JP2013153617A - Power supply system for electric vehicle and electric vehicle - Google Patents

Power supply system for electric vehicle and electric vehicle Download PDF

Info

Publication number
JP2013153617A
JP2013153617A JP2012013654A JP2012013654A JP2013153617A JP 2013153617 A JP2013153617 A JP 2013153617A JP 2012013654 A JP2012013654 A JP 2012013654A JP 2012013654 A JP2012013654 A JP 2012013654A JP 2013153617 A JP2013153617 A JP 2013153617A
Authority
JP
Japan
Prior art keywords
motor
capacitor
boost
electric vehicle
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012013654A
Other languages
Japanese (ja)
Other versions
JP6026111B2 (en
Inventor
Koichi Okada
浩一 岡田
Kenichi Suzuki
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2012013654A priority Critical patent/JP6026111B2/en
Publication of JP2013153617A publication Critical patent/JP2013153617A/en
Application granted granted Critical
Publication of JP6026111B2 publication Critical patent/JP6026111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a power supply system for an electric vehicle capable of instantaneously generating drive voltage of battery voltage or more without reducing output current, increasing drive torque of a motor though instantaneously, and allowing a step-up circuit to be configured simply.SOLUTION: In a circuit connecting a motor drive circuit 1 and a battery 2, a step-up circuit 5 is interposed. The step-up circuit 5 is provided with a step-up capacitor C1, is provided with a charging/step-up change-over switch SW1, a reverse current prevention diode D1, and bypass diodes D2, D3 and is configured. By switching of the charging/step-up change-over switch SW1, the capacitor C1 is charged during regular travel. If sudden acceleration is further required in a maximum output region of base rotation speed or more of the motor M, the charging/step-up change-over switch SW1 is switched to a step-up side, and the capacitor 6 and the battery 2 are brought into a series connection state.

Description

この発明は、インホイールモータ式やワンモータ式の電動車両における電源システム、およびこの電源システムを備えた電動車両に関する。   The present invention relates to a power supply system in an in-wheel motor type or one-motor type electric vehicle, and an electric vehicle equipped with the power supply system.

一般的に、電動車両における駆動用モータの出力特性は、基底回転数(モータの誘起電圧ピークと駆動電流の和が電源電圧と等しくなる回転数)以下ではトルク一定に、それを超える場合は、出力(回転数とトルクの関)が一定になるように制御される。   In general, the output characteristics of a driving motor in an electric vehicle are such that the torque is constant below the base rotational speed (the rotational speed at which the sum of the induced voltage peak of the motor and the driving current is equal to the power supply voltage), and if it exceeds that, The output (relationship between rotation speed and torque) is controlled to be constant.

従来技術で、モータの駆動電圧をバッテリー電圧以上にしたい場合、図6に示すように、リアクトル71と、半導体スイッチ72、平滑コンデンサ73を組み合わせた昇圧回路が用いられている(例えば、特許文献1)。   In the prior art, when the motor drive voltage is desired to be higher than the battery voltage, as shown in FIG. 6, a booster circuit combining a reactor 71, a semiconductor switch 72, and a smoothing capacitor 73 is used (for example, Patent Document 1). ).

特開2005−212659号公報Japanese Patent Laying-Open No. 2005-212659

電動車両において、走行中に駆動トルクを瞬時的に増大させたい場合がある。しかし、バッテリーの電圧で制限され、それ以上に駆動トルクを瞬時的に増大させることができない。また、昇降回路を設けた電源システムにおいても、従来のシステムは図6のようなリアクトル71、半導体スイッチ72、平滑コンデンサ73を組み合わせた構成であるため、入力であるバッテリーの出力電力は変わらないため、出力電流が低下し、モータ駆動トルクを上昇させることができない。しかも昇降回路の構成が複雑である。   In an electric vehicle, there is a case where it is desired to instantaneously increase the drive torque during traveling. However, it is limited by the voltage of the battery, and the driving torque cannot be increased instantaneously beyond that. Further, even in a power supply system provided with a lifting circuit, since the conventional system has a configuration in which a reactor 71, a semiconductor switch 72, and a smoothing capacitor 73 are combined as shown in FIG. 6, the output power of a battery as an input does not change. The output current decreases and the motor drive torque cannot be increased. In addition, the configuration of the lift circuit is complicated.

この発明の目的は、出力電流を低下させることなく瞬時的にバッテリー電圧以上の駆動電圧を発生させることができて、モータの駆動トルクを瞬時的に増大でき、かつ昇圧回路を簡単な構成とできる電動車両の電源システムおよび電動車両を提供することである。   An object of the present invention is to instantaneously generate a driving voltage higher than the battery voltage without reducing the output current, to instantaneously increase the driving torque of the motor, and to make the booster circuit simple. To provide a power supply system for an electric vehicle and an electric vehicle.

この発明の電動車両の電源システムは、走行用のモータMを駆動するモータ駆動回路1とバッテリー2とを接続する正側配線3に昇圧用のコンデンサC1の一方の電極を接続し、このコンデンサC1の他方の電極を、充電側端子bと昇圧側端子cとに切り換えて接続する充電・昇圧切換スイッチSW1を設け、前記充電側端子bは前記モータ駆動回路1とバッテリー2間の負側配線4に接続し、前記昇圧側端子cは、前記コンデンサC1の前記一方の電極を前記正側配線3に接続した接続点3aよりもモータ駆動回路1側で前記正側配線3に接続し、この昇圧側端子cを接続した接続点3bよりもさらにモータ駆動回路1側で前記正側配線3に逆電流防止ダイオードD1を挿入し、前記正側配線3に、前記充電・昇圧切換スイッチSW1が前記昇圧側端子cに導通状態である場合に、前記コンデンサC1と並列接続状態となるバイパス用のダイオードD2,D3を設けたものである。   In the power supply system for an electric vehicle according to the present invention, one electrode of a boosting capacitor C1 is connected to a positive wiring 3 that connects a motor driving circuit 1 that drives a traveling motor M and a battery 2, and the capacitor C1 Is provided with a charge / step-up changeover switch SW1 for switching and connecting the other electrode to a charge-side terminal b and a boost-side terminal c. The charge-side terminal b is connected to the negative-side wiring 4 between the motor drive circuit 1 and the battery 2. The boost side terminal c is connected to the positive side wiring 3 on the motor drive circuit 1 side from the connection point 3a where the one electrode of the capacitor C1 is connected to the positive side wiring 3, and this boosting side terminal c is connected to the positive side wiring 3. A reverse current prevention diode D1 is inserted in the positive wiring 3 on the motor drive circuit 1 side further than the connection point 3b to which the side terminal c is connected, and the charging / boost switch SW1 is connected to the positive wiring 3 in front. If in the conductive state to the boost side terminal c, is provided with a diode D2, D3 for bypass to be connected in parallel with said capacitor C1.

この構成によると、前記充電・昇圧切換スイッチSW1を充電側端子bと導通する切換状態とすることで、昇圧用のコンデンサC1がバッテリー2と並列接続状態となり、車両走行中に前記コンデンサC1が蓄電される。モータMの基底回転数以上の最大出力領域では、バッテリー2の出力電圧、電流とも最大値となっており、通常ではこれ以上の出力はできない。この状態で更なる加速が必要となったときに、前記充電・昇圧切換スイッチSW1を昇圧側端子cと導通する切換状態とする。これにより、前記バッテリー2とコンデンサC1とがモータ駆動回路1に対して直列接続状態となる。そのため、瞬時ではあるが、最大電流を確保したまま出力電圧を上げることができる。出力増大可能な時間はコンデンサC1の容量に依存するが、上記のような加速を必要とする場合は多くないため、通常走行時は充電状態としておくことによって、十分な充電を行うことができる。
前記逆電流防止ダイオードD1を設けているため、制動回転時のモータMの起電力によってモータMから前記コンデンサC1へ電流が流れることが回避される。また、前記コンデンサC1と並列接続状態となるバイパス用のダイオードD2,D3を設けたため、バッテリー2とコンデンサC1とが直列接続状態となっている間に、コンデンサC1の電荷が全て消費されても、バイパス用のダイオードを介してバッテリー2の電流がモータM側へ流れ、コンデンサC1が電流の流れを阻害することがない。
According to this configuration, by setting the charging / boost changeover switch SW1 to a switching state in which the charging / boost changeover switch SW1 is electrically connected to the charging side terminal b, the boosting capacitor C1 is connected to the battery 2 in parallel, and the capacitor C1 is charged while the vehicle is running. Is done. In the maximum output region above the base rotational speed of the motor M, both the output voltage and current of the battery 2 are maximum values, and normally no further output is possible. When further acceleration is required in this state, the charging / boost changeover switch SW1 is switched to a conductive state with the booster side terminal c. As a result, the battery 2 and the capacitor C1 are connected in series to the motor drive circuit 1. Therefore, although it is instantaneous, the output voltage can be increased while the maximum current is secured. Although the time during which the output can be increased depends on the capacity of the capacitor C1, there are not many cases where acceleration as described above is required.
Since the reverse current prevention diode D1 is provided, it is possible to prevent a current from flowing from the motor M to the capacitor C1 due to the electromotive force of the motor M during braking rotation. Further, since the bypass diodes D2 and D3 that are connected in parallel with the capacitor C1 are provided, even if the charge of the capacitor C1 is completely consumed while the battery 2 and the capacitor C1 are connected in series, The current of the battery 2 flows to the motor M side via the bypass diode, and the capacitor C1 does not hinder the current flow.

この発明において、前記正側配線3に挿入した前記逆電流防止ダイオードD1と並列に半導体スイッチを設け、前記モータMが回生制動状態にあるときに前記半導体スイッチQ1を導通状態とする回生制御手段12を設けても良い。
逆電流防止ダイオードD1と並列に半導体スイッチQ1を設けることにより、走行用のモータMが回生制動状態にあるときに半導体スイッチQ1を導通状態とすれば、モータMからの回生電流によるバッテリー2への充電が可能になる。
In the present invention, a regenerative control means 12 is provided in which a semiconductor switch is provided in parallel with the reverse current prevention diode D1 inserted in the positive side wiring 3, and the semiconductor switch Q1 is turned on when the motor M is in a regenerative braking state. May be provided.
By providing the semiconductor switch Q1 in parallel with the reverse current prevention diode D1, if the semiconductor switch Q1 is turned on when the traveling motor M is in the regenerative braking state, the regenerative current from the motor M supplies the battery 2 to the battery 2. Charging becomes possible.

この発明において、前記充電・昇圧切換スイッチSW1を半導体スイッチQ2,Q3で構成しても良い。半導体スイッチQ2,Q3であれば、接点を開閉するスイッチとは異なり、切換時の火花の発生等の問題が生じない。   In the present invention, the charge / step-up changeover switch SW1 may be constituted by semiconductor switches Q2 and Q3. In the case of the semiconductor switches Q2 and Q3, unlike the switch that opens and closes the contacts, problems such as the generation of sparks at the time of switching do not occur.

この発明において、前記充電・昇圧切換スイッチSW1の切換を、車両のアクセル信号を基に判断する充電・昇圧判断手段11を設けても良い。この場合に、前記充電・昇圧判断手段11は、前記アクセル信号の時間的変化が、定められた閾値よりも大きいときに前記充電・昇圧切換スイッチSW1を前記昇圧側端子cに接続される切換状態とする構成であっても良い。
アクセル信号は、運転者のアクセル操作により生成される信号であり、アクセル信号を基に充電・昇圧切換スイッチSW1の切換を行うことで、運転者の加速の希望に応じたモータMの駆動トルクの瞬時的増大が行える。特に、アクセル信号の時間的変化が閾値よりも大きいときは、運転者が急加速を望む場合であり、その要望に応じて駆動トルクを増大させることができる。前記閾値は、任意に設定すれば良いが、例えば、モータMの基底回転数以上の最大出力領域で満足できない加速が必要になる可能性が高いと考えられるアクセル信号の時間的変化の値を設定する。
In the present invention, a charging / boost determining means 11 for determining switching of the charging / boost switching switch SW1 based on an accelerator signal of the vehicle may be provided. In this case, the charging / boost determination means 11 is in a switching state in which the charging / boost selector switch SW1 is connected to the booster side terminal c when the time change of the accelerator signal is larger than a predetermined threshold value. It may be configured as follows.
The accelerator signal is a signal generated by the driver's accelerator operation. By switching the charge / boost selector switch SW1 based on the accelerator signal, the driving torque of the motor M according to the driver's desire for acceleration is determined. Instantaneous increase is possible. In particular, when the time change of the accelerator signal is larger than the threshold value, the driver desires rapid acceleration, and the drive torque can be increased according to the request. The threshold value may be arbitrarily set. For example, a value of a time change of an accelerator signal that is considered to be likely to require unsatisfactory acceleration in a maximum output region equal to or higher than the base rotation speed of the motor M is set. To do.

この発明において、前記コンデンサC1が電気二重層コンデンサであっても良い。電気二重層コンデンサは、一般的には、スーパーキャパシタと呼ばれる。電気二重層コンデンサC1は容量が大きなものがあり、出力増大可能な時間を長くすることができる。   In the present invention, the capacitor C1 may be an electric double layer capacitor. The electric double layer capacitor is generally called a super capacitor. The electric double layer capacitor C1 has a large capacity, and the time during which the output can be increased can be extended.

この発明のインホイールモータ駆動システム40は、この発明の上記いずれかの構成の電動車両の電源システム20と、前記モータ駆動回路1と、このモータ駆動回路1で駆動されるインホイールモータMとを備える。この発明の電動車両は、この発明のインホイールモータ駆動システム40を備えたものであってもよい。
前記インホイールモータMは、必ずしもモータ自体がホイール内に収められるものでなくても良く、例えば、モータMと、車輪用軸受24と、前記モータMの駆動を前記車輪用軸受24の回転側輪に伝達する減速機27とでなるインホイールモータ装置28を構成し、このインホイールモータ装置28の一部または全体がホイール内に収められるものであっても良い。
このインホイールモータ駆動システム40、およびこの発明のインホイールモータ装備の電動車両によると、この発明の電源システム20を備えることで、モータMの基底回転数以上の最大出力領域においても、モータMの駆動トルクを瞬時的ではあるが増大することができる。
An in-wheel motor drive system 40 according to the present invention includes a power supply system 20 for an electric vehicle having any one of the above-described configurations according to the present invention, the motor drive circuit 1, and an in-wheel motor M driven by the motor drive circuit 1. Prepare. The electric vehicle according to the present invention may include the in-wheel motor drive system 40 according to the present invention.
The in-wheel motor M does not necessarily have to be housed in the wheel. For example, the motor M, the wheel bearing 24, and the motor M are driven by the rotating side wheel of the wheel bearing 24. An in-wheel motor device 28 composed of a reduction gear 27 that transmits to the wheel may be configured, and a part or the whole of the in-wheel motor device 28 may be housed in a wheel.
According to the in-wheel motor drive system 40 and the electric vehicle equipped with the in-wheel motor of the present invention, the power supply system 20 of the present invention is provided, so that the motor M can be operated even in the maximum output region above the base rotational speed of the motor M. The drive torque can be increased instantaneously.

この発明のワンモータ式車両駆動システム50は、この発明の上記いずれかの構成の電動車両の電源システム20と、前記モータ駆動回路1と、このモータ駆動回路1で駆動される前記モータMとを備え、このモータMが、ワンモータ形式の車両に搭載される。この発明の電動車両は、この発明のワンモータ式車両駆動システム50を備えたものであっても良い。
このワンモータ式車両駆動システム50、およびこのワンモータ式車両駆動システム50を装備した電動車両によると、この発明の電源システム20を備えることで、モータMの基底回転数以上の最大出力領域においても、モータMの駆動トルクを瞬時的ではあるが増大することができる。
The one-motor type vehicle drive system 50 of the present invention includes the power supply system 20 for the electric vehicle having any one of the above-described configurations of the present invention, the motor drive circuit 1, and the motor M driven by the motor drive circuit 1. The motor M is mounted on a one-motor type vehicle. The electric vehicle according to the present invention may be provided with the one motor type vehicle drive system 50 according to the present invention.
According to the one-motor type vehicle drive system 50 and the electric vehicle equipped with the one-motor type vehicle drive system 50, the motor power supply system 20 of the present invention is provided, so that the motor can be used even in the maximum output region above the base rotational speed of the motor M. The driving torque of M can be increased instantaneously.

この発明の電動車両の電源システムは、走行用のモータを駆動するモータ駆動回路とバッテリとを接続する正側配線に昇圧用のコンデンサの一方の電極を接続し、このコンデンサの他方の電極を、充電側端子と昇圧側端子とに切り換えて接続する充電・昇圧切換スイッチを設け、前記充電側端子は前記モータ駆動回路とバッテリ間の負側配線に接続し、前記昇圧側端子は、前記コンデンサの一方の電極を前記正側配線に接続した接続点よりもモータ駆動回路側で前記正側配線に接続し、この昇圧側端子を接続した接続点よりもさらにモータ駆動回路側で前記正側配線に逆電流防止ダイオードを挿入し、前記正側配線に、前記充電・昇圧切換スイッチが前記昇圧側端子に導通状態である場合に、前記コンデンサと並列接続状態となるバイパス用のダイオードを設けたため、モータの基底回転数以上の最大出力領域においても、出力電流を低下させることなく瞬時的にバッテリー電圧以上の駆動電圧を発生させることができて、モータの駆動トルクを瞬時的ではあるが増大でき、しかも昇圧回路が簡単な構成で済む。   In the power supply system for an electric vehicle according to the present invention, one electrode of a boosting capacitor is connected to a positive side wiring that connects a motor driving circuit that drives a traveling motor and a battery, and the other electrode of the capacitor is A charge / boost switch for switching between the charge side terminal and the boost side terminal is provided, the charge side terminal is connected to a negative side wire between the motor drive circuit and the battery, and the boost side terminal is connected to the capacitor. One electrode is connected to the positive wiring on the motor driving circuit side than the connection point connected to the positive wiring, and further to the positive wiring on the motor driving circuit side than the connection point connecting the boosting side terminal. When a reverse current prevention diode is inserted and the charge / boost changeover switch is in a conductive state with the booster side terminal in the positive wiring, the bypass is connected in parallel with the capacitor Since a diode is provided, even in the maximum output region above the base rotational speed of the motor, it is possible to instantaneously generate a drive voltage that exceeds the battery voltage without reducing the output current, and the motor drive torque cannot be instantaneously generated. However, it can be increased, and the booster circuit can be simply configured.

この発明のインホイールモータ駆動システム、このインホイールモータ駆動システムを備えた電動車両、この発明のワンモータ式車両駆動システム、および、このワンモータ式車両駆動システムを備えた電動車両によると、いずれも、モータの基底回転数以上の最大出力領域においても、出力電流を低下させることなく瞬時的にバッテリー電圧以上の駆動電圧を発生させることができて、モータの駆動トルクを瞬時的ではあるが増大でき、しかも昇圧回路が簡単な構成で済む。   According to the in-wheel motor drive system of the present invention, the electric vehicle equipped with the in-wheel motor drive system, the one-motor vehicle drive system of the present invention, and the electric vehicle equipped with the one-motor vehicle drive system, Even in the maximum output range above the base rotational speed of the motor, it is possible to instantaneously generate a drive voltage that exceeds the battery voltage without reducing the output current, and the motor drive torque can be increased instantaneously, A simple booster circuit is sufficient.

この発明の第1の実施形態に係る電動車両の電源システムの電気回路図である。1 is an electric circuit diagram of a power supply system for an electric vehicle according to a first embodiment of the present invention. この発明の第2の実施形態に係る電動車両の電源システムの電気回路図である。It is an electric circuit diagram of the power supply system of the electric vehicle which concerns on 2nd Embodiment of this invention. この発明の第3の実施形態に係る電動車両の電源システムの電気回路図である。It is an electric circuit diagram of the power supply system of the electric vehicle which concerns on 3rd Embodiment of this invention. 同電源システムを搭載したインホイールモータ式電動車両の概念構成を示す説明図である。It is explanatory drawing which shows the conceptual structure of the in-wheel motor type electric vehicle carrying the power supply system. 同電源システムを搭載したワンモータ式電動車両の概念構成を示す説明図である。It is explanatory drawing which shows the conceptual structure of the one motor type electric vehicle carrying the power supply system. 従来例の電気回路図である。It is an electric circuit diagram of a conventional example.

この発明の第1の実施形態を図1と共に説明する。この電動車両の電源システム20は、走行用のモータMを駆動するモータ駆動回路1とバッテリ2とを正側配線3と負側配線4とで接続した回路に、昇圧回路5を介在させて構成される。この昇圧回路5は、昇圧用のコンデンサC1を設けると共に、充電・昇圧切換スイッチSW1、逆電流防止ダイオードD1、バイパス用のダイオードD2,D3を設けて構成される。昇圧用のコンデンサ6は、容量が大きいものが好ましく、例えば電気二重層コンデンサとする。電気二重層コンデンサは、一般的にはスーパーキャパシタと呼ばれる。充電・昇圧切換スイッチSW1は、コモン端子aを、2つの端子b,cに切り換えて接続可能なものであれば良く、電磁式のものや、半導体式のものなど、形式は問わない。上記2つの端子b,cを、この明細書ではその用途から充電側端子b,昇圧側端子cと称する。   A first embodiment of the present invention will be described with reference to FIG. The electric vehicle power supply system 20 is configured by interposing a booster circuit 5 in a circuit in which a motor drive circuit 1 for driving a traveling motor M and a battery 2 are connected by a positive wiring 3 and a negative wiring 4. Is done. The booster circuit 5 is provided with a boosting capacitor C1, and a charging / boost changeover switch SW1, a reverse current prevention diode D1, and bypass diodes D2 and D3. The step-up capacitor 6 preferably has a large capacity, for example, an electric double layer capacitor. The electric double layer capacitor is generally called a super capacitor. The charge / step-up changeover switch SW1 may be of any type as long as it can be connected by switching the common terminal a to the two terminals b and c, and may be of any type such as an electromagnetic type or a semiconductor type. In this specification, the two terminals b and c are referred to as a charging side terminal b and a boosting side terminal c in this specification.

昇圧用のコンデンサC1は、一方の電極caを前記正側配線3に接続点3aで接続し、他方の電極cbを充電・昇圧切換スイッチSW1のコモン端子aに接続する。充電・昇圧切換スイッチSW1の充電側端子bは、前記負側配線4に接続点4aで接続する。昇圧側端子cは、前記正側配線3に、コンデンサC1を接続した接続点3aよりもモータ駆動回路側1となる接続点3bで接続する。この接続点3bよりもさらにモータ駆動回路側1で、正側配線3に前記逆電流防止ダイオードD1を挿入する。   The boosting capacitor C1 has one electrode ca connected to the positive wiring 3 at a connection point 3a, and the other electrode cb connected to the common terminal a of the charge / boost selector switch SW1. A charging side terminal b of the charging / boost changeover switch SW1 is connected to the negative side wiring 4 at a connection point 4a. The step-up terminal c is connected to the positive wiring 3 at a connection point 3b that is closer to the motor drive circuit side 1 than a connection point 3a to which the capacitor C1 is connected. The reverse current prevention diode D1 is inserted into the positive wiring 3 on the motor drive circuit side 1 further than the connection point 3b.

前記バイパス用のダイオードD2,D3は、充電・昇圧切換スイッチSW1が昇圧側端子cに導通状態である場合に、コンデンサC1と並列接続状態となるように設けられる。具体的には、正側配線3の前記接続点3aとコンデンサC1の一方の端子caとを接続する配線6に一つのバイパス用のダイオードD2を、コンデンサC1側へ電流が流れる向きに挿入し、このダイオードD2の出力側端子と前記正側配線3における逆電流防止ダイオードD1よりもさらにモータ駆動回路1側となる接続点3cとを接続する配線7に、他の一つのバイパス用のダイオードD3を挿入する。   The bypass diodes D2 and D3 are provided so as to be connected in parallel with the capacitor C1 when the charge / boost selector switch SW1 is in conduction with the boost side terminal c. Specifically, one bypass diode D2 is inserted into the wiring 6 connecting the connection point 3a of the positive wiring 3 and one terminal ca of the capacitor C1 in a direction in which a current flows to the capacitor C1 side. Another bypass diode D3 is connected to the wiring 7 that connects the output side terminal of the diode D2 and the connection point 3c on the motor drive circuit 1 side further than the reverse current prevention diode D1 in the positive side wiring 3. insert.

前記充電・昇圧切換スイッチSW1の切換は、昇圧制御回路8の指令によって行われる。昇圧制御回路8は、上位制御手段となる車両制御装置9の出力する指令によって、充電・昇圧切換スイッチSW1を切り換える。車両制御装置9は、例えば、車両全体の統合制御、協調制御等を行うコンピュータ式のECU(電気制御ユニット)(VCU(車両制御ユニット)とも言う)である。   The charge / boost changeover switch SW1 is switched by a command from the boost control circuit 8. The step-up control circuit 8 switches the charge / step-up changeover switch SW <b> 1 according to a command output from the vehicle control device 9 serving as a host control means. The vehicle control device 9 is, for example, a computer-type ECU (electric control unit) (also referred to as a VCU (vehicle control unit)) that performs integrated control, cooperative control, and the like of the entire vehicle.

車両制御装置9は、車両のアクセル10からのアクセル開度となるアクセル信号を基に充電・昇圧切換スイッチSW1の切換を判断する充電・昇圧判断手段11を有し、この充電・昇圧判断手段11の判定結果となる指令を昇圧制御回路8に与える。充電・昇圧判断手段11は、例えば、前記アクセル信号の時間的変化が、定められた閾値よりも大きいときに充電・昇圧切換スイッチSW1を前記昇圧側端子cに接続される切換状態とする。充電・昇圧判断手段11は、昇圧側端子cに接続される切換状態とする指令を与えた後、例えば設定時間の経過後に充電側端子bが接続される切換状態とする指令を与える。この設定時間は、例えばコンデンサC1の蓄電量が全て消費されると想定される時間とする。この設定時間の経過後に充電側端子bが接続される切換状態とする指令は、昇圧制御回路8において出力させるようにしても良い。また、充電・昇圧判断手段11を車両制御装置9ではなく昇圧制御回路8に設け、車両制御装置9は、前記アクセル信号を昇圧制御回路8に出力するようにしても良い。   The vehicle control device 9 has charging / boosting judgment means 11 for judging switching of the charging / boost switching switch SW1 based on an accelerator signal indicating the accelerator opening from the accelerator 10 of the vehicle. A command that is the determination result is given to the boost control circuit 8. For example, the charge / boost determination means 11 switches the charge / boost switch SW1 to the boost side terminal c when the time change of the accelerator signal is larger than a predetermined threshold. The charging / boosting determination means 11 gives a command for setting a switching state in which the charging side terminal b is connected after elapse of a set time after giving a command for switching to the boosting side terminal c. This set time is, for example, a time when it is assumed that all the amount of power stored in the capacitor C1 is consumed. The boost control circuit 8 may output a command for switching to the charging side terminal b after the set time has elapsed. Further, the charging / boosting determination means 11 may be provided not in the vehicle control device 9 but in the boosting control circuit 8, and the vehicle control device 9 may output the accelerator signal to the boosting control circuit 8.

上記構成の動作を説明する。充電・昇圧切換スイッチSW1を充電側端子bと導通する切換状態とすることで、昇圧用のコンデンサC1がバッテリー2と並列接続状態となり、車両走行中にコンデンサC1が蓄電される。モータMの基底回転数以上の最大出力領域では、バッテリー2の出力電圧、電流とも最大値となっており、通常ではこれ以上の出力はできない。   The operation of the above configuration will be described. By setting the charging / step-up changeover switch SW1 in a switching state in which the charging / step-up changeover switch SW1 is electrically connected to the charging side terminal b, the step-up capacitor C1 is connected in parallel with the battery 2, and the capacitor C1 is charged while the vehicle is running. In the maximum output region above the base rotational speed of the motor M, both the output voltage and current of the battery 2 are maximum values, and normally no further output is possible.

この状態で更なる加速が必要となったときに、前記充電・昇圧切換スイッチSW1を昇圧側端子cと導通する切換状態とする。これにより、バッテリー2とコンデンサC1とがモータ駆動回路1に対して直列接続状態となる。そのため、瞬時ではあるが、最大電流を確保したまま出力電圧を上げることができる。出力増大可能な時間はコンデンサC1の容量に依存するが、上記のような加速を必要とする場合は多くないため、通常走行時は充電状態としておくことによって、十分な充電を行うことができる。特に、コンデンサC1が電気二重層コンデンサである場合は、容量が大きいため、追越し時等に必要となる加速のための出力増大可能な時間は、満足できる時間となる。   When further acceleration is required in this state, the charging / boost changeover switch SW1 is switched to a conductive state with the booster side terminal c. Thereby, the battery 2 and the capacitor C1 are connected in series to the motor drive circuit 1. Therefore, although it is instantaneous, the output voltage can be increased while the maximum current is secured. Although the time during which the output can be increased depends on the capacity of the capacitor C1, there are not many cases where acceleration as described above is required. Therefore, sufficient charging can be performed by keeping the charging state during normal driving. In particular, when the capacitor C1 is an electric double layer capacitor, since the capacitance is large, the time during which the output can be increased for acceleration required during overtaking or the like is a satisfactory time.

前記逆電流防止ダイオードD1を設けているため、制動回転時のモータMの起電力によってモータMから前記コンデンサC1へ電流が流れることが回避される。また、前記コンデンサC1と並列接続状態となるバイパス用のダイオードD2,D3を設けたため、バッテリー2とコンデンサC1とが直列接続状態となっている間に、コンデンサC1の電荷が全て消費されても、バイパス用のダイオードD2,D3を介してバッテリー2の電流がモータM側へ流れ、コンデンサC1が電流の流れを阻害することがない。   Since the reverse current prevention diode D1 is provided, it is possible to prevent a current from flowing from the motor M to the capacitor C1 due to the electromotive force of the motor M during braking rotation. Further, since the bypass diodes D2 and D3 that are connected in parallel with the capacitor C1 are provided, even if the charge of the capacitor C1 is completely consumed while the battery 2 and the capacitor C1 are connected in series, The current of the battery 2 flows to the motor M side via the bypass diodes D2 and D3, and the capacitor C1 does not hinder the current flow.

充電・昇圧切換スイッチSW1の切換の判断は、次のように、車両のアクセル信号を基に、充電・昇圧判断手段11によって行う。充電・昇圧判断手段11は、アクセル信号の時間的変化が、定められた閾値よりも大きいときに充電・昇圧切換スイッチSW1を昇圧側端子cに接続される切換状態とする指令を昇圧制御回路8に送信し、昇圧制御回路8はこの指令に応答して充電・昇圧切換スイッチSW1を昇圧側端子cに接続される切換状態に接続する。この切換の後、設定時間後に充電・昇圧切換スイッチSW1は充電側端子bに接続される切換状態に戻され、車両の走行によってコンデンサC1は再度充電される状態となる。   The charging / boosting switch SW1 is determined by the charging / boosting determining means 11 based on the accelerator signal of the vehicle as follows. The charge / boost determination means 11 issues a command to switch the charge / boost selector switch SW1 to the boost side terminal c when the time change of the accelerator signal is larger than a predetermined threshold value. In response to this command, the boost control circuit 8 connects the charge / boost selector switch SW1 to the switching state connected to the boost side terminal c. After this switching, the charging / boost switching switch SW1 is returned to the switching state connected to the charging side terminal b after the set time, and the capacitor C1 is again charged by the traveling of the vehicle.

アクセル信号は、運転者のアクセル操作により生成される信号であり、アクセル信号を基に充電・昇圧切換スイッチSW1の切換を行うことで、運転者の加速の希望に応じたモータMの駆動トルクの瞬時的増大が行える。特に、アクセル信号の時間的変化が閾値よりも大きいときは、運転者が急加速を望む場合であり、その要望に応じて駆動トルクを増大させることができる。前記閾値は、任意に設定すれば良いが、例えば、モータMの基底回転数以上の最大出力領域で満足できない加速が必要になる可能性が高いと考えられるアクセル信号の時間的変化の値を設定する。   The accelerator signal is a signal generated by the driver's accelerator operation. By switching the charge / boost selector switch SW1 based on the accelerator signal, the driving torque of the motor M according to the driver's desire for acceleration is determined. Instantaneous increase is possible. In particular, when the time change of the accelerator signal is larger than the threshold value, the driver desires rapid acceleration, and the drive torque can be increased according to the request. The threshold value may be arbitrarily set. For example, a value of a time change of an accelerator signal that is considered to be likely to require unsatisfactory acceleration in a maximum output region equal to or higher than the base rotation speed of the motor M is set. To do.

図2は第2の実施形態を示す。この実施形態は、図1に示す第1の実施形態において、正側配線3に挿入した前記逆電流防止ダイオードD1と並列に半導体スイッチQ1を設け、モータMが回生制動状態にあるときに半導体スイッチQ1を導通状態とする回生制御手段として、回生制御回路12を設けたものである。回生制御回路12は、車両制御装置9から回生制御回路12へ出力される回生制動状態であることを知らせる信号に基づき、その回生制動状態信号がオンである間は、半導体スイッチQ1を導通状態に維持する。   FIG. 2 shows a second embodiment. This embodiment is different from the first embodiment shown in FIG. 1 in that a semiconductor switch Q1 is provided in parallel with the reverse current prevention diode D1 inserted in the positive-side wiring 3, and the semiconductor switch is in a regenerative braking state. A regeneration control circuit 12 is provided as a regeneration control means for bringing Q1 into a conductive state. The regenerative control circuit 12 sets the semiconductor switch Q1 to the conductive state while the regenerative braking state signal is on based on the signal indicating that the regenerative braking state is output from the vehicle control device 9 to the regenerative control circuit 12. maintain.

このように逆電流防止ダイオードD1と並列に半導体スイッチQ1を設けることにより、走行用のモータMが回生制動状態にあるときに半導体スイッチQ1を導通状態とすれば、モータMからの回生電流によるバッテリー2への充電が可能になる。この実施形態におけるその他の構成,効果は、第1の実施形態と同様である。   Thus, by providing the semiconductor switch Q1 in parallel with the reverse current prevention diode D1, if the semiconductor switch Q1 is turned on when the traveling motor M is in the regenerative braking state, the battery due to the regenerative current from the motor M is used. 2 can be charged. Other configurations and effects in this embodiment are the same as those in the first embodiment.

図3はさらに他の実施形態を示す。この実施形態は、図2に示す第2の実施形態において、充電・昇圧切換スイッチSW1を、2つの半導体スイッチQ2,Q3で構成している。半導体スイッチQ2,Q3であれば、接点を開閉する形式の接触式スイッチと異なり、切換時の火花の発生等の問題が生じない。この実施形態におけるその他の構成,効果は、第1の実施形態と同様である。   FIG. 3 shows yet another embodiment. In this embodiment, in the second embodiment shown in FIG. 2, the charge / boost changeover switch SW1 is constituted by two semiconductor switches Q2 and Q3. If the semiconductor switches Q2 and Q3 are different from the contact type switches that open and close the contacts, problems such as the generation of sparks at the time of switching do not occur. Other configurations and effects in this embodiment are the same as those in the first embodiment.

図4は、この発明の前記いずれかの実施形態、例えば図3に示す第3の実施形態に係る電動車両の電源システム20を備えたインホイールモータ形式の電動車両の一例を示す。この電動車両は、車体21の左右の後輪となる車輪22が駆動輪とされ、左右の前輪となる車輪23が従動輪とされた4輪の自動車である。前輪となる車輪23は操舵輪とされている。駆動輪となる左右の車輪22,22は、それぞれ独立のインホイール型のモータMにより駆動される。モータMの回転は、減速機27および車輪用軸受24の回転側輪を介して車輪22に伝達される。これらモータM、減速機27、および車輪用軸受24は、互いに一つの組立部品であるインホイールモータ装置28を構成している。モータMは、3相の同期モータ、例えばIPM型(埋込磁石型)同期モータ等からなる。バッテリ2は、モータMの駆動、および車両全体の電気系統の電源として用いられる。   FIG. 4 shows an example of an in-wheel motor type electric vehicle provided with the power supply system 20 of the electric vehicle according to any one of the embodiments of the present invention, for example, the third embodiment shown in FIG. This electric vehicle is a four-wheeled vehicle in which the wheels 22 that are the left and right rear wheels of the vehicle body 21 are driving wheels and the wheels 23 that are the left and right front wheels are driven wheels. The front wheel 23 is a steering wheel. The left and right wheels 22 and 22 serving as driving wheels are driven by independent in-wheel motors M, respectively. The rotation of the motor M is transmitted to the wheel 22 via the reduction gear 27 and the rotation side wheel of the wheel bearing 24. The motor M, the speed reducer 27, and the wheel bearing 24 constitute an in-wheel motor device 28 that is one assembly part. The motor M is a three-phase synchronous motor, for example, an IPM type (embedded magnet type) synchronous motor. The battery 2 is used as a drive for the motor M and as a power source for the electric system of the entire vehicle.

制御系を説明する。前記ECUである車両制御装置9と、この車両制御装置9の指令に従って各走行用のモータMの制御をそれぞれ行う複数(図示の例では2つ)のインバータ装置32とが、車体21に搭載されている。車両制御装置9は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。なお、車両制御装置9は、各インバータ装置32の弱電系とは、互いに共通のコンピュータや共通の基板上の電子回路で構成されていても良い。   The control system will be described. A vehicle control device 9 that is the ECU and a plurality (two in the illustrated example) of inverter devices 32 that respectively control the motors M for traveling according to instructions from the vehicle control device 9 are mounted on the vehicle body 21. ing. The vehicle control device 9 includes a computer, a program executed on the computer, various electronic circuits, and the like. In addition, the vehicle control apparatus 9 may be comprised with the electronic circuit on a common computer and a common board | substrate with a weak electric system of each inverter apparatus 32. FIG.

車両制御装置9は、トルク配分手段38と、前記昇圧・充電判断部11と、回生制動判断部39を有している。トルク配分手段38は、アクセル操作部10の出力するアクセル開度の信号と、ブレーキ操作部37の出力する減速指令と、操舵手段35の出力する旋回指令とから、左右輪の走行用モータM,Mに与える加速・減速指令をトルク指令値として生成し、各インバータ装置32へ出力する。車両制御装置9は、上記各制御の他に、車両に設けられた車速センサ、荷重センサ、車輪回転センサ(いずれも図示せず)等の各種センサからの信号に基づいて、車両の各部の制御を行う機能を備える。   The vehicle control device 9 includes a torque distribution unit 38, the boost / charge determination unit 11, and a regenerative braking determination unit 39. The torque distribution means 38 is based on the accelerator opening signal output from the accelerator operating section 10, the deceleration command output from the brake operating section 37, and the turning command output from the steering means 35. The acceleration / deceleration command given to M is generated as a torque command value and output to each inverter device 32. In addition to the above controls, the vehicle control device 9 controls each part of the vehicle based on signals from various sensors such as a vehicle speed sensor, a load sensor, and a wheel rotation sensor (all not shown) provided in the vehicle. The function to perform.

インバータ装置32は、モータ駆動回路1と、このモータ駆動回路1の制御を行う制御部41とを備える。電源システム20は、インバータ装置20とは独立して設けても、またインバータ装置32の一部として設けてもよい。電源システム20をインバータ装置20の一部とする場合、1台の電源システム20を両インバータ装置32で共有しても、各インバータ装置32に個別に設けてもよい。モータ駆動回路1は、バッテリ2の直流電力をモータMの駆動に用いる3相の交流電力に変換するインバータからなる。制御部41は、車両制御装置9から指令されたトルク指令値等に従い、インバータからなるモータ駆動回路1の駆動指令となる電流指令を生成する手段であり、生成した電流指令をパルス幅変調し、インバータからなるモータ駆動回路1の各スイッチング素子にオンオフ指令を与えるPWMドライバ(図示せず)を有する。   The inverter device 32 includes a motor drive circuit 1 and a control unit 41 that controls the motor drive circuit 1. The power supply system 20 may be provided independently of the inverter device 20 or may be provided as a part of the inverter device 32. When the power supply system 20 is a part of the inverter device 20, the single power supply system 20 may be shared by both inverter devices 32 or may be individually provided in each inverter device 32. The motor drive circuit 1 includes an inverter that converts the DC power of the battery 2 into three-phase AC power used to drive the motor M. The control unit 41 is a means for generating a current command to be a drive command for the motor drive circuit 1 composed of an inverter in accordance with a torque command value or the like commanded from the vehicle control device 9, and pulse width-modulates the generated current command, A PWM driver (not shown) that gives an on / off command to each switching element of the motor drive circuit 1 including an inverter is provided.

電源システム20は、図1〜図3のいずれかの実施形態に係る電動車両の電源システムであり、前記昇圧回路5と、昇圧制御回路8(図1〜図3)とを備える。電源システム20は、図2,図3の実施形態の場合は、さらに回生制御回路12を備える。この回生制御回路12は、車両制御装置9に設けられた回生制動判断部32により制御される。   The power supply system 20 is a power supply system for an electric vehicle according to any of the embodiments shown in FIGS. 1 to 3, and includes the booster circuit 5 and the booster control circuit 8 (FIGS. 1 to 3). In the case of the embodiment of FIGS. 2 and 3, the power supply system 20 further includes a regeneration control circuit 12. The regenerative control circuit 12 is controlled by a regenerative braking determination unit 32 provided in the vehicle control device 9.

前記電源システム20と、モータ駆動回路1と、インホイール型のモータMとで、インホイールモータ駆動システム40が構成される。   The power supply system 20, the motor drive circuit 1, and the in-wheel type motor M constitute an in-wheel motor drive system 40.

このようなインホイールモータ駆動システム40、インホイールモータ式の電動車両において、前記昇圧回路5を有する電源システム20を備えることにより、モータMの基底回転数以上の最大出力領域においても、モータMの駆動トルクを瞬時的ではあるが増大することができる。   In such an in-wheel motor drive system 40 and an in-wheel motor type electric vehicle, the power supply system 20 having the booster circuit 5 is provided, so that the motor M can be operated even in the maximum output region that is equal to or higher than the base rotation speed of the motor M. The drive torque can be increased instantaneously.

図5は、この発明の前記いずれかの実施形態に係る電動車両の電源システム20を備えたワンモータ形式の電動車両の一例を示す。この電動車両は、モータMにより、変速機およびディファレンシャルを有するトランスミッション51を介して、左右の駆動輪となる車輪22,22が駆動される車両である。モータ駆動回路1は、モータMを駆動するインバータからなる。前記電源システム20と、モータ駆動回路1と、モータMとで、ワンモータ式車両駆動システム50が構成される。   FIG. 5 shows an example of a one-motor type electric vehicle including the electric vehicle power supply system 20 according to any one of the embodiments of the present invention. This electric vehicle is a vehicle in which wheels 22 and 22 serving as left and right drive wheels are driven by a motor M via a transmission 51 having a transmission and a differential. The motor drive circuit 1 includes an inverter that drives the motor M. The power supply system 20, the motor drive circuit 1, and the motor M constitute a one-motor vehicle drive system 50.

このようなワンモータ式車両駆動システム50、ワンモータ式電動車両において、前記昇圧回路5を有する電源システム20を備えることにより、モータMの基底回転数以上の最大出力領域においても、モータMの駆動トルクを瞬時的ではあるが増大することができる。   In such a one-motor type vehicle drive system 50 and a one-motor type electric vehicle, the power supply system 20 having the booster circuit 5 is provided, so that the drive torque of the motor M can be increased even in the maximum output region above the base rotational speed of the motor M. It can increase instantaneously.

1…モータ駆動回路
2…バッテリー
3…正側配線
3a,3b,3c…接続点
4…負側配線
5…昇圧回路
9…車両制御装置
11…昇圧・充電判断部
12…回生制御回路(回生制御手段)
20…電源システム
28…インホイールモータ装置
32…インバータ装置
40…インホイールモータ駆動システム
50…ワンモータ式車両駆動システム
a…コモン端子
b…充電側端子
c…昇圧側端子
C1…昇圧用のコンデンサ
D1…逆電流防止ダイオード
D2,D3…バイパス用のダイオード
M…モータ
Q1,Q2,Q3…半導体スイッチ
SW1…充電・昇圧切換スイッチ
DESCRIPTION OF SYMBOLS 1 ... Motor drive circuit 2 ... Battery 3 ... Positive side wiring 3a, 3b, 3c ... Connection point 4 ... Negative side wiring 5 ... Booster circuit 9 ... Vehicle control apparatus 11 ... Boosting / charging judgment part 12 ... Regeneration control circuit (regeneration control) means)
DESCRIPTION OF SYMBOLS 20 ... Power supply system 28 ... In-wheel motor apparatus 32 ... Inverter apparatus 40 ... In-wheel motor drive system 50 ... One motor type vehicle drive system a ... Common terminal b ... Charge side terminal c ... Boost side terminal C1 ... Boost capacitor D1 ... Reverse current prevention diodes D2, D3 ... Bypass diode M ... Motors Q1, Q2, Q3 ... Semiconductor switch SW1 ... Charging / boost switch

Claims (10)

走行用のモータを駆動するモータ駆動回路とバッテリとを接続する正側配線に昇圧用のコンデンサの一方の電極を接続し、このコンデンサの他方の電極を、充電側端子と昇圧側端子とに切り換えて接続する充電・昇圧切換スイッチを設け、前記充電側端子は前記モータ駆動回路とバッテリ間の負側配線に接続し、前記昇圧側端子は、前記コンデンサの一方の電極を前記正側配線に接続した接続点よりもモータ駆動回路側で前記正側配線に接続し、この昇圧側端子を接続した接続点よりもさらにモータ駆動回路側で前記正側配線に逆電流防止ダイオードを挿入し、前記正側配線に、前記充電・昇圧切換スイッチが前記昇圧側端子に導通状態である場合に、前記コンデンサと並列接続状態となるバイパス用のダイオードを設けた電動車両の電源システム。   Connect one electrode of the capacitor for boosting to the positive wiring that connects the battery to the motor drive circuit that drives the motor for traveling, and switch the other electrode of this capacitor between the charging side terminal and the boosting side terminal A charge / boost changeover switch to be connected, the charging side terminal is connected to a negative side wiring between the motor drive circuit and the battery, and the boosting side terminal is connected to one electrode of the capacitor to the positive side wiring The positive drive wiring is connected to the positive wiring on the motor drive circuit side from the connection point, and a reverse current prevention diode is inserted into the positive wiring on the motor drive circuit side further than the connection point to which the boost side terminal is connected. When the charge / boost selector switch is connected to the booster side terminal in the side wiring, a bypass diode that is connected in parallel with the capacitor is provided. Temu. 請求項1において、前記正側配線に挿入した前記逆電流防止ダイオードと並列に半導体スイッチを設け、前記モータが回生制動状態にあるときに前記半導体スイッチを導通状態とする回生制御手段を設けた電動車両の電源システム。   2. The electric motor according to claim 1, wherein a semiconductor switch is provided in parallel with the reverse current prevention diode inserted in the positive-side wiring, and regenerative control means is provided to turn on the semiconductor switch when the motor is in a regenerative braking state. Vehicle power system. 請求項1または請求項2において、前記充電・昇圧切換スイッチを半導体スイッチで構成した電動車両の電源システム。   3. The power supply system for an electric vehicle according to claim 1, wherein the charge / boost changeover switch is constituted by a semiconductor switch. 請求項1ないし請求項3のいずれか1項において、前記充電・昇圧切換スイッチの切換を、車両のアクセル信号を基に判断する充電・昇圧判断手段を設けた電動車両の電源システム。   4. The electric vehicle power supply system according to claim 1, further comprising charging / boosting judgment means for judging switching of the charging / boost switching switch based on an accelerator signal of the vehicle. 5. 請求項4において、前記充電・昇圧判断手段は、前記アクセル信号の時間的変化が、定められた閾値よりも大きいときに前記充電・昇圧切換スイッチを前記昇圧側端子に接続される切換状態とする電動車両の電源システム。   5. The charge / boost determination means according to claim 4, wherein the charge / boost selector switch is switched to the boost side terminal when the time change of the accelerator signal is larger than a predetermined threshold. Electric vehicle power supply system. 請求項1ないし請求項5のいずれか1項において、前記コンデンサが電気二重層コンデンサである電動車両の電源システム。   The power supply system for an electric vehicle according to any one of claims 1 to 5, wherein the capacitor is an electric double layer capacitor. 請求項1ないし請求項6のいずれか1項に記載の電動車両の電源システムと、前記モータ駆動回路と、このモータ駆動回路で駆動されるインホイールモータとを備えたインホイールモータ駆動システム。   An in-wheel motor drive system comprising the power supply system for an electric vehicle according to any one of claims 1 to 6, the motor drive circuit, and an in-wheel motor driven by the motor drive circuit. 請求項7記載のインホイールモータ駆動システムを備えた電動車両。   An electric vehicle comprising the in-wheel motor drive system according to claim 7. 請求項1ないし請求項6のいずれか1項に記載の電動車両の電源システムと、前記モータ駆動回路とを備え、このモータ駆動回路で駆動される前記モータとを備え、このモータは、ワンモータ形式の車両に搭載されるモータであるワンモータ式車両駆動システム。   A power supply system for an electric vehicle according to any one of claims 1 to 6 and the motor drive circuit, and the motor driven by the motor drive circuit, the motor being a one-motor type One-motor type vehicle drive system, which is a motor mounted on the vehicle. 請求項9記載のワンモータ式車両駆動システムを備えた電動車両。
An electric vehicle comprising the one-motor vehicle drive system according to claim 9.
JP2012013654A 2012-01-26 2012-01-26 Electric vehicle power supply system and electric vehicle Expired - Fee Related JP6026111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013654A JP6026111B2 (en) 2012-01-26 2012-01-26 Electric vehicle power supply system and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013654A JP6026111B2 (en) 2012-01-26 2012-01-26 Electric vehicle power supply system and electric vehicle

Publications (2)

Publication Number Publication Date
JP2013153617A true JP2013153617A (en) 2013-08-08
JP6026111B2 JP6026111B2 (en) 2016-11-16

Family

ID=49049508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013654A Expired - Fee Related JP6026111B2 (en) 2012-01-26 2012-01-26 Electric vehicle power supply system and electric vehicle

Country Status (1)

Country Link
JP (1) JP6026111B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063008A (en) * 2018-10-19 2020-04-23 マツダ株式会社 Driving device of vehicle
CN111867867A (en) * 2018-03-20 2020-10-30 马自达汽车株式会社 Vehicle drive device
JP2020191738A (en) * 2019-05-22 2020-11-26 株式会社ジェイテクト Auxiliary power source device and electric vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109398150A (en) * 2018-10-18 2019-03-01 南京世界村汽车动力有限公司 A kind of new-energy automobile electric power supply control system based on adaptive Charge Management

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629301U (en) * 1992-08-31 1994-04-15 いすゞ自動車株式会社 Vehicle power supply
JP2001119813A (en) * 1999-10-19 2001-04-27 Shigeo Tanahashi Electric automobile and battery charger
JP2003088143A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Power supply controller
JP2003189492A (en) * 2001-12-14 2003-07-04 Nissan Motor Co Ltd Charge/discharge controller
JP2005287222A (en) * 2004-03-30 2005-10-13 Toshiba Corp Energization control device of vehicle-mounted motor, power steering device and energization control method of vehicle-mounted motor
WO2007081495A2 (en) * 2006-01-09 2007-07-19 General Electric Company Energy storage system for electric or hybrid vehicle
JP2010048123A (en) * 2008-08-20 2010-03-04 Toyota Motor Corp Vehicular power supply unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629301U (en) * 1992-08-31 1994-04-15 いすゞ自動車株式会社 Vehicle power supply
JP2001119813A (en) * 1999-10-19 2001-04-27 Shigeo Tanahashi Electric automobile and battery charger
JP2003088143A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Power supply controller
JP2003189492A (en) * 2001-12-14 2003-07-04 Nissan Motor Co Ltd Charge/discharge controller
JP2005287222A (en) * 2004-03-30 2005-10-13 Toshiba Corp Energization control device of vehicle-mounted motor, power steering device and energization control method of vehicle-mounted motor
WO2007081495A2 (en) * 2006-01-09 2007-07-19 General Electric Company Energy storage system for electric or hybrid vehicle
JP2010048123A (en) * 2008-08-20 2010-03-04 Toyota Motor Corp Vehicular power supply unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867867A (en) * 2018-03-20 2020-10-30 马自达汽车株式会社 Vehicle drive device
US11718168B2 (en) 2018-03-20 2023-08-08 Mazda Motor Corporation Vehicle drive device
US11738630B2 (en) 2018-03-20 2023-08-29 Mazda Motor Corporation Vehicle in-wheel drive motor and a body side drive motor
US11938801B2 (en) 2018-03-20 2024-03-26 Mazda Motor Corporation Vehicle drive device
CN111867867B (en) * 2018-03-20 2024-04-05 马自达汽车株式会社 Vehicle driving device
JP2020063008A (en) * 2018-10-19 2020-04-23 マツダ株式会社 Driving device of vehicle
JP7144738B2 (en) 2018-10-19 2022-09-30 マツダ株式会社 vehicle drive
JP2020191738A (en) * 2019-05-22 2020-11-26 株式会社ジェイテクト Auxiliary power source device and electric vehicle
JP7371349B2 (en) 2019-05-22 2023-10-31 株式会社ジェイテクト Auxiliary power supply equipment and electric vehicles

Also Published As

Publication number Publication date
JP6026111B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
CN110315998B (en) Vehicle power supply system
US8816613B2 (en) Reconfigurable battery
US7764044B2 (en) Motor driving apparatus capable of driving motor with reliability
US20110001442A1 (en) Electric bicycle drive system with regenerative charging
US9725007B2 (en) Electric vehicle and control method therefor
CN110315976B (en) Vehicle power supply system
JP2017178054A (en) Hybrid-vehicular power control apparatus
WO2008047615A1 (en) Power supply device and vehicle
CN110315988B (en) Vehicle power supply system
WO2013119367A1 (en) Reconfigurable battery
CN110315999B (en) Vehicle power supply system
JP6026111B2 (en) Electric vehicle power supply system and electric vehicle
JP2006288024A (en) Voltage converter and its control method
JP2022002430A (en) Vehicular drive system
CN110316018B (en) Vehicle power supply system
CN105383279A (en) Multi-link power-split electric power system for an electric-hybrid powertrain system
WO2015063556A1 (en) Power system of hybrid vehicle
JP2009072040A (en) Battery charging apparatus for electric motor
JP2015098302A (en) Hybrid vehicle
JP2011083072A (en) Electric system
JP2012222982A (en) Electric system
JP2018121397A (en) Electric vehicle
JP2011046224A (en) Hybrid vehicle
WO2018066624A1 (en) Power supply system control device
JP7433204B2 (en) power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R150 Certificate of patent or registration of utility model

Ref document number: 6026111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees