JP2013147882A - Calibration method and device for measuring saturation of ground - Google Patents
Calibration method and device for measuring saturation of ground Download PDFInfo
- Publication number
- JP2013147882A JP2013147882A JP2012010252A JP2012010252A JP2013147882A JP 2013147882 A JP2013147882 A JP 2013147882A JP 2012010252 A JP2012010252 A JP 2012010252A JP 2012010252 A JP2012010252 A JP 2012010252A JP 2013147882 A JP2013147882 A JP 2013147882A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- saturation
- container
- electrodes
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 82
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000007599 discharging Methods 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 7
- 239000004576 sand Substances 0.000 abstract 1
- 239000002689 soil Substances 0.000 description 9
- 239000003673 groundwater Substances 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- 238000007872 degassing Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
本発明は、地盤の飽和度測定のためのキャリブレーション方法および装置に関し、さらに詳しくは、液状化防止のために空気を注入した砂質地盤の比抵抗に基づいて地盤の飽和度を測定するにあたり、高精度の測定を可能にする地盤の飽和度のためのキャリブレーション方法および装置に関するものである。 The present invention relates to a calibration method and apparatus for measuring soil saturation, and more specifically, in measuring soil saturation based on the resistivity of sandy soil injected with air to prevent liquefaction. The present invention relates to a calibration method and apparatus for ground saturation that enables highly accurate measurement.
従来、水で飽和した砂質地盤の液状化を防止するために、砂質地盤中に気泡を混入させた水を注入したり、空気を直接注入することにより、水で飽和した砂質地盤中に多数の気泡を混在させて砂質地盤の飽和度を低下させることが提案されている。この際に、空気を注入した砂質地盤の比抵抗に基づいて地盤の飽和度を測定する方法が提案されている(例えば、特許文献1参照)。 Conventionally, in order to prevent liquefaction of sandy ground saturated with water, water in which air bubbles are mixed into sandy ground or by directly injecting air into sandy ground saturated with water It has been proposed to reduce the degree of saturation of sandy ground by mixing a large number of bubbles. Under the present circumstances, the method of measuring the saturation degree of a ground based on the specific resistance of the sandy ground which inject | poured air is proposed (for example, refer patent document 1).
この地盤の飽和度の測定方法を実施するに際して、予め、工事を施工する砂質地盤について、その飽和度と比抵抗との関係を取得しておく必要がある。この両者の関係が正確に把握できていなければ、地盤の比抵抗を測定し、その比抵抗に基づいて地盤の飽和度を算出しても正確な状態を把握することができない。したがって、地盤の飽和度の測定精度を向上させるために、砂質地盤の飽和度と比抵抗との関係を、予め、より正確に取得できるキャリブレーション方法および装置が必要であった。 When carrying out this method for measuring the degree of saturation of the ground, it is necessary to obtain in advance the relationship between the degree of saturation and the specific resistance of the sandy ground on which construction is to be performed. If the relationship between the two is not accurately grasped, the precise state cannot be grasped even if the specific resistance of the ground is measured and the saturation of the ground is calculated based on the specific resistance. Therefore, in order to improve the measurement accuracy of the saturation level of the ground, a calibration method and apparatus capable of acquiring the relationship between the saturation level of the sandy ground and the specific resistance in advance more accurately are required.
本発明の目的は、液状化防止のために空気を注入した砂質地盤の比抵抗に基づいて地盤の飽和度を測定するにあたり、高精度の測定を可能にする地盤の飽和度測定のためのキャリブレーション方法および装置を提供することにある。 An object of the present invention is to measure the degree of saturation of the ground, which enables high-precision measurement in measuring the degree of saturation of the ground based on the specific resistance of sandy ground injected with air to prevent liquefaction. It is to provide a calibration method and apparatus.
上記目的を達成するため、本発明の地盤の飽和度測定のためのキャリブレーション方法は、空気を注入した砂質地盤の飽和度を、地盤中に設置した電極の間で検知した比抵抗に基づいて測定するに際して使用する地盤の飽和度測定のためのキャリブレーション方法であって、間隔をあけて配置した2つの通電電極と、これら通電電極の間に間隔をあけて配置した複数の検知電極とを内設した密閉可能な容器の内部を、測定対象の砂質地盤から採取した地盤サンプルで充填した状態にして、この容器の内部を脱気しつつ容器の内部に水を充填することにより、容器の内部の地盤サンプルの飽和度を100%にした後、順次、容器の内部から水を排出して容器の内部の地盤サンプルの飽和度を低下させ、それぞれの飽和度において、前記通電電極の間に電流を流し、その際に前記検知電極の間で電圧を検知して、前記電流と電圧とに基づいて地盤サンプルの比抵抗を算出することにより、地盤サンプルの飽和度と比抵抗との関係を取得することを特徴とする。 In order to achieve the above object, the calibration method for soil saturation measurement according to the present invention is based on the specific resistance detected between the electrodes installed in the ground and the saturation of the sandy soil injected with air. A calibration method for measuring the degree of saturation of the ground used for measurement, comprising two current-carrying electrodes spaced apart, and a plurality of detection electrodes spaced between the current-carrying electrodes, By filling the inside of the container that can be sealed with a ground sample collected from the sandy ground to be measured and filling the inside of the container with water while degassing the inside, After the saturation level of the ground sample inside the container is set to 100%, water is discharged from the inside of the container in order to decrease the saturation level of the ground sample inside the container. A current is passed between them, a voltage is detected between the detection electrodes, and a specific resistance of the ground sample is calculated based on the current and the voltage. It is characterized by acquiring a relationship.
本発明の地盤の飽和度測定のためのキャリブレーション装置は、測定対象の砂質地盤から採取した地盤サンプルが充填される密閉可能な容器と、前記容器に取り付けられて真空ポンプに接続される吸引管と、前記容器に取り付けられて水供給源に接続される給水管と、前記容器の内部の水を外部に排出する排水管と、前記容器の内部で間隔をあけて配置される2つの通電電極と、前記容器の内部で前記通電電極の間に間隔をあけて配置される複数の検知電極と、前記通電電極の間に電流を流す通電手段と、前記検知電極間の電圧を検知する電圧検知手段と、前記電流と電圧とに基づいて地盤サンプルの比抵抗を算出するとともに、地盤サンプルの飽和度と比抵抗との関係を算出する演算装置とを備えたことを特徴とする。 The calibration device for measuring the degree of saturation of the ground according to the present invention includes a sealable container filled with a ground sample collected from a sandy ground to be measured, and a suction attached to the container and connected to a vacuum pump. A pipe, a water supply pipe attached to the container and connected to a water supply source, a drain pipe for discharging the water inside the container to the outside, and two energizations arranged at intervals inside the container An electrode, a plurality of detection electrodes arranged at intervals between the energization electrodes in the container, an energization means for passing a current between the energization electrodes, and a voltage for detecting a voltage between the detection electrodes It comprises a detecting means, and an arithmetic unit that calculates the specific resistance of the ground sample based on the current and voltage, and calculates the relationship between the saturation degree of the ground sample and the specific resistance.
本発明によれば、密閉可能な容器の内部に、測定対象の砂質地盤から採取した地盤サンプルを充填した後、この容器の内部を脱気しつつ水を充填することにより、容器の内部の地盤サンプルの飽和度を容易に100%にすることができ、その後、順次、容器の内部から水を排出することにより、地盤サンプルの飽和度を容易に低下させることができる。そして、それぞれの飽和度において、容器の内部に間隔をあけて配置した2つの通電電極の間に電流を流して、これら通電電極の間に間隔をあけて配置した複数の検知電極の間で電圧を検知し、この電流と電圧とに基づいて地盤サンプルの比抵抗を算出して、地盤サンプルの飽和度と比抵抗との関係を取得することによって、実際の砂質地盤の飽和度と比抵抗との関係に近似したデータを、容易に得ることができる。したがって、空気を注入した砂質地盤の飽和度を、地盤中に設置した電極の間で検知した比抵抗に基づいて測定するに際して、本発明によって取得した地盤サンプルの飽和度と比抵抗との関係を用いることにより、高精度で実際の地盤の飽和度を測定することが可能になる。 According to the present invention, the inside of the container that can be sealed is filled with a ground sample collected from the sandy ground to be measured, and then filled with water while degassing the inside of the container. The saturation degree of the ground sample can be easily made 100%, and then the saturation degree of the ground sample can be easily lowered by sequentially discharging water from the inside of the container. And in each saturation degree, an electric current is sent between the two energization electrodes arranged at intervals in the interior of the container, and a voltage is generated between the plurality of detection electrodes arranged at intervals between these energization electrodes. The actual sandy soil saturation and resistivity are obtained by calculating the resistivity of the ground sample based on this current and voltage and obtaining the relationship between the saturation and resistivity of the ground sample. It is possible to easily obtain data that approximates the relationship. Therefore, when measuring the saturation of sandy soil injected with air based on the specific resistance detected between the electrodes installed in the ground, the relationship between the saturation and the specific resistance of the ground sample obtained by the present invention By using this, it becomes possible to measure the saturation degree of the actual ground with high accuracy.
例えば、前記複数の検知電極が横並びになる状態に容器を設置して、前記検知電極の間で電圧を検知する。これにより、容器の内部の地盤サンプルの飽和度を下げた場合であっても、容器の内部での飽和度のばらつきが小さくなり、それぞれの飽和度における電圧を正確に検知するには有利になる。 For example, a container is installed in a state where the plurality of detection electrodes are arranged side by side, and a voltage is detected between the detection electrodes. As a result, even when the saturation level of the ground sample inside the container is lowered, the variation in the saturation level inside the container is reduced, which is advantageous for accurately detecting the voltage at each saturation level. .
前記検知電極を3個以上配置して、これら検知電極の中で2つの検知電極の組み合わせを複数選択し、選択したそれぞれの2つの検知電極の組み合わせの間で電圧を検知し、これら検知した電圧に基づいて、比抵抗を算出するための電圧を決定することもできる。これにより、それぞれの飽和度における電圧を正確に検知するには有利になる。 Three or more detection electrodes are arranged, a plurality of combinations of two detection electrodes are selected from among the detection electrodes, a voltage is detected between each selected combination of the two detection electrodes, and the detected voltages Based on the above, it is also possible to determine a voltage for calculating the specific resistance. This is advantageous for accurately detecting the voltage at each saturation level.
前記検知電極は、例えば、前記容器の内周面に沿った環状にする。これにより、電圧検知面積が大きくなるので、電圧を正確に検知するには有利になる。また、容器の内部に地盤サンプルを充填する際に、検知電極が邪魔にならずに円滑に充填し易くなる。 The detection electrode has, for example, an annular shape along the inner peripheral surface of the container. This increases the voltage detection area, which is advantageous for accurately detecting the voltage. In addition, when the ground sample is filled into the container, the detection electrode does not get in the way and can be filled smoothly.
以下、本発明の地盤の飽和度測定のためのキャリブレーション方法および装置を図に示した実施形態に基づいて説明する。 Hereinafter, a calibration method and apparatus for soil saturation measurement according to the present invention will be described based on the embodiments shown in the drawings.
図1〜図3に例示するように本発明のキャリブレーション装置1は、測定対象の砂質地盤から採取した地盤サンプルGが充填される容器2と、容器2の一端に取り付けられた吸引管6と、容器2の他端に取り付けられた給排水管5とを備えている。容器2は、両端にフランジ部4aを有する円筒部3と、それぞれのフランジ部4aを覆うように取り付けられる着脱可能な蓋部4bとを有している。
As illustrated in FIGS. 1 to 3, the
吸引管6は開閉バルブ6aを有していて、真空ポンプに着脱自在に接続される。給排水管5は開閉バルブ5aを有していて、水供給源に着脱自在に接続される。それぞれの開閉バルブ5a、6aを閉弁した状態にすることで容器2は密閉可能になっている。
The
容器2の内部の両端には、通電電極7が配置されるとともに、この2つの通電電極7の間に間隔をあけて複数の検知電極8a〜8eが配置されている。即ち、円筒部3の筒軸方向に間隔をあけて、通電電極7および検知電極8a〜8eが配置されている。
At both ends inside the
通電電極7および検知電極8a〜8eは、種々の形状を採用することができるが、この実施形態では通電電極7は円盤状であり、検知電極8a〜8eは円筒部3の内周面に沿った環状になっている。
The
円筒部3のサイズは、特に限定されないが、例えば、内径10cm〜20cm程度、長さ30〜60cm程度である。通電電極7および検知電極8a〜8eの外径は、円筒部3の内径とほぼ同じである。
Although the size of the
検知電極8a〜8eの数は複数であり、特に限定されないが3個以上が好ましく、例えば、3個〜10個程度の範囲で適宜決定される。隣り合う検知電極8a〜8eどうしの間隔は、例えば、5cm〜10cm程度であり、等間隔あるいは不等間隔で配置することもできる。隣り合う通電電極7と検知電極8a、通電電極7と検知電極8eの間隔も上記と同様の間隔である。
The number of the
吸引管6は、容器2の一端側の蓋部4bと通電電極7を挿通して容器2の一端に固定されている。給排水管5は、容器2の他端側の蓋部4bと通電電極7を挿通して容器2の他端に固定されている。この実施形態では、給水管および排水管として機能する給排水管5を設けているが、給水管と排水管とを別々に設けることもできる。
The
それぞれの通電電極7には、容器2の内部と外部とを連通するコネクタ9を介してリード線9aが接続され、それぞれのリード線9aは通電手段10に接続されている。通電手段10は、通電電極7の間に電流を流して通電させる。
A
それぞれの検知電極8a〜8eには、容器2の内部と外部とを連通するコネクタ9を介してリード線9aが接続され、それぞれのリード線9aは電圧検知手段11に接続されている。電圧検知手段11は、検知電極8a〜8eの間の電圧を検知する。
A
通電手段10および電圧検知手段11は、リード線9aを通じてパーソナルコンピュータ等の演算装置12に接続されている。演算装置12には、通電手段10が流した電流(電流値)と、電圧検知手段11が検知した電圧(電圧値)が入力される。さらに、演算装置12には、容器2の内部の地盤サンプルGの飽和度が入力される構成になっている。
The energizing means 10 and the voltage detecting means 11 are connected to a
地盤の比抵抗ρtは、地下水の比抵抗ρwが小さい場合、間隙率Bと飽和度Swの関係を用いた下記(1)式(アーチーの式)で表される。
ρt=A・(B)-m・(Sw)-n・ρw ・・・(1)
The specific resistance ρt of the ground is expressed by the following formula (1) (archy formula) using the relationship between the porosity B and the saturation degree Sw when the specific resistance ρw of the groundwater is small.
ρt = A · (B) -m · (Sw) -n · ρw (1)
A、m、nは経験的に求められている値であり、一般にm=1.3〜3、n=2、A=0.6〜1.5である。 A, m, and n are values determined empirically, and are generally m = 1.3-3, n = 2, and A = 0.6-1.5.
地盤に空気を注入して地下水が空気に置換された時に、間隙率B、地下水の比抵抗ρwに変化が生じないとすると、地盤の飽和度がSw1からSw2に変化した場合、それぞれの場合の地盤の比抵抗をρt1、ρt2とすると下記(2)式で表される。
(ρt2/ρt1)=(Sw2/Sw1)-n ・・・(2)
When air is injected into the ground and the groundwater is replaced with air, if the porosity B and the specific resistance ρw of the groundwater do not change, the saturation level of the ground changes from Sw1 to Sw2. If the specific resistance of the ground is ρt1, ρt2, it is expressed by the following equation (2).
(Ρt2 / ρt1) = (Sw2 / Sw1) −n (2)
地下水位以深で完全飽和状態にある砂質地盤の飽和度が、空気を注入することで変化した場合、(2)式のSw1=1なので、以下の(3)式で表される。
Sw2=(ρt2/ρt1)(-1/n) ・・・(3)
When the degree of saturation of the sandy ground that is in a fully saturated state deeper than the groundwater level is changed by injecting air, since Sw1 = 1 in the equation (2), it is expressed by the following equation (3).
Sw2 = (ρt2 / ρt1) (−1 / n) (3)
そこで、本発明では地盤サンプルGの飽和度Swが100%(=1)の時の比抵抗ρt1を測定し、順次、飽和度Sw2を変化させて、それぞれの飽和度Sw2において比抵抗ρt2を算出する。そして、得られたデータをグラフにプロットして(3)式のn値を算出する。これにより、その地盤サンプルG、即ち、地盤サンプルGを採取した砂質地盤のn値を把握する。 Therefore, in the present invention, the specific resistance ρt1 when the saturation degree Sw of the ground sample G is 100% (= 1) is measured, and the specific resistance ρt2 is calculated at each saturation degree Sw2 by sequentially changing the saturation degree Sw2. To do. Then, the obtained data is plotted on a graph to calculate the n value of equation (3). Thereby, the n value of the ground sample G, that is, the sandy ground from which the ground sample G is collected is grasped.
以下に本発明のキャリブレーション方法により、地盤サンプルGの飽和度と比抵抗との関係を取得する手順を説明する。 The procedure for acquiring the relationship between the saturation of the ground sample G and the specific resistance by the calibration method of the present invention will be described below.
まず、一方のフランジ部4aから蓋部4bを取り外すとともに、一方の通電電極7を円筒部3から取り外す。次いで、測定対象の砂質地盤から採取した地盤サンプルGを円筒部3に充填する。その後、一方の通電電極7を円筒部3の所定位置に配置するとともに、一方のフランジ部4aに蓋部4bを固定する。これにより、間隔をあけて配置した2つの通電電極7と、これら通電電極7の間に間隔をあけて配置した複数の検知電極8a〜8eとを内設した密閉可能な容器2の内部を、地盤サンプルGで充填した状態にする。
First, the
次いで、図4に例示するように、開閉バルブ6aを開いた状態にした吸引管6を通じて、真空ポンプによって容器2の内部の空気aを排出して脱気する。これと同時に、開閉バルブ5aを開いた状態にした給排水管5を通じて、水供給源から容器の内部に水Wを充填する。水Wが容器2の内部に充満し、余分な水Wは吸引管6を通じて排出される。これにより、容器2の内部の地盤サンプルGの飽和度を100%する。容器2の内部に充填する水Wは、その地盤サンプルGを採取した砂質地盤を流れる地下水を用いるか、その地下水と比抵抗が近い水を用いるようにする。
Next, as illustrated in FIG. 4, the air a inside the
飽和度を100%にした後は、開閉バルブ5a、5bを閉じた状態にして容器2の内部を密閉状態にする。ここで、通電電極7の間に電流を流し、その際に検知電極8a〜8eの中から選択した2つの検知電極の間で電圧を検知する。通電手段10により流した電流と、選択した2つの検知電極の間で検知した電圧とに基づいて地盤サンプルGの比抵抗を算出する。この時の地盤サンプルGの飽和度(100%)を演算装置12に入力する。
After the saturation is set to 100%, the opening and
例えば、流した電流I、検知した電圧Vであれば、抵抗値R=V/Iとなる。そして、電圧を検知した検知電極の間の距離L、この検知電極の間に存在する地盤サンプルGの断面積Sの場合は、比抵抗ρt=R×S/Lとして算出される。したがって、演算装置12には、それぞれの検知電極8a〜8eどうしの間の距離L、検知電極8a〜8eの間に存在する地盤サンプルGの断面積S(即ち、容器2の円筒部3の内側断面積)が入力されている。
For example, if the current I flows and the detected voltage V, the resistance value R = V / I. And in the case of the distance L between the detection electrodes which detected the voltage and the cross-sectional area S of the ground sample G existing between the detection electrodes, the specific resistance is calculated as ρt = R × S / L. Therefore, the
次いで、図4のように給排水管5が下方になるように容器2を配置して、開閉バルブ5aを開けて給排水管5を通じて容器2の内部から適量の水Wを排出した後、開閉バルブ5aを閉じる。地盤サンプルGの飽和度を低下させた後は、通電電極7の間に電流を流し、その際に検知電極8a〜8eの中から選択した2つの検知電極の間で電圧を検知する。通電手段10により流した電流と、検知電極の間で検知した電圧とに基づいて、演算装置12によって地盤サンプルGの比抵抗を算出する。また、容器2の内部からこの時に排出した水Wの量に基づいて、地盤サンプルGの飽和度を算出し、この飽和度を演算装置12に入力する。
Next, as shown in FIG. 4, the
同様に順次、容器2の内部から適量の水Wを排出して容器2の内部の地盤サンプルGの飽和度を低下させ、それぞれの飽和度において、通電電極7の間に電流を流し、その際に検知電極8a〜8eの中から選択した2つの検知電極の間で電圧を検知し、電流と電圧とに基づいて地盤サンプルGの比抵抗を算出する。また、その時の地盤サンプルGの飽和度を演算装置12に入力する。容器2の内部からその都度排出する水Wの量は、適宜決定することができる。
Similarly, an appropriate amount of water W is sequentially discharged from the inside of the
上記の手順によって算出した地盤サンプルGの比抵抗と、地盤サンプルGの飽和度のデータとを、演算装置12によって処理して、図5に例示するようにグラフにプロットすることにより両者の関係を取得する。図5は、2種類(サンプル1、サンプル2)の地盤サンプルGについて、比抵抗と飽和度との関係を示している。このグラフによると、(3)式のn値がほぼ1になっている。
The specific resistance of the ground sample G calculated by the above procedure and the saturation data of the ground sample G are processed by the
したがって、(3)式は、Sw2=(ρt2/ρt1)-1となり、砂質地盤中に設置した電極の間で比抵抗ρt1、ρt2を検知することで、地盤中に空気を注入して比抵抗ρt2になった場合の砂質地盤の飽和度Sw2を把握することができる。 Therefore, the equation (3) becomes Sw2 = (ρt2 / ρt1) −1 , and by detecting the specific resistances ρt1 and ρt2 between the electrodes installed in the sandy ground, the ratio is obtained by injecting air into the ground. The saturation degree Sw2 of the sandy ground when the resistance ρt2 is reached can be grasped.
本発明により取得したデータによって、地盤サンプルG、即ち、砂質地盤に対して図6に例示するような比抵抗変化率(ρt1に対するρt2の変化率)と飽和度との関係を取得することもできる。図6は、(3)式のn値が1と2の場合の地盤サンプルG(砂質地盤)の比抵抗変化率と飽和度との関係を示している。 The relationship between the specific resistance change rate (rate of change of ρt2 with respect to ρt1) and the saturation degree as illustrated in FIG. 6 for the ground sample G, that is, the sandy ground, may be acquired from the data acquired according to the present invention. it can. FIG. 6 shows the relationship between the resistivity change rate and the saturation degree of the ground sample G (sandy ground) when the n value of the expression (3) is 1 and 2.
上記のとおり本発明によれば、密閉可能な容器2の内部に地盤サンプルGを充填した後、容器2の内部を脱気しつつ水Wを充填することにより、容器2の内部の地盤サンプルGの飽和度を容易に100%にすることができる。その後、順次、容器2の内部から水Wを排出することにより、地盤サンプルGの飽和度を容易に低下させることができる。
As described above, according to the present invention, after the ground sample G is filled into the
また、上記方法を用いて、それぞれの飽和度において地盤サンプルGの比抵抗を算出して、地盤サンプルの飽和度と比抵抗との関係を取得することによって、実際の砂質地盤の飽和度と比抵抗との関係に近似したデータを、容易に得ることができる。したがって、空気を注入した砂質地盤の飽和度を、地盤中に設置した電極の間で検知した比抵抗に基づいて測定するに際して、本発明によって取得した地盤サンプルの飽和度と比抵抗との関係を用いることにより、高精度で実際の地盤の飽和度を測定することが可能になる。 In addition, by calculating the specific resistance of the ground sample G at each saturation level using the above method and obtaining the relationship between the saturation level of the ground sample and the specific resistance, the saturation level of the actual sandy ground and Data approximate to the relationship with the specific resistance can be easily obtained. Therefore, when measuring the saturation of sandy soil injected with air based on the specific resistance detected between the electrodes installed in the ground, the relationship between the saturation and the specific resistance of the ground sample obtained by the present invention By using this, it becomes possible to measure the saturation degree of the actual ground with high accuracy.
検知電極8a〜8eの間で電圧を検知する際には、図1に例示するように容器2を横倒して、検知電極8a〜8eを横並びの状態にすることが好ましい。地盤サンプルGの飽和度を下げた場合、容器2が立設した状態では、選択した検知電極8a〜8eの上下位置によって検知電極間に存在する地盤サンプルGの飽和度にばらつきが生じる。しかしながら、検知電極8a〜8eを横並びの状態にすることにより、選択した検知電極8a〜8eによらず、検知電極間に存在する地盤サンプルGの飽和度のばらつきが小さくなり、それぞれの飽和度における電圧を正確に検知するには有利になる。
When detecting a voltage between the
複数の検知電極8a〜8eの中から任意の2つの検知電極を選択し、選択した1組の検知電極の間で電圧を検知することもできるが、電圧を正確に検知するには、複数組の検知電極の間で検知を行なうことが好ましい。例えば、検知電極を3個以上配置して、これら検知電極の中で2つの検知電極の組み合わせを複数選択し、選択したそれぞれの2つの検知電極の組み合わせの間で電圧を検知し、これら検知した電圧に基づいて、比抵抗を算出するための電圧を決定する。例えば、この実施形態では、検知電極8aと8b、8aと8c、8aと8d、8aと8e、8bと8c、8bと8d、8bと8e、8cと8d、8cと8e、8dと8eとの間で電圧を検知する。そして、この10通りの検知電極の組み合わせで検知した電圧を平均した平均値を、比抵抗を算出するための電圧とする。或いは、10通りの検知電極の組み合わせで検知した電圧の内、電圧値の大きい上位2つおよび小さい下位2つのデータを除外した6つの電圧を平均した平均値を、比抵抗を算出するための電圧とする。
Two arbitrary detection electrodes can be selected from the plurality of
このように、電圧を検知する2つの検知電極の組み合わせを複数にして、検知した複数の電圧に基づいて、比抵抗を算出するための電圧を決定することにより、検知電極8a〜8eの位置に起因する検知電圧のばらつきを小さくすることができる。それ故、地盤サンプルGのそれぞれの飽和度における電圧を正確に検知するには有利になる。
In this way, by combining a plurality of combinations of two detection electrodes for detecting the voltage and determining the voltage for calculating the specific resistance based on the detected plurality of voltages, the positions of the
検知電極8a〜8eの形状は特に限定されないが、実施形態で例示したような円筒部3の内周面に沿った環状にすることが好ましい。これにより、電圧検知面積が大きくなるので、容器2の内部での地盤サンプルGの飽和度のばらつきに起因する検知電圧のばらつきを抑制することができるので、電圧を正確に検知するには有利になる。また、容器2の内部に地盤サンプルGを充填する際に、検知電極8a〜8eが邪魔にならずに円滑に充填し易くなるので、作業性が向上する。
Although the shape of the
1 キャリブレーション装置
2 容器
3 円筒部
4a フランジ部
4b 蓋部
5 給排水管
5a 開閉バルブ
6 吸引管
6a 開閉バルブ
7 通電電極
8a、8b、8c、8d、8e 検知電極
9 コネクタ
9a リード線
10 通電手段
11 電圧検知手段
12 演算装置
G 地盤サンプル
W 水
a 空気
DESCRIPTION OF
Claims (5)
間隔をあけて配置した2つの通電電極と、これら通電電極の間に間隔をあけて配置した複数の検知電極とを内設した密閉可能な容器の内部を、測定対象の砂質地盤から採取した地盤サンプルで充填した状態にして、この容器の内部を脱気しつつ容器の内部に水を充填することにより、容器の内部の地盤サンプルの飽和度を100%にした後、順次、容器の内部から水を排出して容器の内部の地盤サンプルの飽和度を低下させ、それぞれの飽和度において、前記通電電極の間に電流を流し、その際に前記検知電極の間で電圧を検知して、前記電流と電圧とに基づいて地盤サンプルの比抵抗を算出することにより、地盤サンプルの飽和度と比抵抗との関係を取得することを特徴とする地盤の飽和度測定のためのキャリブレーション方法。 A calibration method for measuring the degree of saturation of ground used for measuring the degree of saturation of sandy ground injected with air based on the specific resistance detected between electrodes installed in the ground,
The inside of a sealable container having two energizing electrodes arranged at intervals and a plurality of sensing electrodes arranged at intervals between these energizing electrodes was collected from the sandy ground to be measured. After filling the inside of the container with water with the ground sample filled, the inside of the container is filled with water, so that the degree of saturation of the ground sample inside the container becomes 100%, and then the inside of the container The water is discharged from the container to reduce the saturation of the ground sample inside the container, and at each saturation, a current is passed between the current-carrying electrodes, and then the voltage is detected between the detection electrodes, A calibration method for measuring the degree of saturation of the ground, wherein the relationship between the degree of saturation of the ground sample and the specific resistance is obtained by calculating the specific resistance of the ground sample based on the current and voltage.
測定対象の砂質地盤から採取した地盤サンプルが充填される密閉可能な容器と、前記容器に取り付けられて真空ポンプに接続される吸引管と、前記容器に取り付けられて水供給源に接続される給水管と、前記容器の内部の水を外部に排出する排水管と、前記容器の内部で間隔をあけて配置される2つの通電電極と、前記容器の内部で前記通電電極の間に間隔をあけて配置される複数の検知電極と、前記通電電極の間に電流を流す通電手段と、前記検知電極間の電圧を検知する電圧検知手段と、前記電流と電圧とに基づいて地盤サンプルの比抵抗を算出するとともに、地盤サンプルの飽和度と比抵抗との関係を算出する演算装置とを備えたことを特徴とする地盤の飽和度測定のためのキャリブレーション装置。 A calibration device for measuring the degree of saturation of a ground used for measuring the degree of saturation of sandy ground injected with air based on the specific resistance detected between electrodes installed in the ground,
A sealable container filled with a ground sample collected from the sandy ground to be measured, a suction pipe attached to the container and connected to a vacuum pump, and attached to the container and connected to a water supply source A water supply pipe, a drain pipe for discharging water inside the container to the outside, two energizing electrodes arranged at an interval inside the container, and an interval between the energizing electrodes inside the container A plurality of detection electrodes arranged at intervals, energization means for passing current between the energization electrodes, voltage detection means for detecting voltage between the detection electrodes, and a ratio of ground samples based on the current and voltage A calibration device for measuring the degree of saturation of the ground, comprising: an arithmetic unit for calculating the resistance and calculating the relationship between the saturation of the ground sample and the specific resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012010252A JP5785105B2 (en) | 2012-01-20 | 2012-01-20 | Calibration method for soil saturation measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012010252A JP5785105B2 (en) | 2012-01-20 | 2012-01-20 | Calibration method for soil saturation measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013147882A true JP2013147882A (en) | 2013-08-01 |
JP5785105B2 JP5785105B2 (en) | 2015-09-24 |
Family
ID=49045645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012010252A Active JP5785105B2 (en) | 2012-01-20 | 2012-01-20 | Calibration method for soil saturation measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5785105B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104120703A (en) * | 2014-07-28 | 2014-10-29 | 长安大学 | Soil and stone mixed filling subgrade compaction degree detection method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000111459A (en) * | 1998-10-06 | 2000-04-21 | Ohbayashi Corp | Method for preparation of boring core sample |
JP2002257940A (en) * | 2001-02-28 | 2002-09-11 | National Institute Of Advanced Industrial & Technology | Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance |
JP2003049418A (en) * | 2001-08-06 | 2003-02-21 | Maruyama Kogyo Kk | Vacuum soil testing machine |
JP2010248698A (en) * | 2009-04-10 | 2010-11-04 | Takenaka Komuten Co Ltd | Method and system for injecting air into ground |
-
2012
- 2012-01-20 JP JP2012010252A patent/JP5785105B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000111459A (en) * | 1998-10-06 | 2000-04-21 | Ohbayashi Corp | Method for preparation of boring core sample |
JP2002257940A (en) * | 2001-02-28 | 2002-09-11 | National Institute Of Advanced Industrial & Technology | Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance |
JP2003049418A (en) * | 2001-08-06 | 2003-02-21 | Maruyama Kogyo Kk | Vacuum soil testing machine |
JP2010248698A (en) * | 2009-04-10 | 2010-11-04 | Takenaka Komuten Co Ltd | Method and system for injecting air into ground |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104120703A (en) * | 2014-07-28 | 2014-10-29 | 长安大学 | Soil and stone mixed filling subgrade compaction degree detection method |
Also Published As
Publication number | Publication date |
---|---|
JP5785105B2 (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8266970B2 (en) | Method for operating a flowmeter | |
EP2725340A2 (en) | Permeameter for in-situ measurement of saturated hydraulic conductivity | |
MX2010007963A (en) | Method for measuring the volume flow of electrically conductive liquids through a vessel. | |
JP2012008129A (en) | Non-invasive capacitive device and method for measuring filling level of filling medium in vessel | |
GB2449800B (en) | Apparatus and method for fluid flow measurement with sensor shielding | |
EP2473823A1 (en) | A method of determining surface level, and a soil moisture sensor | |
JP2013217921A (en) | Magnetic induction type flow measuring device | |
JP2017133999A (en) | Water quality analysis device and water quality analysis method | |
CN108195441A (en) | Runoff plots soil moisture and go out stream monitoring system and method | |
JP5785105B2 (en) | Calibration method for soil saturation measurement | |
CN105259088A (en) | Method and device for quickly determining permeability functions of unsaturated soil | |
US9116060B2 (en) | Auto-zeroing absolute pressure sensor | |
JP5944730B2 (en) | Construction management method for residual soil saturation | |
WO2020163099A3 (en) | Measurement techniques for semiconductor nanowire-based sensors and related methods | |
CN105388042A (en) | Floating type runoff sediment sampling total depth profile water inlet device | |
RU2707396C2 (en) | Contact sensor of specific electric conductivity of liquid | |
JP6136570B2 (en) | Water quality inspection device | |
CN205228873U (en) | Floating runoff sediment load sampling is dark section water inlet device entirely | |
RU2708682C1 (en) | Contact sensor of specific electric conductivity of liquid | |
KR102267661B1 (en) | Volume fraction metering apparatus and method of flowage in pipe | |
CN204789558U (en) | Improve water quality monitoring sample thief | |
CN103616057A (en) | Method and device for measuring level of water in non-metal container or pipeline | |
CN207396756U (en) | Hydrographic survey salinization inserting tube | |
JP2018048830A5 (en) | ||
CN201600347U (en) | Nitrogen concentration detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150707 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150723 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5785105 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |