JP2013147999A - Steam turbine and blade for steam turbine - Google Patents

Steam turbine and blade for steam turbine Download PDF

Info

Publication number
JP2013147999A
JP2013147999A JP2012008849A JP2012008849A JP2013147999A JP 2013147999 A JP2013147999 A JP 2013147999A JP 2012008849 A JP2012008849 A JP 2012008849A JP 2012008849 A JP2012008849 A JP 2012008849A JP 2013147999 A JP2013147999 A JP 2013147999A
Authority
JP
Japan
Prior art keywords
tip
blade
steam turbine
leading edge
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012008849A
Other languages
Japanese (ja)
Other versions
JP5823305B2 (en
Inventor
Tomohiko Tsukuda
知彦 佃
Hiroshi Kawakami
宏 川上
Sakae Kawasaki
榮 川崎
Naoki Shibukawa
直紀 渋川
Shinichiro Ohashi
新一郎 大橋
Yoshifumi Iwasaki
祥史 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012008849A priority Critical patent/JP5823305B2/en
Priority to US13/742,824 priority patent/US20130189077A1/en
Priority to EP13151786.4A priority patent/EP2617951A3/en
Publication of JP2013147999A publication Critical patent/JP2013147999A/en
Application granted granted Critical
Publication of JP5823305B2 publication Critical patent/JP5823305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/602Drainage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam turbine and a blade of the steam turbine that can favorably collect water generated in the steam turbine, and prevent reduction in turbine efficiency.SOLUTION: A steam turbine includes: a turbine rotor shaft 3; a plurality of blades 2 provided on the turbine rotor shaft 3 and rotated by a steam flow; tip covers 20 attached to tip ends of the respective blades 2 and connected to and in contact with one another; at least one water drip fin 30 provided along a circumferential direction at the tip cover 20, and outwardly extending in a radial direction of each of the blades 2; and a diaphragm outer ring 40 disposed at an outer circumferential side from each of the blades 2, and having a drain catcher 43 opposed to a tip end part of the water drip fin 30. The tip cover 20 has a leading edge formed at a downstream side in an axial direction from a leading edge of the blade 2 or at a position in the axial direction corresponding to the leading edge of the blade 2 in the axial direction.

Description

本発明の実施形態は、蒸気タービンおよび蒸気タービンの動翼に関する。   Embodiments described herein relate generally to a steam turbine and a moving blade of a steam turbine.

原子力タービン、地熱タービンまたは火力タービンのタービン低圧部では、タービン駆動蒸気の温度が比較的低くなる。タービン駆動蒸気の一部は、膨張仕事中に凝縮し、水分となって蒸気通路の内外周壁やタービン動翼に流れる。   In the turbine low pressure part of a nuclear turbine, a geothermal turbine, or a thermal turbine, the temperature of turbine drive steam becomes comparatively low. A part of the turbine-driven steam is condensed during the expansion work and becomes moisture and flows to the inner and outer peripheral walls of the steam passage and the turbine blade.

蒸気通路の内外周壁やタービン動翼を流れる水分は、やがて比較的粒径の大きい水滴に成長する。この水滴は、タービン動翼の前縁を浸食したり、タービン動翼の回転に対する衝突抵抗を生じ、タービン翼の翼効率を低下させたりする要因となる。   Moisture flowing through the inner and outer peripheral walls of the steam passage and the turbine blades eventually grows into water droplets having a relatively large particle size. The water droplets erode the leading edge of the turbine blade, cause a collision resistance against the rotation of the turbine blade, and reduce the blade efficiency of the turbine blade.

このようにタービン内での水分の存在はタービン効率および信頼性に悪影響を及ぼす。これに対し、従来、付着した水分を除去するための構造を有する蒸気タービンが知られている。具体的には、この蒸気タービンは、タービン動翼の先端部に設けられるシールフィンと、このシールフィンの先端側に水分を捕捉する目的で設けられる空間部を有する。蒸気タービン内を流れる水分は、シールフィンに当たることにより遠心力により外周方向に飛散され、空間部で捕捉される。   Thus, the presence of moisture in the turbine adversely affects turbine efficiency and reliability. On the other hand, conventionally, a steam turbine having a structure for removing attached moisture is known. Specifically, this steam turbine has a seal fin provided at the tip of the turbine rotor blade and a space provided for the purpose of capturing moisture at the tip of the seal fin. Moisture flowing through the steam turbine is scattered in the outer peripheral direction by centrifugal force when it hits the seal fin, and is captured in the space.

特開2005−2917号公報Japanese Patent Laid-Open No. 2005-2917

従来の蒸気タービンは、タービン動翼先端部に設けられるシールフィンによって、蒸気タービン内の水分を捕捉していた。しかし、従来の蒸気タービンは、あくまで蒸気漏洩の防止を目的としたシールフィンを用いていたため、水分の回収が十分とはいえなかった。具体的には、蒸気タービン内の蒸気の流れおよび遠心力が作用し、シールフィンを用いても好適に水分を空間部へ案内することができなかった。   In the conventional steam turbine, moisture in the steam turbine is captured by a seal fin provided at the tip of the turbine rotor blade. However, since the conventional steam turbine uses seal fins for the purpose of preventing steam leakage, it cannot be said that water is sufficiently collected. Specifically, the flow of steam in the steam turbine and centrifugal force act, and even if seal fins are used, moisture cannot be suitably guided to the space.

この結果、従来の蒸気タービンは、蒸気タービンに発生するドレンによる浸食やタービン動翼の回転抵抗の低下を抑制することができないという課題があった。   As a result, the conventional steam turbine has a problem that it cannot suppress erosion due to drain generated in the steam turbine and a decrease in rotational resistance of the turbine rotor blade.

本発明はこのような事情を考慮してなされたもので、蒸気タービン内に発生する水分を好適に回収し、タービン効率の低下を防止することができる蒸気タービンおよび蒸気タービンの動翼を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a steam turbine and a steam turbine rotor blade that can suitably recover moisture generated in the steam turbine and prevent a decrease in turbine efficiency. For the purpose.

本発明の実施形態の蒸気タービンは、上述した課題を解決するために、タービンロータ軸と、前記タービンロータ軸に設けられ、蒸気流によって回転される複数の動翼と、各前記動翼の先端に取り付けられ相互に連結接触するチップカバーと、前記チップカバーに周方向に沿って設けられ、各前記動翼の径方向外側に伸びた少なくとも一の水切りフィンと、各前記動翼より外周側に配置され、前記水切りフィンの先端部と対向するドレンキャッチャを有するダイアフラム外輪とを備える。前記チップカバーは、前記動翼の前縁よりも軸方向下流側または前記動翼の前縁と軸方向に一致する軸方向位置に形成される前縁を有することを特徴とする。   In order to solve the above-described problems, a steam turbine according to an embodiment of the present invention includes a turbine rotor shaft, a plurality of blades provided on the turbine rotor shaft and rotated by a steam flow, and tips of the blades. A tip cover attached to and connected to each other, at least one draining fin provided along the circumferential direction of the tip cover and extending radially outward of each of the blades, and on the outer peripheral side of each of the blades And a diaphragm outer ring having a drain catcher disposed opposite to the tip of the draining fin. The tip cover has a leading edge formed at an axial position downstream of the leading edge of the moving blade in the axial direction or at an axial position that coincides with the leading edge of the moving blade in the axial direction.

本発明に係る蒸気タービンの一実施形態を示す構成図。The block diagram which shows one Embodiment of the steam turbine which concerns on this invention. 図1の蒸気タービンの動翼を外周側から示す平面図。The top view which shows the moving blade of the steam turbine of FIG. 1 from an outer peripheral side. 水切りフィンとドレンキャッチャの開口部との軸方向の位置関係を説明するための構成図。The block diagram for demonstrating the positional relationship of the axial direction of a draining fin and the opening part of a drain catcher. 蒸気タービン内の蒸気の流れの説明図。Explanatory drawing of the flow of the steam in a steam turbine. 水滴案内溝が形成された第1の変形例としての蒸気タービンを示す構成図。The block diagram which shows the steam turbine as a 1st modification in which the water droplet guide groove was formed. 図5の蒸気タービンの動翼を外周側から示す平面図。The top view which shows the moving blade of the steam turbine of FIG. 5 from an outer peripheral side. 水切りフィンが複数本設けられた第2の変形例としての蒸気タービンを示す構成図。The block diagram which shows the steam turbine as a 2nd modification provided with two or more draining fins. 図7の蒸気タービンの動翼を外周側から示す平面図。The top view which shows the moving blade of the steam turbine of FIG. 7 from an outer peripheral side. 水切りフィンが断続配置された第3の変形例としての蒸気タービンを示す構成図。The block diagram which shows the steam turbine as a 3rd modification by which the draining fin was intermittently arrange | positioned.

本発明に係る蒸気タービンおよび蒸気タービンの動翼の実施形態を添付図面に基づいて説明する。本実施形態における蒸気タービンおよび蒸気タービンの動翼は、例えばタービンの低圧部に適用される。   An embodiment of a steam turbine and a moving blade of a steam turbine according to the present invention will be described with reference to the accompanying drawings. The steam turbine and the rotor blade of the steam turbine in the present embodiment are applied to, for example, a low pressure portion of the turbine.

図1は、本発明に係る蒸気タービンの一実施形態を示す構成図である。   FIG. 1 is a configuration diagram showing an embodiment of a steam turbine according to the present invention.

図2は、図1の蒸気タービン1の動翼2を外周側から示す平面図である。   FIG. 2 is a plan view showing the rotor blade 2 of the steam turbine 1 of FIG. 1 from the outer peripheral side.

図1、図2においては、左から右に蒸気が流れるものとして図示する。動翼2においては、左側を前方、右側を後方として説明する。蒸気タービン1内において蒸気の通流方向はタービンロータ軸3の方向と一致していることから、蒸気の通流方向を軸方向と定義する。   In FIG. 1 and FIG. 2, the steam flows from left to right. In the moving blade 2, the left side is assumed to be the front and the right side is assumed to be the rear. Since the flow direction of steam in the steam turbine 1 coincides with the direction of the turbine rotor shaft 3, the flow direction of steam is defined as the axial direction.

図1に示すように、蒸気タービン1は、タービンロータ軸3、動翼2および静翼4を主に有する。   As shown in FIG. 1, the steam turbine 1 mainly includes a turbine rotor shaft 3, a moving blade 2, and a stationary blade 4.

動翼2は、静翼4の下流側に対向して配置され、タービンロータ軸3の周方向に翼列をなす。動翼2は、翼先端に動翼2と一体的に形成されたチップカバー20を有する。   The moving blades 2 are arranged opposite to the downstream side of the stationary blades 4 and form blade rows in the circumferential direction of the turbine rotor shaft 3. The moving blade 2 has a tip cover 20 formed integrally with the moving blade 2 at the tip of the blade.

図2に示すように、チップカバー(カバー)20は、動翼2の背側円周方向に伸びる背側カバー21と、動翼2の腹側円周方向に伸びる腹側カバー22とで形成される。隣接するカバー20同士は、相互に接触する。腹側カバー22のカバー前縁25の軸方向位置は、動翼2の翼有効部前縁12よりも軸方向後側(軸方向下流側)、または翼有効部前縁12と軸方向に一致する。カバー20は、動翼2の遠心力によりアンツイスト(翼のねじれと反対方向に生じるねじりモーメント)が生じた際に、隣り合う動翼2同士の背側カバー21と腹側カバー22とがカバー接触面23で接触する。これにより、蒸気タービン1は、動翼2の全周一群の制振効果を得る。   As shown in FIG. 2, the tip cover (cover) 20 is formed by a back cover 21 extending in the back circumferential direction of the moving blade 2 and a vent cover 22 extending in the ventral circumferential direction of the moving blade 2. Is done. Adjacent covers 20 are in contact with each other. The axial direction position of the cover front edge 25 of the ventral cover 22 coincides with the blade effective portion front edge 12 in the axial direction rearward side (axially downstream side) or the blade effective portion front edge 12 in the axial direction. To do. When the cover 20 is untwisted (torsional moment generated in the direction opposite to the twist of the blade) due to the centrifugal force of the moving blade 2, the back cover 21 and the ventral cover 22 of the adjacent moving blades 2 are in contact with each other. Contact at surface 23. Thereby, the steam turbine 1 obtains the vibration damping effect of the entire circumference of the moving blade 2.

カバー20は、カバー20と一体的に形成されたチップ水切りフィン30をカバー外周面27に有する。チップ水切りフィン(水切りフィン)30は、カバー前縁25に沿って動翼2の径方向外側に伸びたフィンであり、カバー20の全周に亘って環状に設けられる。なお、水切りフィン30は、カバー前縁25よりも後側に設けられてもよい。   The cover 20 has chip draining fins 30 formed integrally with the cover 20 on the cover outer peripheral surface 27. The tip draining fins (draining fins) 30 are fins that extend outward in the radial direction of the rotor blade 2 along the front edge 25 of the cover, and are provided annularly over the entire circumference of the cover 20. The draining fin 30 may be provided on the rear side of the cover front edge 25.

図1に示すように、水切りフィン30の先端位置の外径φBは、カバー20の最大外径φAよりも小さい。カバー20は、前下がりの傾斜を有し、カバー後縁26側が大きく、カバー前縁25側が小さくなるような外径を有し、水切りフィン30の径方向長さはこのカバー後縁26よりも外径φBが大きくならないように決定される。   As shown in FIG. 1, the outer diameter φB at the tip position of the draining fin 30 is smaller than the maximum outer diameter φA of the cover 20. The cover 20 has a front-declining slope, and has an outer diameter such that the cover rear edge 26 side is large and the cover front edge 25 side is small. The length of the draining fin 30 in the radial direction is larger than that of the cover rear edge 26. The outer diameter φB is determined so as not to increase.

静翼4は、ノズルダイアフラム外輪40と、このノズルダイアフラム外輪40の半径方向内側に位置するノズルダイアフラム内輪45との間に設けられる。ノズルダイアフラム外輪(ダイアフラム外輪)40は、ノズルストリップ60およびドレンキャッチャ43を有する。   The stationary blade 4 is provided between a nozzle diaphragm outer ring 40 and a nozzle diaphragm inner ring 45 located on the radially inner side of the nozzle diaphragm outer ring 40. The nozzle diaphragm outer ring (diaphragm outer ring) 40 includes a nozzle strip 60 and a drain catcher 43.

ノズルストリップ60は、動翼2後側に対向するダイアフラム外輪40に設けられる。ノズルストリップ60は、カバー20とダイアフラム外輪40との間の空間の流路抵抗として機能し、チップ側漏洩蒸気流量を低減する。   The nozzle strip 60 is provided in the diaphragm outer ring 40 facing the rear side of the moving blade 2. The nozzle strip 60 functions as a flow path resistance in the space between the cover 20 and the diaphragm outer ring 40, and reduces the tip-side leakage steam flow rate.

ドレンキャッチャ43は、水切りフィン30から剥離した水滴を回収するための空間である。ドレンキャッチャ43は、水切りフィン30の先端と対向する軸方向位置に開口部46を有する。   The drain catcher 43 is a space for collecting water droplets peeled off from the draining fins 30. The drain catcher 43 has an opening 46 at an axial position facing the tip of the draining fin 30.

ここで、図3は、水切りフィン30とドレンキャッチャ43の開口部46との軸方向の位置関係を説明するための構成図である。   Here, FIG. 3 is a configuration diagram for explaining the axial positional relationship between the draining fin 30 and the opening 46 of the drain catcher 43.

一般的に、低圧タービンの軸方向の伸び差は最大で20mm程度である。水切りフィン30は、この伸び差を考慮して、ドレンキャッチャ43の開口部46の寸法(水切りフィン30の開口部46に対する軸方向位置)が決定される。   In general, the maximum difference in the axial direction of the low-pressure turbine is about 20 mm. In the draining fin 30, the dimension of the opening 46 of the drain catcher 43 (the axial position of the draining fin 30 with respect to the opening 46) is determined in consideration of this difference in elongation.

具体的には図3に示すように、定常運転時において水切りフィン30(タービンロータ軸3)に前後方向に最大伸び差が発生した場合であっても、水切りフィン30先端の最大伸び差は、ドレンキャッチャ43の開口部46の軸方向幅内となるように構成される。   Specifically, as shown in FIG. 3, even when the maximum elongation difference occurs in the front-rear direction in the draining fin 30 (turbine rotor shaft 3) during steady operation, the maximum elongation difference at the tip of the draining fin 30 is The drain catcher 43 is configured to be within the axial width of the opening 46.

ドレンキャッチャ43の開口部入口側47は、断面視でラッパ状に広がっており、開口部入口側47の軸方向位置は、図3の前側軸方向位置X1から後側軸方向位置X2(位置X1、X2は、ラッパ状の開口がすぼまり始める位置)である。水切りフィン30の先端は、停止時および最大伸び差が発生し得る定常運転時において、この開口部入口側47の軸方向範囲内に収まるようになっている。   The opening inlet side 47 of the drain catcher 43 has a trumpet shape in a cross-sectional view, and the axial position of the opening inlet side 47 is changed from the front axial position X1 to the rear axial position X2 (position X1 in FIG. 3). , X2 is the position where the trumpet-shaped opening begins to shrink. The tips of the draining fins 30 are designed to be within the axial range of the opening inlet side 47 when stopped and during steady operation where a maximum difference in elongation can occur.

次に、蒸気タービン1および動翼2の作用について説明する。   Next, the operation of the steam turbine 1 and the moving blade 2 will be described.

図4は、蒸気タービン1内の蒸気の流れの説明図である。   FIG. 4 is an explanatory diagram of steam flow in the steam turbine 1.

蒸気タービン1の運転中において、駆動蒸気の一部は凝縮し、液膜Lとなって静翼4に付着する。液膜Lは、静翼4の静翼後縁5に達すると、水滴Dとなって図中の矢印Aのように静翼後縁5から飛散する。この際、蒸気のエネルギは水滴Dの加速に使われ、蒸気のエネルギを消費する。   During operation of the steam turbine 1, part of the driving steam is condensed and becomes a liquid film L and adheres to the stationary blade 4. When the liquid film L reaches the stationary blade trailing edge 5 of the stationary blade 4, it becomes a water droplet D and scatters from the stationary blade trailing edge 5 as indicated by an arrow A in the figure. At this time, the energy of the steam is used for accelerating the water droplets D and consumes the energy of the steam.

水滴Dは慣性により蒸気の流れに乗りきれず、回転する動翼2の翼有効部前縁12に衝突し付着する。水滴Dの衝突は、動翼2の回転に対する制動力となり、タービン効率を低下させる。また、水滴Dの衝突は、その衝撃により動翼2の翼有効部前縁12の浸食を引き起こす要因となる。   The water droplets D cannot catch the steam flow due to inertia and collide with and adhere to the leading edge 12 of the blade effective portion of the rotating moving blade 2. The collision of the water droplet D becomes a braking force against the rotation of the moving blade 2 and decreases the turbine efficiency. Further, the collision of the water droplet D becomes a factor that causes the erosion of the leading edge 12 of the blade effective portion of the moving blade 2 by the impact.

図1に示すように、水滴Dは、遠心力によって動翼2の翼面を径方向外側に移動し、翼有効部側面11の径方向先端に到達する。翼有効部側面11の径方向先端に到達した水滴Dのうちカバー前縁25のカバー端面24よりも前方に存在する水滴Dは、翼有効部側面11と翼有効部外周面13との境界で表面張力によって翼有効部外周面13に乗り移る。   As shown in FIG. 1, the water droplet D moves the blade surface of the moving blade 2 radially outward by centrifugal force, and reaches the radial tip of the blade effective portion side surface 11. Of the water droplets D that have reached the radial tip of the blade effective portion side surface 11, the water droplet D that exists in front of the cover end surface 24 of the cover leading edge 25 is at the boundary between the blade effective portion side surface 11 and the blade effective portion outer peripheral surface 13. Transfers to the blade effective part outer peripheral surface 13 by surface tension.

翼有効部外周面13の水滴Dは、蒸気力によって後方に移動し、水切りフィン30に到達する。水切りフィン30に到達した水滴Dは、遠心力によって水切りフィン30の先端に移動し、先端から動翼2の外周側に吹き飛ばされ、ドレンキャッチャ43に捕集される。   The water droplet D on the blade effective portion outer peripheral surface 13 moves backward by the steam force and reaches the draining fin 30. The water droplet D that has reached the draining fin 30 moves to the tip of the draining fin 30 by centrifugal force, is blown off from the tip to the outer peripheral side of the rotor blade 2, and is collected by the drain catcher 43.

また、静翼4(ダイアフラム外輪40)に付着する水量分布は、外周側でより多く、かつダイアフラム外輪40の内周壁面42にも多量の水分が存在していることがわかっている。また、静翼4から飛散した水滴Dは、自身の円周方向速度成分による遠心力で外周側に偏向される。そのため、静翼4および内周壁面42から飛散した水滴Dの一部は、カバー前縁25のカバー端面24、カバー外周面27またはチップ水切りフィン30前方のフィン端面31に直接付着し、上述したとおりドレンキャッチャ43に捕集される。   It is also known that the distribution of the amount of water adhering to the stationary blade 4 (diaphragm outer ring 40) is larger on the outer peripheral side, and that a large amount of water is also present on the inner peripheral wall surface 42 of the diaphragm outer ring 40. Further, the water droplet D scattered from the stationary blade 4 is deflected to the outer peripheral side by a centrifugal force due to its own circumferential speed component. Therefore, a part of the water droplet D splashed from the stationary blade 4 and the inner peripheral wall surface 42 directly adheres to the cover end surface 24 of the cover front edge 25, the cover outer peripheral surface 27 or the fin end surface 31 in front of the chip draining fin 30 and is described above. It is collected by the drain catcher 43 as shown.

本実施形態における蒸気タービン1および動翼2は、動翼2に付着した水滴Dを効果的に除去し回収することができる。これにより、蒸気タービン1および動翼2は、水滴Dによる浸食を防止することができる。また、蒸気タービン1および動翼2は、水滴Dによる動翼2の回転抵抗を抑え、タービン効率の低下を防止することができる。   The steam turbine 1 and the moving blade 2 in the present embodiment can effectively remove and collect the water droplets D attached to the moving blade 2. Thereby, the steam turbine 1 and the moving blade 2 can prevent erosion due to the water droplets D. Moreover, the steam turbine 1 and the moving blade 2 can suppress the rotational resistance of the moving blade 2 due to the water droplets D and prevent the turbine efficiency from being lowered.

特に、動翼2は、動翼2の翼有効部前縁12よりも後側または翼有効部前縁12と一致するカバー前縁25を有するカバーが設けられたため、翼有効部側面11に付着し、さらに翼有効部外周面13に到達した水滴Dを効率的に除去することができる。   In particular, the moving blade 2 is attached to the blade effective portion side surface 11 because a cover having a cover leading edge 25 that is rearward of the blade effective portion leading edge 12 of the moving blade 2 or coincides with the blade effective portion leading edge 12 is provided. In addition, the water droplets D that have reached the blade effective portion outer peripheral surface 13 can be efficiently removed.

また、水切りフィン30は、漏洩蒸気をシールするためではなく、水滴Dをドレンキャッチャ43に捕集することを目的として設けられるため、水切りフィン30の先端位置の外径φBをチップカバー20の最大外径φAよりも小さくすることができる。このため、蒸気タービン1の組立時および運転時に、水切りフィン30の先端がダイアフラム外輪40の内周面またはノズルストリップ60と干渉するリスクを回避することができる。   Further, since the draining fin 30 is provided not for sealing the leaked steam but for collecting the water droplet D in the drain catcher 43, the outer diameter φB at the tip position of the draining fin 30 is set to the maximum of the chip cover 20. It can be made smaller than the outer diameter φA. For this reason, it is possible to avoid the risk that the tip of the draining fin 30 interferes with the inner peripheral surface of the diaphragm outer ring 40 or the nozzle strip 60 during assembly and operation of the steam turbine 1.

なお、本実施形態における蒸気タービン1および動翼2を、以下に説明する変形例のように構成してもよい。   In addition, you may comprise the steam turbine 1 and the moving blade 2 in this embodiment like the modification demonstrated below.

図5は、水滴案内溝15が形成された第1の変形例としての蒸気タービン1を示す構成図である。   FIG. 5 is a configuration diagram showing a steam turbine 1 as a first modified example in which the water droplet guide groove 15 is formed.

図6は、図5の蒸気タービン1の動翼2を外周側から示す平面図である。   FIG. 6 is a plan view showing the moving blade 2 of the steam turbine 1 of FIG. 5 from the outer peripheral side.

動翼2は、翼背側側面14におけるカバー前縁25より前側(翼有効部前縁12側)に、1本以上の水滴案内溝15(図5、図6においては2本)を有する。水滴案内溝15は、動翼2の径方向に伸び、一方の端部が動翼2の先端まで達する。   The rotor blade 2 has one or more water droplet guide grooves 15 (two in FIG. 5 and FIG. 6) on the front side (blade effective portion front edge 12 side) of the cover front edge 25 on the blade back side surface 14. The water droplet guide groove 15 extends in the radial direction of the moving blade 2, and one end reaches the tip of the moving blade 2.

動翼2は、翼背側側面14に付着した水滴Dが動翼2の外周方向に移動する際に、水滴案内溝15により水滴Dを翼有効部外周面13に移動させる。これにより、蒸気タービン1および動翼2は、より確実に翼背側側面14に付着した水分を除去することができる。   The moving blade 2 moves the water droplet D to the blade effective portion outer peripheral surface 13 by the water droplet guide groove 15 when the water droplet D attached to the blade back side surface 14 moves in the outer peripheral direction of the moving blade 2. Thereby, the steam turbine 1 and the moving blade 2 can more reliably remove the moisture adhering to the blade back side surface 14.

図7は、水切りフィン30が複数本設けられた第2の変形例としての蒸気タービン1を示す構成図である。   FIG. 7 is a configuration diagram showing a steam turbine 1 as a second modified example in which a plurality of draining fins 30 are provided.

図8は、図7の蒸気タービン1の動翼2を外周側から示す平面図である。   FIG. 8 is a plan view showing the rotor blade 2 of the steam turbine 1 of FIG. 7 from the outer peripheral side.

カバー20は、軸方向に配列された複数本(図7、図8においては2本)の水切りフィン30を有する。水切りフィン30を複数設けることにより、カバー外周面27に到達した水滴Dを確実にドレンキャッチャ43に捕集することができる。   The cover 20 has a plurality of draining fins 30 (two in FIGS. 7 and 8) arranged in the axial direction. By providing a plurality of draining fins 30, the water droplets D that have reached the cover outer peripheral surface 27 can be reliably collected by the drain catcher 43.

図9は、水切りフィン30が断続配置された第3の変形例としての蒸気タービン1を示す構成図である。   FIG. 9 is a configuration diagram showing the steam turbine 1 as a third modified example in which the draining fins 30 are intermittently arranged.

水切りフィン30は、カバー前縁25に沿って動翼2の径方向外側に伸び、カバー20の周方向に断続的に設けられる。水切りフィン30は翼有効部外周面13からの水分を主に除去することを目的として設けられる。このため、翼有効部外周面13からの水滴Dの軌道が適切に予測された場合には、水滴Dの軌道に一致するように水切りフィン30を断続配置することができる。   The draining fins 30 extend radially outward of the moving blade 2 along the cover front edge 25 and are provided intermittently in the circumferential direction of the cover 20. The draining fin 30 is provided for the purpose of mainly removing moisture from the outer peripheral surface 13 of the blade effective portion. For this reason, when the trajectory of the water droplet D from the blade effective portion outer peripheral surface 13 is appropriately predicted, the draining fins 30 can be intermittently arranged so as to coincide with the trajectory of the water droplet D.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、水切りフィン30の先端位置の外径φBは、カバー20の最大外径φAよりも大きくてもよい。この場合、ドレンキャッチャ43の開口部入口側47(図3参照)と水切りフィン30の先端との距離が小さくなり、水滴Dを確実にドレンキャッチャ43に案内することができる点で有効である。   For example, the outer diameter φB at the tip position of the draining fin 30 may be larger than the maximum outer diameter φA of the cover 20. In this case, the distance between the opening inlet side 47 (see FIG. 3) of the drain catcher 43 and the tip of the draining fin 30 is reduced, which is effective in that the water droplet D can be reliably guided to the drain catcher 43.

また、ダイアフラム外輪40のノズルストリップ60に代えて、チップカバー20のカバー外周面27と一体的に、全周に亘って環状に設けられたチップシールフィンを設けてもよい。   Further, instead of the nozzle strip 60 of the diaphragm outer ring 40, a chip seal fin provided in an annular shape over the entire periphery may be provided integrally with the cover outer peripheral surface 27 of the chip cover 20.

1 蒸気タービン
2 動翼
3 タービンロータ軸
4 静翼
15 水滴案内溝
20 チップカバー(カバー)
21 背側カバー
22 腹側カバー
30 チップ水切りフィン
40 ノズルダイアフラム外輪(ダイアフラム外輪)
43 ドレンキャッチャ
45 ノズルダイアフラム内輪
46 開口部
DESCRIPTION OF SYMBOLS 1 Steam turbine 2 Moving blade 3 Turbine rotor shaft 4 Stator blade 15 Water drop guide groove 20 Tip cover (cover)
21 Back side cover 22 Abdominal side cover 30 Tip draining fin 40 Nozzle diaphragm outer ring (diaphragm outer ring)
43 Drain catcher 45 Nozzle diaphragm inner ring 46 Opening

Claims (7)

タービンロータ軸と、
前記タービンロータ軸に設けられ、蒸気流によって回転される複数の動翼と、
各前記動翼の先端に取り付けられ相互に連結接触するチップカバーと、
前記チップカバーに周方向に沿って設けられ、各前記動翼の径方向外側に伸びた少なくとも一の水切りフィンと、
各前記動翼より外周側に配置され、前記水切りフィンの先端部と対向するドレンキャッチャを有するダイアフラム外輪とを備え、
前記チップカバーは、前記動翼の前縁よりも軸方向下流側または前記動翼の前縁と軸方向に一致する軸方向位置に形成される前縁を有することを特徴とする蒸気タービン。
A turbine rotor shaft;
A plurality of rotor blades provided on the turbine rotor shaft and rotated by a steam flow;
A tip cover attached to the tip of each of the blades and connected to each other;
At least one draining fin provided along the circumferential direction on the tip cover and extending radially outward of each of the blades;
A diaphragm outer ring disposed on the outer peripheral side of each of the moving blades and having a drain catcher facing the tip of the draining fin;
The steam turbine according to claim 1, wherein the tip cover has a leading edge formed at an axial position downstream of the leading edge of the moving blade in the axial direction or at an axial position that coincides with the leading edge of the moving blade in the axial direction.
前記水切りフィンは、前記チップカバーの前縁に沿って設けられた請求項1記載の蒸気タービン。   The steam turbine according to claim 1, wherein the draining fin is provided along a front edge of the tip cover. 前記水切りフィンの先端位置は、前記チップカバーの最大外径よりも小さい外径を有する請求項1または2記載の蒸気タービン。   The steam turbine according to claim 1 or 2, wherein a tip position of the draining fin has an outer diameter smaller than a maximum outer diameter of the tip cover. 前記水切りフィンは、前記チップカバーに周方向に沿って複数設けられた請求項1〜3のいずれか1項記載の蒸気タービン。   The steam turbine according to claim 1, wherein a plurality of the draining fins are provided on the tip cover along a circumferential direction. 各前記動翼は、背側側面における前記チップカバーの前縁よりも上流側に、前記動翼の径方向に伸び、一方の端部が前記動翼の先端まで達する水滴案内溝を有する請求項1〜4のいずれか1項記載の蒸気タービン。   Each of the moving blades has a water droplet guide groove extending in a radial direction of the moving blade and upstream of a front edge of the tip cover on a back side surface and having one end portion reaching the tip of the moving blade. The steam turbine of any one of 1-4. 前記ドレンキャッチャは、定常運転時において前記水切りフィンの先端の軸方向位置に最大伸び差が発生した場合であっても、前記最大伸び差が開口の軸方向幅内となる開口部を有する請求項1〜5のいずれか一項記載の蒸気タービン。   The drain catcher has an opening where the maximum elongation difference is within the axial width of the opening even when a maximum elongation difference occurs in the axial position of the tip of the draining fin during steady operation. The steam turbine as described in any one of 1-5. 蒸気流によって回転される動翼と、
前記動翼の先端に取り付けられ相互に連結接触するチップカバーと、
前記チップカバーに周方向に沿って設けられ、各前記動翼の径方向外側に伸びた少なくとも一の水切りフィンとを備え、
前記チップカバーは、前記動翼の前縁よりも軸方向下流側または前記動翼の前縁と軸方向に一致する軸方向位置に形成される前縁を有することを特徴とする蒸気タービンの動翼。
A rotor blade rotated by a steam flow;
A tip cover attached to and connected to the tip of the rotor blade; and
The tip cover is provided along the circumferential direction, and includes at least one draining fin extending outward in the radial direction of each blade.
The tip cover has a leading edge formed at an axial position downstream of the leading edge of the moving blade in the axial direction or at an axial position that coincides with the leading edge of the moving blade in the axial direction. Wings.
JP2012008849A 2012-01-19 2012-01-19 Steam turbine and steam turbine blades Active JP5823305B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012008849A JP5823305B2 (en) 2012-01-19 2012-01-19 Steam turbine and steam turbine blades
US13/742,824 US20130189077A1 (en) 2012-01-19 2013-01-16 Steam turbine and blade for steam turbine
EP13151786.4A EP2617951A3 (en) 2012-01-19 2013-01-18 Tip cover of a steam turbine for the drainage of water droplets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008849A JP5823305B2 (en) 2012-01-19 2012-01-19 Steam turbine and steam turbine blades

Publications (2)

Publication Number Publication Date
JP2013147999A true JP2013147999A (en) 2013-08-01
JP5823305B2 JP5823305B2 (en) 2015-11-25

Family

ID=47563264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008849A Active JP5823305B2 (en) 2012-01-19 2012-01-19 Steam turbine and steam turbine blades

Country Status (3)

Country Link
US (1) US20130189077A1 (en)
EP (1) EP2617951A3 (en)
JP (1) JP5823305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137393A1 (en) * 2014-03-13 2015-09-17 三菱日立パワーシステムズ株式会社 Shroud, moving blade element, and rotary machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125351B2 (en) * 2013-06-27 2017-05-10 株式会社東芝 Steam turbine
CN104061023A (en) * 2014-06-23 2014-09-24 中国船舶重工集团公司第七�三研究所 Marine turbine dehumidification device
EP3009610B1 (en) * 2014-10-14 2020-11-25 General Electric Technology GmbH Steam turbine rotor seal arrangement
JP6539525B2 (en) * 2015-07-09 2019-07-03 株式会社東芝 Turbine bucket
DE112019003577T5 (en) * 2018-07-13 2021-06-24 Mitsubishi Power, Ltd. Flow guide, steam turbine, inner element and method for producing flow guide
CN110043336A (en) * 2019-05-21 2019-07-23 中国船舶重工集团公司第七0三研究所 A kind of ocean movable type nuclear steam turbine outer rim dehumidification device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752602A (en) * 1980-09-16 1982-03-29 Toshiba Corp Steam-water separator in steam turbine
JPH11159302A (en) * 1997-11-25 1999-06-15 Hitachi Ltd Moving blade of steam turbine
JP2005002917A (en) * 2003-06-12 2005-01-06 Toshiba Corp Steam turbine seal device and steam turbine equipped with the same
JP2009138540A (en) * 2007-12-04 2009-06-25 Toshiba Corp Steam turbine and moisture removing structure for steam turbine stage
JP2011021519A (en) * 2009-07-14 2011-02-03 Toshiba Corp Steam turbine
JP2011112054A (en) * 2009-11-26 2011-06-09 Alstom Technology Ltd Axial flow steam turbine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304056A (en) * 1965-03-19 1967-02-14 Hitachi Ltd Turbine blades
SU510583A1 (en) * 1974-09-30 1976-04-15 Харьковский Филиал Центрального Конструкторского Бюро Главэнергоремонта Turbine stage for wet steam operation
US5261785A (en) * 1992-08-04 1993-11-16 General Electric Company Rotor blade cover adapted to facilitate moisture removal
US5234318A (en) * 1993-01-22 1993-08-10 Brandon Ronald E Clip-on radial tip seals for steam and gas turbines
US7059821B2 (en) * 2003-05-07 2006-06-13 General Electric Company Method and apparatus to facilitate sealing within turbines
JP5025241B2 (en) * 2006-12-01 2012-09-12 株式会社東芝 Turbine blades and steam turbines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752602A (en) * 1980-09-16 1982-03-29 Toshiba Corp Steam-water separator in steam turbine
JPH11159302A (en) * 1997-11-25 1999-06-15 Hitachi Ltd Moving blade of steam turbine
JP2005002917A (en) * 2003-06-12 2005-01-06 Toshiba Corp Steam turbine seal device and steam turbine equipped with the same
JP2009138540A (en) * 2007-12-04 2009-06-25 Toshiba Corp Steam turbine and moisture removing structure for steam turbine stage
JP2011021519A (en) * 2009-07-14 2011-02-03 Toshiba Corp Steam turbine
JP2011112054A (en) * 2009-11-26 2011-06-09 Alstom Technology Ltd Axial flow steam turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137393A1 (en) * 2014-03-13 2015-09-17 三菱日立パワーシステムズ株式会社 Shroud, moving blade element, and rotary machine
JP2015175247A (en) * 2014-03-13 2015-10-05 三菱日立パワーシステムズ株式会社 Shroud, moving blade body and rotary machine
US10738640B2 (en) 2014-03-13 2020-08-11 Mitsubishi Heavy Industries, Ltd. Shroud, blade member, and rotary machine

Also Published As

Publication number Publication date
EP2617951A2 (en) 2013-07-24
JP5823305B2 (en) 2015-11-25
US20130189077A1 (en) 2013-07-25
EP2617951A3 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5823305B2 (en) Steam turbine and steam turbine blades
JP5804985B2 (en) Steam turbine with steam sealing and moisture removal functions
US9598964B2 (en) Steam turbine stationary blade and steam turbine
JP7179651B2 (en) Turbine stator blades and steam turbines
US8714915B2 (en) Solid particle diversion in an axial flow steam turbine
JP2007321721A (en) Axial flow turbine stage and axial flow turbine
JP2016166569A (en) Steam turbine
JP2007309235A (en) Turbine blade
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
JP5917329B2 (en) Steam turbine seal structure
JP2015101971A (en) Steam turbine
JP2017020443A (en) Steam turbine nozzle and steam turbine with the nozzle
JP2008297980A (en) Shaft seal device
JP6012519B2 (en) Turbine and rotating machine equipped with the same
JP5025241B2 (en) Turbine blades and steam turbines
US9835040B2 (en) Turbomachine
JP6145372B2 (en) Steam turbine blade and steam turbine using the same
WO2017179711A1 (en) Steam turbine rotor blade, steam turbine, and method for manufacturing steam turbine rotor blade
JP5868774B2 (en) Steam turbine and steam turbine blades
JP5173646B2 (en) Steam turbine
JP2012137094A (en) Turbine blade and steam turbine
US9194259B2 (en) Apparatus for minimizing solid particle erosion in steam turbines
JP6614467B2 (en) Steam turbine blade, steam turbine, and method of manufacturing steam turbine blade
JP5916586B2 (en) Steam turbine
JP2015098789A (en) Rotary machine seal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

R151 Written notification of patent or utility model registration

Ref document number: 5823305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151