JP2006008853A - Hard carbon film sliding member and method for producing the same - Google Patents

Hard carbon film sliding member and method for producing the same Download PDF

Info

Publication number
JP2006008853A
JP2006008853A JP2004188142A JP2004188142A JP2006008853A JP 2006008853 A JP2006008853 A JP 2006008853A JP 2004188142 A JP2004188142 A JP 2004188142A JP 2004188142 A JP2004188142 A JP 2004188142A JP 2006008853 A JP2006008853 A JP 2006008853A
Authority
JP
Japan
Prior art keywords
carbon film
hard carbon
sliding member
layer
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004188142A
Other languages
Japanese (ja)
Inventor
Yusuke Okamoto
裕介 岡本
Yoshiteru Yasuda
芳輝 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004188142A priority Critical patent/JP2006008853A/en
Publication of JP2006008853A publication Critical patent/JP2006008853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lubricants (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard carbon film sliding member that can readily smoothen its sliding surfaces and shows a low friction coefficient and provide a method for producing such a hard carbon film sliding member. <P>SOLUTION: By varying the hydrogen partial pressure in the film-forming atmosphere during formation of the hard carbon film by the vapor phase process, the hard carbon film is made a multi-layered structure composed at least of a soft-layer 1 on the outermost surface and a hard layer 2 under the soft layer 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低摩擦特性に優れた硬質炭素皮膜摺動部材に係わり、特にエンジンオイル、トラスミッションオイル等の潤滑油中で使用するのに適した硬質炭素皮膜摺動部材と、このような摺動部材の製造方法に関するものである。   The present invention relates to a hard carbon film sliding member having excellent low friction characteristics, and particularly to a hard carbon film sliding member suitable for use in a lubricating oil such as engine oil and transmission oil, and such a sliding material. The present invention relates to a method for manufacturing a moving member.

硬質炭素皮膜は、アモルファス状の炭素あるいはアモルファス状の水素化炭素から成る膜であって、a−C:H(アモルファスカーボンまたは水素化アモルファスカーボン)、i−C(アイカーボン)、DLC(ダイヤモンドライクカーボンまたはディーエルシー)などとも呼ばれている。
そして、このような硬質炭素皮膜を形成するには、炭化水素ガスをプラズマ分解して成膜するプラズマCVD法、あるいは炭素や炭化水素イオンを用いるイオンビーム蒸着法、アークイオンプレーティング法、マグネトロンスパッタ法などの公知の薄膜合成法が用いられる。
The hard carbon film is a film made of amorphous carbon or amorphous hydrogenated carbon, and includes aC: H (amorphous carbon or hydrogenated amorphous carbon), iC (eye carbon), DLC (diamond-like). (Carbon or DLC).
In order to form such a hard carbon film, a plasma CVD method in which a hydrocarbon gas is plasma-decomposed, an ion beam evaporation method using carbon or hydrocarbon ions, an arc ion plating method, a magnetron sputtering method, or the like. A known thin film synthesis method such as the method is used.

この硬質炭素皮膜は高硬度で表面が平滑であり耐摩耗性に優れ、さらにはその固体潤滑性から摩擦係数が低く、優れた摺動特性を有している。
例えば、通常の平滑な鋼材表面の無潤滑下での摩擦係数が0.5〜1.0であるのに対し、硬質炭素皮膜においては、無潤滑下での摩擦係数が0.1程度である。
This hard carbon film has a high hardness, a smooth surface, excellent wear resistance, a low coefficient of friction due to its solid lubricity, and excellent sliding characteristics.
For example, the friction coefficient of non-lubricated surface of a normal smooth steel material is 0.5 to 1.0, whereas in the hard carbon film, the friction coefficient of non-lubricated is about 0.1. .

硬質炭素皮膜は、上記のような優れた特性を活かし、ドリルの刃を始めとする切削工具や研削工具等の加工工具や、塑性加工用金型、バルブコックやキャプスタンローラのような無潤滑下での摺動部品等に応用されている。   The hard carbon film makes use of the above-mentioned excellent characteristics and is a non-lubricating tool such as a cutting tool such as a drill blade or grinding tool, a metal mold for plastic processing, a valve cock or a capstan roller. It is applied to sliding parts below.

一方、潤滑油中で摺動する内燃機関などの機械部品においても、エネルギー消費や環境問題の面からできるだけ機械的損失を低減したいという要求があり、摩擦損失の大きい摺動条件の厳しい部位への硬質炭素皮膜の適用が検討されている。その際には、当該部位の表面粗さや摺動速度、面圧、潤滑油および潤滑油に含有される添加剤との相互作用などについて考慮し、膜の仕様決定や潤滑油の選定を行う必要がある(例えば、特許文献1参照)。
特開2000−297373号公報
On the other hand, in mechanical parts such as internal combustion engines that slide in lubricating oil, there is a demand to reduce mechanical loss as much as possible from the viewpoint of energy consumption and environmental problems. Application of a hard carbon film is being studied. In that case, it is necessary to determine the specifications of the film and select the lubricating oil in consideration of the surface roughness, sliding speed, surface pressure, lubricating oil and interaction with additives contained in the lubricating oil. (For example, refer to Patent Document 1).
JP 2000-297373 A

一般に、摺動部材においては、その表面粗さが摩擦特性や摩耗特性に大きく影響する。硬質炭素皮膜も例外ではなく、無潤滑条件ではもちろんのこと、潤滑油中で使用する場合においても、面圧が高いか、相対的な摺動速度が小さいか、油の粘度が低いかの条件、いわゆる境界潤滑条件となると、摩擦係数は表面粗さの影響を強く受けることになる。当然ながら表面は平滑であるほど、摩擦係数を下げるために好ましい。   In general, the surface roughness of a sliding member greatly affects the friction characteristics and wear characteristics. Hard carbon film is no exception, and not only in non-lubricated conditions, but also when used in lubricating oil, the conditions of high surface pressure, low relative sliding speed, or low oil viscosity In so-called boundary lubrication conditions, the friction coefficient is strongly influenced by the surface roughness. Of course, the smoother the surface, the better for reducing the coefficient of friction.

本発明は、硬質炭素皮膜の表面形状に係わる上記のような課題に着目してなされたものであって、その目的とするところは、従来の硬質炭素皮膜に比べて平滑表面が容易に得られ、その結果として低い摩擦係数を示す硬質炭素皮膜摺動部材と、このような硬質炭素皮膜摺動部材の製造方法を提供することにある。   The present invention has been made paying attention to the above-mentioned problems related to the surface shape of the hard carbon film, and the object is to obtain a smooth surface more easily than the conventional hard carbon film. Then, as a result, it is providing the hard carbon film sliding member which shows a low friction coefficient, and the manufacturing method of such a hard carbon film sliding member.

本発明者らは、上記目的を達成すべく、硬質炭素皮膜の種類やその成分、成膜方法などについて鋭意検討を重ねた結果、硬質炭素皮膜を少なくとも硬軟2層の多層構造とし、表面側を軟質層とすることによって、上記目的を達成できることを見出し、本発明を完成するに到った。   In order to achieve the above object, the present inventors have conducted extensive studies on the types and components of the hard carbon film, the film forming method, and the like. As a result, the hard carbon film has a multilayer structure of at least two hard and soft layers, and the surface side is The present inventors have found that the above object can be achieved by using a soft layer, and have completed the present invention.

すなわち、本発明の硬質炭素皮膜摺動部材は、2層以上の硬質炭素皮膜から成る積層構造を有し、最表層の硬度よりもその下層側層の硬度の方が高いことを特徴とするものであって、本発明の硬質炭素皮膜摺動部材の製造方法においては、硬質炭素皮膜摺動部材の上記積層構造を形成するに際して、気相法による硬質炭素皮膜の成膜中に雰囲気中の水素分圧を変化させるようにしており、必要に応じて積層構造の形成終了後に最表面層を研磨するようにしている。   That is, the hard carbon film sliding member of the present invention has a laminated structure composed of two or more layers of hard carbon film, and the hardness of the lower layer is higher than the hardness of the outermost layer. In the method for producing a hard carbon film sliding member of the present invention, when forming the laminated structure of the hard carbon film sliding member, hydrogen in the atmosphere is formed during the formation of the hard carbon film by a vapor phase method. The partial pressure is changed, and the outermost surface layer is polished as necessary after the formation of the laminated structure.

本発明によれば、2層以上の積層構造をなす硬質炭素皮膜における最表層を比較的軟質な層とし、その内側に最表層よりも硬度の高い硬質層を有するものであるから、皮膜最表面の凸部が相対的に早く摩耗し、摺動開始後速やかに、あるいはあらかじめ研磨しておくことによって摺動部材表面の平滑性を向上させることができ、摩擦係数を低下することができる。なお、本発明に関る硬質炭素皮膜摺動部材は無潤滑でも用いることができるが、とくに潤滑油中で用いた場合にその効果が顕著に発揮される。
また、上記のような積層構造を形成するにあたり、気相法による硬質炭素皮膜の成膜中に雰囲気中の水素分圧を変化させるようにしていることから、硬質炭素皮膜各層の水素原子濃度及び硬度を所望の状態にコントロールすることができ、上記のような硬度分布を有する硬質炭素皮膜摺動部材を容易に製造することができる。
According to the present invention, the outermost layer in the hard carbon film having a laminated structure of two or more layers is a relatively soft layer, and the innermost layer has a hard layer having a hardness higher than the outermost layer. The protrusions of the surface wear relatively quickly, and the smoothness of the surface of the sliding member can be improved by polishing immediately after the start of sliding or in advance, and the friction coefficient can be reduced. The hard carbon film sliding member according to the present invention can be used even without lubrication, but the effect is remarkably exhibited especially when used in lubricating oil.
Further, in forming the laminated structure as described above, since the hydrogen partial pressure in the atmosphere is changed during the formation of the hard carbon film by the vapor phase method, the hydrogen atom concentration of each layer of the hard carbon film and The hardness can be controlled to a desired state, and a hard carbon film sliding member having the above hardness distribution can be easily manufactured.

以下、本発明について、さらに詳細に説明する。
本発明の硬質炭素皮膜摺動部材における硬質炭素皮膜は、図1(a)に示すように,下地材3の上に、少なくとも、硬度が高く摩耗しにくい層2(以下、「硬質層」と称する)と、そのさらに表面側に、相対的に硬度の低い層1(以下、「軟質層」と称する)を備えた構造をなしている。
このような積層構造を有する皮膜で覆われた摺動部材が相手部材に対して摺動すると、全体を硬質層で構成した場合と比較して、皮膜の凸部が相対的に早く摩耗する。一方、凹部については、軟質層が埋め込まれたままとなる。この結果、図1(b)に示すように、全体を硬質層で構成した場合に比べて、使用中の平滑性が早期に向上する。なお、このとき、必要に応じて、成膜後に研磨する工程を加えることによって使用初期の状態から平滑性を良好にしておくことも可能である。
Hereinafter, the present invention will be described in more detail.
As shown in FIG. 1 (a), the hard carbon film in the hard carbon film sliding member of the present invention has at least a layer 2 (hereinafter referred to as "hard layer") having high hardness and not easily worn on the base material 3. And a layer 1 having a relatively low hardness (hereinafter referred to as “soft layer”) on the surface side.
When the sliding member covered with the film having such a laminated structure slides with respect to the counterpart member, the convex part of the film is worn relatively quickly as compared with the case where the whole is constituted by the hard layer. On the other hand, the soft layer remains embedded in the recess. As a result, as shown in FIG. 1B, the smoothness during use is improved early as compared with the case where the entirety is formed of a hard layer. At this time, if necessary, it is possible to improve the smoothness from the initial state of use by adding a polishing step after film formation.

一般に、潤滑剤中で二つの部材を摺動させる場合、その摩擦係数はそれぞれの部材の表面粗さと密接な関連がある。いま潤滑剤膜の厚さをh、一方の部材の表面粗さ(自乗平均粗さ)をRq1、他方の表面粗さ(自乗平均粗さ)をRq2とした場合、次式(1)で表される油膜パラメータΛの値をなるべく大きくし、摺動条件を流体潤滑条件に近づけることが摩擦低減の上で望ましい。具体的にはΛが概ね3以上で流体潤滑、1から3の範囲で混合潤滑になると言われている。1未満となると固体接触の影響が顕著な境界潤滑となり、潤滑剤の効果が発揮されにくく摩擦係数が大きくなる。
Λ=h÷(Rq1+Rq21/2 ・・・ (1)
Generally, when two members are slid in a lubricant, the coefficient of friction is closely related to the surface roughness of each member. When the thickness of the lubricant film is h, the surface roughness (root mean square roughness) of one member is Rq1, and the other surface roughness (root mean square roughness) is Rq2, the following formula (1) In order to reduce friction, it is desirable to increase the value of the oil film parameter Λ as much as possible and bring the sliding condition closer to the fluid lubrication condition. Specifically, it is said that fluid lubrication occurs when Λ is approximately 3 or more, and mixed lubrication occurs within a range of 1 to 3. When the ratio is less than 1, boundary lubrication is significantly affected by solid contact, and the effect of the lubricant is hardly exhibited, and the friction coefficient is increased.
Λ = h ÷ (Rq1 2 + Rq2 2 ) 1/2 (1)

ここで、hは、面圧と、摺動箇所近傍の巨視的形状と、潤滑剤の性状によって決まる。従って、Λを大きくするためには部材側でRq1及びRq2の少なくともいずれか一方を小さくするべきであることは言うまでもない。
その解決法の一つが上述したように、硬質層の上に相対的に軟質の層を設けることによる早期平滑化であるが、本発明の効果は単に表面粗さの改善に留まらない。
Here, h is determined by the surface pressure, the macroscopic shape near the sliding portion, and the property of the lubricant. Accordingly, it goes without saying that in order to increase Λ, at least one of Rq1 and Rq2 should be reduced on the member side.
As described above, one of the solutions is the early smoothing by providing a relatively soft layer on the hard layer, but the effect of the present invention is not limited to the improvement of the surface roughness.

すなわち、本発明の硬質炭素皮膜摺動部材においては、最表層(軟質層)の摩耗により下地材の凸部において露出する硬質層が、以下に説明するように重要な働きをし、これにより摩擦係数の一層の低減を図ることができ、前述の表面平滑度向上と相俟って一層の摩擦低減を図ることができる。   That is, in the hard carbon film sliding member of the present invention, the hard layer exposed at the convex portion of the base material due to the abrasion of the outermost layer (soft layer) plays an important role as described below, and thereby friction The coefficient can be further reduced, and the friction can be further reduced in combination with the above-described improvement in surface smoothness.

硬質炭素皮膜の硬度を調整する方法はいくつかあるが、本発明の硬質炭素皮膜摺動部材においては、硬質層を形成するにあたり、層中の水素原子の割合を少なくする方法が好ましい。この場合の水素原子の割合は1原子%以下、好ましくは0.3%以下とする。ここで、水素原子の含有量が1原子%を超えると、所望の硬度が得られない可能性がある。また、水素が1原子%を超えても所望の硬度となることもあるが、以下に述べる摩擦低減効果が得にくくなることがわかった。
本発明者らは、これまでの研究の結果、潤滑剤中で硬質炭素皮膜が摺動する場合、膜中の水素量が少ないほど摩擦係数が下がることを見いだした。その機構は現時点ではまだ完全には解明されていないが、層中の水素が少ないほど、潤滑材中の基油や添加剤との相互作用が強くなり、表面に基油分子や添加剤分子が吸着して相手材との直接接触が防止されること、すなわち式(1)においてhの値を大きくしたのと等価の効果が得られるためと考えている。この目的のために、水素原子の割合は1原子%以下、好ましくは0.3%以下とすることが好ましい。
There are several methods for adjusting the hardness of the hard carbon film, but in the hard carbon film sliding member of the present invention, a method of reducing the proportion of hydrogen atoms in the layer is preferable in forming the hard layer. In this case, the proportion of hydrogen atoms is 1 atomic% or less, preferably 0.3% or less. Here, if the content of hydrogen atoms exceeds 1 atomic%, the desired hardness may not be obtained. Moreover, even if hydrogen exceeds 1 atomic%, it may become a desired hardness, but it turned out that the friction reduction effect described below becomes difficult to obtain.
As a result of previous studies, the present inventors have found that when the hard carbon film slides in the lubricant, the friction coefficient decreases as the amount of hydrogen in the film decreases. The mechanism is not completely elucidated yet, but the less hydrogen in the layer, the stronger the interaction with the base oil and additives in the lubricant, and the more base oil molecules and additive molecules are on the surface. It is considered that the direct contact with the counterpart material is prevented by adsorption, that is, an effect equivalent to increasing the value of h in the formula (1) is obtained. For this purpose, the proportion of hydrogen atoms is preferably 1 atom% or less, preferably 0.3% or less.

この硬質層を覆う軟質層の形成方法については、特に限定されないが、簡便な方法として膜中に水素を含有させる方法がある。水素を含有する硬質炭素皮膜は水素化アモルファスカーボンとして知られており、炭化水素ガスを原料とした化学気相合成(CVD法)など公知の方法で成膜することができる。また、アークイオンプレーティング法やマグネトロンスパッタ法など、通常は炭素のみを原料として成膜を行う方法においても、成膜中の雰囲気の一部に水素ガス、もしくは炭化水素ガスを導入することで、膜中に水素を含有させることもできる。   The method for forming the soft layer covering the hard layer is not particularly limited, but there is a simple method in which hydrogen is contained in the film. The hard carbon film containing hydrogen is known as hydrogenated amorphous carbon, and can be formed by a known method such as chemical vapor synthesis (CVD method) using a hydrocarbon gas as a raw material. In addition, even in a method of forming a film using only carbon as a raw material, such as an arc ion plating method or a magnetron sputtering method, by introducing hydrogen gas or hydrocarbon gas into a part of the atmosphere during film formation, Hydrogen can also be contained in the film.

軟質層の厚さは、硬質層の表面粗さを勘案して決定される。硬質層の表面粗さを、日本工業規格に規定されるRq値(自乗平均粗さ)で表して、その0.7〜2倍程度の厚さの軟質層を設けるとよい。すなわち、薄すぎると表面平坦化の効果が小さく、厚すぎると下地の硬質層が表面に現れて摩擦が下がり始めるまでに時間を要する。
硬質層の表面粗さを測定するには、予備実験によって硬質層まで成膜を終了した試料を作り、それを適宜の表面粗さ計で測定すればよい。その上で表面を被覆すべき軟質層の厚さを計算することは容易に行える。
The thickness of the soft layer is determined in consideration of the surface roughness of the hard layer. The surface roughness of the hard layer is represented by an Rq value (root mean square roughness) defined in Japanese Industrial Standard, and a soft layer having a thickness of about 0.7 to 2 times is preferably provided. That is, if it is too thin, the effect of flattening the surface is small, and if it is too thick, it takes time until the underlying hard layer appears on the surface and friction starts to decrease.
In order to measure the surface roughness of the hard layer, a sample in which film formation has been completed up to the hard layer is made by a preliminary experiment, and it is measured with an appropriate surface roughness meter. It is easy to calculate the thickness of the soft layer on which the surface is to be coated.

本発明の硬質炭素皮膜摺動部材においては、硬質層の上に形成する表面軟質層を2層以上の構造にしてもよい。その場合はいずれの表面軟質層の硬度も、当該硬質層の硬度より小さくなるように設計すればよい。また、硬質層と下地の間に、応力緩和や密着性向上などを目的として、適宜の公知の中間層を設けてもよい。この場合の中間層には水素を含む硬質炭素皮膜(水素化アモルファスカーボン)も選択肢に含まれる。   In the hard carbon film sliding member of the present invention, the surface soft layer formed on the hard layer may have a structure of two or more layers. In that case, what is necessary is just to design so that the hardness of any surface soft layer may become smaller than the hardness of the said hard layer. Further, an appropriate known intermediate layer may be provided between the hard layer and the base for the purpose of stress relaxation and adhesion improvement. In this case, the intermediate layer includes a hard carbon film containing hydrogen (hydrogenated amorphous carbon) as an option.

本発明の上記硬質炭素皮膜摺動部材の製法については、表面側に軟質層、下地側に硬質層が形成されるものであれば特に限定されないが、以下の方法を用いると同一装置内で連続的に硬質炭素皮膜の成膜を行うことができコスト的に有利なものとなる。
すなわち、アークイオンプレーティング法やマグネトロンスパッタ法のように、本来的にはその製造プロセスに水素が介在しない成膜法を用いて、最初に所望の硬質層を形成した後、続いて成膜雰囲気に水素又は炭化水素を導入し、水素を含む軟質層を形成する。
The method for producing the hard carbon film sliding member of the present invention is not particularly limited as long as a soft layer is formed on the surface side and a hard layer is formed on the base side. Therefore, a hard carbon film can be formed, which is advantageous in terms of cost.
That is, a desired hard layer is first formed using a film forming method that does not involve hydrogen in the manufacturing process, such as arc ion plating and magnetron sputtering, and then a film forming atmosphere is subsequently formed. Hydrogen or a hydrocarbon is introduced into the substrate to form a soft layer containing hydrogen.

水素を実質的に含まない硬質層及び水素を含む軟質層の成膜レートについては、別途予備実験を行って求めておく。この成膜レートに応じ、成膜開始から一定時間は水素・炭化水素とも含まない雰囲気で成膜を行い、引き続いて、所望の軟質層の厚さに応じた時間だけ、雰囲気に水素または炭化水素を導入して成膜を行って軟質層を形成すればよい。
軟質層中の水素量は、「炭化水素又は水素の導入量」と「膜中の水素量」の関係を、予備実験を行って求めておき、それに応じた量の水素又は炭化水素を雰囲気に導入して制御すればよい。
The film formation rates of the hard layer that does not substantially contain hydrogen and the soft layer that contains hydrogen are determined through separate preliminary experiments. Depending on the film formation rate, film formation is performed in an atmosphere that does not contain hydrogen or hydrocarbons for a certain period of time from the start of film formation, and then hydrogen or hydrocarbons are added to the atmosphere for a time corresponding to the desired soft layer thickness. May be formed to form a soft layer.
The amount of hydrogen in the soft layer is obtained by conducting a preliminary experiment to determine the relationship between the “amount of hydrocarbon or hydrogen introduced” and the “amount of hydrogen in the film”, and an appropriate amount of hydrogen or hydrocarbon in the atmosphere. It can be introduced and controlled.

なお、軟質層の成膜中においても、水素又は炭化水素の導入量を一定にする必要はなく、例えば連続的に変化させてもよい。すなわち軟質層内においても、下地に近い側の水素量が低く、表面に近い側の水素量が多いような傾斜分布を持たせることもできる。
また、成膜後の膜中の水素濃度及びその深さ方向の分布は、2次イオン質量分析などの方法を用いて求めることができる。
Even during the formation of the soft layer, it is not necessary to make the introduction amount of hydrogen or hydrocarbon constant, and for example, it may be changed continuously. That is, even in the soft layer, it is possible to have a gradient distribution in which the amount of hydrogen near the base is low and the amount of hydrogen near the surface is large.
Further, the hydrogen concentration in the film after film formation and the distribution in the depth direction can be obtained using a method such as secondary ion mass spectrometry.

以下、本発明の実施例を比較例と併せて説明する。なお、本発明の請求項を満たす形であれば必ずしも以下の実施形態によらなくてよいことは言うまでもない。   Examples of the present invention will be described below together with comparative examples. Needless to say, the embodiment described below is not necessarily required as long as it satisfies the claims of the present invention.

(実施例1)
本例においては、アークイオンプレーティング法により成膜を行い、雰囲気ガスの組成を変化させることにより硬質層と軟質層を作り分けるようにした。
まず、基材として浸炭鋼(JIS G4105 SCM415)から成る直径30mm、厚さ2.6mmの円板を準備し、その表面を超仕上げ加工した。触針式表面粗さ計で表面粗さを測定したところ、Rq=0.037μmであった。この後、ヘキサン中で超音波洗浄して汚れと油分を除去した。
Example 1
In this example, a film is formed by an arc ion plating method, and a hard layer and a soft layer are separately formed by changing the composition of the atmospheric gas.
First, a disk made of carburized steel (JIS G4105 SCM415) having a diameter of 30 mm and a thickness of 2.6 mm was prepared as a base material, and the surface thereof was superfinished. When the surface roughness was measured with a stylus type surface roughness meter, it was Rq = 0.037 μm. Thereafter, ultrasonic cleaning was performed in hexane to remove dirt and oil.

次に、図2に示すような真空容器4に、上記によって得られた基材7を収納し、真空ポンプへの排気口9を通じて10−4Paまで排気した。その後、雰囲気ガスとしてアルゴンをガス系統配管5から導入し、内圧が1Paになるよう流量を調整した。
続いて、直流電源10の電圧を50〜100Vに設定し、50Aの定電流が流れるように制御を行い、炭素電極6との間でアーク放電が生じるようにした。これにより生じた炭素プラズマを直流電源8によるバイアスによって基材7に引き寄せ、基材7上に硬質炭素皮膜が形成されるようにした。基材のバイアス電圧は−200ボルトとした。
Next, the base material 7 obtained by the above was accommodated in the vacuum vessel 4 as shown in FIG. 2, and it exhausted to 10 <-4> Pa through the exhaust port 9 to a vacuum pump. Thereafter, argon was introduced as an atmospheric gas from the gas system pipe 5 and the flow rate was adjusted so that the internal pressure became 1 Pa.
Subsequently, the voltage of the DC power supply 10 was set to 50 to 100 V, and control was performed so that a constant current of 50 A would flow, so that arc discharge occurred between the carbon electrode 6. The carbon plasma generated by this was attracted to the base material 7 by a bias from the DC power source 8 so that a hard carbon film was formed on the base material 7. The bias voltage of the substrate was −200 volts.

まず、この条件で30分の間、雰囲気にメタンを加えることなく、アルゴンのみの雰囲気で成膜を行い(硬質層に相当)、次いで1分の間、雰囲気にメタン(アルゴン:メタンが体積比で2:1になるように制御、このとき真空容器の内圧は1.3Pa)を加えて成膜を行った。なお、この条件は以下の予備実験の結果に基づいて決定したものである。   First, film formation was performed in an argon-only atmosphere without adding methane to the atmosphere for 30 minutes under this condition (corresponding to a hard layer), and then methane (argon: methane in a volume ratio) for 1 minute. In this case, the film was formed by adding 2: 1 to the vacuum vessel. This condition was determined based on the results of the following preliminary experiment.

〔予備試験1〕
〔1〕成膜レートの測定
上記と同じ基材7を用いて、同様の条件でまず雰囲気にメタンを加えない条件のみで30分の成膜を行い、これを試料イとした。成膜後に膜厚試験機(カロテスト)で膜厚の測定を行った。その結果、30分の成膜により1.2μmの膜厚が得られたので、メタンを加えない場合(硬質層に相当)の成膜レートは、毎分40nmと算出された。
次に、新たに別の新しい基材7を用意して、同様に真空容器4にセットし、雰囲気にメタンを加えつつ、他の条件(バイアス電圧など)は同じにして成膜を行い、これを試料ロとした。このときの真空容器の内圧は1.3Paである。アルゴンとメタンの体積比が2:1になるように制御したのも同じである。この場合は30分の成膜によって1.5μm厚さの膜ができたので、成膜レートは毎分50nmと算出された。
〔2〕表面粗さの測定
上記〔1〕で作成した試料イについて、触針式の表面粗さ計で表面粗さを測定した。その結果、Rq=0.032μmであった。谷部を埋めることを考え、表面の軟質層は50nm設けることとし、〔1〕で求めた成膜レートから、軟質層の成膜時間を1分と決定した。
〔3〕硬さの測定
上記〔1〕で作成した試料イ及びロについて、超微小硬度計(島津製作所(株)製)を用いて、押し込み法によるマイクロビッカース硬さの測定を行った。このときの測定荷重は49×10−3Nとした。その結果、試料イの膜については42GPa、試料ロの膜については18GPaと求められた。
〔4〕水素量の測定
試料イについて、ラザフォード後方散乱法(RBS)を用いて水素量の測定を行った。その結果、試料イの膜中の水素量は0.1原子%以下と求められた。また、試料ロの膜中の水素量については29原子%であった。
[Preliminary test 1]
[1] Measurement of film-forming rate Using the same base material 7 as described above, a film was formed for 30 minutes under the same conditions and without adding methane to the atmosphere. After film formation, the film thickness was measured with a film thickness tester (Carotest). As a result, a film thickness of 1.2 μm was obtained by film formation for 30 minutes, and therefore the film formation rate when methane was not added (corresponding to a hard layer) was calculated to be 40 nm per minute.
Next, another new base material 7 is prepared, set in the vacuum container 4 in the same manner, and methane is added to the atmosphere, and the other conditions (bias voltage, etc.) are made to be the same, and film formation is performed. Was used as a sample B. The internal pressure of the vacuum vessel at this time is 1.3 Pa. It is the same that the volume ratio of argon and methane is controlled to be 2: 1. In this case, since a film having a thickness of 1.5 μm was formed by the film formation for 30 minutes, the film formation rate was calculated to be 50 nm per minute.
[2] Measurement of surface roughness About sample (a) created by said [1], surface roughness was measured with the stylus type surface roughness meter. As a result, Rq = 0.032 μm. In consideration of filling the valley, the surface soft layer was provided with a thickness of 50 nm, and the film formation time of the soft layer was determined as 1 minute from the film formation rate obtained in [1].
[3] Measurement of hardness The samples A and B prepared in [1] above were measured for micro Vickers hardness by an indentation method using an ultra-micro hardness meter (manufactured by Shimadzu Corporation). The measurement load at this time was 49 × 10 −3 N. As a result, 42 GPa was obtained for the sample A film, and 18 GPa was obtained for the sample B film.
[4] Measurement of hydrogen content Sample A was measured for hydrogen content using Rutherford backscattering method (RBS). As a result, the amount of hydrogen in the film of Sample A was determined to be 0.1 atomic% or less. The amount of hydrogen in the film of sample B was 29 atomic%.

硬質層と軟質層との積層構造を有する硬質炭素皮膜(以下、「複合炭素皮膜」と称する)が形成された基材7を真空容器4から取り出し、表面から20nmまでの平均の水素量を2次イオン質量分析法(SIMS)によって求めた。なお、この測定値は軟質層内の水素量に相当するものであって、測定の結果、水素は26原子%含まれていることが分かった。なお、硬質層内の水素量は予備試験の〔4〕で求めた試料イの値と同等(0.1原子%以下)であるものと推定した。   A base material 7 on which a hard carbon film having a laminated structure of a hard layer and a soft layer (hereinafter referred to as “composite carbon film”) is formed is taken out of the vacuum vessel 4 and the average amount of hydrogen from the surface to 20 nm is 2 Determined by secondary ion mass spectrometry (SIMS). This measured value corresponds to the amount of hydrogen in the soft layer, and as a result of measurement, it was found that 26 atomic% of hydrogen was contained. The amount of hydrogen in the hard layer was estimated to be the same as the value of sample (a) obtained in [4] of the preliminary test (0.1 atomic% or less).

また、表面粗さを触針式表面粗さ計で測定したところ、Rq=0.030μmであった。なお、この複合炭素皮膜の硬質層及び軟質層の硬さを直接測定するのは困難であるため、上記予備実験の試料イおよびロの硬度と同等であるものと推定し、これらの値をもってそれぞれの測定値に代えることとした。   Moreover, it was Rq = 0.030micrometer when the surface roughness was measured with the stylus type surface roughness meter. In addition, since it is difficult to directly measure the hardness of the hard layer and the soft layer of this composite carbon film, it is estimated that it is equivalent to the hardness of sample A and b in the preliminary experiment, and these values are respectively used. It was decided to replace the measured value.

次いで、この硬質層と軟質層の積層構造を有する複合炭素皮膜の表面をダイヤモンド砥粒(8000番)を用いて研磨し、凸部の軟質層を摩耗させて下地の硬質層を露出させた。研磨すべき量は硬質層の表面粗さと、軟質層の積層厚さによって決まるが、軟質層の積層厚さの1から2倍程度、好ましくは1.2から1.6倍程度を除去する野が良い。除去する厚みが小さいと硬質層が表面に出ないため摩擦係数が下がり難く、除去する厚みを必要以上に大きくすると加工にコストがかかることになる。
研磨後の表面粗さを同様に測定したところ、Rq=0.016μmであった。
なお、本実施例でにおいては、効果を早期に評価するために人為的に研磨を行ったが、研磨を施すことなく、摺動部品としての使用中に生じる摩耗、特に初期摩耗を利用して、凸部表面の軟質層を摩滅させるようにしてもよい。
Next, the surface of the composite carbon film having a laminated structure of the hard layer and the soft layer was polished using diamond abrasive grains (# 8000), and the soft layer of the convex portion was worn to expose the underlying hard layer. The amount to be polished is determined by the surface roughness of the hard layer and the lamination thickness of the soft layer, but is a field that removes about 1 to 2 times, preferably about 1.2 to 1.6 times the lamination thickness of the soft layer. Is good. If the thickness to be removed is small, the hard layer does not appear on the surface, so the coefficient of friction is difficult to decrease. If the thickness to be removed is increased more than necessary, the processing will be expensive.
When the surface roughness after polishing was measured in the same manner, it was Rq = 0.016 μm.
In this example, artificial polishing was performed in order to evaluate the effect at an early stage, but without using polishing, wear generated during use as a sliding part, in particular, initial wear was used. The soft layer on the convex surface may be worn away.

次に、この試料の摩擦特性の評価を、トライボメータ(スイス国CSM社製)により行った。試験には、ボールオンディスク法を用いた。この試験においては、円板状試料の上で、転がらないように固定されボールを摺動させるようにしており、荷重は18N、ピンの周速は0.01m/sとし、ボールの材質は浸炭鋼(JIS G4805 SUJ2材)、その径は6mmである。   Next, the friction characteristics of this sample were evaluated by a tribometer (manufactured by CSM, Switzerland). The ball-on-disk method was used for the test. In this test, the ball was fixed on the disk-shaped sample so as not to roll, and the ball was slid. The load was 18 N, the peripheral speed of the pin was 0.01 m / s, and the ball material was carburized. Steel (JIS G4805 SUJ2 material), its diameter is 6 mm.

潤滑剤には、市販の自動車用エンジンオイル5W−30SLを用い、ボールとピンの全体が潤滑油中に浸漬されるようにした。油温は温度調節計により80℃に設定し、試料を油に浸した後、試料の温度が油の温度に一致するまで十分に時間をおいてから測定を開始した。なお、初期のなじみ効果を考慮して、試験開始から5分経過した時点の測定値をもってその材料の摩擦係数とみなした。さらに、膜の摩擦特性についてより詳しく調査するため、以下の4種類の潤滑剤を用いて同じ試料を評価した。
[1]ポリアルファオレフィン(80℃における動粘度:8.4cSt)
[2][1]のポリアルファオレフィンに、グリセリンモノオレイトを全体の1質量%に なるように添加
[3][1]のポリアルファオレフィンに、グリセリンモノオレイトを全体の2.5質量 %になるように添加
[4][1]のポリアルファオレフィンに、トリメチロールプロパンを全体の1質量%に なるように添加
As the lubricant, commercially available automotive engine oil 5W-30SL was used, and the entire ball and pin were immersed in the lubricant. The oil temperature was set to 80 ° C. with a temperature controller, and after the sample was immersed in oil, the measurement was started after a sufficient time had passed until the temperature of the sample coincided with the temperature of the oil. In consideration of the initial familiarity effect, the measured value at the time when 5 minutes passed from the start of the test was regarded as the friction coefficient of the material. Furthermore, in order to investigate the friction characteristics of the film in more detail, the same samples were evaluated using the following four types of lubricants.
[1] Polyalphaolefin (kinematic viscosity at 80 ° C .: 8.4 cSt)
[2] Add glycerin monooleate to polyalphaolefin of [1] to 1% by mass of total [3] Add 2.5 g of glycerin monooleate to polyalphaolefin of [1] Added to the polyalphaolefin of [4] and [1] to add 1% by mass of trimethylolpropane.

なお、上記の摩擦特性試験において、潤滑剤の種類を替えたことを除いて、当初のエンジンオイル5W−30SLを用いた場合の評価と同じ条件(試験機構造、摺動速度、潤滑剤温度、相手部材)とした。また、同一試料で潤滑剤を替えながら評価しているため、その都度、試料や装置の洗浄を行っていることは言うまでもない。
それぞれの条件での摩擦係数の測定結果を表1に示す。
In the above friction characteristic test, except for changing the type of lubricant, the same conditions as the evaluation using the original engine oil 5W-30SL (test machine structure, sliding speed, lubricant temperature, Partner member). Further, since the evaluation is performed while changing the lubricant in the same sample, it goes without saying that the sample and the apparatus are cleaned each time.
Table 1 shows the results of measurement of the coefficient of friction under each condition.

(比較例1)
本例においては、アークイオンプレーティング法によって硬質層のみを成膜した。
すなわち、上記実施例1と同様に、基材として同一鋼種から成る同一サイズの円板を準備し、同様の超仕上げ加工を施した。このときの表面粗さは、Rq=0.035μmであった。そして、ヘキサンによって超音波洗浄し、汚れと油分を除去した。
(Comparative Example 1)
In this example, only the hard layer was formed by the arc ion plating method.
That is, as in Example 1 above, disks of the same size made of the same steel type were prepared as the base material and subjected to the same superfinishing process. The surface roughness at this time was Rq = 0.035 μm. Then, ultrasonic cleaning was performed with hexane to remove dirt and oil.

次に、実施例1と同様に、図2に示す真空容器4に上記基材7を収納し、真空ポンプへの排気口9を通じて10−4Paまで排気した後、雰囲気ガスとしてアルゴンをガス系統配管5から導入し、内圧が1.3Paになるよう流量を調整した。
続いて、上記実施例1と同様の条件のもとに、30分の間、アルゴン雰囲気での成膜のみを実施した。
Next, as in Example 1, the base material 7 is housed in the vacuum vessel 4 shown in FIG. 2, and after exhausting to 10 −4 Pa through the exhaust port 9 to the vacuum pump, argon is used as the atmospheric gas in the gas system. It was introduced from the pipe 5 and the flow rate was adjusted so that the internal pressure was 1.3 Pa.
Subsequently, only film formation in an argon atmosphere was performed for 30 minutes under the same conditions as in Example 1.

得られた単層の硬質炭素皮膜について、触針式の表面粗さ計で表面粗さを測定した結果、Rq=0.031μmであった。また、マイクロビッカース硬さは40GPa、ラザフォード後方散乱法(RBS)により測定した膜中の水素量は、0.1原子%以下であった。さらに、カロテスト法で求めた膜厚は、1.4μmであった。   As a result of measuring the surface roughness of the obtained single-layer hard carbon film with a stylus type surface roughness meter, it was Rq = 0.031 μm. Further, the micro Vickers hardness was 40 GPa, and the amount of hydrogen in the film measured by Rutherford backscattering method (RBS) was 0.1 atomic% or less. Furthermore, the film thickness determined by the Calotest method was 1.4 μm.

条件を揃えるため、実施例1と同じ条件で同じ時間だけ、ダイヤモンド砥粒を用いた研磨を行ったのち、上記実施例1と同様の条件のもとに、摩擦特性の評価を実施した。その結果を表1に併せて示す。なお、ダイヤモンド砥粒による上記研磨後の表面粗さはRq=0.030μmであった。   In order to make the conditions uniform, after polishing using diamond abrasive grains for the same time as in Example 1, the friction characteristics were evaluated under the same conditions as in Example 1 above. The results are also shown in Table 1. The surface roughness after polishing with diamond abrasive grains was Rq = 0.030 μm.

(比較例2)
本例においては、アークイオンプレーティング法によって軟質層のみを成膜した。
すなわち、上記実施例1と同様に、基材として同一鋼種から成る同一サイズの円板を準備し、同様の超仕上げ加工を施した。超仕上げ加工後の表面粗さは、Rq=0.040μmであった。そして、同様にヘキサンによって超音波洗浄し、汚れと油分を除去した。
(Comparative Example 2)
In this example, only the soft layer was formed by the arc ion plating method.
That is, as in Example 1 above, disks of the same size made of the same steel type were prepared as the base material and subjected to the same superfinishing process. The surface roughness after superfinishing was Rq = 0.040 μm. Similarly, ultrasonic cleaning was performed with hexane to remove dirt and oil.

次に、実施例1と同様に、図2に示す真空容器4に上記基材7を収納し、真空ポンプへの排気口9を通じて10−4Paまで排気した後、雰囲気ガスとしてアルゴンとメタンガスを体積比で2:1と成るようにガス系統配管5から導入し、内圧が1.3Paになるよう流量を調整した。
続いて、上記実施例1と同様の条件のもとに、30分の間、アルゴン及びメタンガス雰囲気で成膜を実施した。
Next, as in Example 1, the base material 7 is housed in the vacuum vessel 4 shown in FIG. 2, and after exhausting to 10 −4 Pa through the exhaust port 9 to the vacuum pump, argon and methane gas are used as the atmospheric gases. It was introduced from the gas system pipe 5 so that the volume ratio was 2: 1, and the flow rate was adjusted so that the internal pressure was 1.3 Pa.
Subsequently, film formation was performed in an argon and methane gas atmosphere for 30 minutes under the same conditions as in Example 1 above.

得られた単層の炭素皮膜について、触針式の表面粗さ計で表面粗さを測定した結果、Rq=0.032μmであった。また、マイクロビッカース硬さは18GPa、2次イオン質量分析により測定した膜中の水素量(表面から20nmを平均)は、27原子%であった。そして、カロテスト法で求めた膜厚は、2.1μmであった。   As a result of measuring the surface roughness of the obtained single layer carbon film with a stylus type surface roughness meter, Rq was 0.032 μm. Further, the micro Vickers hardness was 18 GPa, and the amount of hydrogen in the film measured by secondary ion mass spectrometry (average of 20 nm from the surface) was 27 atomic%. The film thickness determined by the Calotest method was 2.1 μm.

さらに、実施例1と同じ条件で同じ時間だけ、ダイヤモンド砥粒を用いた研磨を行ったのち、上記実施例1と同様の条件のもとに、摩擦特性の評価を実施した。その結果を表1に併せて示す。なお、ダイヤモンド砥粒による上記研磨後の表面粗さはRq=0.011μmであった。   Furthermore, after performing polishing using diamond abrasive grains for the same time under the same conditions as in Example 1, the friction characteristics were evaluated under the same conditions as in Example 1 above. The results are also shown in Table 1. The surface roughness after polishing with diamond abrasive grains was Rq = 0.111 μm.

(実施例2)
本例においては、マグネトロンスパッタ法により成膜を行い、実施例1と同様に雰囲気ガスの組成を変化させることによって硬質層と軟質層を作り分けるようにした。
まず、上記実施例1と同様に、基材として同一鋼種から成る同一サイズの円板を準備し、同様の超仕上げ加工を施した。このときの表面粗さは、Rq=0.034μmであった。そして、ヘキサンによって超音波洗浄し、汚れと油分を除去した。
(Example 2)
In this example, a film was formed by a magnetron sputtering method, and the hard gas layer and the soft layer were separately formed by changing the composition of the atmospheric gas as in the first example.
First, as in Example 1 above, disks of the same size made of the same steel type were prepared as the base material, and the same superfinishing process was performed. The surface roughness at this time was Rq = 0.034 μm. Then, ultrasonic cleaning was performed with hexane to remove dirt and oil.

次に、図3に示すような真空容器4に上記の基材7を収め、真空ポンプへの排気口9を通じて10−4Paまで排気した。その後、雰囲気ガスとしてアルゴンをガス系統配管5から導入し、内圧が1Paになるよう流量を調整した。
続いて、高周波電源11から13.56MHzの高周波を出力300Wで送り込み、炭素ターゲット12から炭素プラズマを生成させた。直流電源8により基材7にバイアスをかけ、炭素プラズマが基材7の側に引き寄せられるようにした。基材のバイアス電圧は−250Vとした。
Next, the base material 7 was placed in a vacuum vessel 4 as shown in FIG. 3 and evacuated to 10 −4 Pa through an exhaust port 9 to a vacuum pump. Thereafter, argon was introduced as an atmospheric gas from the gas system pipe 5 and the flow rate was adjusted so that the internal pressure became 1 Pa.
Subsequently, a high frequency of 13.56 MHz was sent from the high frequency power supply 11 at an output of 300 W, and carbon plasma was generated from the carbon target 12. A bias was applied to the substrate 7 by a DC power source 8 so that the carbon plasma was attracted to the substrate 7 side. The bias voltage of the substrate was −250V.

まず、この条件で30分の間、雰囲気にメタンを加えることなく、アルゴンのみの雰囲気で成膜を行い(硬質層に相当)、次いで2分の間、雰囲気にメタン(アルゴン:メタンが体積比で2:1になるように制御、このとき真空容器の内圧は1.3Pa)を加えて成膜を行った。なお、この条件は以下の予備実験を行って決定したものである。   First, film formation was performed in an atmosphere containing only argon without adding methane to the atmosphere for 30 minutes under these conditions (corresponding to a hard layer), and then methane (argon: methane was in a volume ratio) for 2 minutes. In this case, the film was formed by adding 2: 1 to the vacuum vessel. This condition was determined by conducting the following preliminary experiment.

〔予備試験2〕
〔1〕成膜レートの測定
上記と同じ基材7を用いて、同様の条件でまず雰囲気にメタンを加えない条件のみで30分の成膜を行い、これを試料ハとした。成膜後に膜厚試験機(カロテスト)で膜厚の測定を行った結果、30分の成膜によって0.6μmの膜厚が得られたので、メタンを加えない場合(硬質層に相当)の成膜レートは、毎分20nmと算出した。
次に、新たに別の新しい基材7を用意して、同様に真空容器4にセットし、雰囲気にメタンを加えつつ、他の条件(バイアス電圧など)は同じにして成膜を行い、これを試料ニとした。このときの真空容器の内圧は1.3Paである。アルゴンとメタンの体積比が2:1になるように制御したのも同じである。この場合、30分の成膜によって0.75μm厚さの膜が形成されたので、成膜レートは毎分25nmと算出した。
〔2〕表面粗さの測定
上記〔1〕で作成した試料ハについて、触針式の表面粗さ計で表面粗さを測定した。その結果、Rq=0.033μmであった。谷部を埋めることを考え、表面の軟質層は50nm設けることとし、〔1〕で求めた成膜レートから、軟質層の成膜時間を2分と決定した。
〔3〕硬さの測定
上記〔1〕で作成した試料ハ及びニについて、押し込み法によるマイクロビッカース硬さの測定を行った。測定荷重は49×10−3Nとした。その結果、試料ハの膜については41GPa、試料ニの膜については20GPaと求められた。
〔4〕水素量の測定
試料ハについて、ラザフォード後方散乱法(RBS)を用いて水素量の測定を行った。その結果、試料イの膜中の水素量は0.1原子%以下と求められた。また、試料ニの膜中の水素量については32原子%であった。
[Preliminary test 2]
[1] Measurement of film formation rate Using the same base material 7 as described above, a film was formed for 30 minutes under the same conditions, but without adding methane to the atmosphere. As a result of measuring the film thickness with a film thickness tester (Carotest) after film formation, a film thickness of 0.6 μm was obtained by film formation for 30 minutes, so when no methane was added (corresponding to a hard layer) The film formation rate was calculated to be 20 nm per minute.
Next, another new base material 7 is prepared and set in the vacuum vessel 4 in the same manner, while methane is added to the atmosphere, and other conditions (bias voltage, etc.) are formed under the same conditions. Was used as a sample D. The internal pressure of the vacuum vessel at this time is 1.3 Pa. It is the same that the volume ratio of argon and methane is controlled to be 2: 1. In this case, since a film having a thickness of 0.75 μm was formed by the film formation for 30 minutes, the film formation rate was calculated to be 25 nm per minute.
[2] Measurement of surface roughness With respect to the sample C prepared in the above [1], the surface roughness was measured with a stylus type surface roughness meter. As a result, Rq = 0.033 μm. In consideration of filling the valley, the surface soft layer was provided with a thickness of 50 nm, and the film formation time of the soft layer was determined to be 2 minutes from the film formation rate obtained in [1].
[3] Measurement of hardness The sample V and d prepared in [1] above were measured for micro Vickers hardness by an indentation method. The measurement load was 49 × 10 −3 N. As a result, 41 GPa was determined for the sample film and 20 GPa for the sample film.
[4] Measurement of hydrogen content For sample c, the hydrogen content was measured using Rutherford backscattering method (RBS). As a result, the amount of hydrogen in the film of Sample A was determined to be 0.1 atomic% or less. The amount of hydrogen in the sample film was 32 atomic%.

複合炭素皮膜が形成された基材7を真空容器4から取り出し、表面から20nmまでの平均の水素量を2次イオン質量分析法(SIMS)により求めた。この測定値は、軟質層内の水素量に相当するものであって、水素は34原子%含まれていることが判明した。なお、硬質層内の水素量は、上記予備試験の〔4〕で求めた試料ハの値と同等(0.1原子%以下)であるものと推定した。また、表面粗さはRq=0.035μmであった。
なお、この複合炭素皮膜の硬質層及び軟質層の硬さを直接測定するのは困難であるため、上記予備実験の試料ハおよびニの硬度の値をもってそれぞれの測定値に代えることとした。
The base material 7 on which the composite carbon film was formed was taken out of the vacuum vessel 4 and the average amount of hydrogen from the surface to 20 nm was determined by secondary ion mass spectrometry (SIMS). This measured value corresponds to the amount of hydrogen in the soft layer and was found to contain 34 atomic% of hydrogen. The amount of hydrogen in the hard layer was estimated to be equivalent to the value of sample C obtained in [4] of the preliminary test (0.1 atomic% or less). The surface roughness was Rq = 0.035 μm.
In addition, since it is difficult to directly measure the hardness of the hard layer and the soft layer of the composite carbon film, the measured values of the sample C and d in the preliminary experiment were replaced with the respective measured values.

次に、この複合炭素皮膜の表面をダイヤモンド砥粒(8000番)を用いて研磨し、凸部の軟質層を摩耗させて下地の硬質層が露出するようにした。研磨後の表面粗さを同様に測定したところ、Rq=0.014μmであった。
そして、得られた試料の摩擦特性の評価を実施例1と同様の方法で行った。その結果を表1に併せて示す。
Next, the surface of the composite carbon film was polished with diamond abrasive grains (# 8000), and the soft layer of the convex portion was abraded so that the underlying hard layer was exposed. When the surface roughness after polishing was measured in the same manner, it was Rq = 0.014 μm.
Then, the friction characteristics of the obtained sample were evaluated by the same method as in Example 1. The results are also shown in Table 1.

(比較例3)
本例においては、マグネトロンスパッタ法によって、上記比較例1と同様に硬質層のみを成膜した。
まず、上記実施例1と同様に、基材として同一鋼種から成る同一サイズの円板を準備し、同様の超仕上げ加工を施した。その表面粗さは、Rq=0.037μmであった。そして、ヘキサン中において超音波洗浄し、汚れと油分を除去した。
(Comparative Example 3)
In this example, only the hard layer was formed by the magnetron sputtering method as in Comparative Example 1 above.
First, as in Example 1 above, disks of the same size made of the same steel type were prepared as the base material, and the same superfinishing process was performed. The surface roughness was Rq = 0.037 μm. Then, ultrasonic cleaning was performed in hexane to remove dirt and oil.

次に、実施例2と同様に、図3に示した真空容器4に上記基材7を収納し、真空ポンプへの排気口9を通じて10−4Paまで排気した後、雰囲気ガスとしてアルゴンをガス系統配管5から導入し、内圧が1Paになるよう流量を調整した。
続いて、上記実施例2と同様の条件のもとに、60分の間、アルゴン雰囲気での成膜を実施した。
Next, as in Example 2, the base material 7 is housed in the vacuum vessel 4 shown in FIG. 3, and after exhausting to 10 −4 Pa through the exhaust port 9 to the vacuum pump, argon is used as the atmospheric gas. It was introduced from the system pipe 5 and the flow rate was adjusted so that the internal pressure became 1 Pa.
Subsequently, film formation was performed in an argon atmosphere for 60 minutes under the same conditions as in Example 2 above.

得られた単層の硬質炭素皮膜について、触針式の表面粗さ計で表面粗さを測定した結果、Rq=0.035μmであった。また、マイクロビッカース硬さは39GPa、ラザフォード後方散乱法(RBS)により測定した膜中の水素量は、0.1原子%以下であった。さらに、カロテスト法で求めた膜厚は、1.1μmであった。   As a result of measuring the surface roughness of the obtained single-layer hard carbon film with a stylus type surface roughness meter, Rq was 0.035 μm. Further, the micro Vickers hardness was 39 GPa, and the hydrogen content in the film measured by Rutherford backscattering method (RBS) was 0.1 atomic% or less. Furthermore, the film thickness determined by the Calotest method was 1.1 μm.

同様に、条件を揃えるため、実施例1と同じ条件で同じ時間だけ、ダイヤモンド砥粒を用いた研磨を行ったのち、上記実施例1と同様の条件のもとに、摩擦特性の評価を実施した。その結果を表1に併せて示す。なお、ダイヤモンド砥粒による上記研磨後の表面粗さはRq=0.030μmであった。   Similarly, in order to make the conditions uniform, after performing polishing using diamond abrasive grains for the same time under the same conditions as in Example 1, the friction characteristics were evaluated under the same conditions as in Example 1 above. did. The results are also shown in Table 1. The surface roughness after polishing with diamond abrasive grains was Rq = 0.030 μm.

(比較例4)
本例においては、マグネトロンスパッタ法によって、上記比較例1と同様に軟質層のみを成膜した。
すなわち、上記実施例1と同様に、基材として同一鋼種から成る同一サイズの円板を準備し、同様の超仕上げ加工を施した。超仕上げ加工後の表面粗さは、Rq=0.040μmであった。そして、同様にヘキサンによって超音波洗浄し、汚れと油分を除去した。
(Comparative Example 4)
In this example, only the soft layer was formed by the magnetron sputtering method as in Comparative Example 1 above.
That is, as in Example 1 above, disks of the same size made of the same steel type were prepared as the base material and subjected to the same superfinishing process. The surface roughness after superfinishing was Rq = 0.040 μm. Similarly, ultrasonic cleaning was performed with hexane to remove dirt and oil.

次に、実施例2と同様に、図3に示した真空容器4に上記基材7を収納し、真空ポンプへの排気口9を通じて10−4Paまで排気した後、雰囲気ガスとしてアルゴンとメタンガスを体積比で2:1と成るようにガス系統配管5から導入し、内圧が1.3Paになるよう流量を調整した。
続いて、上記実施例2と同様の条件のもとに、40分の間、アルゴン及びメタンガス雰囲気で成膜を実施した。
Next, as in Example 2, the base material 7 was housed in the vacuum vessel 4 shown in FIG. 3 and evacuated to 10 −4 Pa through the exhaust port 9 to the vacuum pump. Was introduced from the gas system pipe 5 so that the volume ratio was 2: 1, and the flow rate was adjusted so that the internal pressure was 1.3 Pa.
Subsequently, film formation was performed in an argon and methane gas atmosphere for 40 minutes under the same conditions as in Example 2 above.

得られた単層の炭素皮膜について、触針式の表面粗さ計で表面粗さを測定した結果、Rq=0.028μmであった。また、マイクロビッカース硬さは17GPa、2次イオン質量分析により測定した膜中の水素量は、25原子%であった。そして、カロテスト法で求めた膜厚は、1.0μmであった。   As a result of measuring the surface roughness of the obtained single layer carbon film with a stylus type surface roughness meter, Rq was 0.028 μm. Moreover, the micro Vickers hardness was 17 GPa, and the amount of hydrogen in the film measured by secondary ion mass spectrometry was 25 atomic%. And the film thickness calculated | required by the Calotest method was 1.0 micrometer.

さらに、実施例1と同じ条件で同じ時間だけ、ダイヤモンド砥粒を用いた研磨を同様に行ったのち、上記実施例1と同様の条件のもとに、摩擦特性の評価を実施した。その結果を表1に併せて示す。なお、ダイヤモンド砥粒による上記研磨後の表面粗さはRq=0.014μmであった。   Further, after polishing was performed using diamond abrasive grains for the same time under the same conditions as in Example 1, the friction characteristics were evaluated under the same conditions as in Example 1 above. The results are also shown in Table 1. The surface roughness after polishing with diamond abrasive grains was Rq = 0.014 μm.

Figure 2006008853
Figure 2006008853

上記の結果から、本発明の硬質炭素皮膜摺動部材と同様の積層構造を備えた硬質炭素皮膜においては、実施例1と比較例1の比較によって分かるように、全体を硬質層とする場合に比べて平滑な表面が容易に得られ、摩擦係数が小さくなる。実施例2と比較例3の対比においても同様である。
また、実施例1と比較例2の比較によって分かるように、全体を軟質層にした場合と比較して、平滑な表面の得やすさは同じであっても、実施例の場合には、初期摩耗の後に下地硬質層が表面に現れることにより、潤滑剤および添加剤との親和性の関係と考えられる効果から、より低い摩擦係数を示すことが確認された。これは、実施例2と比較例4の対比においても同じである。
From the above results, in the hard carbon film having the same laminated structure as the hard carbon film sliding member of the present invention, as can be seen from the comparison between Example 1 and Comparative Example 1, the whole is a hard layer. In comparison, a smooth surface can be easily obtained and the friction coefficient is reduced. The same applies to the comparison between Example 2 and Comparative Example 3.
In addition, as can be seen from the comparison between Example 1 and Comparative Example 2, even though the ease of obtaining a smooth surface is the same as in the case where the whole is a soft layer, It was confirmed that a lower coefficient of friction was exhibited by the appearance of the base hard layer on the surface after the abrasion due to the effect considered to be the affinity relationship with the lubricant and additive. This is the same in the comparison between Example 2 and Comparative Example 4.

このように、本発明の硬質炭素皮膜摺動部材においては、成膜形成の簡便性においては、従来の硬質炭素皮膜を備えた摺動部材と同等でありながら、低い摩擦係数が容易に得られるなど優れた特性がもたらさせる。
また、上記の結果からは、実施例1の硬質炭素皮膜を、ポリアルファオレフィン+グリセリンモノオレイト2.5質量%の潤滑油と組み合わせて使用した例が最も好ましい。
As described above, in the hard carbon film sliding member of the present invention, a low coefficient of friction can be easily obtained in the simplicity of film formation while being equivalent to a sliding member having a conventional hard carbon film. It has excellent characteristics.
Further, from the above results, an example in which the hard carbon film of Example 1 is used in combination with a lubricating oil of 2.5% by mass of polyalphaolefin + glycerin monooleate is most preferable.

本発明の摺動部材における硬質炭素皮膜の積層構造を模式的に示す断面図である。It is sectional drawing which shows typically the laminated structure of the hard carbon film in the sliding member of this invention. アークイオンプレーティング法による成膜装置を示す概略説明図である。It is a schematic explanatory drawing which shows the film-forming apparatus by an arc ion plating method. マグネトロンスパッタ法による成膜装置を示す概略説明図である。It is a schematic explanatory drawing which shows the film-forming apparatus by a magnetron sputtering method.

符号の説明Explanation of symbols

1 軟質層(最表層)
2 硬質層
3 下地材
1 Soft layer (outermost layer)
2 Hard layer 3 Base material

Claims (12)

2以上の層から成る硬質炭素皮膜の積層構造を有し、最表層の下層側に当該最表層よりも硬度が高い硬質層を備えていることを特徴とする硬質炭素皮膜摺動部材。   A hard carbon film sliding member having a laminated structure of hard carbon films composed of two or more layers, and comprising a hard layer having a hardness higher than that of the outermost layer on the lower layer side of the outermost layer. 最表層における水素原子の割合が上記硬質層よりも高いことを特徴とする請求項1に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to claim 1, wherein a ratio of hydrogen atoms in the outermost layer is higher than that of the hard layer. 上記硬質層における水素原子の割合が1原子%以下であることを特徴とする請求項1又は2に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to claim 1 or 2, wherein a ratio of hydrogen atoms in the hard layer is 1 atomic% or less. 最表層より硬度が高い層のうち、最も表面側に位置する層における水素原子の割合が1原子%以下であることを特徴とする請求項1又は2に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to claim 1 or 2, wherein a ratio of hydrogen atoms in a layer located on the most surface side among layers having higher hardness than the outermost layer is 1 atomic% or less. 潤滑剤中で使用されることを特徴とする請求項1〜4のいずれか1つの項に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to any one of claims 1 to 4, wherein the hard carbon film sliding member is used in a lubricant. 上記潤滑剤の基油がポリアルファオレフィンであることを特徴とする請求項5に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to claim 5, wherein the base oil of the lubricant is polyalphaolefin. 上記潤滑剤が水酸基を有する添加剤を少なくとも1種含有していることを特徴とする請求項5又は6に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to claim 5 or 6, wherein the lubricant contains at least one additive having a hydroxyl group. 上記潤滑剤中に含まれる添加剤の少なくとも1種が分子中に2個以上の水酸基を含むものであることを特徴とする請求項7に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to claim 7, wherein at least one of the additives contained in the lubricant contains two or more hydroxyl groups in the molecule. 上記潤滑剤中に含まれる添加剤の少なくとも1種がエステルであることを特徴とする請求項5〜8のいずれか1つの項に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to any one of claims 5 to 8, wherein at least one of the additives contained in the lubricant is an ester. 上記エステルがグリセリンのモノエステルであることを特徴とする請求項9に記載の硬質炭素皮膜摺動部材。   The hard carbon film sliding member according to claim 9, wherein the ester is a monoester of glycerin. 請求項1〜10のいずれか1つの項に記載の硬質炭素皮膜摺動部材の積層構造を形成するに際し、気相法による成膜中に雰囲気中の水素分圧又は炭化水素ガス分圧を変化させることを特徴とする硬質炭素皮膜摺動部材の製造方法。   When forming the laminated structure of the hard carbon film sliding member according to any one of claims 1 to 10, the hydrogen partial pressure or hydrocarbon gas partial pressure in the atmosphere is changed during film formation by a vapor phase method. A manufacturing method of a hard carbon film sliding member characterized by making it. 上記積層構造を形成した後に最表面層を研磨することを特徴とする請求項11に記載の硬質炭素皮膜摺動部材の製造方法。   The method for producing a hard carbon film sliding member according to claim 11, wherein the outermost surface layer is polished after forming the laminated structure.
JP2004188142A 2004-06-25 2004-06-25 Hard carbon film sliding member and method for producing the same Pending JP2006008853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188142A JP2006008853A (en) 2004-06-25 2004-06-25 Hard carbon film sliding member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188142A JP2006008853A (en) 2004-06-25 2004-06-25 Hard carbon film sliding member and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006008853A true JP2006008853A (en) 2006-01-12

Family

ID=35776455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188142A Pending JP2006008853A (en) 2004-06-25 2004-06-25 Hard carbon film sliding member and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006008853A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211309A (en) * 2006-02-10 2007-08-23 Toyota Motor Corp Cavitation-erosion resistant member and manufacturing method therefor
JP2008031534A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Hard carbon film
JP2008031532A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Hard carbon film
JP2008056735A (en) * 2006-08-29 2008-03-13 Nissan Motor Co Ltd Low-friction slide mechanism and lubricant composition used therein
JP2010286038A (en) * 2009-06-11 2010-12-24 National Institute Of Advanced Industrial Science & Technology Structural member for sliding and method for manufacturing the same
EP2505685A1 (en) 2011-03-28 2012-10-03 TPR Co., Ltd. Piston ring
CN103298967A (en) * 2010-12-08 2013-09-11 盖伦国际公司 Hard and low friction nitride coatings
WO2014156884A1 (en) * 2013-03-28 2014-10-02 シチズンホールディングス株式会社 Decorative article having black rigid coating film
DE102015101782A1 (en) 2014-02-10 2015-08-13 Daido Metal Company Ltd. Slide
JP2015175014A (en) * 2014-03-14 2015-10-05 株式会社リケン sliding member
JP2016510388A (en) * 2013-01-21 2016-04-07 フェデラル−モーグル ブルシェイド ゲーエムベーハーFederal−Mogul Burscheid Gmbh Sliding elements, in particular piston rings with a coating
DE102016108088A1 (en) * 2016-04-20 2017-10-26 Federal-Mogul Burscheid Gmbh Coated piston ring with protective layer
CN108356245A (en) * 2017-01-25 2018-08-03 本田技研工业株式会社 Casting molds and its manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735309B2 (en) * 2006-02-10 2011-07-27 トヨタ自動車株式会社 Cavitation erosion resistant member and method of manufacturing the same
JP2007211309A (en) * 2006-02-10 2007-08-23 Toyota Motor Corp Cavitation-erosion resistant member and manufacturing method therefor
JP2008031534A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Hard carbon film
JP2008031532A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Hard carbon film
JP2008056735A (en) * 2006-08-29 2008-03-13 Nissan Motor Co Ltd Low-friction slide mechanism and lubricant composition used therein
JP2010286038A (en) * 2009-06-11 2010-12-24 National Institute Of Advanced Industrial Science & Technology Structural member for sliding and method for manufacturing the same
KR101807341B1 (en) * 2010-12-08 2017-12-08 갈레온 인터내셔널 코퍼레이션 Hard and low friction nitride coatings
CN103298967A (en) * 2010-12-08 2013-09-11 盖伦国际公司 Hard and low friction nitride coatings
JP2014500402A (en) * 2010-12-08 2014-01-09 ギャリオン インターナショナル コーポレイション Hard and low friction nitride coating
US10450647B2 (en) 2010-12-08 2019-10-22 Galleon International Corporation Hard and low friction nitride coatings
EP2505685A1 (en) 2011-03-28 2012-10-03 TPR Co., Ltd. Piston ring
US9175771B2 (en) 2011-03-28 2015-11-03 Tpr Co., Ltd. Piston ring
JP2016510388A (en) * 2013-01-21 2016-04-07 フェデラル−モーグル ブルシェイド ゲーエムベーハーFederal−Mogul Burscheid Gmbh Sliding elements, in particular piston rings with a coating
US9790592B2 (en) 2013-03-28 2017-10-17 Citizen Watch Co., Ltd. Decorative article having black hard coating film
JPWO2014156884A1 (en) * 2013-03-28 2017-02-16 シチズン時計株式会社 Decorative product with black hard coating
WO2014156884A1 (en) * 2013-03-28 2014-10-02 シチズンホールディングス株式会社 Decorative article having black rigid coating film
DE102015101782B4 (en) 2014-02-10 2018-07-26 Daido Metal Company Ltd. Slide
DE102015101782A1 (en) 2014-02-10 2015-08-13 Daido Metal Company Ltd. Slide
US9677613B2 (en) 2014-02-10 2017-06-13 Daido Metal Company Ltd. Slide member
JP2015175014A (en) * 2014-03-14 2015-10-05 株式会社リケン sliding member
DE102016108088A1 (en) * 2016-04-20 2017-10-26 Federal-Mogul Burscheid Gmbh Coated piston ring with protective layer
DE102016108088B4 (en) * 2016-04-20 2018-05-09 Federal-Mogul Burscheid Gmbh Coated piston ring with protective layer
CN108356245A (en) * 2017-01-25 2018-08-03 本田技研工业株式会社 Casting molds and its manufacturing method
CN108356245B (en) * 2017-01-25 2019-12-24 本田技研工业株式会社 Casting mold and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3555844B2 (en) Sliding member and manufacturing method thereof
CN104930334B (en) sliding component and sliding mechanical
WO2010021285A1 (en) Nitrogen-containing amorphous carbon film, amorphous carbon layered film, and sliding member
JP2006008853A (en) Hard carbon film sliding member and method for producing the same
JP2006214313A (en) Valve lifter
KR20140136037A (en) Coating with enhanced sliding properties
JP2008164097A (en) Sliding structure
JP2006152428A (en) Hard carbon coated sliding member
JP6890703B2 (en) Liner for internal combustion engine
JP2004137535A (en) Hard carbon film slide member
JP4201557B2 (en) Hard carbon film sliding member
WO2015114822A1 (en) Compression ring and base material for compression ring
JP4918972B2 (en) High speed sliding member
RU2667557C2 (en) Mechanical part coated with layer of amorphous carbon for sliding in relation to less hard component
JP5150861B2 (en) Hard carbon film and method for forming the same
Masuko et al. Effect of surface roughening of substrate steel on the improvement of delamination strength and tribological behavior of hydrogenated amorphous carbon coating under lubricated conditions
JP4135087B2 (en) Hard carbon film for sliding member and manufacturing method thereof
JP2000320674A (en) Low friction material and manufacture thereof
JP2006257916A (en) Combinational sliding member
JP6307299B2 (en) Sliding machine and sliding member
JP2017160538A (en) Diamond like carbon film, sliding member, processing member, and method for manufacturing diamond like carbon film
JP2020507003A (en) Friction piece, mechanical system including such friction piece and mounting method
Yu et al. Tailoring the mechanical and high‐temperature tribological properties of Si‐DLC films by controlling the Si content
JP7061006B2 (en) Sliding members and sliding machines
KR20070104846A (en) Hard carbon film and hard carbon film sliding member