JP2013152196A - Apparatus for evaluating minimum ignition energy of powder - Google Patents

Apparatus for evaluating minimum ignition energy of powder Download PDF

Info

Publication number
JP2013152196A
JP2013152196A JP2012014039A JP2012014039A JP2013152196A JP 2013152196 A JP2013152196 A JP 2013152196A JP 2012014039 A JP2012014039 A JP 2012014039A JP 2012014039 A JP2012014039 A JP 2012014039A JP 2013152196 A JP2013152196 A JP 2013152196A
Authority
JP
Japan
Prior art keywords
container
gas
gas supply
powder
ignition energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012014039A
Other languages
Japanese (ja)
Inventor
Shigeki Mori
繁樹 森
Takeshi Kono
剛 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012014039A priority Critical patent/JP2013152196A/en
Publication of JP2013152196A publication Critical patent/JP2013152196A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for evaluating minimum ignition energy, which can easily evaluate the minimum ignition energy of powder at intended concentration of a combustion supporting gas even in structure without vacuum pressure resistance.SOLUTION: An apparatus for evaluating minimum ignition energy includes: a cylindrical container 11 storing powder; gas supply pipes 13 which are inserted into the container 11 from an upper part and which supply gas having predetermined concentration of a combustion supporting gas to the inside of the container 11; a discharge device including a discharge electrode installed in the container; and a gas diffusion/ejection member which ejects the gas from a bottom part of the container into the container so as to make the powder stirred up inside the container. The gas supply pipes can move vertically in the container.

Description

本発明は、粉塵爆発を防止するのに有用な、粉体の最小着火エネルギーを評価するための装置に関する。   The present invention relates to an apparatus for evaluating the minimum ignition energy of a powder, useful for preventing dust explosions.

粉体を取り扱う際、安全面から注意しなければならないのが粉塵爆発である。粉塵爆発の危険性を評価する項目としては、爆発下限界濃度、限界酸素濃度、最小着火エネルギーなどが挙げられる。中でも最小着火エネルギーは粉塵爆発に対する安全対策を検討する上で重要な値である。
最小着火エネルギーを評価する装置としては、特許文献1に記載のような、加圧下における爆発試験を実施する装置が知られている。
When handling powder, it is the dust explosion that you must pay attention to in terms of safety. Items for evaluating the risk of dust explosion include the lower explosive limit concentration, the limit oxygen concentration, and the minimum ignition energy. Above all, the minimum ignition energy is an important value when considering safety measures against dust explosions.
As an apparatus for evaluating the minimum ignition energy, an apparatus for performing an explosion test under pressure as described in Patent Document 1 is known.

しかし、例えば−0.1MPa以下の減圧や1MPa以上の高圧に耐えられない非耐圧構造において、酸素などの任意の支燃性ガス濃度で最小発火エネルギーを評価し、実際のプロセスでの取扱い条件(雰囲気中の酸素濃度)で粉塵爆発の危険性を目視にて簡便に評価できる装置および方法が要望されていた。   However, for example, in a non-pressure-resistant structure that cannot withstand a reduced pressure of -0.1 MPa or less or a high pressure of 1 MPa or more, the minimum ignition energy is evaluated at any supporting gas concentration such as oxygen, and the handling conditions in the actual process ( There has been a demand for an apparatus and method that can easily evaluate visually the risk of dust explosion by the oxygen concentration in the atmosphere.

実開昭62−134055号公報Japanese Utility Model Publication No. 62-134055

本発明の課題は、非耐圧構造においても、任意の支燃性ガス濃度で粉塵の最小着火エネルギーを目視等にて簡便に評価することが可能な最小着火エネルギー評価装置を提供することである。   The subject of this invention is providing the minimum ignition energy evaluation apparatus which can evaluate the minimum ignition energy of dust easily by visual observation etc. by arbitrary flame-supporting gas density | concentration also in a non-pressure | voltage resistant structure.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
(1)粉体を収容した筒形容器と、この容器内に上部から挿入され、所定の支燃性ガス濃度を有するガスを容器内に供給するためのガス供給管と、前記容器内に設置された放電電極を含む点火手段と、前記容器の底部からガスを容器内に吐出させて粉体を容器内に舞い上がらせるためのガス拡散吐出部材と、を備え、前記ガス供給管が、容器内を昇降可能であることを特徴とする、粉体の最小着火エネルギー評価装置。
(2)ガス供給源をさらに備え、このガス供給源から延びるガス流路が前記ガス供給管と、前記ガス拡散吐出部材の2つに分岐している、(1)に記載の最小着火エネルギー評価装置。
(3)前記ガス供給管は、下端部が略水平方向に折曲されている、(1)または(2)に記載の最小着火エネルギー評価装置。
(4)前記ガス供給管の下端部は、平面視において、ガス供給管に最も近接した位置の容器内壁の接線方向と平行である、(3)に記載の最小着火エネルギー評価装置。
(5)前記容器内に上部から複数のガス供給管が挿入されており、これらのガス供給管は、ガス供給源から延びるガス流路が分岐したものである、(1)〜(4)のいずれかに記載の最小着火エネルギー評価装置。
(6)(1)〜(5)のいずれかに記載の最小着火エネルギー評価装置を用いた、粉体の最小着火エネルギー評価方法であって、前記容器内に試料となる粉体を装填し、容器内が所望の支燃性ガス濃度となるようにガス供給管からガスを供給して容器内のガスを置換した後、ガス拡散吐出部材により容器の底部からガスを容器内に吐出させて粉体を舞い上がらせながら、点火手段によって発火の有無を確認して、最小着火エネルギーの評価を行うことを特徴とする、粉体の最小着火エネルギー評価方法。
As a result of intensive studies to solve the above problems, the present inventors have found a solution means having the following configuration, and have completed the present invention.
(1) A cylindrical container containing powder, a gas supply pipe which is inserted into the container from above and has a predetermined combustion-supporting gas concentration, and is installed in the container. An ignition means including a discharge electrode, and a gas diffusion discharge member for discharging gas into the container from the bottom of the container and causing the powder to rise into the container, wherein the gas supply pipe is disposed in the container. An apparatus for evaluating the minimum ignition energy of powder, characterized in that it can be moved up and down.
(2) The minimum ignition energy evaluation according to (1), further including a gas supply source, wherein a gas flow path extending from the gas supply source is branched into the gas supply pipe and the gas diffusion discharge member. apparatus.
(3) The minimum ignition energy evaluation apparatus according to (1) or (2), wherein the gas supply pipe has a lower end bent in a substantially horizontal direction.
(4) The minimum ignition energy evaluation apparatus according to (3), wherein the lower end portion of the gas supply pipe is parallel to the tangential direction of the inner wall of the container at a position closest to the gas supply pipe in plan view.
(5) A plurality of gas supply pipes are inserted into the container from above, and these gas supply pipes are formed by branching a gas flow path extending from a gas supply source. The minimum ignition energy evaluation apparatus in any one.
(6) A minimum ignition energy evaluation method for powder using the minimum ignition energy evaluation apparatus according to any one of (1) to (5), wherein powder as a sample is loaded in the container, After replacing the gas in the container by supplying gas from the gas supply pipe so that the inside of the container has a desired combustion-supporting gas concentration, the gas is discharged from the bottom of the container into the container by the gas diffusion discharge member. A method for evaluating the minimum ignition energy of powder, wherein the minimum ignition energy is evaluated by confirming the presence or absence of ignition by an ignition means while raising the body.

本発明の最小着火エネルギー評価装置によれば、耐圧でない構造においても、目的とする支燃性ガス濃度で粉塵の最小着火エネルギーを簡便に評価することができるという効果がある。特に本発明では、筒形容器内に上部から挿入されたガス供給管が、容器内を昇降可能であるので、所定の支燃性ガス濃度を有する雰囲気ガスの容器内への導入時には、ガス供給管の下端にあるガス供給口は容器の下部に位置し、点火時にはガス供給管を容器上部または容器外に引き上げて、点火を行うことにより、雰囲気ガスの速やかな置換と、点火時におけるガス供給管による外乱(ガス供給管によって火炎自体や火炎によって温度上昇した雰囲気ガスが冷やされ燃焼伝播しにくくなる、ガス供給管の冷却効果による消炎、粉体の舞い上がりの物理的な阻害等)を回避することができる。
上記(2)に記載のように、ガス供給源から延びるガス流路が前記ガス供給管と、前記ガス拡散吐出部材の2つに分岐していることにより、ガス供給源を1つにすることができ、ガス供給源を複数用いたときに想定されるガス供給源間でガス濃度調整の誤差による実験データの信頼性低下を防止することができる。
また、上記(3)、(4)および(5)に記載のように構成することにより、容器内の雰囲気ガスの置換をより速やかに行うことができ、また置換時に予め筒形容器内に配置した粉体の移動を防ぐことが容易となる。
上記(6)に記載の粉体の最小着火エネルギー評価方法によれば、粉塵の最小着火エネルギーを簡便に評価することができる。
According to the apparatus for evaluating the minimum ignition energy of the present invention, there is an effect that the minimum ignition energy of dust can be easily evaluated with a target support gas concentration even in a structure with no pressure resistance. In particular, in the present invention, since the gas supply pipe inserted into the cylindrical container from above is capable of moving up and down in the container, the gas supply is performed when the atmospheric gas having a predetermined combustion-supporting gas concentration is introduced into the container. The gas supply port at the lower end of the pipe is located in the lower part of the container, and at the time of ignition, the gas supply pipe is pulled up to the upper part of the container or outside the container and ignited to quickly replace the atmospheric gas and supply the gas at the time of ignition Avoid disturbances caused by pipes (such as the flame itself or the ambient gas whose temperature has been raised by the flame is cooled by the gas supply pipe, making it difficult for combustion to propagate, extinguishing the flame due to the cooling effect of the gas supply pipe, physical inhibition of the rising of powder) be able to.
As described in (2) above, the gas flow path extending from the gas supply source is branched into two parts, the gas supply pipe and the gas diffusion discharge member, so that one gas supply source is provided. It is possible to prevent a decrease in the reliability of the experimental data due to an error in gas concentration adjustment between the gas supply sources assumed when a plurality of gas supply sources are used.
Further, by configuring as described in (3), (4) and (5) above, the atmosphere gas in the container can be replaced more quickly, and it is arranged in advance in the cylindrical container at the time of replacement. It becomes easy to prevent the movement of the powder.
According to the minimum ignition energy evaluation method for powder described in (6) above, the minimum ignition energy of dust can be easily evaluated.

本発明の一実施態様に係る最小着火エネルギー評価装置を示す模式図である。It is a schematic diagram which shows the minimum ignition energy evaluation apparatus which concerns on one embodiment of this invention. 図1の破線囲み部分におけるガス供給管の下端部を示す拡大側面図である。It is an enlarged side view which shows the lower end part of the gas supply pipe | tube in the broken-line surrounding part of FIG. 容器内のガス供給管の配置を示す容器の概略平面図である。It is a schematic plan view of the container which shows arrangement | positioning of the gas supply pipe | tube in a container. ガス拡散吐出部材の動作の一例を示す模式図であって、(A)は試料舞い上げ前の状態を示す図であり、(B)は粉塵舞い上げ時の状態を示す図である。It is a schematic diagram which shows an example of operation | movement of a gas diffusion discharge member, Comprising: (A) is a figure which shows the state before sample raising, (B) is a figure which shows the state at the time of dust raising. 試料粉末が置かれた雰囲気中の酸素濃度と点火エネルギーとの関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the oxygen concentration in the atmosphere where the sample powder is placed, and ignition energy.

図1は、本発明の一実施態様に係る最小着火エネルギー評価装置を示す模式図である。図1に示すように、この実施態様に係る最小着火エネルギー(MIE)評価装置1は、粉体18を収容した筒形容器11の内部に、所定の支燃性ガス濃度を有するガスを容器11内に供給するためのガス供給管13が上部から挿入されると共に、前記容器11内に設置された放電電極22を含む放電装置2が設けられ、さらに容器11の底部には、粉体を容器11内に舞い上がらせるためのガス拡散吐出部材19が設けられる。さらに、容器11内には酸素濃度計14が挿入されている。   FIG. 1 is a schematic diagram showing a minimum ignition energy evaluation apparatus according to an embodiment of the present invention. As shown in FIG. 1, the minimum ignition energy (MIE) evaluation apparatus 1 according to this embodiment is configured so that a gas having a predetermined combustion-supporting gas concentration is introduced into a container 11 containing a powder 18. A gas supply pipe 13 for supplying the gas into the inside is inserted from above, and a discharge device 2 including a discharge electrode 22 installed in the container 11 is provided. 11 is provided with a gas diffusion discharge member 19 for causing the gas diffusion discharge member 19 to rise. Further, an oxygen concentration meter 14 is inserted into the container 11.

筒形容器11は、粉塵爆発の危険性を目視確認できるように、全部または一部がガラス、透明プラスチックなどの透明部材で形成されている。筒形容器11の形状は、円筒形でも角筒形であってもよい。容器の大きさは、0.5〜3L程度であればよい。   The cylindrical container 11 is entirely or partially formed of a transparent member such as glass or transparent plastic so that the danger of dust explosion can be visually confirmed. The shape of the cylindrical container 11 may be cylindrical or rectangular. The magnitude | size of a container should just be about 0.5-3L.

容器11の上部は開放しており、この容器上部の開口はろ紙3で塞いである。前記ガス供給管12および酸素濃度計14はろ紙3を貫通して、容器11内に挿入されている。容器11内に収容される粉体18は、該粉体の量を容器11の内容積で除した値が0.1〜8000g/m3程度、好ましくは1〜5000g/m3程度であるのがよい。
なお、本発明において、粉体18とは、粒径が500μm以下のものをいい、支燃性ガスと反応して爆発し得るものである。
また、本発明において、支燃性ガスとは、例えば酸素、フッ素、塩素などをいい、支燃性ガス濃度とは、例えば酸素と窒素の混合気体の場合、この混合気体中における酸素濃度をいう。
The upper part of the container 11 is open, and the opening at the upper part of the container is closed with the filter paper 3. The gas supply pipe 12 and the oxygen concentration meter 14 pass through the filter paper 3 and are inserted into the container 11. The powder 18 accommodated in the container 11 has a value obtained by dividing the amount of the powder by the internal volume of the container 11 of about 0.1 to 8000 g / m 3 , preferably about 1 to 5000 g / m 3 . Is good.
In the present invention, the powder 18 has a particle size of 500 μm or less, and can explode by reacting with a combustion-supporting gas.
In the present invention, the combustion-supporting gas refers to, for example, oxygen, fluorine, chlorine, and the like, and the support-supporting gas concentration refers to the oxygen concentration in the mixed gas in the case of a mixed gas of oxygen and nitrogen, for example. .

ガス供給管13は、図1に示すように必要に応じてガス流量計15を介してガス供給源12と接続されている。なお、ガスの流量は1〜1000mL/秒程度、好ましくは10〜500mL/秒であり、ガスの線速度は1〜50m/秒程度、好ましくは5〜30m/秒である。   As shown in FIG. 1, the gas supply pipe 13 is connected to the gas supply source 12 via a gas flow meter 15 as necessary. The gas flow rate is about 1-1000 mL / second, preferably 10-500 mL / second, and the gas linear velocity is about 1-50 m / second, preferably 5-30 m / second.

ガス供給管13の長さは、雰囲気ガスの置換時において、下端が容器11の下部付近に位置し、かつ容器11の底部に堆積している粉体18に接触しない長さであるのが好ましい。ガス供給管13は、図2に示すように、下端ガス噴出部131が水平に折曲されている。なお、本発明において、下端ガス噴出部131の曲げ角度θは90°±10°の範囲であるのがよい。ガス噴出部131の曲げ角度θが80°未満であると、先端の吐出口が上方に向くことになるため、容器11内の雰囲気ガスの置換を効率よく行うことができなくなる。一方、曲げ角度θは100°を超えると、堆積した粉体18にガスが当たるため、粉体18を吹き上げる前に粉体18がガス拡散吐出部材から離れた場所に移動することになり好ましくない。   The length of the gas supply pipe 13 is preferably such that the lower end is located in the vicinity of the lower part of the container 11 and does not come into contact with the powder 18 deposited on the bottom of the container 11 when replacing the atmospheric gas. . As shown in FIG. 2, the lower end gas ejection part 131 of the gas supply pipe 13 is bent horizontally. In the present invention, the bending angle θ of the lower end gas ejection part 131 is preferably in the range of 90 ° ± 10 °. If the bending angle θ of the gas ejection part 131 is less than 80 °, the discharge port at the tip is directed upward, so that the atmospheric gas in the container 11 cannot be replaced efficiently. On the other hand, when the bending angle θ exceeds 100 °, the gas hits the deposited powder 18, and therefore, the powder 18 moves to a place away from the gas diffusion discharge member before the powder 18 is blown up. .

また、ガス供給管13の下端ガス噴出部131は、図3に示すように、平面視において、ガス供給管に最も近接した位置の容器内壁の接線方向と平行となるように折曲されている。これにより、図3に矢印で示すように、先端の吐出口から吐出したガスは、円筒形容器11の内壁に沿って周方向に流れる水平旋回流を成し、中央部付近で上昇気流となって筒形容器11の上部から外に排出されるため、容器11の底部に堆積した粉体18が気流によって容器11の底部から動かされ難くすることができ、かつ雰囲気ガスの置換を速やかに行なうことができる。このため、ガス供給管13は、可能なかぎり容器内壁に近接しているのが望ましい。   Further, as shown in FIG. 3, the lower end gas ejection part 131 of the gas supply pipe 13 is bent so as to be parallel to the tangential direction of the inner wall of the container at a position closest to the gas supply pipe in a plan view. . As a result, as shown by arrows in FIG. 3, the gas discharged from the discharge port at the tip forms a horizontal swirling flow that flows in the circumferential direction along the inner wall of the cylindrical container 11, and becomes a rising airflow near the center. As a result, the powder 18 deposited on the bottom of the container 11 can be made difficult to move from the bottom of the container 11 by the air flow, and the atmosphere gas can be replaced quickly. be able to. For this reason, it is desirable that the gas supply pipe 13 be as close as possible to the inner wall of the container.

さらに、容器11内には上部から2本のガス供給管13,13が挿入されているので、容器11内の雰囲気ガスの線速度を小さくできるので、粉体18を動かすことなく置換をより一層速やかに行なうことができる。これらのガス供給管13,13は、ガス供給源12から延びるガス流路が分岐したものである。なお、分岐は2本に限られるものではなく、必要に応じて3本またはそれ以上であってもよいし、分岐せずに1本のみであってもよい。   Furthermore, since two gas supply pipes 13 and 13 are inserted into the container 11 from above, the linear velocity of the atmospheric gas in the container 11 can be reduced, so that the replacement can be further performed without moving the powder 18. It can be done quickly. These gas supply pipes 13 and 13 are obtained by branching a gas flow path extending from the gas supply source 12. Note that the number of branches is not limited to two, but may be three or more as necessary, or may be only one without branching.

ガス供給源12としては、例えば酸素ボンベ121と窒素ボンベ122を、それぞれバルブ123、123を介して連結したものが挙げられ、これらのバルブ123、123で各ガスの流量を調整することにより、任意の酸素濃度の混合ガスを調製することができる。なお、窒素ガスに代えて、他の不活性ガス、その他のガスを使用してもよい。
ガス供給源12から延びるガス流路は、ガス供給管13と、中間タンク16に向かう2つの流路に分岐しており、それぞれの流路には開閉用のバルブ4,5が設けられている。中間タンク16は、電磁弁17を介してガス噴射ノズル20に接続されている。
Examples of the gas supply source 12 include an oxygen cylinder 121 and a nitrogen cylinder 122 connected through valves 123 and 123, respectively. By adjusting the flow rate of each gas with these valves 123 and 123, any gas supply source 12 can be used. It is possible to prepare a mixed gas having an oxygen concentration of 5%. Instead of nitrogen gas, other inert gas or other gas may be used.
A gas flow path extending from the gas supply source 12 is branched into two flow paths toward the gas supply pipe 13 and the intermediate tank 16, and valves 4 and 5 for opening and closing are provided in the respective flow paths. . The intermediate tank 16 is connected to the gas injection nozzle 20 via the electromagnetic valve 17.

本発明においては、ガス供給管13は容器11内を昇降可能である。すなわち、ガス供給管13は、容器11の下部から上部の間で昇降するように構成される。上端は、ろ紙3にできるだけ近接した位置であるのが好ましいが、着火した際、ガス供給管13の冷却によって生じる消炎効果や、粉体18の舞い上がりの物理的な阻害を抑止できるかぎりはこれに限定されるものではなく、必要なら容器11からガス供給管13を抜き取るようにしてもよい。昇降は、例えば容器11内のガス供給管13に至るガス流路の一部を弾性材(例えばゴム管等)で構成し、手動または機械を使用してガス供給管13を上下動させるようにしてもよい。
このようにガス供給管13を昇降可能にしたので、容器11内の雰囲気ガスを置換する際には、ガス供給管13を容器11の下部に下降させてガス置換を行い、放電時にはガス供給管13を容器11の上部に上昇させて、粉体18の舞い上がりの物理的な阻害やガス供給管13による冷却効果によって着火した炎が消えてしまったりするのを防止ないし抑制することができる。
In the present invention, the gas supply pipe 13 can move up and down in the container 11. That is, the gas supply pipe 13 is configured to move up and down between the lower part and the upper part of the container 11. The upper end is preferably located as close as possible to the filter paper 3, but as long as the flame extinguishing effect caused by cooling of the gas supply pipe 13 and the physical hindrance of the powder 18 rising can be suppressed when ignited. The gas supply pipe 13 may be extracted from the container 11 if necessary. For example, a part of the gas flow path leading to the gas supply pipe 13 in the container 11 is made of an elastic material (for example, a rubber pipe), and the gas supply pipe 13 is moved up and down manually or using a machine. May be.
Since the gas supply pipe 13 can be moved up and down in this way, when the atmosphere gas in the container 11 is replaced, the gas supply pipe 13 is lowered to the lower part of the container 11 to perform gas replacement, and during discharge, the gas supply pipe 13 is discharged. 13 is raised to the upper part of the container 11, and it is possible to prevent or suppress the flame that has been ignited from being extinguished due to physical inhibition of the rising of the powder 18 and the cooling effect of the gas supply pipe 13.

本発明の装置に用いられる放電装置2は、容器11内で互いに離隔対向して配置された一対の放電電極22、22を備え、さらに高圧直流電源21、コンデンサ23およびスイッチ24を備えている。スイッチ24をONにすると、高圧電流が流れて、電極22、22間で放電し火花が生じるように構成されている。この火花によって粉体18に着火されることになる。   The discharge device 2 used in the apparatus of the present invention includes a pair of discharge electrodes 22 and 22 arranged to be spaced apart from each other in the container 11, and further includes a high-voltage DC power source 21, a capacitor 23, and a switch 24. When the switch 24 is turned on, a high-voltage current flows and discharge is generated between the electrodes 22 and 22 so that a spark is generated. The powder 18 is ignited by this spark.

容器11の底部には、ガス拡散吐出部材19が設けられている。ガス拡散吐出部材19は、笠状や板状等の形状を有しており、自重によって底部のガス噴射ノズル20を塞ぐと共に、ガスをガス噴射ノズル20から噴出させる際には、噴出ガスの圧力で上方に浮き上がって、ガスを上方でなく、周囲、すなわち底面に沿って容器11の周方向にガスを拡散噴出させる作用を有する。これによって、容器11の底部に堆積している試料18を全て容器11内に舞い上げる(粉塵を生じさせる)ことができる。
なお、ガス拡散吐出部材19の下部には、ノズル20内に位置するストッパー191が設けられており、ガス噴出時のおけるガス拡散吐出部材19の浮き上がり高さを規制している。
A gas diffusion discharge member 19 is provided at the bottom of the container 11. The gas diffusion discharge member 19 has a shape such as a cap shape or a plate shape. The gas diffusion discharge member 19 closes the gas injection nozzle 20 at the bottom by its own weight, and when the gas is ejected from the gas injection nozzle 20, the pressure of the ejection gas The gas is diffused and ejected in the circumferential direction of the container 11 along the periphery, that is, the bottom surface instead of upward. As a result, all the samples 18 deposited on the bottom of the container 11 can be raised into the container 11 (to generate dust).
In addition, a stopper 191 located in the nozzle 20 is provided below the gas diffusion discharge member 19 to regulate the floating height of the gas diffusion discharge member 19 when the gas is ejected.

ガス噴射ノズル20は、図1に示すように、電磁弁17を介して中間タンク16に接続されている。中間タンク16はガス供給源12から送られた高圧ガスを充満させている。   As shown in FIG. 1, the gas injection nozzle 20 is connected to the intermediate tank 16 via a solenoid valve 17. The intermediate tank 16 is filled with the high-pressure gas sent from the gas supply source 12.

次に、本発明の装置を用いて最小着火エネルギー(MIE)を評価する方法を、図1を参照して説明する。   Next, a method for evaluating the minimum ignition energy (MIE) using the apparatus of the present invention will be described with reference to FIG.

まず、容器11内に上部開口から試料粉体18を所定量投入し、容器11の上部開口をろ紙3で覆いゴムバンドなどで固定する。ついで、ガス供給管13を、ろ紙3を貫通させ、下端ガス噴出部131を容器11の下部より少なくとも3cm、好ましくは1cm程度まで挿入し、所定の酸素濃度に調節した混合ガスを容器11に吹き込み、容器11内を所定の酸素濃度にする。同時に、バルブ5を開いて中間タンク16にも混合ガスを送って、所定の酸素濃度にする。
評価前には、酸素濃度計14にて容器11が所定酸素濃度のガスに置換されているか確認する。
First, a predetermined amount of sample powder 18 is put into the container 11 from the upper opening, and the upper opening of the container 11 is covered with the filter paper 3 and fixed with a rubber band or the like. Next, the gas supply pipe 13 is passed through the filter paper 3, and the lower end gas ejection part 131 is inserted from the lower part of the container 11 to at least 3 cm, preferably about 1 cm, and a mixed gas adjusted to a predetermined oxygen concentration is blown into the container 11. The inside of the container 11 is set to a predetermined oxygen concentration. At the same time, the valve 5 is opened and the mixed gas is also sent to the intermediate tank 16 to obtain a predetermined oxygen concentration.
Before the evaluation, it is confirmed by the oxygen concentration meter 14 whether the container 11 is replaced with a gas having a predetermined oxygen concentration.

確認後、ガス供給管13を評価の影響が出ない範囲(円筒内上部若しくは円筒外部)に移動させ、電磁弁17を開いて粉体18を舞い上がらせ、粉体18を舞い上げた直後(約0.1〜2秒後)に、放電装置2のスイッチ24を入れ、放電電極22,22間に電圧を印加して容器11内で放電させ、粉塵が発火するか否か目視にて観察し、最小着火エネルギーの評価を行う。   After confirmation, the gas supply pipe 13 is moved to a range where the evaluation does not affect (upper part of the cylinder or outside of the cylinder), the electromagnetic valve 17 is opened and the powder 18 is raised, and immediately after the powder 18 is raised (about 0.1 to 2 seconds later), the switch 24 of the discharge device 2 is turned on, a voltage is applied between the discharge electrodes 22 and 22 to cause discharge in the container 11, and whether or not dust is ignited is visually observed. The minimum ignition energy is evaluated.

粉塵が着火した場合、放電エネルギーを段階的に弱くしていき、一方、着火しなかった場合は、放電エネルギーを段階的に強くしていき、着火する最小の放電エネルギーを、最小着火エネルギーとすればよい。放電エネルギーの調節は、放電装置2のコンデンサ容量やコンデンサへの印加電圧を変更することによって行われる。   When dust is ignited, the discharge energy is gradually decreased. On the other hand, when it is not ignited, the discharge energy is increased stepwise, and the minimum discharge energy to be ignited is set as the minimum ignition energy. That's fine. The discharge energy is adjusted by changing the capacitor capacity of the discharge device 2 and the voltage applied to the capacitor.

具体的に、本発明の装置を用いて、特定の試料粉末の最小着火エネルギー(MIE)を評価した。雰囲気中の酸素濃度が約21%(空気)の場合、試料粉末は、約30mJの点火エネルギーで着火したが、点火エネルギーを25mJ程度に下げると着火しなかった。したがって、空気中における試料粉末のMIEは、30mJ程度であることがわかった。   Specifically, the minimum ignition energy (MIE) of a specific sample powder was evaluated using the apparatus of the present invention. When the oxygen concentration in the atmosphere was about 21% (air), the sample powder was ignited with an ignition energy of about 30 mJ, but was not ignited when the ignition energy was lowered to about 25 mJ. Therefore, it was found that the MIE of the sample powder in the air was about 30 mJ.

また、酸素濃度を約18%にすると、約70mJの点火エネルギーでは着火しないが、点火エネルギーを徐々に上昇させ、約80mJになると着火することがわかった。したがって、酸素濃度が約18%の雰囲気中における試料粉末のMIEは、80mJ程度であることがわかった。   It was also found that when the oxygen concentration was about 18%, the ignition energy was not ignited at about 70 mJ, but the ignition energy was gradually increased to ignite at about 80 mJ. Therefore, it was found that the MIE of the sample powder in an atmosphere having an oxygen concentration of about 18% was about 80 mJ.

このようにして、試料粉末が置かれた雰囲気(酸素と窒素の混合気体)中の酸素濃度とMIEとの関係を求めた一例を図5に示す。図5に示すようなMIEのグラフを作成しておくことにより、粉体の貯蔵や移送時等において安全な酸素等の支燃性ガス濃度を知ることができ、粉塵爆発の予防に役立てることができる。   FIG. 5 shows an example in which the relationship between the MIE and the oxygen concentration in the atmosphere (mixed gas of oxygen and nitrogen) in which the sample powder is placed in this way is shown. By preparing the MIE graph as shown in FIG. 5, it is possible to know the concentration of flammable gases such as oxygen that is safe during storage and transfer of powder, which can be useful for preventing dust explosions. it can.

1 最小着火エネルギー(MIE)評価装置
11 筒形容器
12 ガス供給源
13 ガス供給管
131 ガス供給管の下端ガス噴出部
14 酸素濃度計
15 流量計
16 中間タンク
17 電磁弁
18 試料
19 ガス拡散吐出部材
191 ストッパー
2 放電装置
22 電極
24 スイッチ
DESCRIPTION OF SYMBOLS 1 Minimum ignition energy (MIE) evaluation apparatus 11 Cylindrical container 12 Gas supply source 13 Gas supply pipe 131 Lower end gas ejection part of gas supply pipe 14 Oxygen concentration meter 15 Flow meter 16 Intermediate tank 17 Solenoid valve 18 Sample 19 Gas diffusion discharge member 191 Stopper 2 Discharge device 22 Electrode 24 Switch

Claims (6)

粉体を収容した筒形容器と、
この容器内に上部から挿入され、所定の支燃性ガス濃度を有するガスを容器内に供給するためのガス供給管と、
前記容器内に設置された放電電極を含む放電装置と、
前記容器の底部からガスを容器内に吐出させて粉体を容器内に舞い上がらせるためのガス拡散吐出部材と、を備え、
前記ガス供給管が、容器内を昇降可能であることを特徴とする、粉体の最小着火エネルギー評価装置。
A cylindrical container containing powder;
A gas supply pipe which is inserted into the container from above and supplies a gas having a predetermined combustion-supporting gas concentration into the container;
A discharge device including a discharge electrode installed in the vessel;
A gas diffusion discharge member for discharging gas from the bottom of the container into the container and causing the powder to rise into the container,
The apparatus for evaluating minimum ignition energy of powder, wherein the gas supply pipe is capable of moving up and down in a container.
ガス供給源をさらに備え、このガス供給源から延びるガス流路が前記ガス供給管と、前記ガス拡散吐出部材の2つに分岐している、請求項1に記載の最小着火エネルギー評価装置。   The minimum ignition energy evaluation apparatus according to claim 1, further comprising a gas supply source, wherein a gas flow path extending from the gas supply source is branched into two parts, the gas supply pipe and the gas diffusion discharge member. 前記ガス供給管は、下端部が略水平方向に折曲されている、請求項1または2に記載の最小着火エネルギー評価装置。   The minimum ignition energy evaluation apparatus according to claim 1, wherein a lower end portion of the gas supply pipe is bent in a substantially horizontal direction. 前記ガス供給管の下端部は、平面視において、ガス供給管に最も近接した位置の容器内壁の接線方向と平行である、請求項3に記載の最小着火エネルギー評価装置。   The minimum ignition energy evaluation apparatus according to claim 3, wherein the lower end portion of the gas supply pipe is parallel to a tangential direction of the inner wall of the container at a position closest to the gas supply pipe in a plan view. 前記容器内に上部から複数のガス供給管が挿入されており、これらのガス供給管は、ガス供給源から延びるガス流路が分岐したものである、請求項1〜4のいずれかに記載の最小着火エネルギー評価装置。   5. The gas supply pipe according to claim 1, wherein a plurality of gas supply pipes are inserted from above into the container, and the gas supply pipes are branched from a gas flow path extending from a gas supply source. Minimum ignition energy evaluation device. 請求項1〜5のいずれかに記載の最小着火エネルギー評価装置を用いた、粉体の最小着火エネルギー評価方法であって、
前記容器内に試料となる粉体を装填し、容器内が所望の支燃性ガス濃度となるようにガス供給管からガスを供給して容器内のガスを置換した後、ガス供給管を上昇させ、ガス拡散吐出部材により容器の底部からガスを容器内に吐出させて粉体を舞い上がらせながら、点火手段によって発火の有無を確認して、最小着火エネルギーの評価を行うことを特徴とする、粉体の最小着火エネルギー評価方法。
A minimum ignition energy evaluation method for powder using the minimum ignition energy evaluation apparatus according to claim 1,
The sample powder is loaded into the container, the gas is supplied from the gas supply pipe so that the inside of the container has a desired combustion-supporting gas concentration, and the gas in the container is replaced, and then the gas supply pipe is raised. Letting the gas diffusion discharge member discharge gas into the container from the bottom of the container and make the powder rise, confirming the presence or absence of ignition by the ignition means, and evaluating the minimum ignition energy, Evaluation method of minimum ignition energy of powder.
JP2012014039A 2012-01-26 2012-01-26 Apparatus for evaluating minimum ignition energy of powder Pending JP2013152196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014039A JP2013152196A (en) 2012-01-26 2012-01-26 Apparatus for evaluating minimum ignition energy of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014039A JP2013152196A (en) 2012-01-26 2012-01-26 Apparatus for evaluating minimum ignition energy of powder

Publications (1)

Publication Number Publication Date
JP2013152196A true JP2013152196A (en) 2013-08-08

Family

ID=49048640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014039A Pending JP2013152196A (en) 2012-01-26 2012-01-26 Apparatus for evaluating minimum ignition energy of powder

Country Status (1)

Country Link
JP (1) JP2013152196A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668930A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The test method of gas-particle two-phase combustible material minimum ignition energy
CN109668999A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The test device of gas-particle two-phase combustible material minimum ignition energy
KR20200123596A (en) * 2019-04-22 2020-10-30 (주)영우산업 Education apparatus for experiencing dust explosion
CN111881588A (en) * 2020-07-30 2020-11-03 重庆大学 Explosion risk quantification method based on minimum ignition energy
CN116297674A (en) * 2022-09-09 2023-06-23 冰轮环境技术股份有限公司 System and method for simulating and calculating minimum ignition energy of combustible explosive working medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668930A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The test method of gas-particle two-phase combustible material minimum ignition energy
CN109668999A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The test device of gas-particle two-phase combustible material minimum ignition energy
CN109668930B (en) * 2017-10-17 2022-06-17 中国石油化工股份有限公司 Method for testing minimum ignition energy of gas-solid two-phase combustible material
KR20200123596A (en) * 2019-04-22 2020-10-30 (주)영우산업 Education apparatus for experiencing dust explosion
KR102288618B1 (en) * 2019-04-22 2021-08-11 (주)영우산업 Education apparatus for experiencing dust explosion
CN111881588A (en) * 2020-07-30 2020-11-03 重庆大学 Explosion risk quantification method based on minimum ignition energy
CN111881588B (en) * 2020-07-30 2023-10-03 重庆大学 Explosion risk quantification method based on minimum ignition energy
CN116297674A (en) * 2022-09-09 2023-06-23 冰轮环境技术股份有限公司 System and method for simulating and calculating minimum ignition energy of combustible explosive working medium
CN116297674B (en) * 2022-09-09 2023-10-10 冰轮环境技术股份有限公司 System and method for simulating and calculating minimum ignition energy of combustible explosive working medium

Similar Documents

Publication Publication Date Title
JP2013152196A (en) Apparatus for evaluating minimum ignition energy of powder
CN203838134U (en) Cup type combustor suitable for testing fire extinguishing performance of steam state fire extinguishing agents
US10654646B1 (en) Containing apparatus for eliminating bridging
CN103901156B (en) A kind of cup burner being applicable to the test of vaporous fire extinguishing agent extinguishing property
CN102269287A (en) Anti-explosion fire-stopping breather valve
JP2011220814A (en) Test apparatus and test method for dust explosion in fluid bed
US20150159863A1 (en) Burner Assembly and Method of Operating Same
EP2636951A1 (en) Apparatus and method for flaring waste gas
CN105992620B (en) Fire-fighting training device
JP6644086B2 (en) Analysis equipment
CN105352825A (en) Test device for closed tank dynamic response under action of combustible gas explosion
KR101796963B1 (en) safety apparatus for gas discharging prevention of gas tank
JP2014065515A (en) Powder handling method
CN205076287U (en) Anti -knock fuel jar
CN106018665B (en) A kind of portable testing for traces sample combustion performance oxyhydrogen flame burning torch
RU177480U1 (en) POWDER FIRE EXTINGUISHING MODULE
RU2016130320A (en) METALLURGICAL FURNACE
CN207158012U (en) Liquid chemicals anti-explosion skid-mounted liquid-adding device
JP4893993B2 (en) Pressurized tank, apparatus for feeding powder into transport pipe, and method for feeding the same
KR100830951B1 (en) A back-flash control apparatus
Zhou et al. Study on the Influence of Magnetic Metal Materials on Inhibit Gas Explosion [J]
CN208983372U (en) A kind of closed biogas torch
CN217612643U (en) Material burning fire extinguishing test device
KR102066628B1 (en) Ignition system using pellet for Marine plant
CN206410614U (en) The horizontal fire effect device of video display