JP2013148440A - Critical current inspection device and critical current inspection method - Google Patents
Critical current inspection device and critical current inspection method Download PDFInfo
- Publication number
- JP2013148440A JP2013148440A JP2012008610A JP2012008610A JP2013148440A JP 2013148440 A JP2013148440 A JP 2013148440A JP 2012008610 A JP2012008610 A JP 2012008610A JP 2012008610 A JP2012008610 A JP 2012008610A JP 2013148440 A JP2013148440 A JP 2013148440A
- Authority
- JP
- Japan
- Prior art keywords
- current
- superconducting wire
- value
- inspection
- critical current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measurement Of Current Or Voltage (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は、超電導線材の臨界電流を検査する技術に関する。 The present invention relates to a technique for inspecting a critical current of a superconducting wire.
超電導線材において、臨界電流は性能を左右する重要な特性の一つである。臨界電流とは、超電導体に流せる限界の電流値を指し、一般的には、超電導体に所定電界(例えば1×10-4V/m)を生じさせる電流値が臨界電流として定義されている。
この臨界電流を測定する技術には、直接通電方式と間接測定方式とがある。直接通電方式は、超電導線材に検査電流を直接通電して臨界電流を測定する手法であり、代表的なものとして直流四端子法が知られている。この直流四端子法では、超電導線材に流す検査電流の電流値を次第に大きくし、上記の所定電界に対応する所定電圧(以下、臨界電流定義電圧と言う)が超電導線材に生じたときの検査電流の電流値から臨界電流を測定している(例えば、特許文献1参照)。
In superconducting wires, critical current is one of the important characteristics that affect performance. The critical current refers to a limit current value that can be passed through the superconductor. Generally, a current value that generates a predetermined electric field (for example, 1 × 10 −4 V / m) in the superconductor is defined as the critical current. .
The techniques for measuring this critical current include a direct energization method and an indirect measurement method. The direct energization method is a method in which an inspection current is directly applied to a superconducting wire to measure a critical current, and a DC four-terminal method is known as a representative method. In this DC four-terminal method, the current value of the inspection current passed through the superconducting wire is gradually increased, and the inspection current when a predetermined voltage corresponding to the predetermined electric field (hereinafter referred to as critical current definition voltage) is generated in the superconducting wire. The critical current is measured from the current value (see, for example, Patent Document 1).
一方、間接測定方式としては、例えば、超電導線材の磁化測定をホール素子等で行い当該磁化測定の測定値を換算して臨界電流を求める手法が知られている。しかしながら、測定値から臨界電流への換算が用いられるため正確性に欠け、超電導線材に電流を流したときの通電特性と必ずしも一致しないことがある。このため、超電導線材の品質検査の一つとして臨界電流特性の検査を行う際には、信頼性の観点から直接通電方式による測定が行われることが多い。 On the other hand, as an indirect measurement method, for example, a method is known in which the magnetization of a superconducting wire is measured with a Hall element and the critical current is obtained by converting the measured value of the magnetization measurement. However, since the conversion from the measured value to the critical current is used, the accuracy is lacking, and the current-carrying characteristics when a current is passed through the superconducting wire may not always match. For this reason, when a critical current characteristic is inspected as one of quality inspections of a superconducting wire, measurement by a direct energization method is often performed from the viewpoint of reliability.
ところで、臨界電流近傍の電流が超電導線材に流れると、超電導線材が電気抵抗を発生して常電導に転移し急激な抵抗上昇に伴う大きな発熱を生じ、超電導線材を焼損することがある。この対策として、超電導線材においては、超電導層の直上に例えば銀等の良電導体から成る保護層と呼ばれる第1の常電導金属層が設けられている。この保護層は、通常、比較的薄いため、電気的な安定を増して焼損を抑制するために、保護層の更に直上に銅等の良導体から成る安定層と呼ばれる第2の常電導金属層が設けられている。これにより、超電導層の超電導が部分的に不安定になって抵抗上昇が発生した場合でも、電流は、抵抗が上昇した超電導層よりも電気抵抗の小さな安定層を流れるため、発熱に伴う焼損が防止される。 By the way, when a current in the vicinity of the critical current flows through the superconducting wire, the superconducting wire generates electric resistance and transitions to normal conduction, generating a large amount of heat due to a sudden increase in resistance, and the superconducting wire may burn out. As a countermeasure, in a superconducting wire, a first normal conducting metal layer called a protective layer made of a good conductor such as silver is provided immediately above the superconducting layer. Since this protective layer is usually relatively thin, in order to increase electrical stability and suppress burnout, a second normal conductive metal layer called a stable layer made of a good conductor such as copper is provided immediately above the protective layer. Is provided. As a result, even when the superconductivity of the superconducting layer becomes partially unstable and the resistance rises, the current flows through the stable layer having a lower electrical resistance than the superconducting layer with the increased resistance, so that the burning due to heat generation is not caused. Is prevented.
しかしながら、超電導線材の製造現場において、品質検査の一環として臨界電流特性を検査する場合、超電導線材に安定層を設けた後でないと臨界電流を測定することができない。したがって、臨界電流特性の検査において不良が認められたときのコスト的な損失が安定層を要する分だけ大きくなる。また安定層の形成が不十分である場合には、臨界電流特性の検査時に超電導線材が発熱し焼損させてしまう、といった問題もある。 However, when a critical current characteristic is inspected as part of quality inspection at a superconducting wire manufacturing site, the critical current cannot be measured unless a stable layer is provided on the superconducting wire. Therefore, the cost loss when a defect is recognized in the inspection of the critical current characteristic is increased by the amount required for the stable layer. In addition, when the formation of the stable layer is insufficient, there is a problem that the superconducting wire generates heat and burns out during the inspection of the critical current characteristics.
そこで、異常な電流が超電導線材に発生するとき、すなわち急激な臨界電流の低下、断線発生、及び臨界電流定義電圧から発生する抵抗より高い抵抗を有する電流の発生があるときに、異常な電流を迂回させる分流器を超電導線材と別途に設けることで、超電導線材の焼損を防止する技術が知られている(例えば、特許文献2)。 Therefore, when an abnormal current is generated in the superconducting wire, that is, when there is a sudden decrease in critical current, disconnection, or generation of a current having a resistance higher than the resistance generated from the critical current definition voltage, the abnormal current is A technique for preventing burning of the superconducting wire by providing a shunt for bypassing separately from the superconducting wire is known (for example, Patent Document 2).
しかしながら、異常な電流が発生したタイミングで、当該異常な電流が分流器に向かうように制御することは非常に煩雑であり、また構成も複雑になる、といった問題がある。
本発明は、上述した事情に鑑みてなされたものであり、簡単な構成でありながらも、臨界電流発生の際の超電導線材の焼損を抑制できる臨界電流検査装置、及び臨界電流検査方法を提供することを目的とする。
However, there is a problem that it is very complicated and the configuration is complicated to control the abnormal current so as to go to the shunt when the abnormal current occurs.
The present invention has been made in view of the above-described circumstances, and provides a critical current inspection apparatus and a critical current inspection method capable of suppressing the burning of a superconducting wire when a critical current is generated while having a simple configuration. For the purpose.
上記目的を達成するために、本発明は、超電導線材に電気的に並列接続される所定電気抵抗値の常電導体と、前記超電導線材、及び前記常電導体を含む並列回路に検査電流を流す電流値可変の定電流源と、を備え、前記検査電流の電流値を変化させ、前記超電導線材に流れる臨界電流を定義する所定電圧が前記超電導線材に生じたときの検査電流の電流値から、当該所定電圧発生時に前記常電導体に流れる電流値を除いた電流値に基づいて前記臨界電流を検査することを特徴とする臨界電流検査装置を提供する。 In order to achieve the above object, according to the present invention, a normal conductor having a predetermined electrical resistance value electrically connected in parallel to a superconducting wire, and a supercurrent conducting material and a parallel circuit including the normal conductor are caused to pass a test current. A constant current source of variable current value, and changing the current value of the inspection current, from the current value of the inspection current when a predetermined voltage defining the critical current flowing in the superconducting wire is generated in the superconducting wire, There is provided a critical current inspection apparatus that inspects the critical current based on a current value excluding a current value flowing through the normal conductor when the predetermined voltage is generated.
また本発明は、上記臨界電流検査装置において、前記超電導線材に予め想定されている臨界電流の電流値に、当該所定電圧発生時に前記常電導体に流れる電流値を加えた電流値を上限に前記検査電流を変化させ、前記上限の電流値に至るまでに前記所定電圧が発生するか否かに基づいて、前記超電導線材の臨界電流特性の不良を判定する、ことを特徴とする。 Further, in the critical current inspection apparatus, the upper limit is a current value obtained by adding a current value of a critical current preliminarily assumed in the superconducting wire to a current value flowing in the normal conductor when the predetermined voltage is generated. The inspection current is changed, and a failure in critical current characteristics of the superconducting wire is determined based on whether or not the predetermined voltage is generated before reaching the upper limit current value.
また本発明は、上記臨界電流検査装置において、前記超電導線材に予め想定されている臨界電流の電流値に、当該所定電圧発生時に前記常電導体に流れる電流値を加えた上限電流値に対する、当該所定電圧発生時に前記常電導体に流れる電流値の比率が5%以上となるように前記常電導体の所定電気抵抗値を設定したことを特徴とする。 Further, the present invention provides the critical current inspection apparatus, wherein the current value of the critical current preliminarily assumed for the superconducting wire is added to the upper limit current value obtained by adding the current value flowing through the normal conductor when the predetermined voltage is generated. The predetermined electrical resistance value of the normal conductor is set so that a ratio of a current value flowing through the normal conductor when a predetermined voltage is generated is 5% or more.
また本発明は、上記臨界電流検査装置において、前記超電導線材に予め想定されている臨界電流の電流値に、当該所定電圧発生時に前記常電導体に流れる電流値を加えた上限電流値に対する、当該所定電圧発生時に前記常電導体に流れる電流値の比率が10%以下となるように前記常電導体の所定電気抵抗値を設定したことを特徴とする。 Further, the present invention provides the critical current inspection apparatus, wherein the current value of the critical current preliminarily assumed for the superconducting wire is added to the upper limit current value obtained by adding the current value flowing through the normal conductor when the predetermined voltage is generated. The predetermined electrical resistance value of the normal conductor is set so that a ratio of a current value flowing through the normal conductor when a predetermined voltage is generated is 10% or less.
また本発明は、上記臨界電流検査装置において、前記常電導体に発生した電圧が、前記所定電圧に達した場合に、前記超電導線材への検査電流の流入を止め、又は前記超電導線材に流入する電流を減じることを特徴とする。 In the critical current inspection apparatus, when the voltage generated in the normal conductor reaches the predetermined voltage, the inspection current is stopped from flowing into the superconducting wire or flows into the superconducting wire. It is characterized by reducing the current.
また本発明は、上記臨界電流検査装置において、前記超電導線材に予め想定されている臨界電流の電流値に応じて、前記抵抗値が異なる常電導体を交換自在に設けたことを特徴とする。 According to the present invention, in the critical current inspection apparatus, a normal conductor having a different resistance value is provided in a replaceable manner in accordance with a current value of a critical current assumed in advance in the superconducting wire.
また上記目的を達成するために、本発明は、超電導線材に所定電気抵抗値の常電導体を電気的に並列接続し、前記超電導線材、及び前記常電導体を含む並列回路を構成し、当該並列回路に検査電流を流し、前記検査電流の電流値を可変し、臨界電流を定義する所定電圧が前記超電導線材に生じたときの検査電流の電流値から、当該所定電圧発生時に前記常電導体に流れる電流値を除いた電流値に基づいて前記臨界電流を検査することを特徴とする臨界電流検査方法を提供する。 In order to achieve the above object, the present invention electrically connects a normal conductor having a predetermined electric resistance value to a superconducting wire in parallel, and configures a parallel circuit including the superconducting wire and the normal conductor, An inspection current is passed through the parallel circuit, the current value of the inspection current is varied, and the normal conductor is generated when the predetermined voltage is generated from the current value of the inspection current when a predetermined voltage defining a critical current is generated in the superconducting wire. The critical current inspection method is characterized in that the critical current is inspected on the basis of a current value excluding a current value flowing through the current.
本発明によれば、超電導線材、及び常電導体を含む並列回路に検査電流を流して臨界電流特性を検査する構成であるため、臨界電流の発生に伴い超電導線材に急激な抵抗上昇が発生したとしても、一定割合の検査電流は常電導体に分流されることから、別途に特別な回路を備えること無く簡単な回路構成でありながらも超電導線材の焼損を抑制できる。
また常電導体の抵抗値が所定電気抵抗値に固定されて既知であることから、臨界電流を定義する所定電圧が前記超電導線材に生じたときに常電導体に流れる電流値も一義に決定され、当該電流値を検査電流から除くことで、超電導線材の臨界電流を求められる。
According to the present invention, the superconducting wire and the parallel circuit including the normal conductor are configured to inspect the critical current characteristics by passing the inspection current to the parallel circuit. Therefore, a sudden increase in resistance occurs in the superconducting wire with the generation of the critical current. However, since a certain percentage of the inspection current is shunted to the normal conductor, it is possible to suppress burning of the superconducting wire while having a simple circuit configuration without providing a special circuit.
Further, since the resistance value of the normal conductor is fixed to a predetermined electric resistance value and known, the current value that flows through the normal conductor when a predetermined voltage that defines a critical current is generated in the superconducting wire is also uniquely determined. By removing the current value from the inspection current, the critical current of the superconducting wire can be obtained.
以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態に係る臨界電流検査装置1の構成を模式的に示す図である。
臨界電流検査装置1は、超電導線材2の臨界電流特性を検査する装置である。特に本実施形態の臨界電流検査装置1は、超電導線材2の製造現場での品質管理に用いられ、超電導線材2の臨界電流の電流値が臨界電流の設計値(以下、臨界電流仕様値)を下回らないかを検査するために用いられる。なお、この臨界電流仕様値に幅がある場合には、製品の品質上、満足すべき値の下限値が臨界電流仕様値に設定される。
検査対象の超電導線材2は、数十メートルから数キロメートルに亘る長さの長尺テープ状に形成されたものである。この超電導線材2は、送りリール3に巻かれて設置され、当該送りリール3で送り出しながら巻き取りリール4で順次に巻き取る、いわゆるリールトゥリール(Reel to Reel)方式で走行される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing a configuration of a critical current inspection apparatus 1 according to the present embodiment.
The critical current inspection apparatus 1 is an apparatus that inspects the critical current characteristics of the superconducting wire 2. In particular, the critical current inspection apparatus 1 of the present embodiment is used for quality control at the production site of the superconducting wire 2, and the current value of the critical current of the superconducting wire 2 is the critical current design value (hereinafter referred to as the critical current specification value). Used to check if it falls below. When there is a range in the critical current specification value, the lower limit value of a value that should be satisfied is set as the critical current specification value in terms of product quality.
The superconducting wire 2 to be inspected is formed in a long tape shape having a length ranging from several tens of meters to several kilometers. The superconducting wire 2 is wound around a feed reel 3 and is driven by a so-called reel-to-reel method in which the take-up reel 4 sequentially winds while being fed by the feed reel 3.
超電導線材2は、テープ状の基材の表面に超電導層を薄膜形成したものである。この超電導層には、例えば液体窒素温度(77K)以上で超電導となる高温超電導体が用いられている。高温超電導には、RE系超電導体(RE:希土類元素)が知られており、本実施形態では、化学式YBa2Cu3O7-Yで表されるイットリウム系酸化物超電導体が用いられている。超電導線材2は、超電導層上に銀等の良導体からなる保護層(と呼ばれる第1の常電導金属層が設けられている。また、更にこの保護層の上に銅等の良電導体から成る安定層と呼ばれる第2の常電導金属層が設けられていてもよい。本実施形態では、この超電導線材2を超電導転移温度まで冷却するために、図1に示すように、超電導線材2の走行経路内には冷却容器5が配置され、この冷却容器5には液体窒素6が満たされている。超電導線材2は、走行経路内に適宜に配置された複数のローラ7によって冷却容器5の液体窒素6の中を走行するように導かれる。このように超電導線材2が液体窒素6の中に通線されることで、超電導転移温度以下に冷却され超電導状態となる。
The superconducting wire 2 is obtained by forming a thin film of a superconducting layer on the surface of a tape-like substrate. For this superconducting layer, for example, a high-temperature superconductor that becomes superconducting at a liquid nitrogen temperature (77 K) or higher is used. RE-based superconductors (RE: rare earth elements) are known for high-temperature superconductivity, and in this embodiment, yttrium-based oxide superconductors represented by the chemical formula YBa2Cu3O7-Y are used. The superconducting wire 2 is provided with a protective layer made of a good conductor such as silver (referred to as a first normal conducting metal layer) on the superconducting layer. Further, the superconducting wire 2 is made of a good conductor such as copper on the protective layer. A second normal conducting metal layer called a stable layer may be provided, and in this embodiment, in order to cool the superconducting wire 2 to a superconducting transition temperature, as shown in FIG. A cooling container 5 is disposed in the path, and the cooling container 5 is filled with liquid nitrogen 6. The superconducting wire 2 is liquid in the cooling container 5 by a plurality of
臨界電流検査装置1は、冷却容器5の中で超電導状態となった超電導線材2に検査電流を流し、当該超電導線材2に生じる電圧を監視することで、臨界電流特性の検査を行う。具体的には、図1に示すように、臨界電流検査装置1は、常電導体10と、電流電源11と、一対の電流電極12、13と、一対の電圧電極14、15と、第1電圧計16及び第2電圧計17と、制御装置18とを備えている。
常電導体10は、常電導性材(例えば、銅、銅合金などの比較的高導電率の金属が好ましい)から形成され、既知の所定の電気抵抗値を有するものであり、超電導線材2と常時、電気的に並列に接続され、当該常電導体10と超電導線材2とにより並列回路20が構成されている。この常電導体10は、冷却容器5の液体窒素6の中に配置し温度を一定に保つことで、温度変化に伴う電気抵抗値の変動が抑制されている。
電流電源11は、出力側の負荷変動によらずに一定の電流を出力し、なおかつ出力電流値を可変な定電流源であり、並列回路20に並列に接続され、当該並列回路20に検査電流Iを流すものである。この電流電源11は、予め設定された掃引速度で検査電流Iの電流値Itをゼロから、予め設定された上限電流値Imaxまで順次に増大可能に構成されている。この上限電流値Imaxについては後述する。
The critical current inspection device 1 inspects the critical current characteristic by passing an inspection current through the superconducting wire 2 in the superconducting state in the cooling vessel 5 and monitoring the voltage generated in the superconducting wire 2. Specifically, as shown in FIG. 1, the critical current inspection apparatus 1 includes a normal conductor 10, a
The normal conductor 10 is formed of a normal conductive material (for example, a metal having a relatively high conductivity such as copper or a copper alloy is preferable) and has a known predetermined electric resistance value. The parallel circuit 20 is constituted by the normal conductor 10 and the superconducting wire 2 which are always electrically connected in parallel. The normal conductor 10 is disposed in the liquid nitrogen 6 of the cooling vessel 5 and the temperature is kept constant, so that the fluctuation of the electric resistance value accompanying the temperature change is suppressed.
The
一対の電流電極12、13は、及び一対の電圧電極14、15は、直流四端子法にて超電導線材2の電流−電圧特性を測定するものであり、それぞれが冷却容器5の液体窒素6の中に配置されている。
さらに詳述すると、電流電極12、13のそれぞれは、超電導線材2の長手方向に所定の離間距離だけ離れて配置され、これら電流電極12、13に上記電流電源11が接続される。電流電極12、13は、それぞれ上部電流電極12A、13Aと、下部電流電極12B、13Bとを備え、上部電流電極12A、13Aと、下部電流電極12B、13Bとで超電導線材2を挟み込むことで、電流電源11の検査電流を超電導線材2に流す、いわゆるクランプ式の電極として構成されている。この一対の電流電極12、13には、超電導線材2との間で上記並列回路20を構成するように上述の常電導体10が接続されている。したがって、超電導線材2、及び常電導体10には、各々の抵抗値の逆数比に応じて検査電流Iを分流した電流が流れることとなる。
The pair of
More specifically, each of the
電圧電極14、15は、電流電極12、13の間への通電に伴い超電導線材2に発生する電圧を測定すべく、離間配置された電流電極12、13の内側に、超電導線材2の長手方向に所定の距離だけ離れて配置され、これら電圧電極14、15に第1電圧計16が接続されている。電圧電極14、15は、それぞれ上部電圧電極14A、15Aと、下部電圧電極14B、15Bとを備え、上部電圧電極14A、15Aと、下部電圧電極14B、15Bとで超電導線材2を挟み込む、いわゆるクランプ式の電極として構成されている。第1電圧計16は、これら電圧電極14、15の間に生じる電位差を電圧V1として検出し、検査の間は、この電圧V1を監視することで、臨界電流を定義する臨界電流定義電圧Vtが超電導線材2に発生したか否かが検知される。
The
第2電圧計17は、電流電源11の通電によって常電導体10に発生する電圧V2を監視するためのものである。上述の通り、常電導体10は、超電導線材2との間で並列回路20を構成することから、電圧V2に基づき、超電導線材2に臨界電流定義電圧Vtが発生したか否かが検知できる。具体的には、電圧電極14、15の離間距離と、この離間距離間の常電導体10の電気抵抗値Rnとに基づき、超電導線材2に臨界電流定義電圧Vtが発生したときに第2電圧計17で検知される電圧V2が臨界電流定義電圧相当電圧Vrとして予め求めることができる。このとき、第2電圧計17が常電導体10に接続された一対の電流電極12、13の間の電位差を電圧V2として計測している場合には、臨界電流定義電圧相当電圧Vrは臨界電流定義電圧Vtと一致する。
検査の間、第2電圧計17の電圧V2を監視し、臨界電流定義電圧相当電圧Vrに達したかを検知することで、例えば超電導線材2において電圧電極14、15の間以外の場所で臨界電流が発生する等の理由によって第1電圧計16で臨界電流定義電圧Vtが検知されない状況下でも、超電導線材2に臨界電流定義電圧Vtが発生していることを速やかに検知できる。
The
During the inspection, the voltage V2 of the
制御装置18は、各部を中枢的に制御して臨界電流特性検査を実行するものである。具体的には、制御装置18は、電流電源11が出力する検査電流Iの電流値Itの制御、並びに、第1電圧計16が検出する電圧V1、及び第2電圧計17が検出する電圧V2の監視を通じて、超電導線材2の臨界電流の電流値が臨界電流仕様値を下回らないかを判定し、下回った場合に不良判定を出力する。
The
この検査においては、超電導線材2に臨界電流仕様値の電流が流れるまでの間に、臨界電流定義電圧Vt、及び臨界電流定義電圧相当電圧Vrのいずれの発生も検知されなければ、臨界電流の電流値は臨界電流仕様値以下ではなく、臨界電流特性が不良ではないことを示す。すなわち、超電導線材2に臨界電流仕様値の電流が流れる電流値を検査電流Iの上限(上述の上限電流値Imax)として検査を行うことで、超電導線材2の臨界電流特性の良否を十分に検査できる。
上限電流値Imaxは、超電導線材2の臨界電流仕様値をIsとし、常電導体10に分流される常電導体分流電流値をInとすると、次式(1)により決定される。
In this inspection, if neither generation of the critical current definition voltage Vt or the critical current definition voltage equivalent voltage Vr is detected before the current of the critical current specification value flows in the superconducting wire 2, the current of the critical current is detected. The value is not less than the critical current specification value, indicating that the critical current characteristic is not defective. In other words, the quality of the critical current characteristic of the superconducting wire 2 is sufficiently inspected by conducting the inspection with the current value at which the current of the critical current specification value flows in the superconducting wire 2 as the upper limit of the inspection current I (the above-described upper limit current value Imax). it can.
The upper limit current value Imax is determined by the following equation (1), where Is is the critical current specification value of the superconducting wire 2 and In is the normal conductor shunt current value that is shunted to the normal conductor 10.
上限電流値Imax=臨界電流仕様値Is+常電導体分流電流値In (1) Upper limit current value Imax = critical current specification value Is + normal conductor shunt current value In (1)
常電導体分流電流値Inは、上記臨界電流定義電圧相当電圧Vrと、上記電気抵抗値Rnに基づいて、次式(2)により予め求められる。 The normal conductor shunt current value In is obtained in advance by the following equation (2) based on the critical current defining voltage equivalent voltage Vr and the electric resistance value Rn.
常電導体分流電流値In=臨界電流定義電圧相当電圧Vr/電気抵抗値Rn (2) Normal conductor shunt current value In = critical current definition voltage equivalent voltage Vr / electric resistance value Rn (2)
これら式(1)及び(2)により予め求めた上限電流値Imaxが検査電流Iの上限値として制御装置18に予め設定され、検査時には、制御装置18が電流電源11を制御して検査電流Iをゼロから上限電流値Imaxを上限に順次増大させることとなる。
The upper limit current value Imax obtained in advance by these equations (1) and (2) is preset in the
検査電流Iを順次増大させる過程において、超電導線材2の臨界電流が臨界電流仕様値Isよりも低いとき(すなわち臨界電流特性が不良であるとき)には、検査電流Iが上限電流値Imaxに至る前の電流値で、超電導線材2での臨界電流定義電圧Vtの発生、又は/及び常電導体10での臨界電流定義電圧相当電圧Vrの発生が検出され、この電流値が検査対象の超電導線材2の臨界電流の電流値Icを示すことになる。
この臨界電流の発生時には、常電導体10に臨界電流定義電圧相当電圧Vrが発生することで、検査電流Iのうち、上記(2)式で求められる常電導体分流電流値Inの電流が常電導体10に分流される。したがって、臨界電流の電流値Icは、検査電流Iの電流値It、及び常電導体分流電流値Inを用いて次式(3)により求められる。
In the process of sequentially increasing the inspection current I, when the critical current of the superconducting wire 2 is lower than the critical current specification value Is (that is, when the critical current characteristic is poor), the inspection current I reaches the upper limit current value Imax. The occurrence of the critical current defining voltage Vt in the superconducting wire 2 and / or the occurrence of the critical current defining voltage equivalent voltage Vr in the normal conductor 10 is detected at the previous current value, and this current value is the superconducting wire to be inspected. The current value Ic of the critical current of 2 is indicated.
When the critical current is generated, a critical current defining voltage equivalent voltage Vr is generated in the normal conductor 10, so that the current of the normal conductor shunt current value In obtained by the above equation (2) among the inspection current I is always normal. The current is diverted to the conductor 10. Therefore, the current value Ic of the critical current is obtained by the following equation (3) using the current value It of the inspection current I and the normal conductor shunt current value In.
臨界電流の電流値Ic=検査電流Iの電流値It−常電導体分流電流値In (3) Current value Ic of critical current = current value It of inspection current I−normal conductor shunt current value In (3)
この式(3)から明らかなように、臨界電流の電流値Icが低いほど、検査電流Iに対する常電導体分流電流値Inの比率は大きくなる。したがって、臨界電流発生時に超電導線材2に流れる電流の比率が小さいため、超電導線材2の発熱を抑えて焼損発生の可能性を著しく低くできる。 As is clear from this equation (3), the ratio of the normal conductor shunt current value In to the inspection current I increases as the current value Ic of the critical current decreases. Therefore, since the ratio of the current flowing through the superconducting wire 2 when a critical current is generated is small, the heat generation of the superconducting wire 2 can be suppressed, and the possibility of occurrence of burning can be remarkably reduced.
ただし、上記(2)式に示されるように、臨界電流発生時の常電導体分流電流値Inは、常電導体10の電気抵抗値Rnに反比例する。したがって、電気抵抗値Rnが大きいほど常電導体分流電流値Inは小さくなることから、臨界電流発生時に検査電流Iが常電導体10に分流される比率が小さくなり、常電導体10に検査電流Iを分流させない状態と変わらなくなってしまう。このような場合に、超電導線材2に抵抗が生じて発熱したときには、常電導体10への分流が少ないため、検査電流Iを瞬時に遮断、或いは低下させなければ、超電導線材2を焼損させる可能性が高くなる。
これとは逆に、電気抵抗値Rnを小さくするほど臨界電流発生時に常電導体10に流れる常電導体分流電流値Inを大きくできるものの、上記式(1)から明らかなように、上限電流値Imaxも大きくなることから、検査時に、臨界電流仕様値Isよりも大きな電流値を長時間流すこととなり、効率的でない。
However, as shown in the above equation (2), the normal conductor shunt current value In when the critical current is generated is inversely proportional to the electric resistance value Rn of the normal conductor 10. Therefore, the larger the electric resistance value Rn, the smaller the normal conductor shunt current value In, so that the ratio of the test current I being shunted to the normal conductor 10 when a critical current is generated is small, and the normal conductor 10 It will not be different from the state where I is not shunted. In such a case, when resistance is generated in the superconducting wire 2 and heat is generated, the shunt current to the normal conductor 10 is small, and therefore the superconducting wire 2 can be burned unless the inspection current I is interrupted or reduced instantaneously. Increases nature.
On the contrary, as the electric resistance value Rn is decreased, the normal conductor shunt current value In flowing in the normal conductor 10 when the critical current is generated can be increased. However, as apparent from the above formula (1), the upper limit current value Since Imax also increases, a current value larger than the critical current specification value Is is allowed to flow for a long time during inspection, which is not efficient.
そこで、本実施形態では、臨界電流発生時に検査電流Iが常電導体10に分流される比率を高め、超電導線材2が焼損する可能性を低くするために、常電導体分流電流値Inが検査電流Iの上限電流値Imaxの少なくとも5%以上となるように常電導体10の電気抵抗値Rnが設定されている。
また、常電導体10の電気抵抗値Rnは、上限電流値Imaxが臨界電流仕様値Isよりも大幅に大きくならないようにするために、常電導体分流電流値Inを検査電流Iの上限電流値Imaxの少なくとも10%以下とする抵抗値が設定されている。
このように、常電導体10の電気抵抗値Rnを、超電導線材2の臨界電流仕様値Isに応じて適切に設定することで、臨界電流発生時における超電導線材2の焼損の可能性を低めつつ、無駄に大きな検査電流Iを流すことなく検査を行うことができる。
Therefore, in the present embodiment, the normal conductor shunt current value In is inspected in order to increase the ratio at which the inspection current I is diverted to the normal conductor 10 when a critical current is generated and to reduce the possibility of the superconducting wire 2 being burned out. The electric resistance value Rn of the normal conductor 10 is set so as to be at least 5% or more of the upper limit current value Imax of the current I.
Further, the electrical resistance value Rn of the normal conductor 10 is set so that the normal conductor shunt current value In is the upper limit current value of the inspection current I so that the upper limit current value Imax does not become much larger than the critical current specification value Is. A resistance value that is at least 10% or less of Imax is set.
Thus, by appropriately setting the electrical resistance value Rn of the normal conductor 10 according to the critical current specification value Is of the superconducting wire 2, it is possible to reduce the possibility of the superconducting wire 2 being burned when the critical current is generated. Thus, the inspection can be performed without wastefully flowing a large inspection current I.
超電導線材2の臨界電流仕様値Is、すなわち検査電流Iの上限電流値Imaxは、製造される超電導線材2の種類等によって変わることから、本実施形態の臨界電流検査装置1においては、超電導線材2の各臨界電流仕様値Isごとに、電気抵抗値Rnが検査電流Iの上限電流値Imaxの5%以上かつ10%以下の常電導体10が予め用意され、検査対象の超電導線材2に応じて交換自在に構成されている。この構成においては、冷却容器5の中を走行する超電導線材2に常電導体10が干渉することなく交換可能にするために、図2に示すように、常電導体10は、冷却容器5を平面視したときに超電導線材2に重ならない位置に配置されている。
なお、冷却容器5の中で常電導体10を超電導線材2の上方に配置することで、平面視で常電導体10を超電導線材2に重ねて配置することもできる。また、温度変化に伴い変動する電気抵抗値Rnが、検査電流Iの上限電流値Imaxの5%以上かつ10%以下に収まる場合には、冷却容器5の外に常電導体10を配置しても良い。
Since the critical current specification value Is of the superconducting wire 2, that is, the upper limit current value Imax of the inspection current I varies depending on the type of the superconducting wire 2 to be manufactured and the like, in the critical current inspection device 1 of this embodiment, the superconducting wire 2 For each critical current specification value Is, a normal conductor 10 having an electric resistance value Rn of 5% or more and 10% or less of the upper limit current value Imax of the inspection current I is prepared in advance, depending on the superconducting wire 2 to be inspected. It is configured to be exchangeable. In this configuration, in order to allow the normal conductor 10 to be exchanged without interfering with the superconducting wire 2 traveling in the cooling container 5, as shown in FIG. It is arranged at a position where it does not overlap the superconducting wire 2 when viewed in plan.
In addition, by arranging the normal conductor 10 in the cooling vessel 5 above the superconducting wire 2, the normal conductor 10 can also be arranged on the superconducting wire 2 in a plan view. Further, when the electric resistance value Rn that fluctuates with the temperature change falls within 5% and 10% or less of the upper limit current value Imax of the inspection current I, the normal conductor 10 is disposed outside the cooling container 5. Also good.
臨界電流検査装置1を用いて超電導線材2の臨界電流特性を検査する場合には、検査対象の超電導線材2を送りリール3に巻回して、図1に示すように、液体窒素6を満たした冷却容器5に通線可能にセットする。そして、送りリール3と巻き取りリール4とにより超電導線材2の検査対象の区間が一対の電圧電極14、15の間に位置するまでリールトゥリールで走行させて停止する。そして、電流電源11により超電導線材2に検査電流Iを通電して、当該検査対象の区間における臨界電流特性を検査する。その後、超電導線材2の全長に亘り臨界電流特性が検査されるまで、次の区間が一対の電圧電極14、15の間に位置するように走行させ、この区間に対して臨界電流特性を検査するという処理が繰り返し行われる。超電導線材2の走行の制御は、制御装置18が行っても良いし、別途に設けた装置が行っても良い。
検査対象の区間に対する臨界電流特性検査について図3を参照して説明する。
When the critical current characteristic of the superconducting wire 2 is inspected using the critical current inspection device 1, the superconducting wire 2 to be inspected is wound around the feed reel 3 and filled with liquid nitrogen 6 as shown in FIG. The cooling container 5 is set so that it can be connected. Then, the feed reel 3 and the take-up reel 4 are run on a reel-to-reel and stopped until the section to be inspected of the superconducting wire 2 is positioned between the pair of
The critical current characteristic inspection for the section to be inspected will be described with reference to FIG.
図3は、臨界電流特性検査のフローチャートである。
検査対象の区間が一対の電圧電極14、15の間に配置されると、制御装置18は、図3に示すように、電流電源11を制御し、検査電流Iをゼロから所定の掃引速度で増大させながら超電導線材2に通電する(ステップS1)。
通電の間、制御装置18は、第1電圧計16の電圧V1、及び第2電圧計17の電圧V2を監視し、検査対象の区間への臨界電流定義電圧Vtの発生、又は、常電導体10への臨界電流定義電圧相当電圧Vrの発生が検知されたか否かを判定する(ステップS2)。
FIG. 3 is a flowchart of the critical current characteristic inspection.
When the section to be inspected is arranged between the pair of
During energization, the
臨界電流定義電圧Vt、及び臨界電流定義電圧相当電圧Vrのいずれも発生していない場合(ステップS2:No)、制御装置18は、検査電流Iが上限電流値Imaxに到達したか否かを判断する(ステップS3)。検査電流Iが上限電流値Imaxに到達していない場合には(ステップS3:No)、制御装置18は、電圧V1、及び電圧V2の監視を継続すべく、ステップS2に処理ステップを戻す。
一方、検査電流Iが上限電流値Imaxに到達した場合(ステップS3:Yes)、検査対象の区間にあっては、臨界電流が臨界電流仕様値Isよりも大きいことを示すため、制御装置18は、速やかに電流電源11の検査電流Iの出力を停止して超電導線材2への検査電流Iの流入を止め(ステップS4)、「不良なし」の旨を出力する(ステップS5)。そして、次の検査対象の区間について臨界電流特性を検査すべく、処理ステップをステップS1に戻す。
When neither the critical current definition voltage Vt nor the critical current definition voltage equivalent voltage Vr is generated (step S2: No), the
On the other hand, when the inspection current I reaches the upper limit current value Imax (step S3: Yes), in the section to be inspected, the
一方、ステップS2の判定の結果、臨界電流定義電圧Vt、又は臨界電流定義電圧相当電圧Vrの発生が検知された場合(ステップS2:Yes)、検査対象の区間で臨界電流が生じたことを意味するため、制御装置18は、速やかに電流電源11の検査電流Iの出力を停止して超電導線材2への検査電流Iの流入を止め(ステップS6)、超電導線材2での抵抗値の増加に伴う焼損を防止する。上述の通り、臨界電流発生時には、検査電流Iのうち、常電導体分流電流値Inの電流は常電導体10に流れることから、超電導線材2での焼損発生の可能性が低められる。
On the other hand, when it is detected as a result of the determination in step S2 that the critical current defining voltage Vt or the critical current defining voltage equivalent voltage Vr is detected (step S2: Yes), it means that the critical current has occurred in the section to be inspected. Therefore, the
そして、制御装置18は、超電導線材2の臨界電流の電流値Icが臨界電流仕様値Is以下であることを示すため、「不良検知」の旨を出力し(ステップS7)、次の検査対象の区間について臨界電流特性を検査すべく、処理ステップをステップS1に戻す。なお、このステップS7において、制御装置18は、上記(3)式に基づいて、臨界電流定義電圧Vt、及び臨界電流定義電圧相当電圧Vrのいずれかの発生が検知されたときの検査電流Iの電流値Itと、そのときに常電導体10に流れている常電導体分流電流値Inとから臨界電流の電流値Icを算出して出力しても良い。また、不良を検知した時点で、超電導線材2に対する臨界電流特性検査を終了しても良い。
Then, the
次いで、上記臨界電流検査装置1による臨界電流検査の具体例を説明する。
(具体例1)
超電導線材2として、臨界電流仕様値Isが250AであるYBCOテープ線材を上記リールトゥリール方式で冷却容器5に通線して検査した。このとき電流電極12、13の間の距離は1m、電圧電極14、15の間の距離は0.8mとした。臨界電流の基準電圧は、1μV/cm=1×10-4V/mとし、臨界電流定義電圧Vtは、8×10-5Vである。常電導体10には、液体窒素6による冷却温度(77K)での比抵抗が2×10-9Ωmの銅を用い、直径が25mmφの丸棒、長さが1mの常電導体10を用いた。第2電圧計17によって常電導体10の電位差を計測する計測間距離は0.8mとした。臨界電流定義電圧Vtと同等の電圧が第2電圧計17で計測されるときに常電導体10に流れている電流の電流値(常電導体分流電流値In)は20Aと計算されることから、検査電流Iの上限電流値Imaxは、上記(1)式に基づき270Aとした。
Next, a specific example of the critical current inspection by the critical current inspection apparatus 1 will be described.
(Specific example 1)
As the superconducting wire 2, a YBCO tape wire having a critical current specification value Is of 250A was passed through the cooling vessel 5 by the reel-to-reel method and inspected. At this time, the distance between the
そして、臨界電流検査装置1により超電導線材2の検査を進めたところ、ある検査対象の区間で、検査電流Iが上限電流値Imaxに至る前に臨界電流定義電圧Vt、及び臨界電流定義電圧相当電圧Vrのいずれかの発生が検知され(図3:ステップ2:Yes)、そのときの検査電流Iの電流値Itは264Aであった。
したがって、超電導線材2の臨界電流の電流値Icは、上記(3)式に基づき、244Aと計算される。また、常電導体分流電流値Inは臨界電流の電流値Icの8.2%(上限電流値Imaxの7.4%)であった。電流電源11の電流掃引速度を5A/sとしたとき、臨界電流定義電圧Vtが発生してから、超電導線材2の電圧V1が臨界電流定義電圧Vtの2倍の電圧(焼損発生の可能性が非常に高くなる電圧)に達する時間は5s程度となった。すなわち、焼損の危険が発生するまで5sの時間猶予があり、十分に時間猶予を持って電流を遮断することができた。
Then, when the superconducting wire 2 is inspected by the critical current inspection device 1, the critical current defining voltage Vt and the critical current defining voltage equivalent voltage before the inspection current I reaches the upper limit current value Imax in a section to be inspected. Any occurrence of Vr was detected (FIG. 3: Step 2: Yes), and the current value It of the inspection current I at that time was 264A.
Therefore, the current value Ic of the critical current of the superconducting wire 2 is calculated as 244A based on the above equation (3). The normal conductor shunt current value In was 8.2% of the critical current value Ic (7.4% of the upper limit current value Imax). When the current sweep speed of the
(具体例2)
具体例2では、具体例1において、常電導体10の直径のみを10mmφに変更して測定した。この常電導体10では、常電導体分流電流値Inは3Aと計算されることから、検査電流Iの上限電流値Imaxは、上記(1)式に基づき253Aとした。
そして、臨界電流検査装置1により超電導線材2の検査を進めたところ、ある検査対象の区間で、検査電流Iが上限電流値Imaxに至る前に臨界電流定義電圧Vt、及び臨界電流定義電圧相当電圧Vrのいずれかの発生が検知され(図3:ステップ2:Yes)、そのときの検査電流Iの電流値Itは248Aであった。
したがって、超電導線材2の臨界電流の電流値Icは、上記(3)式に基づき、245Aと計算される。また、常電導体分流電流値Inは臨界電流の電流値Icの1.2%(上限電流値Imaxの1.1%)であった。電流電源11の電流掃引速度を5A/sとしたとき、臨界電流定義電圧Vtが発生してから、超電導線材2の電圧V1が臨界電流定義電圧Vtの2倍の電圧(焼損発生の可能性が非常に高くなる電圧)に達する時間は1.5s程度となった。すなわち、焼損の危険が発生するまで1.5sの時間猶予しかなく、これは常電導体10を設置しない場合と大差がない値であり、焼損の危険があった。
(Specific example 2)
In Specific Example 2, the measurement was performed by changing only the diameter of the normal conductor 10 to 10 mmφ in Specific Example 1. In this normal conductor 10, since the normal conductor shunt current value In is calculated as 3A, the upper limit current value Imax of the inspection current I is set to 253A based on the above equation (1).
Then, when the superconducting wire 2 is inspected by the critical current inspection device 1, the critical current defining voltage Vt and the critical current defining voltage equivalent voltage before the inspection current I reaches the upper limit current value Imax in a section to be inspected. Any occurrence of Vr was detected (FIG. 3: Step 2: Yes), and the current value It of the inspection current I at that time was 248A.
Therefore, the current value Ic of the critical current of the superconducting wire 2 is calculated as 245A based on the above equation (3). The normal conductor shunt current value In was 1.2% of the critical current value Ic (1.1% of the upper limit current value Imax). When the current sweep speed of the
(具体例3)
具体例3では、具体例1において、常電導体10の直径のみを50mmφに変更して測定した。この常電導体10では、常電導体分流電流値Inは78Aと計算されることから、検査電流Iの上限電流値Imaxは、上記(1)式に基づき328Aとした。
そして、臨界電流検査装置1により超電導線材2の検査を進めたところ、ある検査対象の区間で、臨界電流定義電圧Vtの発生は検知されないものの、臨界電流定義電圧相当電圧Vrの発生が検知され(図3:ステップ2:Yes)、そのときの検査電流Iの電流値Itは323Aであった。
したがって、超電導線材2の臨界電流の電流値Icは、上記(3)式に基づき、245Aと計算される。また、常電導体分流電流値Inは臨界電流の電流値Icの32%(上限電流値Imaxの24%)であった。
電流電源11の電流掃引速度を5A/sとしたとき、臨界電流定義電圧Vtが発生してから、超電導線材2の電圧V1が臨界電流定義電圧Vtの2倍の電圧(焼損発生の可能性が非常に高くなる電圧)に達する時間は17s程度となった。すなわち、検査電流Iの電流値Itが臨界電流の電流値Icに対して大き過ぎて無駄に余計な電流を消費し、さらに、焼損の危険が発生するまで17sという、焼損回避の目的に対しては過剰な程に長い時間猶予が生じ、測定時間についても無駄が生じた。
(Specific example 3)
In the specific example 3, the measurement was performed by changing only the diameter of the normal conductor 10 to 50 mmφ in the specific example 1. In this normal conductor 10, since the normal conductor shunt current value In is calculated as 78A, the upper limit current value Imax of the inspection current I is set to 328A based on the above equation (1).
Then, when the inspection of the superconducting wire 2 is advanced by the critical current inspection device 1, the generation of the critical current definition voltage equivalent voltage Vr is detected in the section to be inspected, although the generation of the critical current definition voltage Vt is not detected ( FIG. 3: Step 2: Yes), the current value It of the inspection current I at that time was 323A.
Therefore, the current value Ic of the critical current of the superconducting wire 2 is calculated as 245A based on the above equation (3). The normal conductor shunt current value In was 32% of the critical current value Ic (24% of the upper limit current value Imax).
When the current sweep speed of the
具体例1に示されるように、常電導体10の電気抵抗値Rnを適切に設定し、常電導体分流電流値Inを臨界電流の電流値Icの8.2%程度(上限電流値Imaxの7.4%程度)とすることで、検査電流Iを遮断して焼損発生を回避するまでに十分に猶予時間が得られ、また上限電流値Imaxも無駄に大きくならない。
これに対して、具体例2に示されるように、常電導体10の電気抵抗値Rnを大きくして常電導体分流電流値Inを臨界電流の電流値Icの1.2%程度(上限電流値Imaxの1.1%程度)まで小さくし過ぎしてしまうと、検査電流Iの遮断により焼損発生を回避するまでに十分な猶予時間が得られない。
また具体例3に示されるように、常電導体10の電気抵抗値Rnを小さくして常電導体分流電流値Inを臨界電流の電流値Icの32%(上限電流値Imaxの24%)程度まで大きくし過ぎしてしまうと無駄に大きな電流を消費し、さらに、過剰な程に長い時間猶予が生じ、測定時間についても無駄が生じる。
すなわち、これらの具体例1〜3の中で、常電導体分流電流値Inが少なくとも上限電流値Imaxの5%〜10%の範囲に収められている具体例1が最適であることが示された。
As shown in the specific example 1, the electric resistance value Rn of the normal conductor 10 is appropriately set, and the normal conductor shunt current value In is about 8.2% of the current value Ic of the critical current (the upper limit current value Imax is By setting it to about 7.4%, a sufficient grace time is obtained until the inspection current I is cut off and the occurrence of burnout is avoided, and the upper limit current value Imax is not increased unnecessarily.
On the other hand, as shown in the specific example 2, the electric resistance value Rn of the normal conductor 10 is increased so that the normal conductor shunt current value In is about 1.2% of the critical current value Ic (upper limit current). If the value is too small (about 1.1% of the value Imax), a sufficient grace time cannot be obtained before the occurrence of burning by avoiding the inspection current I.
Further, as shown in the specific example 3, the electrical resistance value Rn of the normal conductor 10 is reduced, and the normal conductor shunt current value In is about 32% of the critical current value Ic (24% of the upper limit current value Imax). If it is too large, a large amount of current is consumed unnecessarily, and an excessive amount of time is delayed, resulting in wasted measurement time.
That is, among these specific examples 1 to 3, it is shown that specific example 1 in which the normal conductor shunt current value In is at least within the range of 5% to 10% of the upper limit current value Imax is optimal. It was.
以上説明したように、本実施形態によれば、超電導線材2、及び常電導体10を含む並列回路20に検査電流Iを流して臨界電流特性を検査する構成とした。この構成により、臨界電流発生に伴い超電導線材2に急激な抵抗上昇が発生したとしても、検査電流Iのうちの一定量は常電導体10に分流されることから、別途に特別な回路を備えること無く簡単な回路構成でありながらも超電導線材2の焼損を抑制できる。特に、超電導線材2の超電導層上に銀等の貴金属良導体からなる厚さ1〜20μm程度の保護層と呼ばれる第1の常電導金属層のみが設けられている場合であっても、焼損を抑制しつつ、超電導線材2の臨界電流の電流値Icを求めることができる。
また常電導体10の電気抵抗値Rnが所定電気抵抗値に固定されて既知であることから、臨界電流を定義する臨界電流定義電圧Vtが超電導線材2に生じたときに常電導体10に流れる電流値(常電導体分流電流値In)も一義に決定され、当該常電導体分流電流値Inを検査電流Iの電流値Itから除くことで、超電導線材2の臨界電流の電流値Icを求めることができる。
As described above, according to the present embodiment, the critical current characteristic is inspected by passing the inspection current I through the parallel circuit 20 including the superconducting wire 2 and the normal conductor 10. With this configuration, even if a sudden increase in resistance occurs in the superconducting wire 2 due to the generation of the critical current, a certain amount of the inspection current I is shunted to the normal conductor 10, and thus a special circuit is provided separately. Even though the circuit configuration is simple, burning of the superconducting wire 2 can be suppressed. In particular, even if only the first normal conductive metal layer called a protective layer having a thickness of about 1 to 20 μm made of a good noble metal conductor such as silver is provided on the superconductive layer of the superconductive wire 2, it suppresses burning. However, the current value Ic of the critical current of the superconducting wire 2 can be obtained.
In addition, since the electric resistance value Rn of the normal conductor 10 is fixed to a predetermined electric resistance value and known, the critical current defining voltage Vt that defines the critical current flows through the normal conductor 10 when it is generated in the superconducting wire 2. The current value (normal conductor shunt current value In) is also uniquely determined, and by removing the normal conductor shunt current value In from the current value It of the inspection current I, the current value Ic of the critical current of the superconducting wire 2 is obtained. be able to.
また本実施形態によれば、超電導線材に予め想定されている臨界電流の電流値である臨界電流仕様値Isに、上記常電導体分流電流値Inを加えた上限電流値Imaxを上限にして検査電流Iを可変し、この上限電流値Imaxに至るまでに臨界電流定義電圧Vtが発生するか否かに基づいて、超電導線材2の臨界電流特性の不良を判定する構成とした。
これにより、臨界電流発生は、当該臨界電流が臨界電流仕様値Isよりも低く不良の場合にだけに限定されることから、臨界電流発生に伴う焼損の可能性を低めることができる。特に、臨界電流が臨界電流仕様値Isよりも高い良品の場合には、臨界電流が発生しない事から焼損が確実に抑えられ、歩留まりの向上を図ることができる。
Further, according to the present embodiment, the upper limit current value Imax obtained by adding the normal conductor shunt current value In to the critical current specification value Is that is a current value of a critical current assumed in advance in the superconducting wire is used as an upper limit. The current I is varied, and a failure of the critical current characteristic of the superconducting wire 2 is determined based on whether or not the critical current defining voltage Vt is generated before reaching the upper limit current value Imax.
Thereby, since the critical current generation is limited only to the case where the critical current is lower than the critical current specification value Is and is defective, the possibility of burning due to the generation of the critical current can be reduced. In particular, in the case of a non-defective product whose critical current is higher than the critical current specification value Is, since the critical current does not occur, burnout is reliably suppressed, and the yield can be improved.
また本実施形態によれば、上限電流値Imaxに対する常電導体分流電流値Inの比率を5%以上とするように常電導体10の電気抵抗値Rnを設定したため、臨界電流の発生時に検査電流Iを遮断して焼損発生を回避するまでに十分に猶予時間が得られ、焼損発生の回避を確実なものにできる。
特に上限電流値Imaxに対する常電導体分流電流値Inの比率を10%以下とするように常電導体10の電気抵抗値Rnを設定することで、上限電流値Imaxが、焼損回避の目的に対して過剰に大きくなり過ぎて無駄に電流を消費することもない。
According to the present embodiment, since the electric resistance value Rn of the normal conductor 10 is set so that the ratio of the normal conductor shunt current value In to the upper limit current value Imax is 5% or more, the inspection current is generated when the critical current is generated. Sufficient grace time is obtained until the occurrence of burnout is avoided by blocking I, and the occurrence of burnout can be reliably prevented.
In particular, by setting the electric resistance value Rn of the normal conductor 10 so that the ratio of the normal conductor shunt current value In to the upper limit current value Imax is 10% or less, the upper limit current value Imax is reduced for the purpose of avoiding burnout. Therefore, it is not excessively large and current is not wasted.
また本実施形態によれば、常電導体10に発生した電圧V2が、臨界電流定義電圧Vtに対応する臨界電流定義電圧相当電圧Vrに達した場合に、超電導線材2への検査電流Iの流入を遮断する構成とした。
これにより、超電導線材2の電圧V1を測定している区間以外で臨界電流が発生しした等の理由で臨界電流定義電圧Vtの発生が検知されない場合でも、当該臨界電流発生を検知して超電導線材2への検査電流の流入を止めて焼損防止を図ることができる。
Further, according to the present embodiment, when the voltage V2 generated in the normal conductor 10 reaches the critical current definition voltage equivalent voltage Vr corresponding to the critical current definition voltage Vt, the inspection current I flows into the superconducting wire 2. It was set as the structure which interrupts.
Thereby, even when the generation of the critical current defining voltage Vt is not detected due to the generation of the critical current outside the section where the voltage V1 of the superconducting wire 2 is measured, the generation of the critical current is detected and the superconducting wire is detected. It is possible to prevent the burnout by stopping the flow of the inspection current to 2.
また本実施形態によれば、臨界電流仕様値Isに応じて、電気抵抗値Rnが異なる常電導体10を交換自在に設けたため、臨界電流仕様値Isが異なる各種の超電導線材2の臨界電流の検査に好適に用いることができる。 Further, according to the present embodiment, the normal conductors 10 having different electrical resistance values Rn are replaceably provided according to the critical current specification value Is, so that the critical currents of various superconducting wires 2 having different critical current specification values Is can be obtained. It can be suitably used for inspection.
なお、上述した実施形態は、あくまでも本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。
例えば、上述した実施形態では、臨界電流定義電圧Vt、及び臨界電流定義電圧相当電圧Vrのいずれかの発生が検知されたときに、超電導線材2への検査電流Iの流入を止める構成とした。しかしながら、これに限らず、超電導線材2への検査電流Iの流入を完全に止めるのではなく、臨界電流から十分に低い電流値まで減じる構成としても良い。
また、上述した実施形態では、超電導線材2への検査電流Iの流入を止めるために、電流電源11を制御して検査電流Iの出力を停止する構成としたが、これに限らず、電流電源11と超電導線材2の間に、電流路を遮断するスイッチ回路、或いは電流を減じる電気回路を設けて、臨界電流定義電圧Vt、及び臨界電流定義電圧相当電圧Vrのいずれかの発生が検知されたときに、電流電源11から超電導線材2への検査電流Iの流入を遮断し、或いは減じる構成としても良い。
The above-described embodiment is merely an example of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
For example, in the above-described embodiment, the configuration is such that the flow of the inspection current I into the superconducting wire 2 is stopped when the occurrence of either the critical current definition voltage Vt or the critical current definition voltage equivalent voltage Vr is detected. However, the present invention is not limited to this, and the inflow of the inspection current I to the superconducting wire 2 is not completely stopped, but may be configured to be reduced from a critical current to a sufficiently low current value.
In the above-described embodiment, in order to stop the flow of the inspection current I into the superconducting wire 2, the
1 臨界電流検査装置
2 超電導線材
10 常電導体
11 電流電源(定電流源)
12、13 電流電極
14、15 電圧電極
16 第1電圧計
17 第2電圧計
18 制御装置
20 並列回路
I 検査電流
Ic 臨界電流の電流値
Imax 上限電流値
In 常電導体分流電流値
Is 臨界電流仕様値
It 検査電流の電流値
Rn 電気抵抗値
V1 超電導線材の電圧
V2 常電導体の電圧
Vr 臨界電流定義電圧相当電圧
Vt 臨界電流定義電圧
DESCRIPTION OF SYMBOLS 1 Critical current inspection apparatus 2 Superconducting wire 10
12, 13
Claims (7)
前記超電導線材、及び前記常電導体を含む並列回路に検査電流を流す電流値可変の定電流源と、を備え、
前記検査電流の電流値を変化させ、前記超電導線材に流れる臨界電流を定義する所定電圧が前記超電導線材に生じたときの検査電流の電流値から、当該所定電圧発生時に前記常電導体に流れる電流値を除いた電流値に基づいて前記臨界電流を検査する
ことを特徴とする臨界電流検査装置。 A normal conductor having a predetermined electrical resistance value electrically connected in parallel to the superconducting wire;
A constant current source having a variable current value for supplying an inspection current to a parallel circuit including the superconducting wire and the normal conductor; and
A current that flows through the normal conductor when the predetermined voltage is generated from a current value of the inspection current when a predetermined voltage that defines a critical current that flows through the superconducting wire is generated in the superconducting wire by changing a current value of the inspection current. A critical current inspection apparatus, wherein the critical current is inspected based on a current value excluding the value.
前記検査電流の電流値を可変し、臨界電流を定義する所定電圧が前記超電導線材に生じたときの検査電流の電流値から、当該所定電圧発生時に前記常電導体に流れる電流値を除いた電流値に基づいて前記臨界電流を検査する
ことを特徴とする臨界電流検査方法。 A normal conductor having a predetermined electric resistance value is electrically connected in parallel to the superconducting wire, and a parallel circuit including the superconducting wire and the normal conductor is formed, and an inspection current is passed through the parallel circuit,
A current obtained by changing a current value of the inspection current and excluding a current value flowing through the normal conductor when the predetermined voltage is generated from a current value of the inspection current when a predetermined voltage defining a critical current is generated in the superconducting wire. A critical current inspection method characterized by inspecting the critical current based on a value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012008610A JP2013148440A (en) | 2012-01-19 | 2012-01-19 | Critical current inspection device and critical current inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012008610A JP2013148440A (en) | 2012-01-19 | 2012-01-19 | Critical current inspection device and critical current inspection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013148440A true JP2013148440A (en) | 2013-08-01 |
Family
ID=49046063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012008610A Pending JP2013148440A (en) | 2012-01-19 | 2012-01-19 | Critical current inspection device and critical current inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013148440A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104297294A (en) * | 2014-09-22 | 2015-01-21 | 河海大学 | Asphalt mixture workability detection device based on stirring current value and detection method |
JP2015175733A (en) * | 2014-03-14 | 2015-10-05 | 株式会社東芝 | Method of evaluating superconducting characteristic, evaluation device thereof, and evaluation program thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01167680A (en) * | 1987-12-23 | 1989-07-03 | Chino Corp | Current measuring instrument |
JPH01235842A (en) * | 1988-03-17 | 1989-09-20 | Fujitsu Ltd | Method and apparatus for inspecting defects of superconductor |
JPH1094166A (en) * | 1996-09-17 | 1998-04-10 | Nippon Steel Corp | Current-limiting element using oxide superconductor and its manufacture |
JP2004186524A (en) * | 2002-12-05 | 2004-07-02 | Mitsubishi Electric Corp | Superconducting magnet device and superconducting transformer |
JP2009270916A (en) * | 2008-05-07 | 2009-11-19 | Fujikura Ltd | Critical current measuring instrument |
JP2011123046A (en) * | 2009-12-14 | 2011-06-23 | Korea Electrotechnology Research Inst | Continuous critical current measurement apparatus and method of measuring continuous critical current using the same |
-
2012
- 2012-01-19 JP JP2012008610A patent/JP2013148440A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01167680A (en) * | 1987-12-23 | 1989-07-03 | Chino Corp | Current measuring instrument |
JPH01235842A (en) * | 1988-03-17 | 1989-09-20 | Fujitsu Ltd | Method and apparatus for inspecting defects of superconductor |
JPH1094166A (en) * | 1996-09-17 | 1998-04-10 | Nippon Steel Corp | Current-limiting element using oxide superconductor and its manufacture |
JP2004186524A (en) * | 2002-12-05 | 2004-07-02 | Mitsubishi Electric Corp | Superconducting magnet device and superconducting transformer |
JP2009270916A (en) * | 2008-05-07 | 2009-11-19 | Fujikura Ltd | Critical current measuring instrument |
JP2011123046A (en) * | 2009-12-14 | 2011-06-23 | Korea Electrotechnology Research Inst | Continuous critical current measurement apparatus and method of measuring continuous critical current using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015175733A (en) * | 2014-03-14 | 2015-10-05 | 株式会社東芝 | Method of evaluating superconducting characteristic, evaluation device thereof, and evaluation program thereof |
CN104297294A (en) * | 2014-09-22 | 2015-01-21 | 河海大学 | Asphalt mixture workability detection device based on stirring current value and detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5066480B2 (en) | Critical current measuring device | |
Lacroix et al. | Normal zone propagation velocity in 2G HTS coated conductor with high interfacial resistance | |
US9543754B2 (en) | Superconducting coil protection method and superconducting magnet device | |
JP5623532B2 (en) | Method and apparatus for quality control of superconducting bands | |
US20100019776A1 (en) | Method for analyzing superconducting wire | |
US9121879B2 (en) | Techniques for improving reliability of a fault current limiting system | |
US7920977B2 (en) | Noncontact measurement method of currents on superconductive wires connected in parallel | |
US9159897B2 (en) | Superconducting structure having linked band-segments which are each overlapped by directly sequential additional band-segments | |
US20100254047A1 (en) | Early quench detection in a superconducting article | |
TW201530146A (en) | Maintenance method for contact and inspecting apparatus | |
JP2013148440A (en) | Critical current inspection device and critical current inspection method | |
Duckworth et al. | Voltage distribution and mechanical strength in splice joints made from as‐manufactured YBCO coated conductors | |
Ogawa et al. | Influence of transport current distribution on AC transport current loss measurement in an assembled conductor | |
KR101461318B1 (en) | Superconducting Cable Test Apparatus | |
US9852831B2 (en) | Superconducting magnet | |
Armenio et al. | Stability measurements on YBCO coated conductors | |
KR102704925B1 (en) | Strain or magnetic field based ?? detection | |
JP6163348B2 (en) | Operating method of high temperature superconducting coil | |
JPH01283710A (en) | Superconductive power transmission cable and power transmission | |
GB2126028A (en) | Quench detector for superconducting winding | |
Majoros et al. | Fault Current Limiting Properties of ${\rm MgB} _ {2} $ Superconducting Wires | |
JP2010200463A (en) | Power transmission system using superconductive cable | |
JP2014229753A (en) | Quench detector and quench detection method of superconducting coil | |
KR101597028B1 (en) | Estimation method and device of superconducting wire | |
KR101238045B1 (en) | Apparatus for measuring critical current of superconductive devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150609 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151117 |