JP2013152851A - High-pressure discharge lamp - Google Patents

High-pressure discharge lamp Download PDF

Info

Publication number
JP2013152851A
JP2013152851A JP2012013081A JP2012013081A JP2013152851A JP 2013152851 A JP2013152851 A JP 2013152851A JP 2012013081 A JP2012013081 A JP 2012013081A JP 2012013081 A JP2012013081 A JP 2012013081A JP 2013152851 A JP2013152851 A JP 2013152851A
Authority
JP
Japan
Prior art keywords
electrode
discharge
diameter
tube
metal pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012013081A
Other languages
Japanese (ja)
Inventor
Isamu Sato
勇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012013081A priority Critical patent/JP2013152851A/en
Publication of JP2013152851A publication Critical patent/JP2013152851A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly-reliable high-pressure discharge lamp capable of reducing cost of a manufacturing device and improving work efficiency in a manufacturing process to achieve reduction in cost of manufacture, and of preventing deterioration in air-tightness and maintaining the supporting and fixing firmly even when vibration or shock is added in a supported and fixed state.SOLUTION: A discharge electrode 30 is formed in a curved shape or a ripple shape. The discharge electrode 30 inserted into a discharge pipe 10 having end parts to which cylindrical metal pipes 20 are fused is pressure-welded to an inner wall of the discharge pipe 10. Thereby, in a manufacturing process, the discharge electrode 30 inserted into the discharge pipe 10 is in a state of being temporally fixed in the discharge pipe 10, and at commercialization, the metal pipe 20 serves as a supporting and fixing part, and simultaneously, serves as a power reception electrode for power supply from an external power source.

Description

本発明は、高圧放電ランプに関するものであり、詳しくは、電極軸の先端部に形成された先端電極部が発光部の放電室に配置されて該電極軸が気密に封止されてなる高圧放電ランプに関する。   The present invention relates to a high-pressure discharge lamp, and more particularly, a high-pressure discharge in which a tip electrode portion formed at a tip portion of an electrode shaft is disposed in a discharge chamber of a light emitting portion and the electrode shaft is hermetically sealed. Regarding lamps.

従来の高圧放電ランプ80の例として、図11に示す構成のものが開示されている。それは、略パイプ状の透光性セラミックスにより放電管81が形成され、放電管81の両端部に封着用接着剤のコンパウンド82を介して金属パイプ83が気密に封着されている。そして、電極軸84と電極軸84の先端に形成された先端電極部85からなる電極86が金属パイプ83内に挿入されて金属パイプ83の端部が絞り込まれ、絞り込まれた狭径部87と電極軸84が溶融されて完全封止されたものである。   As an example of a conventional high-pressure discharge lamp 80, a configuration shown in FIG. 11 is disclosed. The discharge tube 81 is formed of substantially pipe-shaped translucent ceramics, and the metal pipe 83 is hermetically sealed at both ends of the discharge tube 81 via a compound 82 of a sealing adhesive. Then, an electrode 86 composed of the electrode shaft 84 and the tip electrode portion 85 formed at the tip of the electrode shaft 84 is inserted into the metal pipe 83, the end portion of the metal pipe 83 is narrowed down, and the narrowed diameter portion 87 is narrowed down. The electrode shaft 84 is melted and completely sealed.

このとき、放電管81、金属パイプ83及び電極86で形成された発光部88内にはハロゲン化金属や封入ガスが封入されており、封入ガスの発光部88への導入に際しては、金属パイプ83に狭径部87を形成した後に狭径部87と電極軸84との隙間を通して封入ガスを発光部88内に導入し、その後、狭径部87と電極軸84とをレーザ等の溶融手段で気密封止することにより発光部88を完全気密状態とするものである(例えば、特許文献1参照。)。   At this time, a metal halide or a sealed gas is sealed in the light emitting portion 88 formed by the discharge tube 81, the metal pipe 83, and the electrode 86. When the sealed gas is introduced into the light emitting portion 88, the metal pipe 83 is used. After forming the narrow-diameter portion 87, the sealed gas is introduced into the light-emitting portion 88 through the gap between the narrow-diameter portion 87 and the electrode shaft 84, and then the narrow-diameter portion 87 and the electrode shaft 84 are fused by a melting means such as a laser. The light emitting unit 88 is brought into a completely airtight state by hermetically sealing (see, for example, Patent Document 1).

特開2007−220350号公報JP 2007-220350 A

ところで、上記高圧放電ランプ80は上述したように、発光部88への封入ガスの導入は金属パイプ83の狭径部87と電極86の電極軸84との隙間を通して行われる。その際、電極86は金属パイプ83の外部に設けた何らかの支持手段(機構)によって支持した状態を保持する必要がある。   By the way, as described above, in the high-pressure discharge lamp 80, the sealed gas is introduced into the light emitting portion 88 through the gap between the narrow diameter portion 87 of the metal pipe 83 and the electrode shaft 84 of the electrode 86. At that time, the electrode 86 needs to be held in a state supported by some support means (mechanism) provided outside the metal pipe 83.

そのため、発光部88に対する排気、希ガスの置換及び封入ガスの導入等のガス処理工程に用いる処理装置を、電極86の支持機構を考慮した構造とすることが求められ、構造が複雑化することになる。その結果、処理装置の価格が高価になって製品(高圧放電ランプ)の製造コストを上昇させる要因となる。   For this reason, it is required that the processing apparatus used in the gas processing process such as exhaust to the light emitting unit 88, replacement of rare gas, and introduction of sealed gas has a structure that takes into account the support mechanism of the electrode 86, and the structure becomes complicated. become. As a result, the price of the processing apparatus becomes expensive, which increases the manufacturing cost of the product (high pressure discharge lamp).

また、金属パイプ83の狭径部87と電極86の電極軸84とのレーザ溶融接合による気密封止の際に、電極軸84が金属パイプ83の中心軸上にあるため該中心軸方向からのレーザ光の一点集中照射による溶融接合が不可能であり、電極軸84を避けて全円周方向からのレーザ光照射によって溶融接合が行われる。そのため、レーザ溶融接合の作業効率が良くなく、製造コストの上昇に繋がる。   In addition, when the hermetic sealing is performed by laser fusion bonding between the narrow diameter portion 87 of the metal pipe 83 and the electrode shaft 84 of the electrode 86, the electrode shaft 84 is on the central axis of the metal pipe 83, so Melt bonding by single-point laser beam irradiation is impossible, and melt bonding is performed by laser beam irradiation from the entire circumferential direction avoiding the electrode shaft 84. Therefore, the work efficiency of laser fusion bonding is not good, leading to an increase in manufacturing cost.

さらに、金属パイプ83及び電極86がいずれもタンタル、タングステン、モリブデン等の高融点金属で形成されるものであり、そのうち、例えば高融点金属にモリブデンを用いて該モリブデンによって金属パイプ83及び電極86を形成したとすると、金属パイプ83の狭径部87と電極86の電極軸84との溶融接合時にモリブデンの融点の2620℃を超える加熱が必要となる。その場合、モリブデンは900℃以上の温度になると再結晶化が起こり、再結晶化によって結晶粒が粗大化して延性や脆性が著しく低下することが知られている。   Further, both the metal pipe 83 and the electrode 86 are formed of a refractory metal such as tantalum, tungsten, and molybdenum. Among them, for example, molybdenum is used as the refractory metal, and the metal pipe 83 and the electrode 86 are formed by the molybdenum. If formed, heating exceeding the melting point of molybdenum of 2620 ° C. is required at the time of fusion bonding of the narrow diameter portion 87 of the metal pipe 83 and the electrode shaft 84 of the electrode 86. In that case, it is known that when molybdenum reaches a temperature of 900 ° C. or higher, recrystallization occurs, and crystal grains become coarse due to recrystallization, and ductility and brittleness are remarkably reduced.

ところで、上記構成の高圧放電ランプ80においては、高圧放電ランプ80の支持固定に電極86の電極軸84を用いることが想定されている。そこで、高圧放電ランプ80を特に車両用灯具の光源に用いた場合には、車両走行時の振動や衝撃が支持固定部の電極軸84から金属パイプ83の狭径部87と電極軸84との接合部に伝達され、その接合部にモリブデンの上述の粗大化した結晶粒の粒界を起点とする脆性破壊が生じて放電管81の気密性が損なわれたり、あるいは高圧放電ランプ80の支持固定の信頼性を損なうなどの不具合を生じることになる。   By the way, in the high pressure discharge lamp 80 having the above-described configuration, it is assumed that the electrode shaft 84 of the electrode 86 is used for supporting and fixing the high pressure discharge lamp 80. Therefore, when the high-pressure discharge lamp 80 is used particularly as a light source for a vehicular lamp, vibrations and impacts when the vehicle travels are caused between the electrode shaft 84 of the support fixing portion and the narrow diameter portion 87 of the metal pipe 83 and the electrode shaft 84. It is transmitted to the joint, and brittle fracture starting from the grain boundaries of the above-mentioned coarsened crystal grains of molybdenum occurs at the joint, thereby impairing the hermeticity of the discharge tube 81 or supporting and fixing the high-pressure discharge lamp 80. Such as deteriorating the reliability of the system.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、製造工程における製造装置の低価格化及び作業効率の効率化を図って製造コストの低コスト化を実現すると共に、支持固定状態において、振動や衝撃が加わっても気密性を損なうことなく且つ支持固定を強固に維持することが可能な信頼性の高い高圧放電ランプを提供することにある。   Therefore, the present invention was devised in view of the above problems, and the object of the present invention is to reduce the manufacturing cost by reducing the cost of the manufacturing apparatus and improving the work efficiency in the manufacturing process. Another object of the present invention is to provide a highly reliable high-pressure discharge lamp capable of maintaining support and fixation firmly without impairing hermeticity even when vibration or impact is applied in the support and fixation state.

上記課題を解決するために、本発明の請求項1に記載された発明は、太管部と該太管部の両側に位置する前記太管部よりも径の小さい細管部を有すると共に全体の肉厚が均一な円筒状の放電管と、大径部と該大径部に一方の側に位置する前記大径部よりも径の小さい小径部を有し、前記大径部で前記放電管の細管部の両端部を覆うように該両端部に前記大径部を気密に溶着された、全体の肉厚が均一な円筒状の金属パイプと、所定の長さの先端電極部と該先端電極部の一方の側から所定の長さで延びる電極軸を有し、前記金属パイプの小径部の先端部に前記電極軸が一体に融着されると共に前記放電管の細管部内を挿通して、前記先端電極部が太管部内まで到達した放電電極と、を備えた高圧放電ランプであって、前記放電電極は、少なくとも前記電極軸が長手方向に湾曲した形状又は2箇所以上の曲部を有する波形状を呈しており、前記放電管の細管部内を挿通した前記放電電極の電極軸が、前記細管部の内壁の2箇所以上に圧接していることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention has a thick tube portion and a thin tube portion having a diameter smaller than that of the large tube portion located on both sides of the thick tube portion, and the entire tube portion. A cylindrical discharge tube having a uniform wall thickness, a large diameter portion, and a small diameter portion smaller in diameter than the large diameter portion located on one side of the large diameter portion, and the discharge tube having the large diameter portion A cylindrical metal pipe having a uniform overall wall thickness, hermetically welded with the large diameter portion so as to cover both ends of the thin tube portion, a tip electrode portion having a predetermined length, and the tip Having an electrode shaft extending from one side of the electrode portion by a predetermined length, and the electrode shaft is integrally fused to the tip of the small diameter portion of the metal pipe and inserted through the narrow tube portion of the discharge tube A discharge electrode in which the tip electrode portion reaches the inside of the thick tube portion, and the discharge electrode is at least The electrode shaft has a shape curved in the longitudinal direction or a wave shape having two or more curved portions, and the electrode axis of the discharge electrode inserted through the narrow tube portion of the discharge tube is 2 of the inner wall of the narrow tube portion. It is characterized by being in pressure contact with more than a part.

また、本発明の請求項2に記載された発明は、請求項1において、前記放電電極の電極軸の直径をD0とし、前記金属パイプの小径部の内径をD1、外径をD2とすると、0<(D1−D0)/(D2−D1)≦0.6となる関係を満たすことを特徴とするものである。   Further, in the invention described in claim 2 of the present invention, in claim 1, when the diameter of the electrode shaft of the discharge electrode is D0, the inner diameter of the small diameter portion of the metal pipe is D1, and the outer diameter is D2, It satisfies the relationship of 0 <(D1-D0) / (D2-D1) ≦ 0.6.

本発明の高圧放電ランプは、放電電極を湾曲状又は波形状に形成し、端部に筒状の金属パイプが溶着されてなる放電管内に挿入した放電電極が放電管の内壁に圧接するようにした。   In the high-pressure discharge lamp of the present invention, the discharge electrode is formed in a curved shape or a wave shape, and the discharge electrode inserted into the discharge tube in which the cylindrical metal pipe is welded to the end is pressed against the inner wall of the discharge tube. did.

そのため、放電管に挿入した放電電極が該放電管内に仮固定された状態となり、その状態で放電管に対する排気、希ガスの置換及び封入ガスの導入工程、及び、放電管に対する放電電極の気密封止固定工程等を行うことができる。その結果、放電電極を支持するための支持手段(機構)を外部に設ける必要がなく、排気、希ガスの置換及び封入ガスの導入工程に用いる装置の構造の複雑化を抑えることができる。   Therefore, the discharge electrode inserted into the discharge tube is temporarily fixed in the discharge tube, and in that state, the discharge to the discharge tube, the replacement of the rare gas and the introduction of the sealed gas, and the discharge electrode hermetically sealed with respect to the discharge tube A fixing and fixing process or the like can be performed. As a result, there is no need to provide a support means (mechanism) for supporting the discharge electrode outside, and it is possible to suppress the complexity of the structure of the apparatus used in the exhaust, rare gas replacement and sealed gas introduction processes.

また、金属パイプと放電電極との加熱溶融工程において、放電管の中心軸方向からのレーザ光の一点集中照射により両者を加熱溶融接合することができる。その結果、加熱溶融工程における作業効率の効率化を図ることが可能となる。   Further, in the heating and melting step of the metal pipe and the discharge electrode, both can be heated and melt-bonded by one-point concentrated irradiation of laser light from the central axis direction of the discharge tube. As a result, it is possible to improve the work efficiency in the heating and melting step.

更に、金属パイプを、放電ランプを取り付ける際の支持固定部とすると同時に外部電源からの電力供給のための受電電極とすることができる。そのため、放電ランプが車載用などの機械的振動や衝撃に晒される環境下において使用される場合、外部からの振動や衝撃は放電ランプを保持する金属パイプに加わることになり、放電発光に係わる電極には直接振動や衝撃が加わることはない。   Furthermore, the metal pipe can be used as a support fixing portion when the discharge lamp is attached, and at the same time, a power receiving electrode for supplying power from an external power source. For this reason, when the discharge lamp is used in an environment where it is exposed to mechanical vibration or impact such as in-vehicle use, external vibration or impact is applied to the metal pipe that holds the discharge lamp, and the electrode related to discharge light emission. There is no direct vibration or shock.

そのため、振動や衝撃のある厳しい環境下で使用されても極めて安定した放電発光を維持することが可能となり、極めて信頼性の高い放電ランプが実現する。   Therefore, it is possible to maintain a very stable discharge light emission even when used in a severe environment with vibrations and shocks, and an extremely reliable discharge lamp is realized.

実施形態の高圧放電ランプの側面説明図である。It is side surface explanatory drawing of the high pressure discharge lamp of embodiment. 図1の縦断面説明図である。It is a longitudinal cross-sectional explanatory drawing of FIG. 高圧放電ランプの製造工程の説明図である。It is explanatory drawing of the manufacturing process of a high pressure discharge lamp. 同じく、高圧放電ランプの製造工程の説明図である。Similarly, it is explanatory drawing of the manufacturing process of a high pressure discharge lamp. 同じく、高圧放電ランプの製造工程の説明図である。Similarly, it is explanatory drawing of the manufacturing process of a high pressure discharge lamp. 同じく、高圧放電ランプの製造工程の説明図である。Similarly, it is explanatory drawing of the manufacturing process of a high pressure discharge lamp. 同じく、高圧放電ランプの製造工程の説明図である。Similarly, it is explanatory drawing of the manufacturing process of a high pressure discharge lamp. 電極と金属パイプとの関係を示す説明図である。It is explanatory drawing which shows the relationship between an electrode and a metal pipe. 電極の説明図である。It is explanatory drawing of an electrode. 放電管と金属パイプと電極との関係を示す説明図である。It is explanatory drawing which shows the relationship between a discharge tube, a metal pipe, and an electrode. 従来例の説明図である。It is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図10を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 10 (the same parts are denoted by the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本発明の実施形態に係わる高圧放電ランプの構成を説明する側面説明図、図2は図1の縦断面説明図である。   FIG. 1 is a side view for explaining the configuration of a high-pressure discharge lamp according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view for explaining FIG.

高圧放電ランプ(以下、放電ランプと略称する)1は、透光性セラミックスで形成された放電管10、夫々のいずれもがタンタル、タングステン、モリブデン等の高融点金属で形成された一対の金属パイプ20及び一対の放電電極(以下、「電極」と略称する)30を備えている。   A high-pressure discharge lamp (hereinafter abbreviated as a discharge lamp) 1 includes a discharge tube 10 made of translucent ceramics, each of which is a pair of metal pipes made of a refractory metal such as tantalum, tungsten, or molybdenum. 20 and a pair of discharge electrodes (hereinafter abbreviated as “electrodes”) 30.

放電管10は円筒状の太管部11と太管部11の両端から該太管部11の径(内径及び外径)よりも小さい径(内径及び外径)で延びる一対の円筒状の細管部12とで構成され、金属パイプ20は円筒状の大径部21と大径部21の一端から該大径部21の径(内径及び外径)よりも小さい径(内径及び外径)で延びる円筒状の小径部22とで構成されている。なお、放電管10及び金属パイプ20はいずれも全体が均一な肉厚で形成されている。   The discharge tube 10 includes a cylindrical large tube portion 11 and a pair of cylindrical thin tubes extending from both ends of the large tube portion 11 with a diameter (inner diameter and outer diameter) smaller than the diameter (inner diameter and outer diameter) of the thick tube portion 11. The metal pipe 20 has a cylindrical large diameter portion 21 and a diameter (inner diameter and outer diameter) smaller than the diameter (inner diameter and outer diameter) of the large diameter portion 21 from one end of the large diameter portion 21. It is comprised with the cylindrical small diameter part 22 extended. The discharge tube 10 and the metal pipe 20 are all formed with a uniform thickness.

各金属パイプ20は、その大径部21の内径が放電管10の細管部12の外径よりも多少大きく形成されており、放電管10の一対の細管部12の夫々の端部に金属パイプ20の大径部21を覆い被せて両者をフリット2で溶着することにより、放電管10と金属パイプ20とが互いに気密に封止され且つ固定されている。   Each metal pipe 20 is formed such that the inner diameter of the large-diameter portion 21 is slightly larger than the outer diameter of the thin tube portion 12 of the discharge tube 10, and a metal pipe is formed at each end of the pair of thin tube portions 12 of the discharge tube 10. The discharge tube 10 and the metal pipe 20 are hermetically sealed and fixed to each other by covering the large diameter portion 21 of the 20 and welding them together with the frit 2.

各電極30は、放電発光に係わる電極となる円柱状の先端電極部31と先端電極部31の一方の側から該先端電極部31よりも大きい径で延びる円柱状の電極軸32を有しており、少なくとも電極軸32が長手方向に湾曲した形状を呈している。   Each electrode 30 has a columnar tip electrode portion 31 that is an electrode related to discharge light emission, and a columnar electrode shaft 32 that extends from one side of the tip electrode portion 31 with a larger diameter than the tip electrode portion 31. At least the electrode shaft 32 has a curved shape in the longitudinal direction.

そして、各電極30は、先端電極部31を放電管10の太管部11内に位置させた状態で電極軸32が放電管10の細管部12内及び金属パイプ20の小径部22内を挿通されている。このとき、放電管10の細管部12内に挿通された電極30の湾曲電極軸32は、該細管部12の内壁13の先端近傍(A部)と太管部11側の端部近傍(B部)の2箇所に接触(圧接)している。   In each electrode 30, the electrode shaft 32 is inserted into the narrow tube portion 12 of the discharge tube 10 and the small diameter portion 22 of the metal pipe 20 with the tip electrode portion 31 positioned in the thick tube portion 11 of the discharge tube 10. Has been. At this time, the curved electrode shaft 32 of the electrode 30 inserted into the narrow tube portion 12 of the discharge tube 10 is near the tip (A portion) of the inner wall 13 of the thin tube portion 12 and near the end portion on the large tube portion 11 side (B Part) is in contact (pressure contact).

また、金属パイプ20の小径部22と電極30の電極軸32とが該小径部22の先端部で一体に加熱溶融されて溶融部3を形成し、互いに気密に融着固定されている。   Further, the small diameter portion 22 of the metal pipe 20 and the electrode shaft 32 of the electrode 30 are integrally heated and melted at the tip portion of the small diameter portion 22 to form the melted portion 3 and are hermetically fused and fixed to each other.

これにより、電極30が金属パイプ20を介して放電管10に固定されると共に、放電管10の太管部11内の空間が金属パイプ20及び電極30によって完全気密の放電空間4となっている。   As a result, the electrode 30 is fixed to the discharge tube 10 via the metal pipe 20, and the space in the thick tube portion 11 of the discharge tube 10 is a completely airtight discharge space 4 by the metal pipe 20 and the electrode 30. .

また、放電空間4内には、例えば、キセノンを主成分とするガスなどの封入ガス5が封入されており、放電空間4内に位置する、電極30の先端電極部31は電極軸32の溶融部3を介して金属パイプ20の小径部22に電気的に接続されている。   Further, in the discharge space 4, for example, a sealed gas 5 such as a gas containing xenon as a main component is sealed, and the tip electrode portion 31 of the electrode 30 located in the discharge space 4 melts the electrode shaft 32. It is electrically connected to the small diameter portion 22 of the metal pipe 20 through the portion 3.

そのため、放電ランプ1の取付固定及び放電発光に際しては、外部電源に電気的に接続されると同時に放電ランプ1を支持固定する働きも有する支持固定部材に金属パイプ20を接続固定することにより、金属パイプ20を介して放電ランプ1を所定の位置に保持することができると共に、金属パイプ20を介して支持固定部材から受電した受電電力を電極30の先端電極部31に給電することにより放電ランプ1の放電発光を開始・維持することができる。   Therefore, when mounting and fixing the discharge lamp 1 and discharge light emission, the metal pipe 20 is connected and fixed to a support fixing member that is electrically connected to an external power source and also has a function of supporting and fixing the discharge lamp 1. The discharge lamp 1 can be held at a predetermined position via the pipe 20, and the received power received from the support fixing member via the metal pipe 20 is supplied to the tip electrode portion 31 of the electrode 30 to supply the discharge lamp 1. Discharge emission can be started and maintained.

つまり、放電ランプ1の金属パイプ20は、構造的な支持部としての働きと電気的な受電電極部としての働きの両方の働きを兼ねるものである。   That is, the metal pipe 20 of the discharge lamp 1 serves both as a structural support portion and as an electrical power receiving electrode portion.

これにより、放電ランプ1が車載用などの機械的振動や衝撃に晒される環境下において使用される場合、外部からの振動や衝撃は放電ランプ1を保持する金属パイプ20に加わることになり、放電発光に係わる電極3には直接振動や衝撃が加わることはない。   As a result, when the discharge lamp 1 is used in an environment where it is exposed to mechanical vibrations or shocks such as in-vehicle use, external vibrations or shocks are applied to the metal pipe 20 that holds the discharge lamp 1, and the discharge No vibration or impact is directly applied to the electrode 3 related to light emission.

そのため、振動や衝撃のある厳しい環境下で使用されても極めて安定した放電発光を維持することが可能となり、極めて信頼性の高い放電ランプ1が実現する。   Therefore, even when used in a severe environment with vibration and impact, it is possible to maintain a very stable discharge light emission, and the discharge lamp 1 with extremely high reliability is realized.

次に、上述の実施形態に係わる放電ランプ1の製造方法について説明する。   Next, a method for manufacturing the discharge lamp 1 according to the above embodiment will be described.

まず、図3(放電ランプの製造工程の説明図)に示すように、透光性セラミックスによって、円筒状の太管部11と太管部11の両端から該太管部11の径(内径及び外径)よりも小さい径(内径及び外径)で延びる一対の円筒状の細管部12とで構成された放電管10と、タンタル、タングステン、モリブデン等の高融点金属によって、円筒状の大径部21と大径部21の一端から該大径部21の径(内径及び外径)よりも小さい径(内径及び外径)で延びる円筒状の小径部22とで構成された金属パイプ20を用い、放電管10の一方の側(一次側)の細管部12の端部に金属パイプ20の大径部21を覆い被せて両者をフリット2によって気密に溶着固定する。   First, as shown in FIG. 3 (an explanatory diagram of a manufacturing process of a discharge lamp), the diameter (inner diameter and the inner diameter and the diameter of the thick tube portion 11 from both ends of the cylindrical thick tube portion 11 and the thick tube portion 11 is made of translucent ceramics. The cylindrical large diameter is formed by the discharge tube 10 constituted by a pair of cylindrical thin tube portions 12 extending with a smaller diameter (inner diameter and outer diameter) than the outer diameter, and a refractory metal such as tantalum, tungsten, and molybdenum. A metal pipe 20 composed of a portion 21 and a cylindrical small-diameter portion 22 extending from one end of the large-diameter portion 21 with a diameter (inner diameter and outer diameter) smaller than the diameter (inner diameter and outer diameter) of the large-diameter portion 21. The large-diameter portion 21 of the metal pipe 20 is covered with the end portion of the narrow tube portion 12 on one side (primary side) of the discharge tube 10, and both are hermetically welded and fixed by the frit 2.

そのため、金属パイプ20の大径部21の内径は放電管10の細管部12の外径よりも多少大きく形成されている。また、放電管10及び金属パイプ20はいずれも全体が均一な肉厚に形成されている。   Therefore, the inner diameter of the large diameter portion 21 of the metal pipe 20 is formed to be slightly larger than the outer diameter of the narrow tube portion 12 of the discharge tube 10. Further, both the discharge tube 10 and the metal pipe 20 are formed to have a uniform thickness as a whole.

次に、タンタル、タングステン、モリブデン等の高融点金属によって形成され、図4(放電ランプの製造工程の説明図)に示すような、放電発光に係わる電極部となる円柱状の先端電極部31と先端電極部31の一方の側から該先端電極部31よりも大きい径で延びる円柱状の電極軸32を有し、少なくとも電極軸32が長手方向に湾曲した形状を呈する電極30を、図5(放電ランプの製造工程の説明図)に示すように、先端電極部31側から金属パイプ20の小径部22内を通して放電管10内に挿入し、先端電極部31が放電管10の太管部11内の端部近傍に位置した状態にセット(仮固定)する。   Next, a cylindrical tip electrode portion 31 that is formed of a refractory metal such as tantalum, tungsten, molybdenum, etc., and serves as an electrode portion related to discharge light emission, as shown in FIG. An electrode 30 having a cylindrical electrode shaft 32 extending from one side of the tip electrode portion 31 with a diameter larger than that of the tip electrode portion 31 and having at least the electrode shaft 32 curved in the longitudinal direction is shown in FIG. As shown in the explanatory diagram of the manufacturing process of the discharge lamp), the tip electrode portion 31 is inserted into the discharge tube 10 through the small diameter portion 22 of the metal pipe 20 from the tip electrode portion 31 side, and the tip electrode portion 31 is inserted into the thick tube portion 11 of the discharge tube 10. Set (temporarily fixed) in a state of being located near the inner end.

このとき、電極30の電極軸32の先端部33は、金属パイプ20の小径部22の先端部23と面一か、あるいは金属パイプ20の小径部22の先端部23よりも多少突出した状態とされている。   At this time, the distal end portion 33 of the electrode shaft 32 of the electrode 30 is flush with the distal end portion 23 of the small diameter portion 22 of the metal pipe 20 or slightly protrudes from the distal end portion 23 of the small diameter portion 22 of the metal pipe 20. Has been.

また、放電管10内に挿入された電極30は、電極軸32が湾曲状に形成されているために放電管10の細管部12の内壁13の先端近傍(A部)と太管部11側の端部近傍(B部)の2箇所に当接し、且つ湾曲状の電極軸32の付勢力によって圧接している。   In addition, the electrode 30 inserted into the discharge tube 10 has the electrode shaft 32 formed in a curved shape, so that the vicinity of the tip (A portion) of the inner wall 13 of the thin tube portion 12 of the discharge tube 10 and the large tube portion 11 side. Are in contact with each other at two locations in the vicinity of the end portion (B portion) and pressed by the urging force of the curved electrode shaft 32.

そこで次に、図6(放電ランプの製造工程の説明図)に示すように、金属パイプ20が溶着されてなる放電管10内に挿入されて圧接仮固定された電極30の電極軸32の先端部33と金属パイプ20の小径部22の先端部23とが近接する部分に、放電管10の中心軸(Z)方向からレーザ光を一点集中照射して加熱溶融し、両者が気密に一体化した溶融部3を形成する。   Therefore, next, as shown in FIG. 6 (an explanatory diagram of the manufacturing process of the discharge lamp), the tip of the electrode shaft 32 of the electrode 30 inserted into the discharge tube 10 to which the metal pipe 20 is welded and temporarily fixed by pressure welding. The portion 33 and the tip 23 of the small-diameter portion 22 of the metal pipe 20 are heated and melted by irradiating a laser beam at one point from the central axis (Z) direction of the discharge tube 10, and the two are integrated in an airtight manner. The melted part 3 is formed.

これにより、電極30が金属パイプ20を介して放電管10の一次側に気密固定される。   Thereby, the electrode 30 is hermetically fixed to the primary side of the discharge tube 10 via the metal pipe 20.

一方、放電管10の二次側の気密処理工程は、少なくとも電極軸32が長手方向に湾曲した形状を呈する電極30を、先端電極部31側から金属パイプ20の小径部22内を通して放電管10内に挿入し、先端電極部31が放電管10の太管部11内の端部近傍に位置すると共に、放電管10内に挿入された電極30が、放電管10の細管部12の内壁13の先端近傍(A部)と太管部11側の端部近傍(B部)の2箇所に当接し、且つ湾曲状の電極軸32の付勢力によって圧接している状態(図5参照)とされるまでは、上述の一次側の気密処理工程と同様である。   On the other hand, in the airtight treatment process on the secondary side of the discharge tube 10, at least the electrode 30 having a shape in which the electrode shaft 32 is curved in the longitudinal direction passes through the small diameter portion 22 of the metal pipe 20 from the tip electrode portion 31 side. The tip electrode portion 31 is positioned in the vicinity of the end portion in the thick tube portion 11 of the discharge tube 10, and the electrode 30 inserted in the discharge tube 10 is inserted into the inner wall 13 of the thin tube portion 12 of the discharge tube 10. A state of being in contact with two locations in the vicinity of the tip end (A portion) and in the vicinity of the end portion on the thick tube portion 11 side (B portion) and being in pressure contact with the urging force of the curved electrode shaft 32 (see FIG. 5). Until this is done, it is the same as the above-described primary-side airtight treatment process.

二次側の気密処理工程については次に、放電管10の二次側から放電管10内(特に放電管10の太管部11内)に対する排気、希ガスの置換及び、例えば、キセノンを主成分とするガス(封入ガス5)の導入を行う。この場合、放電管10内に対するガスの排気、置換及び導入は、電極30の電極軸32と金属パイプ20の小径部22の内壁24との隙間、及び電極30の電極軸32と放電管10の細管部12の内壁13との隙間を通して行われる(図7(放電ランプの製造工程の説明図)参照)。   Next, with respect to the airtight treatment process on the secondary side, exhaust from the secondary side of the discharge tube 10 to the inside of the discharge tube 10 (particularly within the thick tube portion 11 of the discharge tube 10), replacement of rare gas, and mainly xenon, for example. Introduce gas as component (filled gas 5). In this case, the exhaust, replacement, and introduction of gas into the discharge tube 10 are performed between the electrode shaft 32 of the electrode 30 and the inner wall 24 of the small-diameter portion 22 of the metal pipe 20 and between the electrode shaft 32 of the electrode 30 and the discharge tube 10. This is performed through a gap with the inner wall 13 of the narrow tube portion 12 (see FIG. 7 (an explanatory diagram of the manufacturing process of the discharge lamp)).

その後、一次側の気密処理工程と同様に、金属パイプ20が溶着されてなる放電管10内に挿入されて圧接仮固定された電極30の電極軸32の先端部33と金属パイプ20の小径部22の先端部23とが近接する部分に、放電管10の中心軸(Z)方向からレーザ光を一点集中照射して加熱溶融し、両者が気密に一体化した溶融部3を形成する(図6参照)。   Thereafter, in the same manner as in the airtight treatment process on the primary side, the distal end portion 33 of the electrode shaft 32 of the electrode 30 inserted into the discharge tube 10 to which the metal pipe 20 is welded and temporarily fixed by pressure, and the small diameter portion of the metal pipe 20 22 is irradiated with a laser beam at one point from the central axis (Z) direction of the discharge tube 10 and heated and melted to form a melted portion 3 in which both are hermetically integrated (see FIG. 6).

これにより、電極30が一対の金属パイプ20介して放電管10の一次側及び二次側に気密に固定されると共に、放電管10の放電空間4内にキセノンを主成分とする封入ガス5が気密に封入されてなる放電ランプ1が完成する(図2参照)。   As a result, the electrode 30 is hermetically fixed to the primary side and the secondary side of the discharge tube 10 via the pair of metal pipes 20, and the sealed gas 5 containing xenon as a main component is contained in the discharge space 4 of the discharge tube 10. The discharge lamp 1 hermetically sealed is completed (see FIG. 2).

なお、電極30の電極軸32の先端部33と金属パイプ20の小径部22の先端部23とのレーザ光照射による加熱溶融工程において、溶融部3を確実に形成して両者による気密封止を信頼性の高いものとするために、電極30の電極軸32の先端部33と金属パイプ20の小径部22の先端部2との最適な寸法関係を、試作試験等に基づいて導き出した。   In the heating and melting step by laser light irradiation of the tip portion 33 of the electrode shaft 32 of the electrode 30 and the tip portion 23 of the small diameter portion 22 of the metal pipe 20, the melting portion 3 is reliably formed and hermetically sealed by both. In order to achieve high reliability, an optimum dimensional relationship between the tip 33 of the electrode shaft 32 of the electrode 30 and the tip 2 of the small diameter portion 22 of the metal pipe 20 was derived based on a prototype test or the like.

具体的には、図8(電極と金属パイプとの関係を示す説明図)にあるように、電極30の電極軸32の直径をD0とし、金属パイプ20の小径部22の内径をD1、外径をD2とすると、0<(D1−D0)/(D2−D1)≦0.6となる関係を満たすことが好ましい。   Specifically, as shown in FIG. 8 (an explanatory diagram showing the relationship between the electrode and the metal pipe), the diameter of the electrode shaft 32 of the electrode 30 is D0, the inner diameter of the small-diameter portion 22 of the metal pipe 20 is D1, and the outer When the diameter is D2, it is preferable to satisfy the relationship of 0 <(D1-D0) / (D2-D1) ≦ 0.6.

もしも、(D1−D0)/(D2−D1)>0.6の関係になると、電極30の電極軸32と金属パイプ20の小径部22の内壁24との隙間に対して金属パイプ20の小径部22の肉厚が相対的に薄い状態となる。その結果、金属パイプ20の小径部22の溶融量では前記隙間を完全に且つ再現性良く埋めるだけの十分な溶融量を確保できない可能性があり、信頼性のある完全気密封止を形成することができない恐れがある。   If the relationship of (D1−D0) / (D2−D1)> 0.6 is satisfied, the small diameter of the metal pipe 20 with respect to the gap between the electrode shaft 32 of the electrode 30 and the inner wall 24 of the small diameter portion 22 of the metal pipe 20. The thickness of the portion 22 is relatively thin. As a result, the melt amount of the small diameter portion 22 of the metal pipe 20 may not ensure a sufficient melt amount to completely fill the gap with good reproducibility, and form a reliable complete hermetic seal. There is a risk of not being able to.

また、電極30は少なくとも電極軸32が長手方向に湾曲した形状を呈しており、放電管10(特に、放電管10の細管部12)内に挿入した状態においては、放電管10の中心軸(放電管10の細管部12の中心軸でもある)(Z)に対して偏心している。そのため、放電管10の太管部11内に位置する、電極30の先端電極部31の先端の位置が、前記中心軸(Z)を中心とする円周方向(XY方向)及び中心軸(Z)に沿う方向(Z方向)に対して不均一な配置となり、個々の放電ランプ1が互いにばらつきのある放電発光特性を有することになる。   The electrode 30 has a shape in which at least the electrode shaft 32 is curved in the longitudinal direction. When the electrode 30 is inserted into the discharge tube 10 (particularly, the narrow tube portion 12 of the discharge tube 10), the center axis ( It is also eccentric with respect to (Z), which is also the central axis of the narrow tube portion 12 of the discharge tube 10. Therefore, the position of the tip of the tip electrode portion 31 of the electrode 30 located in the thick tube portion 11 of the discharge tube 10 is a circumferential direction (XY direction) centered on the central axis (Z) and a central axis (Z ) In a non-uniform arrangement along the direction (Z direction), and the individual discharge lamps 1 have different discharge emission characteristics.

それに対し、本実施形態の電極30は、先端電極部31の長さ、電極軸32の長さ及び湾曲形状を再現性良く作製し、放電管10内に挿入するに際しては、金属パイプ20の小径部22の先端部23と電極30の電極軸32の先端部33との位置関係を一定にすることにより電極30の先端電極部31の先端の、中心軸(Z)に沿う方向(Z方向)の位置の再現性を確保し、電極30の湾曲方向を中心軸(Z)を中心とする一定の放射方向とすることにより電極30の先端電極部31の先端の、中心軸(Z)を中心とする円周方向(XY方向)の位置の再現性を確保している(図5参照)。   On the other hand, when the electrode 30 of this embodiment produces the length of the tip electrode part 31, the length of the electrode shaft 32, and the curved shape with good reproducibility and inserts it into the discharge tube 10, the small diameter of the metal pipe 20 The direction (Z direction) along the central axis (Z) of the tip of the tip electrode part 31 of the electrode 30 by making the positional relationship between the tip part 23 of the part 22 and the tip part 33 of the electrode shaft 32 of the electrode 30 constant. The center 30 is centered on the central axis (Z) of the tip of the tip electrode portion 31 of the electrode 30 by ensuring the reproducibility of the position of the electrode 30 and making the bending direction of the electrode 30 a constant radiation direction centered on the center axis (Z). The reproducibility of the position in the circumferential direction (XY direction) is ensured (see FIG. 5).

そのため、湾曲状の電極30を用いた放電ランプ1は、該電極30の先端電極部31の先端が放電管10のXYZの夫々の方向に対して再現性良く位置決めされており、個々の放電ランプ1が互いに均一な放電発光特性を有するものとなる。   Therefore, in the discharge lamp 1 using the curved electrode 30, the tip of the tip electrode portion 31 of the electrode 30 is positioned with good reproducibility in each direction of XYZ of the discharge tube 10, and each discharge lamp 1 1 have uniform discharge light emission characteristics.

また、放電ランプ1の製造工程において、湾曲状の電極30が放電管10内に挿入されて圧接仮固定された状態で、放電管10内(特に放電管10の太管部11内)に対する排気、希ガスの置換及び、例えば、キセノンを主成分とするガス(封入ガス5)の導入が行われる。   Further, in the manufacturing process of the discharge lamp 1, exhaust to the inside of the discharge tube 10 (particularly in the thick tube portion 11 of the discharge tube 10) in a state where the curved electrode 30 is inserted into the discharge tube 10 and temporarily fixed by pressure welding. The replacement of the rare gas and the introduction of the gas mainly containing xenon (encapsulated gas 5) are performed.

そのため、電極30を支持するための支持手段(機構)を外部に設ける必要がなく、排気、希ガスの置換及び封入ガスの導入等のガス処理工程に用いる処理装置の構造を複雑化することはない。その結果、処理装置の価格上昇が抑制され、製品(高圧放電ランプ)の製造コストを低く抑えることができる。   Therefore, it is not necessary to provide a support means (mechanism) for supporting the electrode 30 outside, and the structure of the processing apparatus used in the gas processing process such as exhaust, replacement of rare gas and introduction of sealed gas is complicated. Absent. As a result, an increase in the price of the processing apparatus is suppressed, and the manufacturing cost of the product (high pressure discharge lamp) can be kept low.

更に、金属パイプ20の小径部22と電極30の電極軸32との加熱溶融の際に、電極30の電極軸32の先端部33と金属パイプ20の小径部22の先端部23とが近接する部分に、放電管10の中心軸(Z)方向からレーザ光を一点集中照射して加熱溶融を行うことができる。   Further, when the small diameter portion 22 of the metal pipe 20 and the electrode shaft 32 of the electrode 30 are heated and melted, the tip portion 33 of the electrode shaft 32 of the electrode 30 and the tip portion 23 of the small diameter portion 22 of the metal pipe 20 are close to each other. The portion can be heated and melted by irradiating the laser beam at a single point from the central axis (Z) direction of the discharge tube 10.

そのため、加熱溶融工程における作業効率の効率化が図られ、これによっても製品(高圧放電ランプ)の製造コストが低く抑えられる。   Therefore, the work efficiency in the heating and melting process can be improved, and the manufacturing cost of the product (high pressure discharge lamp) can be kept low.

なお、電極30の形状は、上記実施形態のような1箇所の曲部を有する湾曲形状に限られるものではなく、図9(電極の説明図)のように、少なくとも電極軸32が長手方向に2箇所以上(図9は具体的に2箇所)の曲部を有する波形状を呈する形状としてもよい。   The shape of the electrode 30 is not limited to the curved shape having one curved portion as in the above embodiment, and at least the electrode shaft 32 is in the longitudinal direction as shown in FIG. It is good also as a shape which exhibits the waveform which has two or more places (FIG. 9 is two places specifically).

この場合も、上記実施形態同様、電極30の先端電極部31の長さ、電極軸32の長さ及び湾曲形状を再現性良く作製し、放電管10内に挿入するに際しては、図10(放電管と金属パイプと電極との関係を示す説明図)に示すように、金属パイプ20の小径部22の先端部23と電極30の電極軸32の先端部33との位置関係を一定にすることにより電極30の先端電極部31の先端の、中心軸(Z)に沿う方向(Z方向)の位置の再現性を確保し、電極30の湾曲方向を中心軸(Z)を中心とする一定の放射方向とすることにより電極30の先端電極部31の先端の、中心軸(Z)を中心とする円周方向(XY方向)の位置の再現性を確保する。   Also in this case, as in the above embodiment, the length of the tip electrode portion 31 of the electrode 30, the length of the electrode shaft 32, and the curved shape are manufactured with good reproducibility and inserted into the discharge tube 10 as shown in FIG. As shown in the explanatory diagram showing the relationship between the tube, the metal pipe, and the electrode, the positional relationship between the tip 23 of the small diameter portion 22 of the metal pipe 20 and the tip 33 of the electrode shaft 32 of the electrode 30 is made constant. Thus, the reproducibility of the position of the tip of the tip electrode portion 31 of the electrode 30 in the direction (Z direction) along the center axis (Z) is ensured, and the bending direction of the electrode 30 is constant around the center axis (Z). By setting the radial direction, the reproducibility of the position in the circumferential direction (XY direction) around the central axis (Z) of the tip of the tip electrode portion 31 of the electrode 30 is ensured.

このとき、放電管10の細管部12内に挿通された電極30の波状電極軸32は、該細管部12の内壁13の2箇所以上(図10では具体的に先端近傍(A部)と中央部近傍(B部)の2箇所)に接触(圧接)している。   At this time, the corrugated electrode shaft 32 of the electrode 30 inserted into the narrow tube portion 12 of the discharge tube 10 has two or more locations on the inner wall 13 of the thin tube portion 12 (specifically, in the vicinity of the tip (A portion) and the center in FIG. 10). 2 parts in the vicinity of the part (B part)).

これにより、波形状の電極30を用いた放電ランプは、該電極30の先端電極部31の先端が放電管10のXYZの夫々の方向に対して再現性良く位置決めされており、個々の放電ランプが互いに均一な放電発光特性を有するものとなる。   Thereby, in the discharge lamp using the wave-shaped electrode 30, the tip of the tip electrode portion 31 of the electrode 30 is positioned with good reproducibility in each direction of XYZ of the discharge tube 10, and each discharge lamp Have uniform discharge emission characteristics.

1… 高圧放電ランプ
2… フリット
3… 溶融部
4… 放電空間
5… 封入ガス
10… 放電管
11… 太管部
12… 細管部
13… 内壁
20… 金属パイプ
21… 大径部
22… 小径部
23… 先端部
24… 内壁
30… 放電電極
31… 先端電極部
32… 電極軸
33… 先端部
DESCRIPTION OF SYMBOLS 1 ... High pressure discharge lamp 2 ... Frit 3 ... Melting part 4 ... Discharge space 5 ... Filling gas 10 ... Discharge tube 11 ... Thick tube part 12 ... Thin tube part 13 ... Inner wall 20 ... Metal pipe 21 ... Large diameter part 22 ... Small diameter part 23 ... tip part 24 ... inner wall 30 ... discharge electrode 31 ... tip electrode part 32 ... electrode shaft 33 ... tip part

Claims (2)

太管部と該太管部の両側に位置する前記太管部よりも径の小さい細管部を有すると共に全体の肉厚が均一な円筒状の放電管と、
大径部と該大径部に一方の側に位置する前記大径部よりも径の小さい小径部を有し、前記大径部で前記放電管の細管部の両端部を覆うように該両端部に前記大径部を気密に溶着された、全体の肉厚が均一な円筒状の金属パイプと、
所定の長さの先端電極部と該先端電極部の一方の側から所定の長さで延びる電極軸を有し、前記金属パイプの小径部の先端部に前記電極軸が一体に融着されると共に前記放電管の細管部内を挿通して、前記先端電極部が太管部内まで到達した放電電極と、を備えた高圧放電ランプであって、
前記放電電極は、少なくとも前記電極軸が長手方向に湾曲した形状又は2箇所以上の曲部を有する波形状を呈しており、
前記放電管の細管部内を挿通した前記放電電極の電極軸が、前記細管部の内壁の2箇所以上に圧接していることを特徴とする高圧放電ランプ。
A cylindrical discharge tube having a thick tube portion and a thin tube portion having a diameter smaller than that of the thick tube portion located on both sides of the thick tube portion, and a uniform overall thickness,
The large-diameter portion and the large-diameter portion have a small-diameter portion smaller in diameter than the large-diameter portion located on one side, and the both ends of the large-diameter portion cover both ends of the thin-tube portion of the discharge tube. A cylindrical metal pipe having a uniform overall wall thickness, wherein the large-diameter portion is hermetically welded to the portion,
A tip electrode portion having a predetermined length and an electrode shaft extending by a predetermined length from one side of the tip electrode portion, and the electrode shaft is integrally fused to a tip portion of a small diameter portion of the metal pipe. And a discharge electrode that is inserted through the narrow tube portion of the discharge tube and the tip electrode portion reaches the inside of the thick tube portion, and a high-pressure discharge lamp comprising:
The discharge electrode has a shape in which at least the electrode axis is curved in the longitudinal direction or a wave shape having two or more curved portions,
A high-pressure discharge lamp, wherein the electrode axis of the discharge electrode inserted through the narrow tube portion of the discharge tube is in pressure contact with two or more locations on the inner wall of the narrow tube portion.
前記放電電極の電極軸の直径をD0とし、前記金属パイプの小径部の内径をD1、外径をD2とすると、0<(D1−D0)/(D2−D1)≦0.6となる関係を満たすことを特徴とする請求項1に記載の高圧放電ランプ。   When the diameter of the electrode axis of the discharge electrode is D0, the inner diameter of the small-diameter portion of the metal pipe is D1, and the outer diameter is D2, a relation of 0 <(D1-D0) / (D2-D1) ≦ 0.6 The high pressure discharge lamp according to claim 1, wherein:
JP2012013081A 2012-01-25 2012-01-25 High-pressure discharge lamp Pending JP2013152851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013081A JP2013152851A (en) 2012-01-25 2012-01-25 High-pressure discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013081A JP2013152851A (en) 2012-01-25 2012-01-25 High-pressure discharge lamp

Publications (1)

Publication Number Publication Date
JP2013152851A true JP2013152851A (en) 2013-08-08

Family

ID=49049050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013081A Pending JP2013152851A (en) 2012-01-25 2012-01-25 High-pressure discharge lamp

Country Status (1)

Country Link
JP (1) JP2013152851A (en)

Similar Documents

Publication Publication Date Title
JP4963821B2 (en) Sealing structure of discharge lamp
JP5047483B2 (en) Short arc discharge lamp sealing structure
US7758213B2 (en) Light source unit
JP4494224B2 (en) Seal for lamp and discharge lamp
JP4972172B2 (en) Discharge lamp
US20120161622A1 (en) High-pressure discharge lamp with starting aid
KR101951982B1 (en) Excimer discharge lamp apparatus
JP4692617B2 (en) Discharge lamp
JP2013152851A (en) High-pressure discharge lamp
JP2007157513A (en) Structure of sealed part of short arc type discharge lamp, and manufacturing method of the same
GB1577982A (en) Gas discharge tubes
JP4702173B2 (en) Flash discharge lamp device
CN102473584B (en) High-intensity discharge lamp
JP2015076306A (en) Short arc type discharge lamp
JP2019009075A (en) Discharge lamp
JP2013152872A (en) High-pressure discharge lamp
JP6020619B2 (en) Both ends sealed short arc flash lamp
US9153428B2 (en) Double-capped short arc flash lamp
JP5958818B2 (en) Electrode mount and discharge lamp
JP3576159B2 (en) High pressure discharge lamp
JP4905809B2 (en) Lamp with lamp and lamp device
JP4878984B2 (en) Discharge lamp and discharge lamp manufacturing method
JP2006344579A (en) Dual tubular type metal-halide lamp
JP2012155960A (en) High-pressure discharge lamp and method of manufacturing the same
JP2012155959A (en) High-pressure discharge lamp and method of manufacturing the same