JP2013151707A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2013151707A
JP2013151707A JP2010084776A JP2010084776A JP2013151707A JP 2013151707 A JP2013151707 A JP 2013151707A JP 2010084776 A JP2010084776 A JP 2010084776A JP 2010084776 A JP2010084776 A JP 2010084776A JP 2013151707 A JP2013151707 A JP 2013151707A
Authority
JP
Japan
Prior art keywords
layer
carbon
sliding member
diamond
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010084776A
Other languages
Japanese (ja)
Inventor
Shinya Okamoto
晋哉 岡本
Shoichi Nakajima
昌一 中島
Kazutaka Okamoto
和孝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010084776A priority Critical patent/JP2013151707A/en
Priority to PCT/JP2011/053632 priority patent/WO2011125375A1/en
Publication of JP2013151707A publication Critical patent/JP2013151707A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/06Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • F16D2200/003Light metals, e.g. aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0038Surface treatment
    • F16D2250/0046Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Braking Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sliding member comprising an Al alloy substrate having a hard carbon coating capable of controlling a friction coefficient, while having improved wear resistance and corrosion resistance and hardly wearing a rubber of another member, in sliding members with rubber, among parts for industrial machines, such as vehicles, which are required to reduce in weight to be more environmentally friendly.SOLUTION: A sliding member includes a base 2 of an aluminum alloy 101 with a surface covered with an oxide film 3. On top of the surface, there is formed a coat 1 which is made up of a conductive layer 4, a buffer layer 5, a graded layer 6, and a diamond-like carbon layer 7 in that order outwardly from the base 2. The diamond-like carbon layer 7 has a surface roughness Ra of 0.15 to 0.5 μm.

Description

本発明は、例えば、自動車のブレーキピストンなどに好適な摺動部材に関する。   The present invention relates to a sliding member suitable for, for example, a brake piston of an automobile.

ダイヤモンドライクカーボン膜(DLC膜)は、一般的に、高硬度で表面が平滑であり、耐摩擦性に優れ、その固体潤滑性から低摩擦係数で優れた低摩擦性能を有している。そして、無潤滑環境下において、通常の平滑な鋼材表面の摩擦係数が0.5以上であり、従来の表面処理材であるNi−PめっきやCrめっき、TiNコーティングやCrNコーティング等の表面の摩擦係数が約0.4である。これに対して、DLC膜の摩擦係数は約0.1である。   A diamond-like carbon film (DLC film) generally has high hardness, a smooth surface, excellent friction resistance, and excellent low friction performance with a low coefficient of friction due to its solid lubricity. In a non-lubricated environment, the friction coefficient of the surface of a normal smooth steel material is 0.5 or more, and surface friction of conventional surface treatment materials such as Ni-P plating, Cr plating, TiN coating, and CrN coating The coefficient is about 0.4. On the other hand, the coefficient of friction of the DLC film is about 0.1.

現在、これらの優れた特性を活かして、ドリル刃をはじめとする切削工具、研削工具等の加工治具や塑性加工用金型、バルブコックやキャプスタンローラのような無潤滑環境下で使用される摺動部材等への応用が図られている。一方、エネルギー消費や環境の面から可能な限りの機械的損失の低減が望まれている内燃機関などの機械部品においては、現在、潤滑油存在下での摺動が主流となっている。   Currently, using these excellent characteristics, it is used in non-lubricated environments such as machining tools such as drill blades, grinding tools, plastic molds, valve cocks and capstan rollers. Application to sliding members and the like. On the other hand, in mechanical parts such as an internal combustion engine in which reduction of mechanical loss as much as possible is desired from the viewpoint of energy consumption and environment, sliding in the presence of lubricating oil is currently the mainstream.

また、自動車では環境への配慮から高効率化が求められ、そのため構成部品の軽量化が必要となる。自動車用摺動部品にも例えばAl合金等の軽金属合金が有効であり、軽金属合金製摺動部品の性能向上が必須である。例えば、軽金属合金製のブレーキピストン表面上に、耐摩耗性及び耐食性に優れ、ゴムシールを摩耗させにくく、ゴムシールとの摩擦係数を制御できるDLC膜を形成することができれば、高効率及び高信頼性の自動車を提供できる。   In addition, automobiles are required to be highly efficient due to environmental considerations, and therefore, it is necessary to reduce the weight of components. For example, a light metal alloy such as an Al alloy is effective for sliding parts for automobiles, and it is essential to improve the performance of sliding parts made of light metal alloys. For example, if a DLC film that is excellent in wear resistance and corrosion resistance, hardly wears a rubber seal, and can control the coefficient of friction with the rubber seal can be formed on the surface of a brake piston made of a light metal alloy, it is highly efficient and reliable. Can provide cars.

特許文献1には、ゴム状弾性体中にOH基を有する添加剤を含有する潤滑油組成物が混合され、ゴム状弾性体と摺接するインナ部材又はアウタ部材の表面に含有水素原子量が0.5at%以下の硬質炭素被膜が被覆され、インナ部材又はアウタ部材の表面粗さがRzで5μm以下であることを特徴とするゴムブッシュが開示されている。   In Patent Document 1, a lubricating oil composition containing an additive having an OH group is mixed in a rubber-like elastic body, and the amount of hydrogen atoms contained on the surface of the inner member or outer member in sliding contact with the rubber-like elastic body is 0. A rubber bush is disclosed in which a hard carbon coating of 5 at% or less is coated, and the inner member or outer member has a surface roughness Rz of 5 μm or less.

特許文献2には、アルミニウム又はアルミニウム合金などの非鉄材料からなる母材の表面に窒素含有クロム被膜および炭素含有クロム被膜を順次形成し、炭素含有クロム被膜上に硬質被膜としてDLC被膜を形成する部材が開示されている。   Patent Document 2 discloses a member that sequentially forms a nitrogen-containing chromium coating and a carbon-containing chromium coating on the surface of a base material made of a non-ferrous material such as aluminum or an aluminum alloy, and forms a DLC coating as a hard coating on the carbon-containing chromium coating. Is disclosed.

しかし、従来、表面が酸化膜で覆われたAl合金製の自動車用ブレーキピストンを用いた場合、ブレーキオイル存在下でもゴムシールとの滑りが悪いことでロールバック(ブレーキの液圧解除時にピストンがゴムの弾性変形分により戻される現象)の量が大きくなるため、制動時のフィーリングが悪いという課題があった。また、表面が平滑な硬質炭素被膜で覆われた自動車用ブレーキピストンを用いた場合、ブレーキオイル存在下でもゴムシールがピストンに吸着して滑りが悪いことでロールバックの量が大きくなるため、制動時のフィーリングが悪いという課題があった。   However, in the past, when an aluminum alloy brake piston made of an aluminum alloy whose surface was covered with an oxide film was used, rollback (when the hydraulic pressure of the brake was released, the piston was Since the amount of the phenomenon (returned by the elastic deformation amount) increases, there is a problem that feeling during braking is poor. In addition, when using a brake piston for automobiles with a hard carbon coating with a smooth surface, the amount of rollback increases because the rubber seal adsorbs to the piston even in the presence of brake oil and slips poorly. There was a problem that the feeling was bad.

また、自動車用ブレーキピストンに鉄鋼材を用いた場合、ピストンに硬質炭素被膜を形成することでゴムシールとの滑り量が適切となりロールバックの量を適切に制御できたとしても、重量が大きくなるため自動車全体として高効率化が困難であるという課題があった。また、表面が酸化膜で覆われたAl合金基材に鉄鋼基材用硬質炭素被膜を形成(酸化膜の上に直接ボンド層,傾斜層、及びダイヤモンドライクカーボン層を形成)した場合、酸化膜が電気絶縁層であるため、硬質炭素被膜の形成にあたりバイアス電圧を印加することができない。そのため硬質炭素被膜の基材との密着性が得られず、その結果ブレーキオイル存在下でもゴムシールとの滑りが悪いことでロールバックの量が大きくなるため、制動時のフィーリングが悪いという課題があった。   Also, when steel materials are used for the brake piston for automobiles, the amount of slippage with the rubber seal becomes appropriate by forming a hard carbon coating on the piston, and the weight increases even if the amount of rollback can be controlled appropriately. There was a problem that it was difficult to improve the efficiency of the entire automobile. In addition, when a hard carbon coating for a steel substrate is formed on an Al alloy substrate whose surface is covered with an oxide film (a bond layer, a gradient layer, and a diamond-like carbon layer are formed directly on the oxide film), the oxide film Since this is an electrical insulating layer, a bias voltage cannot be applied in forming the hard carbon film. Therefore, adhesion to the base material of the hard carbon coating is not obtained, and as a result, the amount of rollback increases due to poor sliding with the rubber seal even in the presence of brake oil, so the problem that the feeling during braking is bad there were.

特開2007−016830号公報JP 2007-016830 A 特開2009−161813号公報JP 2009-161813 A

本発明の目的は、環境への配慮のため軽量化が求められる自動車等産業機器の部品のうち、ゴムとの摺動部材において、耐摩耗性及び耐食性に優れ、相手材のゴムを摩耗させにくく、摩擦係数を制御できる硬質炭素被膜を有するAl合金基材からなる摺動部材を提供することにある。   The object of the present invention is to provide excellent wear resistance and corrosion resistance in a sliding member with rubber among components of industrial equipment such as automobiles that are required to be light in weight for environmental considerations, and it is difficult to wear the rubber of the counterpart material. Another object of the present invention is to provide a sliding member made of an Al alloy base material having a hard carbon film capable of controlling the friction coefficient.

本発明の摺動部材は、基材に、導電層,バッファー層,ダイヤモンドライクカーボン層を順に配置した摺動部材であって、前記基材が、酸化アルミニウム層で覆われたアルミニウム合金であり、前記バッファー層が、前記基材との密着性を向上させ、基材の硬度を補う層であり、前記ダイヤモンドライクカーボン層の表面粗度がRaで0.15μm以上0.5μm以下であることを特徴とする。   The sliding member of the present invention is a sliding member in which a conductive layer, a buffer layer, and a diamond-like carbon layer are sequentially arranged on a base material, and the base material is an aluminum alloy covered with an aluminum oxide layer, The buffer layer is a layer that improves adhesion with the base material and supplements the hardness of the base material, and the surface roughness of the diamond-like carbon layer is Ra of 0.15 μm or more and 0.5 μm or less. Features.

本発明によれば、アルミニウム合金を基材とし、耐摩耗性及び耐食性に優れ、相手材のゴムを摩耗させにくく、摩擦係数を制御できる硬質炭素被膜を有する摺動部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sliding member which has an aluminum alloy as a base material, is excellent in abrasion resistance and corrosion resistance, is hard to wear the rubber | gum of a counterpart material, and has a hard carbon film which can control a friction coefficient can be provided.

本実施形態に係る基材および硬質炭素被膜の断面構造を示す図である。It is a figure which shows the cross-section of the base material and hard carbon film which concern on this embodiment. 本実施形態の摩擦評価に使用した摩擦試験機の断面説明図である。It is sectional explanatory drawing of the friction testing machine used for the friction evaluation of this embodiment. 実施例及び比較例1〜2における成膜条件(プロセス時間 vs ターゲット投入電力)を示す図である。It is a figure which shows the film-forming conditions (Process time vs. target input electric power) in an Example and Comparative Examples 1-2. 本発明による実施例を示す自動車用ブレーキピストンの断面図である。It is sectional drawing of the brake piston for motor vehicles which shows the Example by this invention.

本発明は、耐摩耗性,耐食性に優れ、相手材のゴムを摩耗させにくく、摩擦係数を制御できる硬質炭素被膜を有する摺動部材に関する。   The present invention relates to a sliding member having a hard carbon coating that is excellent in wear resistance and corrosion resistance, hardly wears the rubber of a mating member, and can control a friction coefficient.

以下、図面を参照して、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施形態で示す硬質炭素被膜は、ゴムとの潤滑環境下で使用される機械部品等の摺動部材(Al合金基材)に適用可能である。   The hard carbon film shown in the present embodiment can be applied to sliding members (Al alloy base materials) such as machine parts used in a lubricating environment with rubber.

図1に示すように、硬質炭素被膜(以下、「被膜」と呼称する)1は、基材2上に、アンバランスト・マグネトロン・スパッタリング(UBM)法を用いることにより形成できる。   As shown in FIG. 1, a hard carbon coating (hereinafter referred to as “coating”) 1 can be formed on a substrate 2 by using an unbalanced magnetron sputtering (UBM) method.

UBM法とは、ターゲットの背面側に配置される磁極のバランスをターゲットの中心部と周縁部とで意図的に崩し、非平衡とすることでターゲットの周縁部の磁極からの磁力線の一部を基材まで伸ばし、ターゲットの近傍に収束していたプラズマが磁力線に沿って基材の近傍まで拡散し易くすることにより、被膜1の形成中に基材2に照射されるイオン量を増やすことができ、結果として、基材2の上面側に緻密な被膜1を形成することができることを特徴とした成膜方法である。   In the UBM method, the balance of the magnetic poles arranged on the back side of the target is intentionally broken at the center and the peripheral part of the target, and a part of the lines of magnetic force from the magnetic poles at the peripheral part of the target is made unbalanced. The amount of ions irradiated onto the substrate 2 during the formation of the coating 1 can be increased by making the plasma that has been extended to the substrate and converging near the target easily diffused to the vicinity of the substrate along the magnetic field lines. As a result, the dense film 1 can be formed on the upper surface side of the substrate 2.

なお、詳細は実施例を用いて説明するが、本発明の摺動部材は、図1に示すように、基材2の外側に前記基材2から順に、導電層4、前記基材2との密着性を向上させ、前記基材2の硬度を補うためのバッファー層5及びダイヤモンドライクカーボン層7を形成することが好ましい。   Although the details will be described with reference to examples, the sliding member of the present invention has a conductive layer 4, the base material 2, and the base material 2 in order from the base material 2, as shown in FIG. It is preferable to form the buffer layer 5 and the diamond-like carbon layer 7 for improving the adhesion of the base material 2 and supplementing the hardness of the substrate 2.

導電層4は、アルミニウム(Al),クロム(Cr)、及びチタン(Ti)から選ばれる1種類の元素を含むことが好ましい。   The conductive layer 4 preferably contains one element selected from aluminum (Al), chromium (Cr), and titanium (Ti).

バッファー層5は、クロム窒化物及びチタン窒化物から選ばれる1種類の窒化物を含むことが好ましい。バッファー層5とダイヤモンドライクカーボン層7との間には、傾斜層6を設けるとよい。   The buffer layer 5 preferably contains one kind of nitride selected from chromium nitride and titanium nitride. An inclined layer 6 may be provided between the buffer layer 5 and the diamond-like carbon layer 7.

傾斜層6を設ける場合には、傾斜層6が、炭素及び金属の混合物又は金属の炭化物であり、前記傾斜層6に含まれる金属の含有量が、前記基材2側から外側に向かって減少し、前記傾斜層6に含まれる炭素の含有量が、前記基材2側から前記外側に向かって増加することが好ましい。前記金属は、アルミニウム、クロム及びチタンから選ばれる1種類の元素であることが好ましい。   When the inclined layer 6 is provided, the inclined layer 6 is a mixture of carbon and metal or a metal carbide, and the content of metal contained in the inclined layer 6 decreases from the substrate 2 side toward the outside. And it is preferable that content of the carbon contained in the said inclination layer 6 increases toward the said outer side from the said base material 2 side. The metal is preferably one element selected from aluminum, chromium and titanium.

また、ここで用いられる被膜のダイヤモンドライクカーボン層7には、sp2結合炭素とsp3結合炭素とを混在することが好ましい。 The diamond-like carbon layer 7 of the coating used here preferably contains a mixture of sp 2 bonded carbon and sp 3 bonded carbon.

被膜1を形成した後、被膜1の表面のナノインデンテーション法(ISO14577)による硬度評価および摩擦試験評価を行った。   After the coating 1 was formed, the hardness of the surface of the coating 1 was evaluated by a nanoindentation method (ISO14577) and a friction test.

ナノインデンテーション法(ISO14577)による硬度評価は、対稜角115度のベルコビッチ三角錐圧子を被膜の表面に10秒間かけて最大荷重3mNまで押し込み、最大荷重で1秒間保持し、その後、10秒間かけて除荷する条件で行った。   Hardness evaluation by the nanoindentation method (ISO14577) was performed by pressing a Belkovic triangular pyramid indenter with an opposite edge angle of 115 degrees into the surface of the coating to a maximum load of 3 mN over 10 seconds, holding the maximum load for 1 second, and then over 10 seconds. It was performed under the condition of unloading.

被膜1の表面の硬度は、ゴムとの摺動においてダイヤモンドライクカーボン層の摩耗を抑制するため10GPa以上が好ましく、ゴムの摩耗を抑制するため30GPa以下が好ましい。   The hardness of the surface of the coating 1 is preferably 10 GPa or more in order to suppress wear of the diamond-like carbon layer in sliding with the rubber, and is preferably 30 GPa or less in order to suppress wear of the rubber.

摩擦試験の評価装置としては、図2に示すような往復摺動試験機を用いて摩擦係数を計測した。   As a friction test evaluation apparatus, a friction coefficient was measured using a reciprocating sliding tester as shown in FIG.

この装置は、可動式のワークテーブル12が配置され、このワークテーブル12に試験片11を設置し、この試験片11の上面側に直径1/2インチの金属ボール(高炭素クロム軸受鋼鋼材,JIS SUJ2ボール)にゴムを巻いたゴムボール13を試験片11の相手材として用いる。なお、ここで金属ボールに用いる金属は、軸受に用いるような鋼からなる。また、ゴムにはエチレンプロピレンジエンゴムを用いるが、これに限定されるものではない。   In this apparatus, a movable work table 12 is arranged, a test piece 11 is installed on the work table 12, and a metal ball having a diameter of 1/2 inch (high carbon chromium bearing steel, A rubber ball 13 in which rubber is wound around a JIS SUJ2 ball) is used as a counterpart material of the test piece 11. Here, the metal used for the metal ball is made of steel used for the bearing. Moreover, although ethylene propylene diene rubber is used for rubber | gum, it is not limited to this.

この装置において、軸14に設置されたおもり15,16を移動し、ゴムボール13から試験片11に加わる荷重が29.4Nとなるように構成する。   In this apparatus, the weights 15 and 16 installed on the shaft 14 are moved so that the load applied to the test piece 11 from the rubber ball 13 is 29.4N.

このとき、ゴムボール13は、回転したり外れたりすることがないよう、ホルダ17で固定されている。そして、ワークテーブル12をゴムボール13に対して最大滑り速度1mm/sec、ストローク10mmで駆動し、ゴムボール13と試験片11との間で発生する摩擦力をロードセルで計測し、摩擦係数を算出した。また、この試験は、ブレーキオイルを潤滑油に用いた潤滑状態で常温常湿環境下(室温:約25℃,湿度:約60%RH)において実施したが、潤滑油はこれに限定されるものではない。   At this time, the rubber ball 13 is fixed by the holder 17 so that it does not rotate or come off. Then, the work table 12 is driven with respect to the rubber ball 13 at a maximum sliding speed of 1 mm / sec and a stroke of 10 mm, the friction force generated between the rubber ball 13 and the test piece 11 is measured with a load cell, and the friction coefficient is calculated. did. In addition, this test was carried out under normal temperature and humidity conditions (room temperature: about 25 ° C., humidity: about 60% RH) in a lubrication state using brake oil as a lubricating oil, but the lubricating oil is limited to this. is not.

上記の摺動部材は、一例として、自動車用ブレーキピストンに用いられることが好ましい。   As an example, the sliding member is preferably used for an automobile brake piston.

以下、実施例を説明する。   Examples will be described below.

図1は、摺動部材の断面図である。   FIG. 1 is a cross-sectional view of the sliding member.

本図において、摺動部材は、アルミニウム合金101の表面を酸化膜3で覆った基材2の上に、基材2側より外側に向かって、導電層4,バッファー層5,傾斜層6及びダイヤモンドライクカーボン層7で構成された被膜1を具備している。   In this figure, the sliding member is formed on the base material 2 whose surface of the aluminum alloy 101 is covered with the oxide film 3, and from the base material 2 side toward the outside, the conductive layer 4, the buffer layer 5, the inclined layer 6 and A coating 1 composed of a diamond-like carbon layer 7 is provided.

ここで、アルミニウム合金101は、Al−Mg−Si系合金A6061−T6材で、基材2の表面粗度Raが0.15μmとなるように仕上げる。また、被膜1は、UBM法を用いて形成されている。   Here, the aluminum alloy 101 is an Al—Mg—Si based alloy A6061-T6 material, and is finished so that the surface roughness Ra of the substrate 2 is 0.15 μm. The coating 1 is formed using the UBM method.

具体的には、図3に示す条件(プロセス時間 vs ターゲット投入電力)で被膜1を形成する。   Specifically, the film 1 is formed under the conditions (process time vs. target input power) shown in FIG.

まず、不活性ガスを導入しながら、バイアス電圧を印加せずにクロム(Cr)を主成分とする導電層4を形成する。   First, the conductive layer 4 containing chromium (Cr) as a main component is formed without applying a bias voltage while introducing an inert gas.

その後、不活性ガス及び窒素ガスを導入し、バイアス電圧を印加しながら窒化クロム(CrN)を主成分とするバッファー層5を形成する。   Thereafter, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of chromium nitride (CrN) is formed while applying a bias voltage.

さらに、不活性ガスと炭化水素ガスとを導入し、バイアス電圧を印加しながら傾斜層6を形成する。   Further, the gradient layer 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage.

傾斜層6の形成においては、まず、クロム炭化物層(炭化クロム層)を形成し、その後、クロムターゲット投入電力が徐々に減少し、かつカーボンターゲット投入電力が徐々に増加するように制御する。ここで、クロム炭化物層を構成する炭化クロムには、Cr32,Cr73,Cr236などの種類があるが、これらに限定されるものではない。 In the formation of the inclined layer 6, first, a chromium carbide layer (chromium carbide layer) is formed, and thereafter, control is performed so that the power input to the chromium target gradually decreases and the power input to the carbon target gradually increases. Here, the chromium carbide constituting the chromium carbide layer, there are types such as Cr 3 C 2, Cr 7 C 3, Cr 23 C 6, but is not limited thereto.

最後に、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。   Finally, an inert gas and a hydrocarbon gas are introduced, and the diamond-like carbon layer 7 is formed while applying a bias voltage.

被膜1の表面粗度Raは、被膜1の膜厚が薄い場合、成膜前の基材2の表面粗度によってほぼ決定されるが、被膜1の膜厚が厚い場合、被膜1の膜厚に比例して増加する。そこで、被膜1の表面粗度Raは成膜前の基材2の表面粗度及び被膜1の膜厚で制御する。   The surface roughness Ra of the coating 1 is almost determined by the surface roughness of the substrate 2 before film formation when the coating 1 is thin, but when the coating 1 is thick, the coating 1 has a film thickness Ra. It increases in proportion to. Therefore, the surface roughness Ra of the coating 1 is controlled by the surface roughness of the substrate 2 before film formation and the film thickness of the coating 1.

また、ダイヤモンドライクカーボン層7の硬度は、バイアス電圧の大きさを調整することにより制御する。   The hardness of the diamond-like carbon layer 7 is controlled by adjusting the magnitude of the bias voltage.

これにより、まず、電気絶縁的な基材2の表面を導電性に変化させることができるため、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。   Thereby, first, since the surface of the electrically insulating base material 2 can be changed to conductivity, the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 can be formed.

硬質炭素被膜は、一般に基材2等の下地が高硬度であるほど密着性が良好となる。ここで、被膜1とは、導電層4,バッファー層5,傾斜層6,ダイヤモンドライクカーボン層7を含む積層被膜を指す。   In general, the hard carbon coating has better adhesion as the base such as the substrate 2 has a higher hardness. Here, the film 1 refers to a laminated film including the conductive layer 4, the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7.

また、バッファー層5とは、本実施例のような軟質のAl合金で形成された基材2上に被膜1を形成する際、ダイヤモンドライクカーボン層7と基材2との密着性を向上させ、基材2の硬度を補うための層を指す。バッファー層5は、基材2よりも高硬度であることが好ましい。本実施例では、CrNを含むバッファー層5により軟質のAl合金からなる基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が良好となる。   The buffer layer 5 improves the adhesion between the diamond-like carbon layer 7 and the substrate 2 when the coating 1 is formed on the substrate 2 formed of a soft Al alloy as in this embodiment. The layer for supplementing the hardness of the base material 2 is indicated. The buffer layer 5 is preferably harder than the base material 2. In the present embodiment, the hardness of the base material 2 made of a soft Al alloy can be supplemented by the buffer layer 5 containing CrN, so that the adhesion of the diamond-like carbon layer 7 becomes good.

また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性をさらに向上することができる。   In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved.

さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。   Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.

摩擦試験評価では、相手材のゴムボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。   In the friction test evaluation, ethylene propylene diene rubber was used for the rubber ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.

上記の構成で形成した本実施例の被膜1の膜厚は1.7μm、表面粗度Raは0.19μm、硬度は23GPaであり、このときの摩擦係数は0.28であった。この摩擦係数値では、被膜1とゴムボール13との滑り量が適切となる。また、試験後の被膜1の表面に摩耗は見られなかった。ゴムボール13の表面には摩耗が見られたが、その摩耗量はごく僅かであった。   The film 1 of the present example formed as described above had a film thickness of 1.7 μm, a surface roughness Ra of 0.19 μm, a hardness of 23 GPa, and the friction coefficient at this time was 0.28. With this friction coefficient value, the slip amount between the coating 1 and the rubber ball 13 is appropriate. Further, no abrasion was observed on the surface of the coating 1 after the test. Although wear was observed on the surface of the rubber ball 13, the amount of wear was very small.

上記のように、本実施例によれば、耐摩耗性,耐食性に優れ、相手材のゴムを摩耗させにくく、摩擦係数を制御できる摺動部材を提供することができる。また、本発明の摺動部材を自動車に適用した場合、基材2にAl合金を用いているため、自動車全体として軽量化でき、その結果、高効率な自動車を提供することができる。さらに、本実施例の摺動部材を自動車のブレーキピストンに適用した場合、制動時のロールバックの量を適切に制御することができるため、制動時のフィーリングのよいブレーキを提供することができる。   As described above, according to this embodiment, it is possible to provide a sliding member that is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the counterpart material, and can control the friction coefficient. Further, when the sliding member of the present invention is applied to an automobile, since the Al alloy is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a highly efficient automobile can be provided. Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .

なお、本実施例では、導電層4をCr、バッファー層5をCrN、傾斜層6をCr炭化物としたが、これらに限定されず、導電層4をTi又はAl、バッファー層5をTiN、傾斜層6をチタン炭化物としても同様の効果が得られる。さらにバッファー層5をチタン炭化物又はCr炭化物(Cr32,Cr73,Cr236等)で形成してもよい。 In this embodiment, the conductive layer 4 is Cr, the buffer layer 5 is CrN, and the graded layer 6 is Cr carbide. However, the present invention is not limited thereto, and the conductive layer 4 is Ti or Al, the buffer layer 5 is TiN, and graded. The same effect can be obtained even if the layer 6 is made of titanium carbide. Further, the buffer layer 5 may be formed of titanium carbide or Cr carbide (Cr 3 C 2 , Cr 7 C 3 , Cr 23 C 6, etc.).

本実施例におけるダイヤモンドライクカーボン層7には、グラファイトに代表される炭素結合であるsp2結合炭素とダイヤモンドに代表される炭素結合であるsp3結合炭素とが混在する。これにより、耐摩耗性,耐食性を兼備した被膜1を提供することができる。
一般に、DLC膜とは、アモルファス状の炭素又は水素化炭素で形成された膜であり、アモルファスカーボン又は水素化アモルファスカーボン(a−C:H)などとも呼ばれる。
DLC膜の形成には、炭化水素ガスをプラズマ分解して成膜するプラズマCVD法,炭素・炭化水素イオンを用いるイオンビーム蒸着法等の気相合成法、グラファイト等をアーク放電により蒸発させて成膜するイオンプレーティング法,不活性ガス雰囲気下でターゲットをスパッタリングすることによって成膜するスパッタリング法などが用いられる。
In the diamond-like carbon layer 7 in the present embodiment, sp 2 bonded carbon, which is a carbon bond typified by graphite, and sp 3 bonded carbon, which is a carbon bond typified by diamond, are mixed. Thereby, the coating film 1 having both wear resistance and corrosion resistance can be provided.
In general, a DLC film is a film formed of amorphous carbon or hydrogenated carbon, and is also called amorphous carbon or hydrogenated amorphous carbon (aC: H).
The DLC film is formed by vapor phase synthesis such as plasma CVD method in which hydrocarbon gas is plasma-decomposed, ion beam evaporation method using carbon / hydrocarbon ions, or graphite is evaporated by arc discharge. An ion plating method for forming a film, a sputtering method for forming a film by sputtering a target in an inert gas atmosphere, and the like are used.

本実施例において形成した被膜1は、摺動部材に耐摩耗性及び耐食性を付与し、相手材のゴムを摩耗させにくく、摩擦係数の制御を可能にする。結果として、ブレーキオイル存在下で相手材のゴムが適切量滑り、さらに被膜もゴムも摩耗しないため、信頼性の高い摺動部材を提供することができる。   The coating 1 formed in this embodiment imparts wear resistance and corrosion resistance to the sliding member, makes it difficult to wear the rubber of the mating member, and enables control of the friction coefficient. As a result, an appropriate amount of rubber slips in the presence of brake oil, and neither the coating nor the rubber wears, so that a highly reliable sliding member can be provided.

本実施例では、基材2としてA6061−T6材を用いているが、時効硬化温度は約160〜180℃であるため、被膜1の形成中の温度が時効硬化温度以下とし、基材2の軟化を抑制するように温度条件を設定する必要がある。   In this example, A6061-T6 material is used as the base material 2, but since the age hardening temperature is about 160 to 180 ° C., the temperature during the formation of the coating film 1 is not more than the age hardening temperature. It is necessary to set temperature conditions so as to suppress softening.

本発明の被膜1の形成においては、CrNを含むバッファー層5及び基材2の表面の酸化膜3が形成されている。基材2とバッファー層5との密着性を高めるために、基材2(酸化膜3)とバッファー層5との間に導電層4を形成することが好ましい。   In the formation of the coating 1 of the present invention, the buffer layer 5 containing CrN and the oxide film 3 on the surface of the substrate 2 are formed. In order to improve the adhesion between the substrate 2 and the buffer layer 5, it is preferable to form the conductive layer 4 between the substrate 2 (oxide film 3) and the buffer layer 5.

また、バッファー層5とダイヤモンドライクカーボン層7との間に形成される傾斜層6においては、まず、Cr炭化物層を形成し、その後、バッファー層5側からダイヤモンドライクカーボン層7側へ向かって、Cr濃度が連続的に減少し、かつ、C濃度が連続的に増加することが好ましい。また、傾斜層6を構成する物質であるCr炭化物をCrxyで表した場合、xとyとの比率を少しずつ変化させることで、組成がバッファー層5側からダイヤモンドライクカーボン層7側へ向かって少しずつ変化させることが好ましい。 Further, in the inclined layer 6 formed between the buffer layer 5 and the diamond-like carbon layer 7, first, a Cr carbide layer is formed, and then, from the buffer layer 5 side toward the diamond-like carbon layer 7 side, It is preferable that the Cr concentration decreases continuously and the C concentration increases continuously. Further, when a Cr carbide is a material constituting the gradient layer 6, expressed in Cr x C y, by varying the ratio of x and y gradually, diamondlike carbon layer 7 side composition from the buffer layer 5 side It is preferable to change gradually toward.

以上のように、基材2からダイヤモンドライクカーボン層7までの構造を上記のように設計することにより、密着性が良好な被膜1を提供できる。また、被膜1は、上記のような膜設計を行う上で条件を設定しやすい、スパッタリング又はイオンプレーティングにより形成されるのがよい。   As described above, the coating 1 having good adhesion can be provided by designing the structure from the base material 2 to the diamond-like carbon layer 7 as described above. The coating 1 is preferably formed by sputtering or ion plating, in which conditions can be easily set in designing the film as described above.

Al−Mg−Si系合金のA6061−T6材の表面が酸化膜3で覆われた基材2上に、UBMを用いて図1に示す被膜1を形成する。また、基材2の表面粗度Raが0.25μmとなるように仕上げる。   A coating 1 shown in FIG. 1 is formed using UBM on a base material 2 in which the surface of an A6061-T6 material of an Al—Mg—Si alloy is covered with an oxide film 3. Further, the substrate 2 is finished so that the surface roughness Ra thereof is 0.25 μm.

具体的には、図3に示す条件(プロセス時間 vs ターゲット投入電力)で被膜1を形成する。まず、不活性ガスを導入しながら、バイアス電圧を印加せずにCrを主成分とする導電層4を形成する。その後、不活性ガス及び窒素ガスを導入し、バイアス電圧を印加しながらCrNを主成分とするバッファー層5を形成する。さらに、不活性ガスと炭化水素ガスとを導入し、バイアス電圧を印加しながら傾斜層6を形成する。傾斜層6の形成においては、まず、Cr炭化物層を形成し、その後、Crターゲット投入電力が徐々に減少し、かつカーボンターゲット投入電力が徐々に増加するように制御する。最後に、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。   Specifically, the film 1 is formed under the conditions (process time vs. target input power) shown in FIG. First, the conductive layer 4 mainly composed of Cr is formed without introducing a bias voltage while introducing an inert gas. Thereafter, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of CrN is formed while applying a bias voltage. Further, the gradient layer 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage. In the formation of the inclined layer 6, first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases. Finally, an inert gas and a hydrocarbon gas are introduced, and the diamond-like carbon layer 7 is formed while applying a bias voltage.

これにより、まず、電気絶縁的な基材2の表面を導電性に変化させることができるため、バッファー層5,傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。
バッファー層5は、基材2よりも高硬度であることが好ましい。本実施例では、CrNを含むバッファー層5により軟質のAl合金からなる基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が良好となる。また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性をさらに向上することができる。さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。
Thereby, first, since the surface of the electrically insulating base material 2 can be changed to be conductive, the buffer layer 5, the inclined layer 6 and the diamond-like carbon layer 7 can be formed.
The buffer layer 5 is preferably harder than the base material 2. In the present embodiment, the hardness of the base material 2 made of a soft Al alloy can be supplemented by the buffer layer 5 containing CrN, so that the adhesion of the diamond-like carbon layer 7 becomes good. In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved. Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.

摩擦試験評価では、相手材のゴムボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。   In the friction test evaluation, ethylene propylene diene rubber was used for the rubber ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.

上記の構成で形成した本実施例の被膜1の膜厚は1.7μm、表面粗度Raは0.29μm、硬度は23GPaであり、このときの摩擦係数は0.21であった。この摩擦係数値では、被膜1とゴムボール13との滑り量が適切となる。また、試験後の被膜1の表面に摩耗は見られなかった。ゴムボール13の表面には摩耗が見られたが、その摩耗量は僅かであった。   The film 1 of the present example formed as described above had a film thickness of 1.7 μm, a surface roughness Ra of 0.29 μm, a hardness of 23 GPa, and the friction coefficient at this time was 0.21. With this friction coefficient value, the slip amount between the coating 1 and the rubber ball 13 is appropriate. Further, no abrasion was observed on the surface of the coating 1 after the test. Although the surface of the rubber ball 13 was worn, the amount of wear was slight.

上記のように、本実施例によれば、耐摩耗性,耐食性に優れ、相手材のゴムを摩耗させにくく、摩擦係数を制御できる摺動部材を提供することができる。また、本発明の摺動部材を自動車に適用した場合、基材2にAl合金を用いているため、自動車全体として軽量化でき、その結果、高効率な自動車を提供することができる。さらに、本実施例の摺動部材を自動車のブレーキピストンに適用した場合、制動時のロールバックの量を適切に制御することができるため、制動時のフィーリングのよいブレーキを提供することができる。   As described above, according to this embodiment, it is possible to provide a sliding member that is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the counterpart material, and can control the friction coefficient. Further, when the sliding member of the present invention is applied to an automobile, since the Al alloy is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a highly efficient automobile can be provided. Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .

なお、本実施例では、導電層4をCr、バッファー層5をCrNとしたが、これらに限定されず、導電層4をAl又はTi、バッファー層5をTiNとしても同様の効果が得られる。   In this embodiment, the conductive layer 4 is Cr and the buffer layer 5 is CrN. However, the present invention is not limited to these, and the same effect can be obtained when the conductive layer 4 is Al or Ti and the buffer layer 5 is TiN.

Al−Mg−Si系合金のA6061−T6材の表面が酸化膜3で覆われた基材2上に、UBMを用いて図1に示す被膜1を形成する。また、基材2の表面粗度Raが0.15μmとなるように仕上げる。   A coating 1 shown in FIG. 1 is formed using UBM on a base material 2 in which the surface of an A6061-T6 material of an Al—Mg—Si alloy is covered with an oxide film 3. Further, the surface roughness Ra of the substrate 2 is finished to be 0.15 μm.

具体的には、図3に示す条件(プロセス時間 vs ターゲット投入電力)で被膜1を形成する。まず、不活性ガスを導入しながら、バイアス電圧を印加せずにCrを主成分とする導電層4を形成する。その後、不活性ガス及び窒素ガスを導入し、バイアス電圧を印加しながらCrNを主成分とするバッファー層5を形成する。さらに、不活性ガスと炭化水素ガスとを導入し、バイアス電圧を印加しながら傾斜層6を形成する。傾斜層6の形成においては、まず、Cr炭化物層を形成し、その後、Crターゲット投入電力が徐々に減少し、かつカーボンターゲット投入電力が徐々に増加するように制御する。最後に、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。   Specifically, the film 1 is formed under the conditions (process time vs. target input power) shown in FIG. First, the conductive layer 4 mainly composed of Cr is formed without introducing a bias voltage while introducing an inert gas. Thereafter, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of CrN is formed while applying a bias voltage. Further, the gradient layer 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage. In the formation of the inclined layer 6, first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases. Finally, an inert gas and a hydrocarbon gas are introduced, and the diamond-like carbon layer 7 is formed while applying a bias voltage.

これにより、まず、電気絶縁的な基材2の表面を導電性に変化させることができるため、バッファー層5,傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。バッファー層5は、基材2よりも高硬度であることが好ましい。本実施例では、CrNを含むバッファー層5により軟質のAl合金からなる基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が良好となる。また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性をさらに向上することができる。さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。   Thereby, first, since the surface of the electrically insulating base material 2 can be changed to be conductive, the buffer layer 5, the inclined layer 6 and the diamond-like carbon layer 7 can be formed. The buffer layer 5 is preferably harder than the base material 2. In the present embodiment, the hardness of the base material 2 made of a soft Al alloy can be supplemented by the buffer layer 5 containing CrN, so that the adhesion of the diamond-like carbon layer 7 becomes good. In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved. Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.

摩擦試験評価では、相手材のゴムボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。   In the friction test evaluation, ethylene propylene diene rubber was used for the rubber ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.

上記の構成で形成した本実施例の被膜1の膜厚は8.1μm、表面粗度Raは0.50μm、硬度は30GPaであり、このときの摩擦係数は0.18であった。この摩擦係数値では、被膜1とゴムボール13との滑り量が適切となる。また、試験後の被膜1の表面に摩耗は見られなかった。ゴムボール13の表面には摩耗が見られたが、その摩耗量は僅かであった。   The film 1 of the present example formed as described above had a film thickness of 8.1 μm, a surface roughness Ra of 0.50 μm and a hardness of 30 GPa, and the friction coefficient at this time was 0.18. With this friction coefficient value, the slip amount between the coating 1 and the rubber ball 13 is appropriate. Further, no abrasion was observed on the surface of the coating 1 after the test. Although the surface of the rubber ball 13 was worn, the amount of wear was slight.

上記のように、本実施例によれば、耐摩耗性,耐食性に優れ、相手材のゴムを摩耗させにくく、摩擦係数を制御できる摺動部材を提供することができる。また、本発明の摺動部材を自動車に適用した場合、基材2にAl合金を用いているため、自動車全体として軽量化でき、その結果、高効率な自動車を提供することができる。さらに、本実施例の摺動部材を自動車のブレーキピストンに適用した場合、制動時のロールバックの量を適切に制御することができるため、制動時のフィーリングのよいブレーキを提供することができる。   As described above, according to this embodiment, it is possible to provide a sliding member that is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the counterpart material, and can control the friction coefficient. Further, when the sliding member of the present invention is applied to an automobile, since the Al alloy is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a highly efficient automobile can be provided. Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .

なお、本実施例では、導電層4をCr、バッファー層5をCrNとしたが、これらに限定されず、導電層4をAl又はTi、バッファー層5をTiNとしても同様の効果が得られる。   In this embodiment, the conductive layer 4 is Cr and the buffer layer 5 is CrN. However, the present invention is not limited to these, and the same effect can be obtained when the conductive layer 4 is Al or Ti and the buffer layer 5 is TiN.

図4は、本発明による実施例を示す自動車用ブレーキピストンの断面図である。   FIG. 4 is a sectional view of an automobile brake piston showing an embodiment according to the present invention.

本図におけるブレーキピストンは、二輪車用のものであり、車輪と同軸で回転するディスクロータ22を2段のブレーキパッド24,26のうち内側のブレーキパッド26で左右から挟むことによりブレーキが作動し、車輪の回転が止まるものである。本図は、車輪及びディスクロータ22の回転方向に平行な方向から見た縦断面図であり、ディスクロータ22の回転方向は紙面に対して垂直な方向である。   The brake piston in this figure is for a two-wheeled vehicle, and the brake is operated by sandwiching the disc rotor 22 rotating coaxially with the wheels from the left and right with the inner brake pad 26 of the two stages of brake pads 24, 26, The wheel stops rotating. This figure is a longitudinal sectional view seen from a direction parallel to the rotation direction of the wheel and the disk rotor 22, and the rotation direction of the disk rotor 22 is a direction perpendicular to the paper surface.

本図において、シリンダボア21の内部に、ピストン23,ブレーキパッド24,26及びシール25が収納されている。シール25は、シリンダボア21とピストン23との間に設置され、シリンダボア21内部に封入されたブレーキオイル203が漏れ出さないようにしている。左右のピストン23にブレーキオイル203の圧力が加わることにより、左右のピストン23が内側に移動し、ブレーキパッド26とディスクロータ22とを接触させるようになっている。   In this figure, a piston 23, brake pads 24 and 26, and a seal 25 are accommodated inside a cylinder bore 21. The seal 25 is installed between the cylinder bore 21 and the piston 23 so that the brake oil 203 sealed in the cylinder bore 21 does not leak. When the pressure of the brake oil 203 is applied to the left and right pistons 23, the left and right pistons 23 are moved inward so that the brake pads 26 and the disc rotor 22 are brought into contact with each other.

〔比較例1〕
Al−Mg−Si系合金のA6061−T6材の表面が酸化膜3で覆われた基材2上に、UBMを用いて図1に示す被膜1を形成する。また、基材2の表面粗度Raが0.02μmとなるように仕上げる。
[Comparative Example 1]
A coating 1 shown in FIG. 1 is formed using UBM on a base material 2 in which the surface of an A6061-T6 material of an Al—Mg—Si alloy is covered with an oxide film 3. Further, the surface roughness Ra of the substrate 2 is finished to 0.02 μm.

具体的には、図3に示す条件(プロセス時間 vs ターゲット投入電力)で被膜1を形成する。まず、不活性ガスを導入しながら、バイアス電圧を印加せずにCrを主成分とする導電層4を形成する。その後、不活性ガス及び窒素ガスを導入し、バイアス電圧を印加しながらCrNを主成分とするバッファー層5を形成する。さらに、不活性ガスと炭化水素ガスとを導入し、バイアス電圧を印加しながら傾斜層6を形成する。傾斜層6の形成においては、まず、Cr炭化物層を形成し、その後、Crターゲット投入電力が徐々に減少し、かつカーボンターゲット投入電力が徐々に増加するように制御する。最後に、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。   Specifically, the film 1 is formed under the conditions (process time vs. target input power) shown in FIG. First, the conductive layer 4 mainly composed of Cr is formed without introducing a bias voltage while introducing an inert gas. Thereafter, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of CrN is formed while applying a bias voltage. Further, the gradient layer 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage. In the formation of the inclined layer 6, first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases. Finally, an inert gas and a hydrocarbon gas are introduced, and the diamond-like carbon layer 7 is formed while applying a bias voltage.

これにより、まず、電気絶縁的な基材2の表面を導電性に変化させることができるため、バッファー層5,傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。
バッファー層5は、基材2よりも高硬度であることが好ましい。本比較例では、CrNを含むバッファー層5により軟質のAl合金からなる基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が良好となる。また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性をさらに向上することができる。さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。
Thereby, first, since the surface of the electrically insulating base material 2 can be changed to be conductive, the buffer layer 5, the inclined layer 6 and the diamond-like carbon layer 7 can be formed.
The buffer layer 5 is preferably harder than the base material 2. In this comparative example, since the hardness of the base material 2 made of a soft Al alloy can be supplemented by the buffer layer 5 containing CrN, the adhesion of the diamond-like carbon layer 7 becomes good. In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved. Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.

摩擦試験評価では、相手材のゴムボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。   In the friction test evaluation, ethylene propylene diene rubber was used for the rubber ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.

上記の構成で形成した本比較例の被膜1の膜厚は1.7μm、表面粗度Raは0.10μm、硬度は23GPaであり、このときの摩擦係数は0.39と高くなった。試験後の被膜1の表面に摩耗は見られなかった。一方、ゴムボール13の表面には大きな摩耗痕が見られた。   The film 1 of this comparative example formed with the above structure had a film thickness of 1.7 μm, a surface roughness Ra of 0.10 μm and a hardness of 23 GPa, and the friction coefficient at this time was as high as 0.39. No abrasion was observed on the surface of the coating 1 after the test. On the other hand, large wear marks were observed on the surface of the rubber ball 13.

上記のように、本比較例の摺動部材は耐摩耗性,耐食性に優れるが、相手材のゴムを摩耗させ、更に摩擦係数を制御することができない。本比較例の摺動部材を自動車に適用した場合、基材2にAl合金を用いているため、自動車全体として軽量化でき、その結果、高効率な自動車を提供することができるが、自動車のブレーキピストンに適用した場合、制動時のロールバックの量が大きくなるため、制動時のフィーリングのよいブレーキを提供することができない。   As described above, the sliding member of this comparative example is excellent in wear resistance and corrosion resistance, but wears the rubber of the mating member and cannot control the friction coefficient. When the sliding member of this comparative example is applied to an automobile, since the Al alloy is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a highly efficient automobile can be provided. When applied to a brake piston, the amount of rollback at the time of braking increases, so that it is not possible to provide a brake with a good feeling at the time of braking.

〔比較例2〕
Al−Mg−Si系合金のA6061−T6材の表面が酸化膜3で覆われた基材2上に、UBMを用いて図1に示す被膜1を形成する。また、基材2の表面粗度Raが0.15μmとなるように仕上げる。
[Comparative Example 2]
A coating 1 shown in FIG. 1 is formed using UBM on a base material 2 in which the surface of an A6061-T6 material of an Al—Mg—Si alloy is covered with an oxide film 3. Further, the surface roughness Ra of the substrate 2 is finished to be 0.15 μm.

具体的には、図3に示す条件(プロセス時間 vs ターゲット投入電力)で被膜1を形成する。まず、不活性ガスを導入しながら、バイアス電圧を印加せずにCrを主成分とする導電層4を形成する。その後、不活性ガス及び窒素ガスを導入し、バイアス電圧を印加しながらCrNを主成分とするバッファー層5を形成する。さらに、不活性ガスと炭化水素ガスとを導入し、バイアス電圧を印加しながら傾斜層6を形成する。傾斜層6の形成においては、まず、Cr炭化物層を形成し、その後、Crターゲット投入電力が徐々に減少し、かつカーボンターゲット投入電力が徐々に増加するように制御する。最後に、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。   Specifically, the film 1 is formed under the conditions (process time vs. target input power) shown in FIG. First, the conductive layer 4 mainly composed of Cr is formed without introducing a bias voltage while introducing an inert gas. Thereafter, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of CrN is formed while applying a bias voltage. Further, the gradient layer 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage. In the formation of the inclined layer 6, first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases. Finally, an inert gas and a hydrocarbon gas are introduced, and the diamond-like carbon layer 7 is formed while applying a bias voltage.

これにより、まず、電気絶縁的な基材2の表面を導電性に変化させることができるため、バッファー層5,傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。
バッファー層5は、基材2よりも高硬度であることが好ましい。本比較例では、CrNを含むバッファー層5により軟質のAl合金からなる基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が良好となる。また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性をさらに向上することができる。さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。
Thereby, first, since the surface of the electrically insulating base material 2 can be changed to be conductive, the buffer layer 5, the inclined layer 6 and the diamond-like carbon layer 7 can be formed.
The buffer layer 5 is preferably harder than the base material 2. In this comparative example, since the hardness of the base material 2 made of a soft Al alloy can be supplemented by the buffer layer 5 containing CrN, the adhesion of the diamond-like carbon layer 7 becomes good. In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved. Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.

摩擦試験評価では、相手材のゴムボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。   In the friction test evaluation, ethylene propylene diene rubber was used for the rubber ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.

上記の構成で形成した本比較例の被膜1の膜厚は1.8μm、表面粗度Raは0.24μm、硬度は9GPaであり、このときの摩擦係数は0.24であった。ゴムボール13の表面には摩耗が見られたが、その摩耗量は僅かであった。一方、試験後の被膜1の表面に摩耗が見られた。   The film 1 of this comparative example formed with the above structure had a film thickness of 1.8 μm, a surface roughness Ra of 0.24 μm, a hardness of 9 GPa, and the friction coefficient at this time was 0.24. Although the surface of the rubber ball 13 was worn, the amount of wear was slight. On the other hand, wear was observed on the surface of the coating 1 after the test.

上記のように、本比較例の摺動部材は、耐食性に優れ、相手材のゴムを摩耗させにくく、摩擦係数を制御することができるが、耐摩耗性に乏しい。本比較例の摺動部材を自動車に適用した場合、基材2にAl合金を用いているため、自動車全体として軽量化でき、その結果、高効率な自動車を提供することができる。しかし、自動車のブレーキピストンに適用した場合、長期の使用によりピストン上の被膜1が摩滅するため基材2が剥き出しとなり、シール25とピストン23が滑り易くなる。その結果、制動時のロールバックの量が小さくなることで制動解除時にピストンが初期の位置に戻らず、ディスクロータ22とブレーキパッド24が引き摺りを起こし、信頼性のあるブレーキを提供することができない。   As described above, the sliding member of this comparative example is excellent in corrosion resistance, hardly wears the counterpart rubber, and can control the coefficient of friction, but has poor wear resistance. When the sliding member of this comparative example is applied to an automobile, since the Al alloy is used for the substrate 2, the entire automobile can be reduced in weight, and as a result, a highly efficient automobile can be provided. However, when applied to a brake piston of an automobile, the coating 1 on the piston is worn away by long-term use, so that the base material 2 is exposed and the seal 25 and the piston 23 are easily slipped. As a result, the amount of rollback at the time of braking is reduced, so that the piston does not return to the initial position when the brake is released, and the disc rotor 22 and the brake pad 24 are dragged, and a reliable brake cannot be provided. .

〔比較例3〕
Al−Mg−Si系合金のA6061−T6材の表面が酸化膜3で覆われた基材2上に被膜1を形成せずに使用する。また、基材2の表面粗度Raが0.02μmとなるように仕上げる。
[Comparative Example 3]
The surface of the A6061-T6 material of Al—Mg—Si alloy is used without forming the coating 1 on the base material 2 covered with the oxide film 3. Further, the surface roughness Ra of the substrate 2 is finished to 0.02 μm.

これにより、基材2の表面の酸化膜3におけるピンホールを塞ぐ被膜が存在しないため、耐食性が低い。   Thereby, since there is no film which closes the pinhole in the oxide film 3 on the surface of the substrate 2, the corrosion resistance is low.

摩擦試験評価では、相手材のゴムボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。   In the friction test evaluation, ethylene propylene diene rubber was used for the rubber ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.

上記の構成で形成した本比較例において、摩擦係数は0.13と低くなった。試験後の基材2の表面には摩耗傷が見られた。ゴムボール13の表面には摩耗が見られたが、その摩耗量は僅かであった。また、ゴムボール13の表面には基材2の摩耗粉の移着が見られた。この摩擦係数値では、ゴムボール13の被膜1との滑り量が過大である。   In this comparative example formed with the above configuration, the friction coefficient was as low as 0.13. Abrasion scratches were observed on the surface of the base material 2 after the test. Although the surface of the rubber ball 13 was worn, the amount of wear was slight. Moreover, the transfer of the abrasion powder of the base material 2 was observed on the surface of the rubber ball 13. With this friction coefficient value, the slip amount of the rubber ball 13 with the coating 1 is excessive.

上記のように、本比較例の摺動部材は、相手材のゴムを摩耗させにくいが、耐摩耗性,耐食性に劣り、摩擦係数をも制御することができない。本比較例の摺動部材を自動車に適用した場合、基材2にAl合金を用いているため、自動車全体として軽量化でき、その結果、高効率な自動車を提供することができるが、自動車のブレーキピストンに適用した場合、まずブレーキピストンが摩耗し、さらに制動時のロールバックの量が小さくなることで制動解除時にピストンが初期の位置に戻らず、ディスクロータ22とブレーキパッド24が引き摺りを起こす。その結果、信頼性のあるブレーキを提供することができない。   As described above, the sliding member of this comparative example hardly wears the rubber of the mating member, but is inferior in wear resistance and corrosion resistance and cannot control the coefficient of friction. When the sliding member of this comparative example is applied to an automobile, since the Al alloy is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a highly efficient automobile can be provided. When applied to a brake piston, the brake piston first wears, and the amount of rollback during braking is reduced, so that the piston does not return to the initial position when braking is released, and the disc rotor 22 and the brake pad 24 drag. . As a result, a reliable brake cannot be provided.

1 硬質炭素被膜
2 基材
3 酸化膜
4 導電層
5 バッファー層
6 傾斜層
7 ダイヤモンドライクカーボン層
11 試験片
12 ワークテーブル
13 ゴムボール
14 軸
15,16 おもり
17 ホルダ
21 シリンダボア
22 ディスクロータ
23 ピストン
24 ブレーキパッド
25 シール
26 ブレーキパッド
101 アルミニウム合金
202 潤滑油
203 ブレーキオイル
DESCRIPTION OF SYMBOLS 1 Hard carbon film 2 Base material 3 Oxide film 4 Conductive layer 5 Buffer layer 6 Inclined layer 7 Diamond-like carbon layer 11 Test piece 12 Work table 13 Rubber ball 14 Shaft 15, 16 Weight 17 Holder 21 Cylinder bore 22 Disc rotor 23 Piston 24 Brake Pad 25 Seal 26 Brake pad 101 Aluminum alloy 202 Lubricating oil 203 Brake oil

Claims (10)

基材に、導電層,バッファー層,ダイヤモンドライクカーボン層を順に配置した摺動部材であって、
前記基材が、酸化アルミニウム層で覆われたアルミニウム合金であり、
前記バッファー層が、前記基材との密着性を向上させ、基材の硬度を補う層であり、
前記ダイヤモンドライクカーボン層の表面粗度がRaで0.15μm以上0.5μm以下であることを特徴とする摺動部材。
A sliding member in which a conductive layer, a buffer layer, and a diamond-like carbon layer are sequentially arranged on a base material,
The base material is an aluminum alloy covered with an aluminum oxide layer;
The buffer layer is a layer that improves adhesion with the substrate and supplements the hardness of the substrate,
The surface roughness of the diamond-like carbon layer is 0.15 μm or more and 0.5 μm or less in terms of Ra.
前記導電層がアルミニウム,クロム及びチタンから選ばれる少なくとも1種を含むことを特徴とする請求項1記載の摺動部材。   The sliding member according to claim 1, wherein the conductive layer contains at least one selected from aluminum, chromium, and titanium. 前記バッファー層がクロム窒化物及びチタン窒化物から選ばれる少なくとも1種を含むことを特徴とする請求項1または2に記載の摺動部材。   The sliding member according to claim 1 or 2, wherein the buffer layer contains at least one selected from chromium nitride and titanium nitride. 前記バッファー層がクロム炭化物及びチタン炭化物から選ばれる少なくとも1種を含むことを特徴とする請求項1または2に記載の摺動部材。   The sliding member according to claim 1 or 2, wherein the buffer layer contains at least one selected from chromium carbide and titanium carbide. 前記バッファー層と前記ダイヤモンドライクカーボン層との間に、傾斜層を設けることを特徴とする請求項1〜4のいずれか一項に記載の摺動部材。   The sliding member according to any one of claims 1 to 4, wherein an inclined layer is provided between the buffer layer and the diamond-like carbon layer. 前記傾斜層が、炭素及び金属の混合物又は金属の炭化物であり、前記傾斜層に含まれる金属の含有量が、前記基材側から外側に向かって減少し、前記傾斜層に含まれる炭素の含有量が、前記基材側から前記外側に向かって増加し、前記金属がアルミニウム,クロム及びチタンから選ばれる少なくとも1種であることを特徴とする請求項5記載の摺動部材。   The gradient layer is a mixture of carbon and metal or a metal carbide, and the content of metal contained in the gradient layer decreases from the substrate side toward the outside, and the content of carbon contained in the gradient layer. 6. The sliding member according to claim 5, wherein the amount increases from the substrate side toward the outside, and the metal is at least one selected from aluminum, chromium, and titanium. 前記ダイヤモンドライクカーボン層表面の硬度が10GPa以上30GPa以下であることを特徴とする請求項1〜6記載のいずれか一項に記載の摺動部材。   7. The sliding member according to claim 1, wherein the diamond-like carbon layer has a surface hardness of 10 GPa or more and 30 GPa or less. 前記ダイヤモンドライクカーボン層は、sp2結合炭素とsp3結合炭素とが混在することを特徴とする請求項1〜7のいずれか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 7, wherein the diamond-like carbon layer contains sp 2 bonded carbon and sp 3 bonded carbon. 請求項1〜8のいずれか一項に記載の摺動部材で構成されたことを特徴とする自動車用ブレーキピストン。   A brake piston for an automobile, comprising the sliding member according to any one of claims 1 to 8. 酸化アルミニウム層で覆われたアルミニウム合金を基材とし、この基材の表面にスパッタリング或いはイオンプレーティングにより導電層を形成する工程と、
前記基材にバイアス電圧を印加した状態で、前記導電層の上に前記基材との密着性を向上させ、前記基材の硬度を補うためのバッファー層を形成する工程と、
このバッファー層の上に傾斜層を形成する工程と、
この傾斜層の上に表面粗度がRaで0.15μm以上0.5μm以下であるダイヤモンドライクカーボン層を形成する工程と、
を含むことを特徴とする摺動部材の製造方法。
Forming a conductive layer by sputtering or ion plating on the surface of an aluminum alloy covered with an aluminum oxide layer; and
In a state where a bias voltage is applied to the base material, the step of improving the adhesion with the base material on the conductive layer and forming a buffer layer for supplementing the hardness of the base material;
Forming a gradient layer on the buffer layer;
Forming a diamond-like carbon layer having a surface roughness Ra of 0.15 μm or more and 0.5 μm or less on the inclined layer;
The manufacturing method of the sliding member characterized by including.
JP2010084776A 2010-04-01 2010-04-01 Sliding member Pending JP2013151707A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010084776A JP2013151707A (en) 2010-04-01 2010-04-01 Sliding member
PCT/JP2011/053632 WO2011125375A1 (en) 2010-04-01 2011-02-21 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084776A JP2013151707A (en) 2010-04-01 2010-04-01 Sliding member

Publications (1)

Publication Number Publication Date
JP2013151707A true JP2013151707A (en) 2013-08-08

Family

ID=44762341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084776A Pending JP2013151707A (en) 2010-04-01 2010-04-01 Sliding member

Country Status (2)

Country Link
JP (1) JP2013151707A (en)
WO (1) WO2011125375A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180141102A1 (en) * 2015-04-23 2018-05-24 Hitachi Metals, Ltd. Coated metal mold and method for manufacturing same
CN111378927A (en) * 2020-04-20 2020-07-07 海南大学 Hard film structure laid on elastic substrate and preparation method
US20220050374A1 (en) * 2020-08-17 2022-02-17 Feedback Technology Corp. Protective film with high hardness and low friction coefficient

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513902B (en) * 2012-06-19 2015-12-21 Tai Mao Ind Corp Structure of piston ring
CN111621744B (en) * 2020-03-20 2021-06-18 北京师范大学 Cutter coating and deposition method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511156B2 (en) * 2002-11-22 2010-07-28 昭和電工株式会社 Aluminum alloy manufacturing method and aluminum alloy, rod-shaped material, sliding part, forged molded product and machined molded product manufactured thereby
JP4400603B2 (en) * 2006-09-12 2010-01-20 株式会社日立製作所 Member with hard carbon coating
JP5145051B2 (en) * 2008-01-07 2013-02-13 松山技研株式会社 Hard film covering member and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180141102A1 (en) * 2015-04-23 2018-05-24 Hitachi Metals, Ltd. Coated metal mold and method for manufacturing same
US11779989B2 (en) * 2015-04-23 2023-10-10 Proterial, Ltd. Coated metal mold and method for manufacturing same
CN111378927A (en) * 2020-04-20 2020-07-07 海南大学 Hard film structure laid on elastic substrate and preparation method
US20220050374A1 (en) * 2020-08-17 2022-02-17 Feedback Technology Corp. Protective film with high hardness and low friction coefficient

Also Published As

Publication number Publication date
WO2011125375A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5227782B2 (en) Sliding member
US7273655B2 (en) Slidably movable member and method of producing same
US10895295B2 (en) Wear resistant braking systems
JP2008081522A (en) Slide member
Luo et al. Study on rotational fretting wear of bonded MoS2 solid lubricant coating prepared on medium carbon steel
JP2013151707A (en) Sliding member
JP4876464B2 (en) Low friction sliding member
JP6239817B2 (en) Manufacturing method of slide element
WO2011122662A1 (en) Anti-friction bearing
JP2000120870A (en) Piston ring
JPWO2009099226A1 (en) DLC-coated sliding member and manufacturing method thereof
JP5101879B2 (en) Sliding structure
Mo et al. Tribological investigation of WC/C coating under dry sliding conditions
JP2022107481A (en) Rolling bearing and wheel support device
WO2015163389A1 (en) Sliding method, production method for sliding structure, sliding structure, and device
CN107868936B (en) Sliding member and method for manufacturing same
JP2006008853A (en) Hard carbon film sliding member and method for producing the same
JP4730159B2 (en) Sliding member and manufacturing method thereof
WO2009050914A1 (en) Gap base material for reducing fretting wear, and fastening structure using gap base material
JP2009052081A (en) Hard carbon film
Alanou et al. Effect of different surface treatments and coatings on the scuffing performance of hardened steel discs at very high sliding speeds
JP2017025396A (en) Slide member, and method of manufacturing the same
JP2010156026A (en) Hard carbon film, and method for forming the same
JP2020033622A (en) Sliding member
Yu et al. Tailoring the mechanical and high‐temperature tribological properties of Si‐DLC films by controlling the Si content