JP2013148566A - Farm field soil management support system - Google Patents

Farm field soil management support system Download PDF

Info

Publication number
JP2013148566A
JP2013148566A JP2012022501A JP2012022501A JP2013148566A JP 2013148566 A JP2013148566 A JP 2013148566A JP 2012022501 A JP2012022501 A JP 2012022501A JP 2012022501 A JP2012022501 A JP 2012022501A JP 2013148566 A JP2013148566 A JP 2013148566A
Authority
JP
Japan
Prior art keywords
soil
information
specific gravity
field
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012022501A
Other languages
Japanese (ja)
Inventor
Koji Yamamura
幸次 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIRAIZOU CO Ltd
Original Assignee
MIRAIZOU CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIRAIZOU CO Ltd filed Critical MIRAIZOU CO Ltd
Priority to JP2012022501A priority Critical patent/JP2013148566A/en
Publication of JP2013148566A publication Critical patent/JP2013148566A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide soil improvement and fertilizer design coincident with soil characteristics required in a wide area as a farm field, a soil management system by fertilization and speedy information by utilizing evaluation and a viewpoint of soil and environmental characteristics of a farmer, and easily performing improvement and appropriate fertilization suitable for plant growth to the conventional soil.SOLUTION: In a soil management support system, apparent specific gravity is corrected to apparent specific gravity suitable to the amount of fertilizer effect component required by plant from soil hardness, soil water permeability and drying loss capacity being soil physical properties noticed by a farmer to use the apparent specific gravity for soil improvement and a fertilization design, soil improvement or suitable fertilization management is performed on the basis of the result thereof to cultivate farm crop, which improves a crop yield and the quality of deliverables when the farmer repeats cropping.

Description

本発明は、圃場の土壌管理支援システムに関する。      The present invention relates to a field soil management support system.

近年の農業経営は、生産者層の高齢化と就業人口の減少に伴い生産性の低下と効率の悪化、さらには収益性の減少からより若年層の就農に歯止めが掛かるなど悪循環に陥っている。そのなかで、生産性を高めるため多肥栽培となったり化学肥料に頼り過ぎ土壌の悪化から病虫害の増加や結果的に収率低下となり経営への圧迫となっている。そこで、圃場に適正な肥料バランスを与えるよう種々の施肥設計情報システム等が知られている。しかし、これらのシステム等において多くの分析結果情報が必要なために多大のコストを要するもの(特許文献1)、圃場の土壌の状態を考慮していないもの(特許文献2)、また土壌状態を知るために試料の運搬手段や情報の授受手段を有しているものの情報入手までに時間と費用が多々予想されるもの(特許文献3、4)、農業従事者の情報が十分には活かされていないもの(特許文献5)と改良の余地がある。そしていずれの技術においても圃場の代表点に基づく分析情報から理論的に計算された施肥バランスを基にしているため、圃場の土性のばらつき等作付面積全体に対し効果的な施肥を行なうことは困難な場合が多かった。ゆえに、現状の農業経営者からは、これまでその土地で栽培してきた経験と結果が活かされ、かつ理解しやすい土壌管理システム、施肥システム、そして農業収益の改善が見込める総合技術が望まれている。      Agricultural management in recent years has fallen into a vicious cycle, with the decline in productivity and efficiency due to the aging of producers and the decline in the working population, and the suspension of younger farmers due to the decline in profitability. . In order to increase productivity, it has become a heavy manure cultivation or relied on chemical fertilizers, resulting in an increase in disease and pest damage due to deterioration of soil, resulting in a decrease in yield, and pressure on management. Therefore, various fertilization design information systems and the like are known so as to give an appropriate fertilizer balance to the field. However, these systems require a lot of analysis result information (Patent Document 1), those that do not consider the state of the soil in the field (Patent Document 2), and soil conditions. Information that has a means for transporting samples and a means for giving and receiving information to know the information is expected to have much time and cost (Patent Documents 3 and 4). There is room for improvement with what is not (Patent Document 5). And since both techniques are based on the fertilization balance calculated theoretically from the analysis information based on the representative points of the field, it is not possible to effectively fertilize the entire planted area, such as soil soiling variations. It was often difficult. Therefore, the current farmer wants a soil management system, fertilization system, and comprehensive technology that can improve agricultural profits, making use of the experience and results that have been cultivated on the land so far and making it easy to understand. .

特開2002−345331JP 2002-345331 A 特開2008−278816JP2008-278816 特開2005−147738JP 2005-147738 特開2005−80514JP 2005-80514 A 特開2004−334604JP 2004-334604 A

通常、営農計画を立案するに当たり、農業従事者は、当該年の市場ニーズと天候の長期予報、作付けする圃場の状況を勘案し適切な農作物の選択と土壌改良、施肥などの情報を入手する。とりわけ、農作物に適した土壌か、もし適切な状態になければどの程度の土壌改良を行わなければならないか、その後の施肥管理に要する土壌改良材や肥料などの手配やそれらのコストに悩まされることになる。現状では関係指導機関に頼ったり独自に分析機関に依頼し情報を入手したりするが、その結果や評価に基づき土壌改良し、施肥しても収量や品質の向上が追随せず自分が思ったとおりやればよかったと反省することがままあるのが実情である。これは、科学的な情報のうち土壌分析情報など一方的なことが多いうえにサンプリングの状況に依存すること、天候など環境情報が広域かつ長期の統計情報であることなど圃場現地の内容に即していない場合が多いことが原因と考えられる。しかし、長年その圃場で農作物の栽培を続けてきた農業従事者にしては、土壌の経時変化に対する良否の判断や圃場内土壌の状況など特性差を判断する能力、環境の経年変化や常に自身の圃場を見回っているので全体を平均化した情報力には特に優れたものがある。      Usually, when formulating a farming plan, the farmer obtains information such as selection of appropriate crops, soil improvement, and fertilization in consideration of the market needs of the year, long-term forecasts of the weather, and the conditions of the fields to be planted. In particular, the soil suitable for crops, how much soil improvement is necessary if it is not in an appropriate state, and the arrangement and cost of soil improvement materials and fertilizers required for subsequent fertilization management become. At present, I rely on the related instructor or independently request information from the analytical institution, but based on the results and evaluation, I improved my soil, and I thought I could not follow the improvement in yield and quality even after fertilization. The reality is that there are still some reflections that we should have done. This is often unilateral, such as soil analysis information among scientific information, and depends on the sampling situation, and environmental information such as weather is wide-area and long-term statistical information. This is probably due to the fact that there are not many cases. However, for farmers who have been cultivating crops in the field for many years, the ability to judge the quality of soils over time, the ability to judge characteristic differences such as the condition of the soil in the field, The information power that averages the whole is particularly excellent because it looks around the field.

そこで、本発明は、農業従事者の土壌と環境特性に対する評価や見方が活かされ、容易に従来の土壌に対し植物の生育に適した改善と適切な施肥を行い、それが圃場として広域的に要求される土壌特性に合致した土壌改善と肥料設計、施肥による土壌の管理システムへの適切な因子の提供とそれらシステムの実行によるスピーディな情報提供を図ることを目的とした。これにより、過剰またはバランスのよくない施肥を防止し、そのコストを低減するとともに、農業経営の効率化を図ろうとするものである。      Therefore, the present invention makes use of the evaluation and view of the soil and environmental characteristics of the farmer, and easily performs improvement and appropriate fertilization suitable for plant growth over conventional soil, which is widely used as a field. The purpose was to provide soil improvement and fertilizer design that match the required soil characteristics, to provide appropriate factors to the soil management system through fertilization, and to provide speedy information by implementing those systems. As a result, excessive or unbalanced fertilization is prevented, the cost is reduced, and the efficiency of agricultural management is improved.

本発明者は、これまでの農業従事者が土壌特性と栽培環境特性においてどのような項目に着目し、それをどのように評価しているか鋭意検討し、特に土壌特性においては土壌硬度と土壌透水性(以下、土壌物理特性という。)がまた栽培環境特性においては日照度に重点を置いており、それら総合的に評価して営農する作物やその栽培時期、栽培エリアを決め農業関係指導機関等の情報や指導と併せ農作業の最適化を図っていることが分かった。そこで、これら土壌物理特性と栽培環境特性情報を数値化し解析した情報値と、圃場の土壌を物理分析することにより求めた乾燥減量容積とから一般的な施肥情報提供システムに用いられる仮比重を圃場の実情に基づいた植物が要求する肥効成分量に適合するよう補正係数を用いて補正し、土壌改良または施肥設計を行おうとするものである。農業従事者がその結果に基づき土壌改良し、適切な施肥管理を行い、農作物を栽培することにより、作物の収量と品質向上が図られかつ暦年作付けを繰り返す毎にデータベースなどとして蓄積された情報をもとにさらに向上させることができるようにしている。      The present inventor has intensively examined what items agricultural workers have so far focused on in soil characteristics and cultivation environment characteristics, and how they are evaluated. Especially in soil characteristics, soil hardness and soil permeability In addition, in terms of cultivation environment characteristics, the emphasis is placed on daylight intensity (hereinafter referred to as soil physical characteristics). It was found that farming was optimized along with information and guidance. Therefore, the provisional specific gravity used in a general fertilization information providing system is calculated from the information value obtained by quantifying and analyzing the soil physical characteristics and the cultivation environment characteristic information and the dry weight loss obtained by physical analysis of the soil in the field. Based on the actual situation, the soil is corrected using a correction coefficient so as to conform to the amount of fertilizer components required by the plant, and soil improvement or fertilization design is attempted. Agricultural workers improve the soil based on the results, perform appropriate fertilization management, and cultivate the crops to improve the yield and quality of the crops. Based on this, it can be further improved.

すなわち、対象圃場についての農業従事者側からの土壌硬度と土壌透水性の各情報を数値化し記録する数値化記録手段と、前記情報のうち土壌硬度と土壌透水性を数値化した情報を和し、記録する手段と、乾燥減量容積と土性の関係を記録し、それに特定領域を設けたデータベースとを有し、前記土壌硬度と土壌透水性を数値化した情報の和と乾燥減量容積を入力することにより前記データベースの特定領域に位置するかどうか判定し、特定領域に位置しないときは特定の補正係数を用いて前記圃場の土壌の仮比重を補正し、特定領域に位置したときには特定の補正係数とさらに仮比重に連関する補正係数とを用いて前記圃場の土壌の仮比重を補正し、その仮比重補正値(以下、これを補正仮比重という。)を用いて土壌改良または施肥バランス算出を行うことを特徴とした土壌管理支援システムである。  That is, the numerical recording means for digitizing and recording each information of the soil hardness and soil permeability from the farmer side for the target field, and the information obtained by quantifying the soil hardness and soil permeability of the information is summed. , Recording means, record the relationship between the loss on drying and the soil property, and have a database with a specific area on it, input the sum of the information of the soil hardness and soil permeability and the drying loss volume To determine whether or not it is located in the specific area of the database. When not located in the specific area, the temporary specific gravity of the soil of the field is corrected using a specific correction coefficient, and when it is located in the specific area, the specific correction is performed. The temporary specific gravity of the soil in the field is corrected using a coefficient and a correction coefficient related to the temporary specific gravity, and the soil improvement or fertilization rose is performed using the temporary specific gravity correction value (hereinafter referred to as corrected temporary specific gravity). Is a soil management support system was characterized by performing the scan is calculated.

このシステムに用いられる乾燥減量容積は、一般的に土壌の物理特性としては定義されていないが、本発明者が種々の圃場における土壌の物理性と性状の関係を鋭意研究し、その結果表1に示すように土壌の仮比重が大きくなるほど乾燥減量容積は大きい方向となり、特に仮比重1.10以上では乾燥減量容積は3.0のほぼ一定値となること、土壌の性状としては仮比重が大きくなるにつれ火山灰土から粘土質そして砂土や礫を含む非火山灰土に変遷することが分かった。これらより乾燥減量容積は、大きく土壌の仮比重と性状に依存することが分かる。また、仮比重が大きいほど土壌の平均粒径が大きくなり比表面積は小さくなる傾向がみられる。これらの事象は、仮比重の大きい土壌ほど粘土質分や礫分が多く特に前者の割合が高いことにより間隙水をより多く含み一度絶乾状態とすると締め固まり当初の含水状態に戻るまで時間を要するのでこのような容積差が出るものと推測される。一方、仮比重が1.00以下のものは火山灰土が主体を占め腐植が少ないので締め固まりが小さくなるとともに平均粒径が小さくなる傾向にあり、また比表面積は大きくなっていく。乾燥減量容積は、ほぼ2.5の値を示す。そして、仮比重が1.00ないし1.10の範囲ではその遷移領域となるがこの領域でも乾燥減量容積は、ほぼ2.7の値を示す。そして、仮比重が1.10を越えると乾燥減量容積率はほぼ3以上を示すようになりこの範囲を特定領域1と定義する。特にこの範囲では理由は定かではないが土壌の仮比重を1.1となるよう補正値を決定することにより元肥と追肥の比率を求めるのに供することができる。
ここで、仮比重が1.4を越えると乾燥減量容積率は必ず3以上を示すようになりこの範囲を特定領域2と定義する。特にこの範囲では理由は定かではないが土壌の仮比重を1.2となるよう補正値を決定することにより元肥と追肥の比率を求めるのに供することができる。以上のことが乾燥減量容積と仮比重の関係と考えられる。農業従事者の評価における土壌硬度と土壌透水性は前記効果と一致した傾向を示しており、こちらの情報は圃場全体の状況を最もよく表しているものと考えられる。もし乾燥減量容積と農業従事者の評価とが一致しない場合は、その後の作業の判断を農業従事者の観点にウェートを置くことが好ましい。
The dry weight loss volume used in this system is not generally defined as a physical property of soil, but the present inventor has intensively studied the relationship between physical properties and properties of soil in various fields, and as a result, Table 1 As shown in Fig. 4, the drying weight loss volume increases as the temporary specific gravity of the soil increases. In particular, when the temporary specific gravity is 1.10 or more, the drying weight loss volume is a substantially constant value of 3.0. It was found that as it grows, it changes from volcanic ash soil to non-volcanic ash soil containing clay, sandy soil and gravel. From these, it can be seen that the loss on drying volume largely depends on the temporary specific gravity and properties of the soil. In addition, the larger the temporary specific gravity, the larger the average particle size of the soil and the smaller the specific surface area. These events show that the soil with higher provisional specific gravity has more clayey and gravel, and the ratio of the former is particularly high. Therefore, it is estimated that such a volume difference appears. On the other hand, those with a temporary specific gravity of 1.00 or less tend to be composed mainly of volcanic ash soil and have little humus, so the compaction tends to decrease and the average particle size tends to decrease, and the specific surface area increases. The loss on drying volume shows a value of approximately 2.5. In the range where the temporary specific gravity is in the range of 1.00 to 1.10, the transition region is obtained. In this region, the loss on drying volume is approximately 2.7. When the temporary specific gravity exceeds 1.10, the dry weight loss volume ratio is approximately 3 or more, and this range is defined as the specific region 1. Especially in this range, the reason is not clear, but it can be used to determine the ratio between the basic fertilizer and the additional fertilizer by determining the correction value so that the temporary specific gravity of the soil becomes 1.1.
Here, when the temporary specific gravity exceeds 1.4, the drying weight loss volume ratio always indicates 3 or more, and this range is defined as the specific region 2. Especially in this range, the reason is not clear, but it can be used to determine the ratio between the basic fertilizer and the additional fertilizer by determining the correction value so that the temporary specific gravity of the soil becomes 1.2. The above is considered to be the relationship between the loss on drying and the temporary specific gravity. The soil hardness and soil permeability in the evaluation of the farmers showed a tendency consistent with the above effect, and this information is considered to best represent the situation of the entire field. If the dry weight loss does not match the farmer's assessment, it is preferable to place weight on the farmer's point of view for subsequent work decisions.

なお土壌の仮比重PDは、(1)の式より求めることができる。

Figure 2013148566
ここで、Wd:試料100gを105℃で恒量とした時の質量(g)
Vw:試料100gの容積(ml)
また、乾燥減量容積は、以下の手順により求めることができる。
a.圃場から採取した土壌約10グラム正確に2試料それぞれ量り取り操作bに対する試料の質量をW1(グラム)、操作cに対するそれをW2(グラム)とする。
b.一方の試料をメスシリンダーに移し、土壌が十分浸漬する状態まで水を加える。メスシリンダーを振盪しながら土壌を十分沈降させ、安定したら体積を読み取り記録する。これをVb(ミリリットル)とする。
c.他方の試料を105℃で水分を飛ばし恒量とする。このときの質量を測定しWs(グラム)とする。これをbと同様に体積を測定し、Vs(ミリリットル)とする。
d.以下の式(数3)より乾燥減量容積率を計算する。
Figure 2013148566
In addition, temporary specific gravity PD of soil can be calculated | required from the formula of (1).
Figure 2013148566
Here, Wd: mass (g) when 100 g of sample is made constant at 105 ° C.
Vw: Volume of sample 100 g (ml)
The loss on drying volume can be determined by the following procedure.
a. About 10 grams of soil sampled from the field is accurately measured, and the mass of the sample for each operation b is W1 (gram), and that for the operation c is W2 (gram).
b. Transfer one sample to a graduated cylinder and add water until the soil is fully immersed. Allow the soil to settle well while shaking the graduated cylinder and, when stable, read and record the volume. This is Vb (milliliter).
c. The other sample is made constant by removing moisture at 105 ° C. The mass at this time is measured and set to Ws (gram). The volume is measured in the same manner as b to obtain Vs (milliliter).
d. The weight loss by drying is calculated from the following equation (Equation 3).
Figure 2013148566

ここで、土壌の硬度は、土壌粒子を一定の容積を持つ容器に充填したとき、その粒子の大小により充填密度が変化する度合いをいう。一般に、土壌硬度が高い場合は、粒子の粒度が小さく充填密度が高くなり土壌中の孔隙も少なく土が固く締まった状態となる。一方、土壌硬度が低い場合は、粒子が大きく充填密度等は逆となる。また、土壌粒子が大小ほどよく構成されているときは、団粒構造といわれ、適度な孔隙となり農作物の栽培に最適となる。すなわち土壌の硬度は、保水性と根の伸張性に大きく影響することになる。土壌の透水性は、降雨や潅水、湛水などにより土壌中に水が流入、浸透した結果土壌の表面張力により水分が拘束される程度を言う。土壌中への空気の流入に大きく関係し、土壌の好気性、嫌気性に影響し、植物の根の伸張に硬度同様関係がある。日照度は、植物に対する水分の葉面蒸散、土壌水分に影響を与え、積算日射量や光の強度として一般に表される。      Here, the hardness of the soil refers to the degree to which the filling density changes depending on the size of the particles when the soil particles are filled in a container having a certain volume. In general, when the soil hardness is high, the particle size is small, the packing density is high, the pores in the soil are few, and the soil is tightly packed. On the other hand, when the soil hardness is low, the particles are large and the packing density is reversed. In addition, when the soil particles are well structured, they are said to be aggregated structures, which are suitable for cultivation of crops because of moderate pores. That is, soil hardness greatly affects water retention and root elongation. The water permeability of soil refers to the degree to which water is constrained by the surface tension of soil as a result of water flowing into and permeating into the soil due to rainfall, irrigation, flooding, and the like. It is largely related to the inflow of air into the soil, affects the aerobic and anaerobic properties of the soil, and is related to the elongation of plant roots as well as the hardness. Sun illuminance affects leaf transpiration of water and soil moisture to plants, and is generally expressed as integrated solar radiation and light intensity.

圃場についての農業従事者側から得た土壌硬度と土壌透水性の各情報の数値化方法は、それぞれの性質を情報ごとに2から5段階程度の評価領域に分け、それらを特定の効果の大きさの方向に揃え領域の順列を定めていることが重要である。そして土壌硬度と土壌透水性の数値化情報は、和を取り単一情報に変換する。なお、その際に、効果の良否の方向が一致するように並べておく。このことは両者の数値化した値を和したときにその数列について両端ほど効果を強調し、中央域を平均化するので農業従事者の経験を基にした情報をより一般的なものとする働きをする。      The method of quantifying the soil hardness and soil permeability information obtained from the farmer's side about the field divides each property into evaluation areas of about 2 to 5 levels for each information, and divides them into specific effects. It is important to define the permutation of the alignment region in the direction of the height. The numerical information of soil hardness and soil permeability is summed and converted into single information. At that time, they are arranged so that the direction of quality of the effect matches. This is because when the numerical values of both are summed, the effect is emphasized at both ends of the sequence, and the central area is averaged, so that information based on the experiences of farmers is made more general. do.

本発明は、過去10年間に渡り圃場の土壌環境の測定分析と植物の栽培状況を観察研究した結果から、通常の測定法で得た仮比重測定値が理想的土壌三相(固相、気相、液相をいう。)と化学成分バランスをなす仮比重1.0から乖離するほど栽培植物が要求する肥効成分量に過不足を生ずることを見出したことに基づく。主として、仮比重が1.1を越えると粘土質や礫質が多くなり土壌を形成する粒子の平均径が大きくなるため土壌の比表面積は小さくなり、単位質量当たりの肥効成分の保持能力を示す陽イオン交換容量(CEC)は測定分析値よりも低くなる。また逆に仮比重が0.9を下回ると比表面積としては大きく火山灰土が主となるためCECは高いが植物が要求する肥効成分量以上を与えてしまうことになるので好ましくない状況となる。すなわちこれまで施肥方法によると圃場の土壌の単位質量当たりを基準とし算出しているので、仮比重が1.0より乖離するほど過剰に肥料を施していたこととなる。      In the present invention, from the results of measurement and analysis of the soil environment in the field over the past 10 years and the results of observational research on plant cultivation conditions, the provisional specific gravity measurement values obtained by the usual measurement method are ideal three-phase soil phases (solid phase, It is based on the finding that the amount of the fertilizer component required by the cultivated plant becomes excessive and insufficient as it deviates from the provisional specific gravity of 1.0, which is balanced with the chemical component. Mainly, when the temporary specific gravity exceeds 1.1, the clay and gravel increase and the average diameter of the particles forming the soil increases, so the specific surface area of the soil decreases and the retention capacity of fertilizers per unit mass is reduced. The cation exchange capacity (CEC) shown is lower than the measured analytical value. On the contrary, if the temporary specific gravity is less than 0.9, the specific surface area is large and volcanic ash soil is mainly used, so that the CEC is high but the amount of fertilizing components required by the plant is given, which is not preferable. . That is, according to the fertilizer application method, since the calculation is based on the unit mass of soil in the field, the fertilizer is excessively applied so that the temporary specific gravity deviates from 1.0.

そこで、発明者のこれまでの研究から、仮比重が1.4を越える場合にはさらに仮比重に対し(数2)の式で表される補正係数CF1を乗ずることにより肥料の大幅な過剰投下にならない施肥設計を可能とする補正仮比重を求めることができる。

Figure 2013148566
ここで、Va:仮比重Therefore, according to the inventor's previous research, when the temporary specific gravity exceeds 1.4, the excessive specific amount of fertilizer is drastically increased by multiplying the temporary specific gravity by the correction coefficient CF1 expressed by the formula (Equation 2). The corrected provisional specific gravity that enables the fertilization design that does not become possible can be obtained.
Figure 2013148566
Where Va: provisional specific gravity

以上の方法で求めた補正仮比重を基に、適用圃場土壌のCEC、金属イオン飽和度そして使用することができる肥料種と成分情報から最適肥料設計システム等を用い施肥設計することができる。このとき、圃場の土壌改良情報や施肥設計を行うための土壌改良剤や肥料の選択並びに配合比などを設計する最適肥料設計システムは既存の技術を利用することができ自分でプログラミングしてもまた市販のソフトウェアでも良い。得られた情報は、農業事業者の情報としてデータベース化しサーバに保管することすることにより、それをパソコン及び電気通信システムを用いて、農業支援事業者等機関と各農作業従事者との間で情報の相互利用も可能である。      Based on the corrected provisional specific gravity obtained by the above method, fertilization can be designed using the optimum fertilizer design system or the like from the CEC of the applied field soil, metal ion saturation, and available fertilizer species and component information. At this time, the optimum fertilizer design system that designs the soil improvement information in the field, the selection of the soil conditioner and fertilizer for performing fertilization design, and the blending ratio, etc. can be used by existing techniques. Commercially available software may be used. The information obtained is stored in a server as a database of farmer information, and is stored between the agricultural support provider and other agricultural workers using a personal computer and a telecommunications system. Are mutually available.

以上に述べたシステムを土壌管理支援システム用プログラムとして提供することもできる。      The system described above can also be provided as a program for a soil management support system.

本土壌管理支援システムでは、農業従事者の土壌情報を数値化した情報と乾燥減量容積を取り入れることにより、より圃場の土壌状況に合致し、かつ農業従事者でも分かりやすい土壌改良、施肥情報として提供することができ、容易に圃場の土壌に対し植物の生育に適した改善と適切な施肥を行い、過剰またはバランスのよくない施肥供給を防止するとともに施肥コストを低減し、農業経営の効率化を図ることができるものとしている。さらに、関係作物を栽培する広範囲の圃場についてスピーディに利用することで、従来、土壌のアカデミックな物理及び化学的情報に頼り、実際の栽培結果とは乖離していた状態が改善され、栽培実績を繰り返すことにより、農作業従事者の土壌に対する評価と支援機関等の情報とがより近接し、農業経営として安定性のよい方向に向かうようになる。      This soil management support system provides information on soil improvement and fertilization that is more consistent with the soil conditions in the field and is easy for farmers to understand, by incorporating numerical information on the soil information of farmers and weight loss on drying. It is possible to easily improve the soil in the field suitable for plant growth and appropriate fertilization, prevent excessive or unbalanced fertilizer supply, reduce fertilization costs, and improve the efficiency of farm management. It can be planned. In addition, the speedy use of a wide range of fields where related crops are cultivated has improved the situation that has traditionally relied on the academic physical and chemical information of the soil and has been dissociated from the actual cultivation results. By repeating, the evaluation of the farm worker's soil and the information of the support organization are closer to each other, and the farm management is headed for a stable direction.

本発明の土壌管理支援システムの処理フローを示す図である。It is a figure which shows the processing flow of the soil management assistance system of this invention. 各圃場における土壌の仮比重と補正係数並びに土性等。Temporary specific gravity of soil in each field, correction coefficient and soil properties. 本発明の土壌管理支援システムに用いた土壌分析問診票の例である。It is an example of the soil analysis questionnaire used for the soil management support system of the present invention. 各圃場における補正仮比重を用いて施肥設計し、栽培した結果の一例。An example of the result of applying fertilization design using the corrected temporary specific gravity in each field and cultivating. 各圃場の土壌分析結果の一例である。It is an example of the soil analysis result of each field. 顧客の圃場電子管理記録例である。It is an example of a customer's field electronic management record. 顧客土壌情報と乾燥減量容積、補正に用いる各係数、土性の関係データベースの例である。It is an example of a customer soil information and dry weight loss volume, each coefficient used for correction | amendment, and a relationship database of soil property. 顧客に提供または閲覧可能な分析施肥設計書の例。An example of an analytical fertilization design document that can be provided or viewed by customers. 顧客に提供または閲覧可能な対策施肥設計情報の例。Examples of countermeasure fertilization design information that can be provided or viewed by customers.

図1は、本発明の土壌管理支援システムにより実行される処理のフローを示したものである。農業従事者は、常に土壌の様子を自身の五感により評価しており、特に土壌特性においては手で土に直接触れ眺めそして砕いてあるいは耕運機など通過した後の粒度、有機物の状況を目で観察して主として土壌の硬度を確認している。また作付け後、圃場全体を見回ることにより植物の葉などの様子から生育状況と土壌の乾燥状態を観察して土壌透水性を確認している。栽培環境においてはその日や翌日、さらには長期の気象情報に傾注し日照度に重点を置いた栽培管理の計画と実施を自然のうちに行っている。このように農業従事者が日頃行い、感じている状況を数値化する方法の土台として実施しているのが図3に示す「土壌分析問診表」である。これを用いて農業従事者から土壌の物理性として土壌硬度と土壌透水性、そして環境特性として日照度の状況を農業従事者が理想とする状態に対し、あるいはこの程度であれは農作業上適しているという自己基準に対し簡単な相対的評価で記入してもらう。ここで重要なのは自己の基準がぶれないことであって例えば基準とした土壌試料及びまたは写真資料等を適宜保存しておきそれと比較することができる。たとえば、分析支援事業者から、簡単な土壌採取マニュアルを提供してもらい、それに基づいても良い。なお、当該システム提供者が直接、土壌マニュアルに基づいて採取してもよいが、そのときは必ず農業従事者が試料内容を確認しておくことが必要である。なお、本実施の形態における土壌の評価の表現は一例であってこの表現にこだわるものではない。      FIG. 1 shows a flow of processing executed by the soil management support system of the present invention. Farmers always evaluate the state of the soil with their own senses, especially in terms of soil properties, touching the soil directly by hand and observing the particle size and organic matter after crushed or passed through a cultivator. The soil hardness is mainly confirmed. In addition, after planting, the soil permeability is confirmed by observing the state of growth and the dryness of the soil from the state of the leaves of the plant by looking around the entire field. In the cultivation environment, the planning and implementation of cultivation management with a focus on daily illuminance is carried out naturally, focusing on long-term weather information on the day and the next day. In this way, the “soil analysis questionnaire” shown in FIG. 3 is implemented as a basis for a method of quantifying the situation felt and carried out by farmers. Using this, the soil hardness and soil permeability as soil physical properties, as well as the ideal illuminance situation for the farmer as an environmental characteristic, or to this level is suitable for farm work. Have a simple relative evaluation to fill in the self-standard. What is important here is that its own standard is not disturbed. For example, a reference soil sample and / or photographic material can be stored as appropriate and compared with it. For example, a simple soil collection manual may be provided from an analysis support provider and based on it. In addition, the system provider may collect directly based on the soil manual, but in that case, it is necessary for the farmer to confirm the sample contents. In addition, the expression of the evaluation of the soil in this Embodiment is an example, and does not stick to this expression.

「土壌分析問診表」などで記録された農業従事者からの圃場に関する土壌硬度と透水性、日照度情報を表1に基づき予め対応付けた数値に変換し、それらの和とともに図6の各圃場についての記録表に入力する。このとき、土壌硬度は膨軟→普通→不良、透水性は良好→普通→不良、日照度は午前良好→全日良好→午後良好のように状態の変化が一定の方向性を持って相対評価ができればよい。ただし、絶対基準ではないので第三者の意見が入り評価の基準がぶれないようにする。

Figure 2013148566
The soil hardness, water permeability, and daily illuminance information regarding the field from the farmer recorded in the “Soil Analysis Questionnaire” etc. are converted into numerical values previously associated with each other based on Table 1, and each field in FIG. Enter in the record table for. At this time, soil hardness is soft → normal → poor, water permeability is good → normal → poor, daily illuminance is good in the morning → good all day → good in the afternoon. I can do it. However, since it is not an absolute standard, the opinion of the third party should be entered and the evaluation standard will not be disturbed.
Figure 2013148566

ここで、土壌硬度における農業従事者の膨軟、普通、硬いという圃場評価と土壌構造ならびにその対応については、過去10年間における九州・四国地域の圃場における農業従事者アンケートの回答結果50件と土壌分析機関が実施した対応する現地における実態調査及び代表土壌と想定される地点の物理分析結果に基づいて決定している。相対評価値ではあるが領域数が少ないかつそれぞれの領域の閾値が広いのでほぼ絶対評価と同一の結果になると思われる。また、土壌透水性の良好、普通、不良も土壌排水性及び保水性を考慮の上同様に決定している。これを測定圃場記録としてサーバに保管している。本例のように、このとき「圃場として不適」とは農作業にそのままの状態では不適なことが農業従事者にとって明らかであるのでデータを削除してもよい。      Here, with regard to the field evaluations of farmer's softness, normal, and hardness in soil hardness, and the soil structure and its response, the results of the questionnaires of farmers in the field of Kyushu and Shikoku in the past 10 years and soil It is determined based on the actual field survey conducted by the analysis organization and the results of physical analysis of the site assumed to be representative soil. Although it is a relative evaluation value, since the number of areas is small and the threshold value of each area is wide, it seems that the result is almost the same as the absolute evaluation. In addition, good, normal, and poor soil water permeability are similarly determined in consideration of soil drainage and water retention. This is stored in the server as a measurement field record. As in this example, “unsuitable as an agricultural field” at this time is apparently unsuitable for agricultural workers as it is in the state of farm work, so the data may be deleted.

土壌分析試料は、土壌分析機関で土壌の固相及び液相及び気相の比率、仮比重、CEC、土壌の乾燥減量容積並びに必要に応じ併せて陽イオン及び陰イオン分析、微量元素分析、水素イオン濃度(pH)、電気伝導度(EC)、菌類など測定分析し、圃場土壌の測定分析情報記録としてサーバに記録する。その一例を図6に示した。      Soil analysis samples are analyzed by soil analysis institutes of soil solid phase, liquid phase and gas phase ratio, provisional specific gravity, CEC, soil dry weight loss and, if necessary, cation and anion analysis, trace element analysis, hydrogen Ion concentration (pH), electrical conductivity (EC), fungi, etc. are measured and analyzed, and recorded on the server as measurement analysis information records of field soil. An example is shown in FIG.

次に、表2のように数値化した土壌硬度と土壌透水性の積算値を求め、土壌硬度と土壌透水性数値化データとともに図6のように記録表に入力し保存する。

Figure 2013148566
Next, the integrated values of soil hardness and soil permeability that are digitized as shown in Table 2 are obtained, and are entered into a recording table as shown in FIG. 6 and stored together with the soil hardness and soil permeability digitalized data.
Figure 2013148566

まず、サーバに収められている測定圃場の土壌の測定分析情報を用いて、顧客土壌情報と乾燥減量容積、補正に用いる各係数、土性の関係データベースである「仮比重補正データベース」の情報とともに仮比重が1.10を超えるか判定し、1.10より当該値が小さければ1.0を乗じ土壌改良情報または施肥情報に用いる補正仮比重とする。また、仮比重が1.10に等しいかそれより大きくかつ1.40より小さければ農業従事者の評価に基づく情報を加味し表3に示した仮比重補正に従いそれが必要な場合に1.10になるよう係数を乗じ二次補正を行う。さらに、仮比重が1.40に等しいかそれより大きい場合は1.20になるように係数を乗じ二次補正を行う。      First, using the measurement analysis information of the soil of the measurement field stored in the server, along with information on the customer soil information and dry weight loss volume, each coefficient used for correction, and the “temporary specific gravity correction database” which is a relational database of soil properties It is determined whether or not the temporary specific gravity exceeds 1.10. If the value is smaller than 1.10, 1.0 is multiplied to obtain a corrected temporary specific gravity used for soil improvement information or fertilization information. In addition, if the temporary specific gravity is equal to or greater than 1.10 and smaller than 1.40, the information based on the evaluation of the farmer is taken into account and 1.10 when it is necessary according to the temporary specific gravity correction shown in Table 3. Multiply by the coefficient so that Further, when the temporary specific gravity is equal to or greater than 1.40, the coefficient is multiplied so as to be 1.20, and the secondary correction is performed.

このようにして得られた補正仮比重を用いて、通常の方法に従い土壌改良に必要な資材、施肥すべき肥料の種類とその量についての情報を求める。これら圃場の土壌情報または分析を担当するシステム管理事業者からの情報は、農業従事者のパソコンと当該システム提供事業者のサーバとをインターネットを介して結ぶことにより相互利用することが可能とすることができる。      Using the corrected provisional specific gravity thus obtained, information on materials necessary for soil improvement, the type of fertilizer to be fertilized and the amount thereof is obtained in accordance with a normal method. It is possible to mutually use these soil information or information from the system management company in charge of analysis by connecting the farmer's personal computer and the server of the system provider through the Internet. Can do.

なお、土壌改善情報に基づき、農業従事者は自己の保有する圃場の土壌改善の方向性を確信し、当該システム提供事業者から提供される物理分析データを加味した土壌改善指導を受け、土壌改善を行うことにより、その結果、再度「土壌分析問診表」により農業従事者の土壌の評価を得て最適な土壌を形成してから作物栽培に入ることも可能である。      In addition, based on the soil improvement information, the farmer is convinced of the direction of the soil improvement of the field he owns, receives soil improvement guidance taking into account the physical analysis data provided by the system provider, and improves the soil. As a result, it is possible to enter the crop cultivation after obtaining the optimum soil by obtaining the soil evaluation of the farmer again by the “Soil Analysis Questionnaire”.

図4に大分県内の圃場でショウガを栽培している農業従事者から葉色と根茎の育ちが良くないと土壌改善と施肥方法についてのアドバイス依頼を受け、現地に赴き状況を確認するとともに圃場の土壌を5点法によりサンプリングし密封して持ち帰った。同時に農業従事者に図3に示すアンケートを作成してもらい、土壌の硬度として「硬い」、土壌透水性として「不良」の評価を得た。      Figure 4 shows a request for advice on soil improvement and fertilization methods from a farmer who cultivates ginger in a field in Oita Prefecture. Was sampled, sealed and brought back by the 5-point method. At the same time, farmers were asked to create the questionnaire shown in FIG. 3, and the evaluation was "hard" as soil hardness and "bad" as soil permeability.

持ち帰った土壌について物理分析及び化学分析を行い、図5のように仮比重、乾燥減量容積率、CEC、Ca飽和度、Mg飽和度、K飽和度土壌の三相(固相、液相、気相)の結果を得た。この土壌は、仮比重が大きく外観から礫質と粘度質系で固相の割合が非常に高いものであった。これらの情報並びに農業従事者からの土壌硬度と土壌通水性の数値情報をシステムに入力した。農業従事者からの情報は表1の情報に基づき数値情報に変換され、それらの和としてA圃場のデータベースとして記録した。一方、物理分析より求めた仮比重は、1.1より大きいか比較し、それ以上なので補正係数0.85を乗じその結果を記録表に記録するとともに、次に乾燥減量容積が3.0以上か比較し、そして農業従事者からの情報数値変換値のどの領域に相当するか比較し最終的に特定領域に該当するか判定した。この場合、特定領域に該当することになったので、仮比重が1.2付近となるようさらに二次補正を図5の基準に従い行い、補正仮比重1.18を算出した。      Physical analysis and chemical analysis are performed on the brought-back soil, and the three phases (solid phase, liquid phase, gas saturation) of temporary specific gravity, dry weight loss volume ratio, CEC, Ca saturation, Mg saturation, and K saturation soil as shown in FIG. Phase) result. This soil had a large temporary specific gravity and a very high ratio of solid phase in gravel and viscosity systems from the appearance. This information, as well as numerical information on soil hardness and soil permeability from farmers, were entered into the system. Information from the farmer was converted into numerical information based on the information in Table 1 and recorded as a sum of them as a database for the A field. On the other hand, the provisional specific gravity obtained from physical analysis is compared with 1.1 or more, so it is more than that, and the correction coefficient is multiplied by 0.85 and the result is recorded in the recording table. And compared to which area of the numerical value conversion value from the farmer it corresponds, it was finally determined whether it corresponds to the specific area. In this case, since it corresponds to a specific region, secondary correction was further performed according to the standard of FIG. 5 so that the temporary specific gravity was around 1.2, and a corrected temporary specific gravity of 1.18 was calculated.

以上より求めた補正仮比重を用い、自社製作の施肥量計算システムにより圃場に投入する肥料名と量、基肥と追肥の割合、時期を計算した。その結果をA圃場データベースに格納した。保管および農業従事者に提供される情報の記録様式の一例を図8及び図9に示した。A圃場の農業従事者は、インターネットを介し、当データベースにアクセスし施肥情報を取得することができた。この施肥情報をもとにショウガを栽培し、昨年よりも収量で約15%、品質としては昨年度のひね具合より少なくなり塊状のものが目に見えて増加していた。ただし、ひね具合のあるものもまだ多く見受けられ、土壌改良を先に行ったほうがこの場合経営上有利と考えられた。      Using the corrected provisional specific gravity determined above, the fertilizer name and amount, the ratio of basic fertilizer and topdressing, and the timing of the fertilizer to be introduced into the field were calculated by the in-house manufactured fertilizer application calculation system. The results were stored in the A field database. An example of the recording format of information provided to storage and farmers is shown in FIGS. Farmers in the A field were able to obtain fertilization information by accessing this database via the Internet. Ginger was cultivated based on this fertilization information, yield was about 15% compared to last year, the quality was less than last year's twist, and lumps were visibly increasing. However, there were still a lot of twists, and it was considered that it would be advantageous for management to improve the soil first.

次に、圃場の土壌に関する仮比重が1.1以下の場合でベビーリーフ栽培の例を示した。農業従事者からのアンケートでは、土壌硬度は「普通」、土壌通水性は「普通」であり、実施例1と同様に処理した結果、農業従事者からの情報数値変換値からは要補正となるものの乾燥減量容積が3.0未満なため補正係数1.0を乗じ補正仮比重を算出した。前回栽培は葉の色が薄く品質的に劣るものが多いのに比べ今回は、通常の明るい緑色の葉色となった。収率についてはベビーリーフのためもあってか大きな差異は認められなかった。      Next, the example of baby leaf cultivation was shown in the case where the temporary specific gravity related to the soil in the field was 1.1 or less. In the questionnaire from the farmer, the soil hardness is “ordinary” and the soil water permeability is “ordinary”. As a result of processing in the same manner as in Example 1, it is necessary to correct the information numerical value converted from the farmer. Since the dry weight loss volume was less than 3.0, the corrected temporary specific gravity was calculated by multiplying the correction coefficient by 1.0. Compared to the previous cultivation, where the leaves were thin and inferior in quality, this time it was a normal bright green leaf. There was no significant difference in the yield due to the baby leaf.

これは、圃場の土壌に関する仮比重が0.9を大きく下回る場合でチューリップを栽培したものである。農業従事者からのアンケートでは、土壌硬度は「普通」、土壌通水性は「不良(やや)」であり、球根の根腐れが多く生育も芳しくないということであった。実施例1と同様に処理し、農業従事者からの情報を数値変換した値からは要補正となったが乾燥減量容積が3.0未満なため補正係数1.0を乗じ補正仮比重を算出した。補正仮比重は、そのままでは理想的な仮比重値1.0よりもかなり小さく陽イオンの飽和度も低いのでこのままでは肥料不足が予想されるが施肥バランスを考慮の上多めに施し、かつ植物の生育を見ながら注意して追肥を行うこととした。その結果、当年の生育はよかったものの、次の年の保障はできず根本的には仮比重を高めるよう無機質系改良材を加えて、再度土壌評価を実施することとした。      In this case, tulips were cultivated when the provisional specific gravity for the soil in the field was significantly below 0.9. According to a questionnaire from farmers, the soil hardness was “ordinary”, the soil water permeability was “poor”, and the root rot of the bulbs was large and the growth was not good. Processing was carried out in the same manner as in Example 1, and it was necessary to correct from the value obtained by converting the information from the farmer numerically, but because the dry weight loss volume was less than 3.0, the correction provisional specific gravity was calculated by multiplying by the correction factor 1.0. did. The corrected temporary specific gravity is considerably smaller than the ideal temporary specific gravity value of 1.0 as it is, and the degree of cation saturation is low. Therefore, it is expected that the fertilizer will be insufficient. It was decided to add fertilizer carefully while watching the growth. As a result, although the growth of the current year was good, it was not possible to guarantee the next year, and it was decided to repeat the soil evaluation by adding an inorganic material to improve the temporary specific gravity.

Claims (5)

対象圃場についての農業従事者側からの土壌硬度と土壌透水性の各情報を数値化し記録する数値化記録手段と、
それら数値化した情報を和し、記録する手段と、
土壌の採取時の容積とそれを絶乾したときの容積から求める乾燥減量容積と土性の関係を記録し、それに特定領域を設けたデータベースとを有し、
前記土壌硬度と土壌透水性を数値化した情報の和と乾燥減量容積とから前記データベースの特定領域に位置するかどうか判定し、
特定領域に位置しないときは特定の補正係数を用いて前記圃場の土壌の仮比重を補正し、
特定領域に位置するときには特定の補正係数とさらに仮比重に連関する補正係数とを用いて前記圃場の土壌の仮比重を補正し、
それを用いて土壌改良または施肥バランス算出を行うことを特徴とする土壌管理支援システム。
A digitized recording means for digitizing and recording each information of soil hardness and soil permeability from the farmer side about the target field;
A means for summing and recording the digitized information;
Record the relationship between soil loss and the loss-of-drying volume obtained from the volume when the soil was collected and the volume when it was completely dry, and have a database with a specific area on it.
Determining whether it is located in a specific area of the database from the sum of information quantified the soil hardness and soil permeability and the loss on drying volume,
When not located in a specific area, correct the temporary specific gravity of the soil of the field using a specific correction coefficient,
When located in a specific area, using a specific correction coefficient and a correction coefficient related to the temporary specific gravity, correct the temporary specific gravity of the soil of the field,
A soil management support system characterized by performing soil improvement or fertilization balance calculation using it.
特定領域が乾燥減量容積率の値が3以上であることを特徴とする請求項1または請求項1に記載の土壌管理支援システム。  The soil management support system according to claim 1 or 1, wherein the specific area has a value of the weight loss by weight loss ratio of 3 or more. 補正係数が土壌の仮比重測定値に対応し、それが1.2になるような係数としたものであることを特徴とする請求項1または請求項2に記載の土壌管理支援システム。  The soil management support system according to claim 1 or 2, wherein the correction coefficient corresponds to the soil temporary specific gravity measurement value and is 1.2. 圃場についての農業従事者側からの土壌硬度と土壌透水性の各情報の数値化方法が、それぞれの性質を情報ごとに複数の評価領域に分け、それらを特定の効果の大きさの方向に揃え領域の順列を定めていることを特徴とする請求項1ないし3のいずれかに記載の土壌管理支援システム。  The method of quantifying the soil hardness and soil permeability information from the farmer's side about the field divides each property into multiple evaluation areas for each information, and aligns them in the direction of the magnitude of the specific effect The soil management support system according to any one of claims 1 to 3, wherein a permutation of regions is defined. 対象圃場についての農業従事者側からの土壌硬度と土壌透水性の各情報を数値化し記録する数値化記録手段と、
前記情報のうち土壌硬度と土壌透水性を数値化した情報を和し、記録する手段と、
土壌の採取時の容積とそれを絶乾したときの容積の差である乾燥減量容積と土性の関係を記録し、それに特定領域を設けたデータベースとを有し、
前記土壌硬度と土壌透水性を数値化した情報の和と乾燥減量容積を入力することにより前記データベースの特定領域に位置するかどうか判定し、
特定領域に位置しないときは特定の補正係数を用いて前記圃場の土壌の仮比重を補正し、特定ランクに位置したときには特定の補正係数とさらに仮比重に連関する補正係数とを用いて前記圃場の土壌の仮比重を補正し、それを用いて土壌改良または施肥バランス算出を行うことを特徴とする土壌管理支援システム用プログラム。
A digitized recording means for digitizing and recording each information of soil hardness and soil permeability from the farmer side about the target field;
A means for summing and recording information obtained by quantifying soil hardness and soil permeability among the information,
It has a database that records the relationship between soil loss and the loss-of-drying volume, which is the difference between the volume when the soil is collected and the volume when it is completely dried, and a specific area on it.
Determine whether it is located in a specific area of the database by entering the sum of the information that quantifies the soil hardness and soil permeability and the drying loss volume,
When not located in a specific area, the temporary specific gravity of the soil of the field is corrected using a specific correction coefficient, and when positioned in a specific rank, the field is corrected using a specific correction coefficient and a correction coefficient related to the temporary specific gravity. A program for a soil management support system that corrects the temporary specific gravity of soil and calculates soil improvement or fertilization balance using the corrected specific gravity.
JP2012022501A 2012-01-17 2012-01-17 Farm field soil management support system Pending JP2013148566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022501A JP2013148566A (en) 2012-01-17 2012-01-17 Farm field soil management support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022501A JP2013148566A (en) 2012-01-17 2012-01-17 Farm field soil management support system

Publications (1)

Publication Number Publication Date
JP2013148566A true JP2013148566A (en) 2013-08-01

Family

ID=49046173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022501A Pending JP2013148566A (en) 2012-01-17 2012-01-17 Farm field soil management support system

Country Status (1)

Country Link
JP (1) JP2013148566A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927687A (en) * 2014-04-23 2014-07-16 广西力源宝科技有限公司 Intelligent fertilization system for China firs
CN103927684A (en) * 2014-04-23 2014-07-16 广西力源宝科技有限公司 Intelligent cassava fertilizer applying system
CN104807980A (en) * 2015-05-23 2015-07-29 林光琴 Evaluation method for snow melting performance of pavement of highway
KR101808019B1 (en) 2017-07-18 2017-12-14 대한민국 Apparatus and method for calculating nutrient budget
CN111680929A (en) * 2020-06-16 2020-09-18 北京嘉博文生物科技有限公司 Evaluation method and application of agricultural non-point source pollution of chemical fertilizer used in farmland
JP7356748B2 (en) 2017-07-20 2023-10-05 国立研究開発法人農業・食品産業技術総合研究機構 Soil physical property diagnosis method in the field
CN116950092A (en) * 2023-06-08 2023-10-27 广东省水利水电第三工程局有限公司 Ecological frame deviation adjustment control method
CN118067966A (en) * 2024-04-22 2024-05-24 黑龙江智云互联农业科技有限公司 Digital agricultural soil monitoring system
JP7513268B2 (en) 2021-01-27 2024-07-09 国立研究開発法人農業・食品産業技術総合研究機構 Field evaluation method, device, and program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927687A (en) * 2014-04-23 2014-07-16 广西力源宝科技有限公司 Intelligent fertilization system for China firs
CN103927684A (en) * 2014-04-23 2014-07-16 广西力源宝科技有限公司 Intelligent cassava fertilizer applying system
CN104807980A (en) * 2015-05-23 2015-07-29 林光琴 Evaluation method for snow melting performance of pavement of highway
KR101808019B1 (en) 2017-07-18 2017-12-14 대한민국 Apparatus and method for calculating nutrient budget
JP7356748B2 (en) 2017-07-20 2023-10-05 国立研究開発法人農業・食品産業技術総合研究機構 Soil physical property diagnosis method in the field
CN111680929A (en) * 2020-06-16 2020-09-18 北京嘉博文生物科技有限公司 Evaluation method and application of agricultural non-point source pollution of chemical fertilizer used in farmland
CN111680929B (en) * 2020-06-16 2023-09-01 北京嘉博文生物科技有限公司 Agricultural non-point source pollution evaluation method and application of chemical fertilizer for farmland
JP7513268B2 (en) 2021-01-27 2024-07-09 国立研究開発法人農業・食品産業技術総合研究機構 Field evaluation method, device, and program
CN116950092A (en) * 2023-06-08 2023-10-27 广东省水利水电第三工程局有限公司 Ecological frame deviation adjustment control method
CN116950092B (en) * 2023-06-08 2024-04-12 广东省水利水电第三工程局有限公司 Ecological frame deviation adjustment control method
CN118067966A (en) * 2024-04-22 2024-05-24 黑龙江智云互联农业科技有限公司 Digital agricultural soil monitoring system

Similar Documents

Publication Publication Date Title
JP2013148566A (en) Farm field soil management support system
Aguilera et al. Stable carbon and nitrogen isotopes and quality traits of fossil cereal grains provide clues on sustainability at the beginnings of Mediterranean agriculture
Bondeau et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance
Chamberlain et al. Using DAYCENT to quantify on-farm GHG emissions and N dynamics of land use conversion to N-managed switchgrass in the Southern US
Fader et al. Virtual water content of temperate cereals and maize: Present and potential future patterns
Berntsen et al. Modelling dry matter production and resource use in intercrops of pea and barley
Ding et al. Opposite effects of nitrogen fertilization and plastic film mulching on crop N and P stoichiometry in a temperate agroecosystem
Dold et al. Carbon sequestration and nitrogen uptake in a temperate silvopasture system
Niedertscheider et al. Influence of land-use intensification on vegetation C-stocks in an alpine valley from 1865 to 2003
Ma et al. Relationship between plant nitrogen and phosphorus accumulations in a canola crop as affected by nitrogen management under ample phosphorus supply conditions
Araya et al. Spatial analysis of the impact of climate change factors and adaptation strategies on productivity of wheat in Ethiopia
Subedi et al. Cultural intensity and planting density effects on aboveground biomass of 12-year-old loblolly pine trees in the Upper Coastal Plain and Piedmont of the southeastern United States
Migliorati et al. Soybean fallow and nitrification inhibitors: Strategies to reduce N2O emission intensities and N losses in Australian sugarcane cropping systems
Aulakh et al. Biological nitrogen fixation by soybean and fate of applied 15 N-fertilizer in succeeding wheat under conventional tillage and conservation agriculture practices
Waghorn et al. Growth, biomass, leaf area and water-use efficiency of juvenile Pinus radiata in response to water deficits
Lagerås et al. Long-term development of landscape openness and arable land use in an agricultural region of southern Sweden: the potential of REVEALS estimates using pollen records from wells
Pokhrel et al. Energy balance and environmental impacts of rice and wheat production: A case study in Nepal
Tum et al. Validating modelled NPP using statistical yield data
Dogbatse et al. Influence of acidic soils on growth and nutrient uptake of cocoa (Theobroma cacao L.) varieties
Tovihoudji et al. Variability in maize yield and profitability following hill-placement of reduced mineral fertilizer and manure rates under smallholder farm conditions in northern Benin
Meurer et al. Shoot and root production in mixed grass ley under daily fertilization and irrigation: validating the N productivity concept under field conditions
Zhang et al. The optimization of conservation agriculture practices requires attention to location-specific performance: evidence from large scale gridded simulations across South Asia
Hartzell et al. Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions
Sheban et al. Importance of environmental factors on plantings of wild-simulated American Ginseng
Billen et al. Carbon sequestration in soils of SW-Germany as affected by agricultural management—calibration of the EPIC model for regional simulations