneous photocatalytic systems using silver phosphate show relatively high oxygen generation efficiency, but there is a problem that silver phosphate itself is chemically unstable (non-patented). Reference 3). Therefore, a system that can generate oxygen more stably and with higher efficiency has been desired.

本発明の課題は、酸化チタンを光触媒として、従来よりも高い効率で酸素を生成する方法を提供することにある。   The subject of this invention is providing the method of producing | generating oxygen more efficiently than before using titanium oxide as a photocatalyst.

本発明の一側面によれば、酸化チタン粒子を懸濁させた硝酸ナトリウム水溶液に光を照射する酸素生成方法が与えられる。
ここで、前記酸化チタン粒子に白金または酸化銅を担持させ、または銅元素をドープさせてもよい。
また、前記酸化チタン粒子への前記白金の担持は光電着法により、または白金化合物を混合した酸化チタン粒子を加熱処理することにより行ってよい。
また、前記酸化チタン粒子への前記酸化銅の担持は銅化合物を混合した酸化チタン粒子を加熱処理することにより行ってよい。
また、前記酸化チタン粒子への前記酸化銅の前記担持は、前記酸化チタン粒子に硝酸銅水溶液を混合した後、酸素存在下で加熱することにより行ってよい。
また、前記酸化チタン粒子への前記酸化銅の前記担持は、前記酸化チタン粒子に硫酸銅水溶液を混合した後、酸素存在下で加熱することにより行ってよい。
また、前記酸化チタン粒子への前記酸化銅の前記担持は前記酸化チタン粒子に酸化銅粉末を混合した後、酸素存在下で加熱することにより行ってよい。
According to one aspect of the present invention, there is provided an oxygen generation method in which a sodium nitrate aqueous solution in which titanium oxide particles are suspended is irradiated with light.
Here, platinum or copper oxide may be supported on the titanium oxide particles, or copper element may be doped.
Moreover, you may carry | support the said platinum to the said titanium oxide particle by carrying out the heat processing of the titanium oxide particle which mixed the platinum compound with the photoelectron deposition method.
Moreover, you may carry | support the said copper oxide to the said titanium oxide particle by heat-processing the titanium oxide particle which mixed the copper compound.
The supporting of the copper oxide on the titanium oxide particles may be performed by mixing the titanium oxide particles with a copper nitrate aqueous solution and then heating in the presence of oxygen.
The supporting of the copper oxide on the titanium oxide particles may be performed by mixing the titanium oxide particles with a copper sulfate aqueous solution and then heating in the presence of oxygen.
Moreover, you may perform the said carrying | support of the said copper oxide to the said titanium oxide particle by mixing a copper oxide powder with the said titanium oxide particle, and heating in oxygen presence.

本発明の方法によれば、酸化チタン光触媒側に何ら助触媒を担持させない状態でも、酸素を発生させることができる。従来より知られていた、炭酸ナトリウムを添加した方法に比較して約3倍効率が高い。白金や銅に基づく助触媒を担持すればさらに効率が高まる。白金や銅に基づく助触媒を担持した光触媒に本発明の方法を用いると従来の炭酸ナトリウム添加法に比べ3〜24倍以上もの高い効率が得られる。従って、本発明によれば、従来技術に比較して高い効率で酸素が得られる。更に、本発明は助触媒がなくとも比較的効率が高いため、従来よりも高い酸素生成効率を、高価な白金助触媒を用いない、あるいは、助触媒を担持させる工程のない、低コストの光触媒を使用して実現することも可能である。   According to the method of the present invention, oxygen can be generated even when no promoter is supported on the titanium oxide photocatalyst side. Compared with the conventionally known method of adding sodium carbonate, the efficiency is about 3 times higher. If a promoter based on platinum or copper is supported, the efficiency is further increased. When the method of the present invention is used for a photocatalyst carrying a cocatalyst based on platinum or copper, efficiency as high as 3 to 24 times or more is obtained as compared with the conventional sodium carbonate addition method. Therefore, according to the present invention, oxygen can be obtained with higher efficiency compared to the prior art. Furthermore, since the present invention has a relatively high efficiency even without a cocatalyst, the oxygen production efficiency is higher than that of the prior art. It is also possible to implement using

本発明の実施例及び比較例の酸素生成量を示す図である。図中のプロット1〜3は夫々TiO+NaNO水溶液、CuOを担持させたTiO+NaNO水溶液、及びPtを担持したTiO+NaNO水溶液(実施例1、2、3)についての結果であり、6〜10は夫々TiO+NaCO水溶液、CuOを担持させたTiO+NaCO水溶液、Ptを担持したTiO+NaCO水溶液、TiO+純水、及びPtを担持させたTiO+純水(比較例6〜10)の結果である。実験条件は、300Wのキセノンランプで照射を行うとともに、TiO粒径は約50μm以下であり、多くは0.5〜3μm程度であった。但し、2及び7は製造工程の焼結のため0.5〜3μmの粒子が数個程度以上が連なったりした塊となり、他光触媒粒子より平均的な粒径が大きく、つまり、表面積が少し小さい。全て使用触媒量は0.5g。NaNO濃度は1.66モル/リットル、NaCO濃度は1.66モル/リットルであった。It is a figure which shows the oxygen production amount of the Example and comparative example of this invention. Plot 1-3 respectively TiO 2 + NaNO 3 aqueous solution in the figure, the result of the TiO 2 + NaNO 3 aqueous solution was supported CuO x, and TiO 2 + NaNO 3 solution carrying Pt (Examples 1, 2, 3) There, are each TiO 2 + Na 2 CO 3 aq 6~10, TiO 2 + Na 2 CO 3 aqueous solution was supported CuO x, TiO 2 + Na 2 CO 3 aq carrying Pt, TiO 2 + pure water, and Pt It is the result of carried TiO 2 + pure water (Comparative Examples 6 to 10). The experimental conditions were that irradiation was performed with a 300 W xenon lamp, the TiO 2 particle size was about 50 μm or less, and most were about 0.5 to 3 μm. However, 2 and 7 are lumps in which several particles of 0.5 to 3 μm are continuous due to sintering in the manufacturing process, and the average particle size is larger than other photocatalyst particles, that is, the surface area is slightly smaller. . All use catalyst amount 0.5g. The NaNO 3 concentration was 1.66 mol / liter, and the Na 2 CO 3 concentration was 1.66 mol / liter. 本発明の実施例の酸素生成量を示す図である。図中のプロット3〜5は夫々Ptを担持したTiOを夫々、濃度1.66,3.32,4.98モル/リットルのNaNO水溶液に分散させた場合(実施例3、4、5)の結果である。実験条件は、300Wのキセノンランプで照射を行うとともに、TiO粒径は約50μm以下であり、多くは0.5〜3μm程度であった。全て使用触媒量は0.5gであった。It is a figure which shows the oxygen production amount of the Example of this invention. Plots 3 to 5 in the figure show cases where TiO 2 supporting Pt is dispersed in an aqueous NaNO 3 solution having concentrations of 1.66, 3.32, and 4.98 mol / liter, respectively (Examples 3, 4, and 5). ) Result. The experimental conditions were that irradiation was performed with a 300 W xenon lamp, the TiO 2 particle size was about 50 μm or less, and most were about 0.5 to 3 μm. In all cases, the amount of catalyst used was 0.5 g.

本方法の方法は、水に硝酸ナトリウムを溶解させることで酸素生成効率をより高めている。本方法は光触媒側に何ら助触媒を付加しない状態でも、従来から知られていた上記方法より約3倍効率が高く、白金や銅に基づく助触媒を付加した場合には3〜24倍の効率が確認されている。   In the method of this method, the efficiency of oxygen generation is further increased by dissolving sodium nitrate in water. This method is about 3 times more efficient than the above known method even when no cocatalyst is added to the photocatalyst side, and 3 to 24 times more efficient when a promoter based on platinum or copper is added. Has been confirmed.

本発明は光触媒母体材料(TiO)と溶液と助触媒で構築される電子構造の微妙なバランスで成立する反応であるため、本願明細書中で説明した組合せ以外では所望の反応が生起しないか、あるいは生成効率が大幅に低下する。助触媒としてニッケルの酸化物NiOを用いることは当業者間でしばしば行われているが、NiOは硝酸ナトリウム溶液に対しては殆ど活性を示さないことが実験の結果わかった(比較例11)。また、銀(Ag)を助触媒として用いても、その効果は低い(比較例12)。 Since the present invention is a reaction established by a delicate balance between the photocatalyst base material (TiO 2 ), the solution and the electronic structure constructed by the cocatalyst, does the desired reaction occur except in the combinations described in the present specification? Or, the production efficiency is greatly reduced. The use of nickel oxide NiO x as a co-catalyst is frequently performed by those skilled in the art, but it has been found as a result of experiments that NiO x shows little activity against a sodium nitrate solution (Comparative Example 11). ). Moreover, even if silver (Ag) is used as a promoter, the effect is low (Comparative Example 12).

また、これまでにK、Na、Liの炭酸塩や炭酸水素ナトリウムについて光触媒を用いた酸素生成反応が調べられたことが報告されているが、その中では炭酸ナトリウムが最も良いことが分かっている。水酸化ナトリウム、塩化ナトリウム、硫酸ナトリウム、リン酸ナトリウム、リン酸水素ナトリウムも調べられたが、それらの活性も低いことが報告されている(非特許文献1)。本願発明者は水ガラス(ケイ酸ナトリウム、NaO・nSiO, n=2.2)についても調べたが、活性はなかった(比較例13)。 In addition, it has been reported that oxygen production reactions using photocatalysts have been investigated for carbonates of K, Na, Li and sodium hydrogen carbonate, and sodium carbonate is the best among them. . Sodium hydroxide, sodium chloride, sodium sulfate, sodium phosphate, and sodium hydrogen phosphate were also investigated, but their activity has been reported to be low (Non-patent Document 1). The inventor of the present application also examined water glass (sodium silicate, Na 2 O · nSiO 3 , n = 2.2), but was not active (Comparative Example 13).

しかしながら、硝酸ナトリウムを使用する本発明の方法を用いることにより、表1に示すように、炭酸ナトリウムの場合(比較例6〜8)に比較してはるかに大きな酸素発生速度を達成することができることが実証された。また、本願発明者が調べた限りでは、硝酸塩(硝酸を含む。)の中では硝酸ナトリウムが最も良い(比較例14〜19)。   However, by using the method of the present invention using sodium nitrate, as shown in Table 1, a much higher oxygen generation rate can be achieved as compared with the case of sodium carbonate (Comparative Examples 6 to 8). Has been demonstrated. Moreover, as far as the inventors of the present application have examined, sodium nitrate is the best among the nitrates (including nitric acid) (Comparative Examples 14 to 19).

また、硝酸ナトリウムの濃度については実施例で例示したものに限定されず、0〜飽和濃度までの範囲で効果がある。   Moreover, about the density | concentration of sodium nitrate, it is not limited to what was illustrated in the Example, There exists an effect in the range to 0 to a saturated concentration.

なお、以下の実施例では入手性と実験の作業性の観点から、TiO粉末として300メッシュのものを使用した。触媒としての性質から、表面積が大きいほど反応速度が速くなるから、これよりも細かいTiO粒子を使用すれば、より高い酸素生成効率を達成できることが期待される。 In the following examples, a 300-mesh TiO 2 powder was used from the viewpoint of availability and experimental workability. From the nature of the catalyst, the larger the surface area, the faster the reaction rate. Therefore, it is expected that higher oxygen generation efficiency can be achieved by using finer TiO 2 particles.

以下では、本発明の実施例に加えて、従来技術に従って酸素生成を行った実験結果を比較例として示す。これらの実施例、比較例を相互に比較対照できるように、照射条件を始めとした実験条件をできるだけ揃えて実験を行った。   Below, in addition to the Example of this invention, the experimental result which performed oxygen production | generation according to a prior art is shown as a comparative example. The experiments were conducted with the experimental conditions such as irradiation conditions as uniform as possible so that these examples and comparative examples could be compared with each other.

[実施例1]
純水220ccに硝酸ナトリウムNaNOを溶かし、濃度を1.66モル/リットルに調整した。このように調整した溶液中に、光触媒として市販(フルウチ化学、TIC−72208B、99.99%)のTiO粉末(300mesh、ルチル構造の酸化チタンが主成分)0.5gを縣濁させ、300Wのキセノンランプの光を照射した。すると、7時間3分で63マイクロモルの酸素が発生した。
[Example 1]
Sodium nitrate NaNO 3 was dissolved in 220 cc of pure water, and the concentration was adjusted to 1.66 mol / liter. In the solution prepared as described above, 0.5 g of commercially available (Furuuchi Chemical, TIC-72208B, 99.99%) TiO 2 powder (300 mesh, titanium oxide having a rutile structure) was suspended as a photocatalyst, and 300 W was added. The light from the xenon lamp was irradiated. Then, 63 micromole of oxygen was generated in 7 hours and 3 minutes.

[比較例6]
従来、塩を溶かして酸素の生成効率を上げる方法として、炭酸ナトリウムNaCOを溶かす方法が知られている。この従来方法について比較例として以下のように実験を行った。具体的には、先ず、純水220ccに炭酸ナトリウムNaCOを溶かし、濃度を1.66モル/リットルに調整した。このように調整した溶液中に、実施例1と同じTiO粉末0.5gを縣濁させ、300Wのキセノンランプの光を照射した。その結果、実施例1のおよそ1/3である、6時間34分で22マイクロモルの酸素しか生成されなかった。
[Comparative Example 6]
Conventionally, a method of dissolving sodium carbonate Na 2 CO 3 is known as a method of increasing the oxygen generation efficiency by dissolving a salt. As a comparative example, this conventional method was tested as follows. Specifically, first, sodium carbonate Na 2 CO 3 was dissolved in 220 cc of pure water, and the concentration was adjusted to 1.66 mol / liter. In the solution thus prepared, 0.5 g of the same TiO 2 powder as in Example 1 was suspended and irradiated with light from a 300 W xenon lamp. As a result, only 22 micromole of oxygen was produced in 6 hours and 34 minutes, which was approximately 1/3 of Example 1.

[実施例2]
純水220ccに硝酸ナトリウムNaNOを溶かし、濃度を1.66モル/リットルに調整した。このように調整した溶液中に、実施例1と同じTiO粉末に含浸法(詳細は後述)により酸化銅CuOを担持させた光触媒0.5gを縣濁させ、300Wのキセノンランプの光を照射した。その結果、6時間56分で67マイクロモルの酸素が発生した。
[Example 2]
Sodium nitrate NaNO 3 was dissolved in 220 cc of pure water, and the concentration was adjusted to 1.66 mol / liter. In the solution thus prepared, 0.5 g of a photocatalyst in which copper oxide CuO x is supported on the same TiO 2 powder as in Example 1 by an impregnation method (details will be described later) is suspended, and light from a 300 W xenon lamp is suspended. Irradiated. As a result, 67 micromole of oxygen was generated in 6 hours and 56 minutes.

助触媒CuOへの担持は、(1)硝酸銅(Cu(NO・3HO)1.61gを溶かした水溶液を、TiO粉末7.99gに加えて混合したものを480℃で2時間空気中で熱処理したものを、その後さらに680℃で2時間空気中で加熱処理することで行った。ただし、熱処理条件や仕込み量には大きな幅があり、この担持条件に限定されるものではない。硝酸銅にはいくつかの水和物と無水物があることが知られているがどれを用いてもかまわない。また、CuOを担持させる方法は他に、(2)TiO粉末に酸化銅(CuOやCuO等の銅酸化物)粉末を乳鉢で混合したものを400〜700℃程度で空気中で加熱処理して担持させてもよく、あるいは、(3)TiO粉末に硫酸銅(CuSOやその水和物)水溶液を加えて混合したものを、空気中で400〜700℃で加熱処理して担持させてもよい。
酸化チタン表面に酸化銅と酸化チタンの化合物が形成されても効果がある。例えば、酸化チタンのチタン原子の一部が銅原子で置換された(ドープされた)物質が担持されてもよい。いずれの場合にしろ、望ましくは、Cu原子数がTi原子数に対して1〜15%程度の割合で分布する部分が、助触媒を担持された光触媒中に存在すればよい。(2)および(3)で、助触媒担持時の仕込み量(Cu原子数とTi原子数の比)を(1)と同じにしたものは(1)とほぼ同様の性能を発揮する。
The support on the co-catalyst CuO x was 480 ° C. obtained by adding (1) an aqueous solution in which 1.61 g of copper nitrate (Cu (NO 3 ) 2 .3H 2 O) was dissolved and added to 799 g of TiO 2 powder. And then heat-treated in air for 2 hours, followed by further heat treatment in air at 680 ° C. for 2 hours. However, the heat treatment conditions and the charged amounts have a wide range, and are not limited to these supporting conditions. Copper nitrate is known to have several hydrates and anhydrides, any of which may be used. In addition to the method of supporting CuO x , (2) TiO 2 powder mixed with copper oxide (copper oxide such as CuO or Cu 2 O) powder in a mortar at about 400 to 700 ° C. in the air. It may be supported by heat treatment, or (3) TiO 2 powder mixed with copper sulfate (CuSO 4 or its hydrate) aqueous solution is heat-treated at 400 to 700 ° C. in air. May be supported.
Even if a compound of copper oxide and titanium oxide is formed on the surface of titanium oxide, there is an effect. For example, a substance in which a part of titanium atoms of titanium oxide is replaced with copper atoms (doped) may be supported. In any case, it is preferable that a portion where the number of Cu atoms is distributed at a ratio of about 1 to 15% with respect to the number of Ti atoms is present in the photocatalyst carrying the promoter. In (2) and (3), the same amount as that of (1) in the amount charged when the promoter is supported (the ratio of the number of Cu atoms to the number of Ti atoms) exhibits substantially the same performance as (1).

いずれにしろ比較的高温で熱処理するため、焼結が起こり、触媒粉末の表面積は、上述した実施例1や比較例6の場合より小さくなる。従って、同じ表面積で比較すれば、本実施例の酸素生成量はもっと大きくなるはずであり、従って実施例2で使用した光触媒は、粒径を実施例1と同じにすればはるかに効率が高くなると考えられる。   In any case, since heat treatment is performed at a relatively high temperature, sintering occurs, and the surface area of the catalyst powder is smaller than in the case of Example 1 and Comparative Example 6 described above. Therefore, if the same surface area is compared, the amount of oxygen produced in this example should be larger, and therefore the photocatalyst used in Example 2 is much more efficient if the particle size is the same as in Example 1. It is considered to be.

[比較例7]
純水220ccに炭酸ナトリウムNaCOを溶かし、濃度を1.66モル/リットルに調整した。このように調整した溶液中に、実施例1と同じTiO粉末に実施例2と同じプロセスで酸化銅CuOを担持させた光触媒0.5gを縣濁させ、300Wのキセノンランプの光を照射すると、約7時間照射しても酸素は約3マイクロモルしか発生しなかった。CuOは実施例2と同じ条件で担持させているため、本比較例は実施例2と直接比較できる。
[Comparative Example 7]
Sodium carbonate Na 2 CO 3 was dissolved in 220 cc of pure water to adjust the concentration to 1.66 mol / liter. In the solution thus prepared, 0.5 g of a photocatalyst in which copper oxide CuO x is supported on the same TiO 2 powder as in Example 1 by the same process as in Example 2 is suspended and irradiated with light from a 300 W xenon lamp. Then, only about 3 micromole of oxygen was generated even after irradiation for about 7 hours. Since CuO x is supported under the same conditions as in Example 2, this comparative example can be directly compared with Example 2.

[実施例3]
純水220ccに硝酸ナトリウムNaNOを溶かし、濃度を1.66モル/リットルに調整した。このように調整した溶液中に、また、実施例1と同じTiO粉末に光電着法により白金Ptを担持させた光触媒を作製した。
[Example 3]
Sodium nitrate NaNO 3 was dissolved in 220 cc of pure water, and the concentration was adjusted to 1.66 mol / liter. A photocatalyst in which platinum Pt was supported on the same TiO 2 powder as in Example 1 by the photo-deposition method in the solution thus prepared was prepared.

上のようにして作製した光触媒0.5gを上で調整したNaNO水溶液中に縣濁させ、300Wのキセノンランプの光を照射した。その結果、5時間24分で136マイクロモルの酸素が発生した。これは比較例6のおよそ7.5倍の生成効率である。この光触媒では白金は光電着法により担持させたので、加熱処理は行っていない。そのため、TiO粉末には焼結が起こっていない。従って、触媒粉末の表面積は実施例1や比較例6と同じであるから、実施例3の結果はこれら実施例、比較例と直接比較できる。 0.5 g of the photocatalyst prepared as described above was suspended in the NaNO 3 aqueous solution prepared above, and irradiated with light from a 300 W xenon lamp. As a result, 136 micromole of oxygen was generated in 5 hours and 24 minutes. This is a generation efficiency approximately 7.5 times that of Comparative Example 6. In this photocatalyst, platinum was supported by the photo-deposition method, and thus no heat treatment was performed. Therefore, sintering does not occur in the TiO 2 powder. Therefore, since the surface area of the catalyst powder is the same as in Example 1 and Comparative Example 6, the results of Example 3 can be directly compared with these Examples and Comparative Examples.

なお、上述の「光電着法」は「光メッキ」とも呼ばれる方法であり、具体的には以下のようにして行った。   The above-mentioned “photodeposition method” is also called “photoplating”, and was specifically performed as follows.

純水220mlにメタノール50mlを加え、この溶液にTiO粉末を5.5g加えて縣濁させた。ヘキサクロロ白金酸(HPtCl・6HO)1.0gを100gの純水に溶かしたものを用意し、この溶液7.37mlを縣濁液に加えた。これに300Wのキセノンランプの光を2〜3時間程度照射した。ただし、担持する白金量はこれに限定されるものではない。 50 ml of methanol was added to 220 ml of pure water, and 5.5 g of TiO 2 powder was added to this solution and suspended. Hexachloroplatinic acid (H 2 PtCl 6 · 6H 2 O) 1.0g was prepared which was dissolved in pure water 100 g, and this solution was added 7.37ml in suspension. This was irradiated with light from a 300 W xenon lamp for about 2 to 3 hours. However, the amount of platinum carried is not limited to this.

なお、白金の担持は他にも、ヘキサクロロ白金酸等白金化合物と酸化チタン粉末を混ぜ合わせ、空気中で摂氏400〜700度程度で1〜2時間加熱しても行うことができる。 In addition, platinum can be supported by mixing a platinum compound such as hexachloroplatinic acid and titanium oxide powder and heating in air at about 400 to 700 degrees Celsius for 1 to 2 hours.

[実施例4]
純水220ccに硝酸ナトリウムNaNOを溶かし、濃度を3.32モル/リットルに調整した。このように調整した溶液中に、また、実施例1と同じTiO粉末に実施例3と同じプロセスの光電着法により白金Ptを担持させた光触媒を作製した。
上のようにして作製した光触媒0.5gを上で調整したNaNO水溶液中に縣濁させ、300Wのキセノンランプの光を照射した。その結果、約5時間で約450マイクロモルの酸素が発生した。これは比較例6のおよそ20数倍程度の生成効率である。この光触媒では白金は光電着法により担持させたので、加熱処理は行っていない。そのため、TiO粉末には焼結が起こっていない。従って、触媒粉末の表面積は実施例1、3や比較例6と同じであるから、実施例4の結果はこれら実施例、比較例と直接比較できる。
[Example 4]
Sodium nitrate NaNO 3 was dissolved in 220 cc of pure water to adjust the concentration to 3.32 mol / liter. In addition, a photocatalyst in which platinum Pt was supported on the same TiO 2 powder as in Example 1 by the photo-deposition method in the same process as in Example 3 was prepared in the solution thus prepared.
0.5 g of the photocatalyst prepared as described above was suspended in the NaNO 3 aqueous solution prepared above, and irradiated with light from a 300 W xenon lamp. As a result, about 450 micromole of oxygen was generated in about 5 hours. This is a generation efficiency of about 20 times that of Comparative Example 6. In this photocatalyst, platinum was supported by the photo-deposition method, and thus no heat treatment was performed. Therefore, sintering does not occur in the TiO 2 powder. Therefore, since the surface area of the catalyst powder is the same as in Examples 1 and 3 and Comparative Example 6, the results of Example 4 can be directly compared with these Examples and Comparative Examples.

[実施例5]
純水220ccに硝酸ナトリウムNaNOを溶かし、濃度を4.98モル/リットルに調整した。このように調整した溶液中に、また、実施例1と同じTiO粉末に実施例3と同じプロセスの光電着法により白金Ptを担持させた光触媒を作製した。
上のようにして作製した光触媒0.5gを上で調整したNaNO水溶液中に縣濁させ、300Wのキセノンランプの光を照射した。その結果、約5時間で約350マイクロモルの酸素が発生した。これは比較例6のおよそ20倍程度の生成効率である。この光触媒では白金は光電着法により担持させたので、加熱処理は行っていない。そのため、TiO粉末には焼結が起こっていない。従って、触媒粉末の表面積は実施例1、3、4や比較例6と同じであるから、実施例5の結果はこれら実施例、比較例と直接比較できる。実施例3〜5の結果から、硝酸ナトリウム濃度には最適値が存在することが分かったが、その濃度は助触媒の種類等に依存するため、光触媒の製造条件に応じて適宜調整することが望ましい。
[Example 5]
Sodium nitrate NaNO 3 was dissolved in 220 cc of pure water, and the concentration was adjusted to 4.98 mol / liter. In addition, a photocatalyst in which platinum Pt was supported on the same TiO 2 powder as in Example 1 by the photo-deposition method in the same process as in Example 3 was prepared in the solution thus prepared.
0.5 g of the photocatalyst prepared as described above was suspended in the NaNO 3 aqueous solution prepared above, and irradiated with light from a 300 W xenon lamp. As a result, about 350 micromole of oxygen was generated in about 5 hours. This is a generation efficiency about 20 times that of Comparative Example 6. In this photocatalyst, platinum was supported by the photo-deposition method, and thus no heat treatment was performed. Therefore, sintering does not occur in the TiO 2 powder. Therefore, since the surface area of the catalyst powder is the same as in Examples 1, 3, 4 and Comparative Example 6, the results of Example 5 can be directly compared with these Examples and Comparative Examples. From the results of Examples 3 to 5, it was found that there is an optimum value for the concentration of sodium nitrate. However, the concentration depends on the type of promoter and so on, and can be appropriately adjusted according to the production conditions of the photocatalyst. desirable.

[比較例8]
純水220ccに炭酸ナトリウムNaCOを溶かし、濃度を1.66モル/リットルに調整した。このように調整した溶液中に、実施例1と同じTiO粉末に実施例3と同じプロセスで白金Ptを担持させた光触媒0.5gを縣濁させ、300Wのキセノンランプの光を照射した。その結果、約7時間照射しても酸素は殆ど発生しなかった。実施例3と同じく、白金は光電着法により担持させたので、加熱処理は行っていない。そのため、焼結が起こっていない。従って、触媒粉末の表面積は実施例1,3,4,5や比較例6と同じであるから、比較例8の結果はこれら実施例、比較例と直接比較できる。
[Comparative Example 8]
Sodium carbonate Na 2 CO 3 was dissolved in 220 cc of pure water to adjust the concentration to 1.66 mol / liter. In the solution thus prepared, 0.5 g of a photocatalyst in which platinum Pt was supported on the same TiO 2 powder as in Example 1 by the same process as in Example 3 was suspended, and irradiated with light from a 300 W xenon lamp. As a result, oxygen was hardly generated even after irradiation for about 7 hours. As in Example 3, since platinum was supported by the photo-deposition method, no heat treatment was performed. Therefore, no sintering has occurred. Therefore, since the surface area of the catalyst powder is the same as in Examples 1, 3, 4, 5 and Comparative Example 6, the results of Comparative Example 8 can be directly compared with these Examples and Comparative Examples.

[比較例9]
純水220ccに実施例1と同じTiO粉末0.5gを縣濁させ、300Wのキセノンランプの光を照射した。その結果、約7時間照射しても酸素は殆ど発生しなかった。本比較例における粉末表面積は実施例1,3,4,5、比較例6,8と同じなので、それらと直接比較的できる。
[Comparative Example 9]
In 220 cc of pure water, 0.5 g of the same TiO 2 powder as in Example 1 was suspended and irradiated with light from a 300 W xenon lamp. As a result, oxygen was hardly generated even after irradiation for about 7 hours. Since the powder surface area in this comparative example is the same as that of Examples 1, 3, 4, 5 and Comparative Examples 6 and 8, it can be made relatively directly with them.

[比較例10]
純水220ccに、実施例1と同じTiO粉末に実施例3と同じプロセスで白金Ptを担持させた光触媒0.5gを縣濁させ、300Wのキセノンランプの光を照射した。その結果、約7時間照射しても酸素は殆ど発生しなかった。本比較例における粉末表面積は実施例1,3,4,5、比較例6,8,9と同じなので、それらと直接比較的できる。
以上説明した実施例1〜3、及び比較例6〜10の酸素発生量(時間累積値)を図1に示す。また、図2に、実施例3〜5の酸素発生量(時間累積値)を示す。図1および図22の横軸は光照射開始からの経過時間を、縦軸はその経過時間に対応する酸素発生量の時間累積値を表す。
[Comparative Example 10]
In 220 cc of pure water, 0.5 g of a photocatalyst in which platinum Pt was supported in the same TiO 2 powder as in Example 1 by the same process as in Example 3 was suspended, and irradiated with light from a 300 W xenon lamp. As a result, oxygen was hardly generated even after irradiation for about 7 hours. Since the powder surface area in this comparative example is the same as those in Examples 1, 3, 4, and 5 and Comparative Examples 6, 8, and 9, it can be directly compared with them.
The oxygen generation amount (time accumulation value) of Examples 1 to 3 and Comparative Examples 6 to 10 described above is shown in FIG. Moreover, in FIG. 2, the oxygen generation amount (time accumulation value) of Examples 3-5 is shown. 1 and 22, the horizontal axis represents the elapsed time from the start of light irradiation, and the vertical axis represents the time cumulative value of the oxygen generation amount corresponding to the elapsed time.

上述の実施例と比較例以外に、これらと実験条件を揃えて追加の比較例の実験も行った。具体的にはTiOに担持させる助触媒として白金、酸化銅以外の物質を使用した実験(比較例11、12)、さらには、硝酸ナトリウムの代わりに水ガラスを使用した実験(比較例13)及び硝酸ナトリウムの陽イオンをNa以外で置換した場合の実験(比較例14〜19)を行って検証し、何れの場合も酸素生成速度が実施例よりも大幅に低い、あるいは6時間以上の実験でも発生が観測できないことを確認した。また、酸化銀とリン酸溶液を反応させて合成したリン酸銀(AgPO)を使用した実験(比較例20)では、その効率が実施例3〜5に及ばず、また、リン酸銀の化学的不安定性を確認した(銀金属が析出してしまう。)。これらの結果を以下の表1にまとめて示す。 In addition to the above-described Examples and Comparative Examples, experiments for additional Comparative Examples were also conducted with the same experimental conditions. Specifically, experiments using substances other than platinum and copper oxide as cocatalysts supported on TiO 2 (Comparative Examples 11 and 12), and experiments using water glass instead of sodium nitrate (Comparative Example 13) In addition, experiments in which the cation of sodium nitrate was replaced with other than Na (Comparative Examples 14 to 19) were performed and verified, and in each case, the oxygen generation rate was significantly lower than that of the Examples, or an experiment of 6 hours or more. However, it was confirmed that the occurrence could not be observed. Further, in experiments using silver phosphate synthesized by reacting silver oxide and phosphoric acid solution (Ag 3 PO 4) (Comparative Example 20), not reach its efficiency Examples 3-5, also, phosphoric acid The chemical instability of silver was confirmed (silver metal was deposited). These results are summarized in Table 1 below.

上に挙げた実施例及び比較例において、硝酸基を有する水溶液では硝酸基の濃度を1.66モル/リットルに調整した。但し、実施例4は3.32モル/リットル、実施例5は4.98モル/リットルである。TiO粉末の量は0.5g,純水量は220mlとした。また、「光触媒システム」カラムにおいて、( )内は光触媒を表す。比較例13においてはNaO・2.2SiO(水ガラス)の濃度は0.76モル/リットルとした。 In the examples and comparative examples listed above, the concentration of nitrate groups in the aqueous solution having nitrate groups was adjusted to 1.66 mol / liter. However, Example 4 is 3.32 mol / liter, and Example 5 is 4.98 mol / liter. The amount of TiO 2 powder was 0.5 g, and the amount of pure water was 220 ml. In the “photocatalyst system” column, () represents a photocatalyst. In Comparative Example 13, the concentration of Na 2 O · 2.2SiO 3 (water glass) was 0.76 mol / liter.

本発明によれば、太陽光などの光エネルギーを単体の酸素の形で蓄積することができるので、自然エネルギー利用分野での利用が期待される。   According to the present invention, light energy such as sunlight can be stored in the form of simple oxygen, and therefore it is expected to be used in the field of utilizing natural energy.

「光化学エネルギー変換 - 基礎と応用 -」編者 金子正夫 アイピーシー出版 pp. 289-290, および p. 294, 平成9年6月10日発行。“Photochemical Energy Conversion-Fundamentals and Applications-” Editor Masao Kaneko IP Publishing, pp. 289-290, and p. 294, published on June 10, 1997. K. Sayama and H. Arakawa, "Remarkable Effect of Na2CO3Addition on Photodecomposition of Liquid Water into H2 and O2from Suspension of Semiconductor Powder Loaded with Various Metals", Chem. Lett. Vol. 21, No. 2, pp. 253-256, (1992).K. Sayama and H. Arakawa, "Remarkable Effect of Na2CO3Addition on Photodecomposition of Liquid Water into H2 and O2from Suspension of Semiconductor Powder Loaded with Various Metals", Chem. Lett. Vol. 21, No. 2, pp. 253-256, (1992). Zhiguo Yi, Jinhua Ye, Naoki Kikugawa, Tetsuya Kako, Shuxin Ouyang, Hilary Stuart-Williams, Hui Yang, Junyu Cao, Wenjun Luo, Zhaosheng Li, Yun Liu and Ray L.Withers, "An orthophosphate semiconductor with photooxidation properties under visible-light irradiation", Nature Materials, Vol. 9, Issue 7, pp. 559-564, (2010).Zhiguo Yi, Jinhua Ye, Naoki Kikugawa, Tetsuya Kako, Shuxin Ouyang, Hilary Stuart-Williams, Hui Yang, Junyu Cao, Wenjun Luo, Zhaosheng Li, Yun Liu and Ray L. Withers, "An orthophosphate semiconductor with photooxidation properties under visible- light irradiation ", Nature Materials, Vol. 9, Issue 7, pp. 559-564, (2010).

Claims (7)

酸化チタン粒子を懸濁させた硝酸ナトリウム水溶液に光を照射する酸素生成方法。   An oxygen generation method in which light is applied to an aqueous solution of sodium nitrate in which titanium oxide particles are suspended. 前記酸化チタン粒子に白金または酸化銅を担持させ、または銅元素をドープさせた、請求項1に記載の酸素生成方法。   The oxygen generation method according to claim 1, wherein the titanium oxide particles are supported with platinum or copper oxide, or doped with copper element. 前記酸化チタン粒子への前記白金の担持は光電着法により、または白金化合物を混合した酸化チタン粒子を加熱処理することにより行う、請求項2に記載の酸素生成方法。   The oxygen generation method according to claim 2, wherein the platinum is supported on the titanium oxide particles by a photo-deposition method or by heat-treating the titanium oxide particles mixed with a platinum compound. 前記酸化チタン粒子への前記酸化銅の担持は銅化合物を混合した酸化チタン粒子を加熱処理することにより行う、請求項2に記載の酸素生成方法。   The oxygen generation method according to claim 2, wherein the supporting of the copper oxide on the titanium oxide particles is performed by heat-treating the titanium oxide particles mixed with a copper compound. 前記酸化チタン粒子への前記酸化銅の前記担持は、前記酸化チタン粒子に硝酸銅水溶液を混合した後、酸素存在下で加熱することにより行う、請求項4に記載の酸素生成方法。   The oxygen generation method according to claim 4, wherein the supporting of the copper oxide on the titanium oxide particles is performed by mixing the titanium oxide particles with an aqueous copper nitrate solution and then heating in the presence of oxygen. 前記酸化チタン粒子への前記酸化銅の前記担持は、前記酸化チタン粒子に硫酸銅水溶液を混合した後、酸素存在下で加熱することにより行う、請求項4に記載の酸素生成方法。   The oxygen generation method according to claim 4, wherein the supporting of the copper oxide on the titanium oxide particles is performed by mixing the titanium oxide particles with a copper sulfate aqueous solution and then heating in the presence of oxygen. 前記酸化チタン粒子への前記酸化銅の前記担持は前記酸化チタン粒子に酸化銅粉末を混合した後、酸素存在下で加熱することにより行う、請求項4に記載の酸素生成方法。   The oxygen generation method according to claim 4, wherein the supporting of the copper oxide on the titanium oxide particles is performed by mixing the titanium oxide particles with copper oxide powder and then heating in the presence of oxygen.
JP2012018375A 2012-01-31 2012-01-31 Oxygen generation method by light irradiation Active JP5963128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012018375A JP5963128B2 (en) 2012-01-31 2012-01-31 Oxygen generation method by light irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012018375A JP5963128B2 (en) 2012-01-31 2012-01-31 Oxygen generation method by light irradiation

Publications (2)

Publication Number Publication Date
JP2013155095A true JP2013155095A (en) 2013-08-15
JP5963128B2 JP5963128B2 (en) 2016-08-03

Family

ID=49050668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012018375A Active JP5963128B2 (en) 2012-01-31 2012-01-31 Oxygen generation method by light irradiation

Country Status (1)

Country Link
JP (1) JP5963128B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551201A (en) * 1991-08-20 1993-03-02 Agency Of Ind Science & Technol Production of hydrogen and oxygen from water with aqueous carbonate solution having high concentration and metal carrying semiconductor photocatalyst
JP2005068007A (en) * 2004-10-18 2005-03-17 National Institute Of Advanced Industrial & Technology Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
JP2006055747A (en) * 2004-08-20 2006-03-02 Tayca Corp Photocatalyst having platinum compound carried thereon and manufacturing method therefor
JP2009214033A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Photocatalyst and method for reducing nitrate ion and nitrite ion
JP2009292821A (en) * 2009-07-01 2009-12-17 Ichiro Moriya Method of reducing carbon dioxide, and system of providing reducing power
JP2011111600A (en) * 2009-11-30 2011-06-09 Panasonic Electric Works Co Ltd Visible light-responsive photocatalyst coating material, coated article and method for inactivating allergen
WO2013089222A1 (en) * 2011-12-15 2013-06-20 堺化学工業株式会社 Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551201A (en) * 1991-08-20 1993-03-02 Agency Of Ind Science & Technol Production of hydrogen and oxygen from water with aqueous carbonate solution having high concentration and metal carrying semiconductor photocatalyst
US5262023A (en) * 1991-08-20 1993-11-16 Director-General Of Agency Of Industrial Science And Technology Method for producing hydrogen and oxygen from water
JP2006055747A (en) * 2004-08-20 2006-03-02 Tayca Corp Photocatalyst having platinum compound carried thereon and manufacturing method therefor
JP2005068007A (en) * 2004-10-18 2005-03-17 National Institute Of Advanced Industrial & Technology Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
JP2009214033A (en) * 2008-03-11 2009-09-24 Tokyo Univ Of Science Photocatalyst and method for reducing nitrate ion and nitrite ion
JP2009292821A (en) * 2009-07-01 2009-12-17 Ichiro Moriya Method of reducing carbon dioxide, and system of providing reducing power
JP2011111600A (en) * 2009-11-30 2011-06-09 Panasonic Electric Works Co Ltd Visible light-responsive photocatalyst coating material, coated article and method for inactivating allergen
US20120237396A1 (en) * 2009-11-30 2012-09-20 The University Of Tokyo Visible light-responsive photocatalyst coating material, coated article, allergen inactivation method
WO2013089222A1 (en) * 2011-12-15 2013-06-20 堺化学工業株式会社 Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6015032975; A.KUDO et al.: 'Photocatalytic Reduction of NO3- to Form NH3 over Pt-TiO2' Chemistry Letters Vol.16 No. 6, 198706, Pages1019-1022 *
JPN6015032977; 工藤昭彦 他: '半導体光触媒によるNO3-の光還元反応とその応用' 第56回触媒討論会(A)講演予稿集 Vol.56, 19850917, Pages298-299 *
JPN6015032978; K.SAYAMA et al.: 'Decomposition of water into H2 and O2 by a two-step photoexcitation reaction over a Pt?TiO2 photocat' Catalysis Communications Vol.7 No.2, 200602, Pages96-99 *
JPN6015032979; 佐山和弘 他: '二段階光励起反応による新規水の完全分解システムの構築' 第94回触媒討論会討論会A予稿集 Vol.94, 20040927, Page129 *
JPN7015002242; Hideki Kato and Akihiko Kudo: 'Photocatalytic reduction of nitrate ions over tantalate photocatalysts' Phys. Chem. Chem. Phys. Vol. 4, 20020510, pp. 2833-2838, Royal Society of Chemistry *

Also Published As

Publication number Publication date
JP5963128B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
Chen et al. Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects
Li et al. Elucidating the critical role of ruthenium single atom sites in water dissociation and dehydrogenation behaviors for robust hydrazine oxidation‐boosted alkaline hydrogen evolution
Zhang et al. Fabrication of superior single‐atom catalysts toward diverse electrochemical reactions
Li et al. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation.
CN102666932B (en) The electrolysis electrolyzer of negative electrode, alkali metal chloride and the manufacture method of negative electrode
CN109331860B (en) Low-platinum alloy composite nano photocatalyst for air purification and preparation method and application thereof
Guo et al. Layered and poriferous (Al, C)-Ta2O5 mesocrystals supported CdS quantum dots for high-efficiency photodegradation of organic contaminants
Lo et al. Ordered mesoporous photocatalysts for CO 2 photoreduction
FR2565844A1 (en) NOVEL MICROAGREGATES OF NON-NOBLE METALS, PROCESS FOR THEIR PREPARATION AND CATALYSIS APPLICATION OF PHOTOREDUCTION OF WATER
JP2006228450A (en) Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method
Zhang et al. Deposition of platinum–ruthenium nano-particles on multi-walled carbon nano-tubes studied by gamma-irradiation
Bai et al. Activation of specific sites on cubic nanocrystals: a new pathway for controlled epitaxial growth towards catalytic applications
Zhang et al. Doping of vanadium into bismuth oxide nanoparticles for electrocatalytic CO2 reduction
CN111644210A (en) Application of composite carrier ruthenium-based catalyst in acetylene hydrochlorination
WO2012111709A1 (en) Novel visible-light-responsive photocatalyst with environmental resistance
JP4528944B2 (en) Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
Xu et al. Electrocatalytic dechlorination of florfenicol using a Pd-loaded on blue TiO2 nanotube arrays cathode
CN105251483A (en) Method for preparing Ag-modified TiO2 nanoflower photocatalyst controllably
CN111051238B (en) Method for oxidizing ammonia
Majeed et al. CdS nanorods supported copper-nickel hydroxide for hydrogen production under direct sunlight irradiation
Takagi et al. Synergistic effect of Ag decorated in-liquid plasma treated titanium dioxide catalyst for efficient electrocatalytic CO2 reduction application
JP5963128B2 (en) Oxygen generation method by light irradiation
CN107199033A (en) A kind of preparation method of phenol gas phase hydrogenation preparing cyclohexanone catalyst
Marques et al. Hydrogen production from aqueous glycerol using titanate nanotubes decorated with Au nanoparticles as photocatalysts
JP2018058732A (en) PROCESS FOR PRODUCING COPPER VANADIUM SULFIDE, PHOTOCATALYST AND COCATALYST-CARRYING Cu3VS4

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5963128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250