JP2002257940A - Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance - Google Patents

Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance

Info

Publication number
JP2002257940A
JP2002257940A JP2001055535A JP2001055535A JP2002257940A JP 2002257940 A JP2002257940 A JP 2002257940A JP 2001055535 A JP2001055535 A JP 2001055535A JP 2001055535 A JP2001055535 A JP 2001055535A JP 2002257940 A JP2002257940 A JP 2002257940A
Authority
JP
Japan
Prior art keywords
liquefaction
sand layer
measuring
specific resistance
phenomenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001055535A
Other languages
Japanese (ja)
Inventor
Motoharu Jinguji
元治 神宮司
Sunao Kunimatsu
直 国松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001055535A priority Critical patent/JP2002257940A/en
Publication of JP2002257940A publication Critical patent/JP2002257940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method capable of directly measuring the porosity and the relative density of a layer of saturated sand in real time and visualizing a liquefaction phenomenon and a measuring apparatus for use. SOLUTION: The method for measuring and visualizing liquefaction phenomenon using specific resistance visualizes the liquefaction phenomenon within a layer of saturated sand by making a graph of the relationship between a value of specific resistance and time, at each of measuring positions at each of plural points within the layer of saturated sand to which vibration was imparted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地盤の液状化現象
を可視化して把握、評価するための方法とそれに用いる
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for visualizing, grasping and evaluating the liquefaction phenomenon of the ground, and an apparatus used for the method.

【0002】[0002]

【従来の技術】地盤の液状化現象は、緩い砂層が地震動
により繰り返しせん断力を受け、次第に粒子のかみ合わ
せがはずれ、粒子構造が破壊されていく過程で生じる現
象と考えられている。また、砂層が上向き浸透流により
液状化状態となる現象は、ボイリング現象として知られ
ている。これらの液状化状態を観測するため、飽和砂層
中の間隙水圧やせん断応力の測定、砂層表面の沈下量の
計測などが行われてきた。これらは液状化に伴う砂層の
収縮を間隙水圧、せん断応力及び表層の沈下量によりモ
ニタリングするものであるが、これらの手法は均一な構
成の砂層には有効である一方、砂層の多層構造や締め固
め工法の違い、地中構造物の影響などによる不均一性を
有する砂層の液状化現象を把握するうえでは十分でな
い。さらに、いずれの方法も多点でほぼ同時に計測した
データを得ることが難しいという課題があった。また、
液状化現象は砂層中の粒子構造の変化により引き起こさ
れると考えられ、この粒子構造と結びついている砂層中
の相対密度の分布及びその変化を計測できれば液状化現
象のメカニズムをより詳細に把握することが可能とな
る。このため、砂層の間隙率や相対密度を直接リアルタ
イムでモニタリングでき、液状化現象を可視的に把握し
うる方法の開発が要望されていた。
2. Description of the Related Art The ground liquefaction phenomenon is considered to be a phenomenon that occurs during a process in which a loose sand layer is repeatedly subjected to a shearing force due to seismic motion, and particles are gradually disengaged and the particle structure is destroyed. In addition, a phenomenon in which a sand layer is liquefied by an upward seepage flow is known as a boiling phenomenon. In order to observe these liquefaction states, measurement of pore water pressure and shear stress in a saturated sand layer, and measurement of the amount of settlement on the surface of the sand layer have been performed. These methods monitor the contraction of the sand layer due to liquefaction based on pore water pressure, shear stress and the amount of settlement of the surface layer.However, while these methods are effective for sand layers having a uniform structure, they It is not enough to grasp the liquefaction phenomenon of the sand layer with unevenness due to the difference of the consolidation method and the influence of the underground structure. In addition, there is a problem that it is difficult to obtain data measured at multiple points at almost the same time. Also,
The liquefaction phenomenon is thought to be caused by changes in the particle structure in the sand layer.If the distribution of the relative density in the sand layer linked to this particle structure and the change can be measured, the mechanism of the liquefaction phenomenon should be understood in more detail. Becomes possible. Therefore, there has been a demand for the development of a method capable of directly monitoring the porosity and relative density of the sand layer in real time and visually grasping the liquefaction phenomenon.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑みてなされたものであり、飽和砂層の間隙率及び相
対密度を直接リアルタイムで観測することができ、液状
化現象を可視化しうる計測方法と、これに用いる計測装
置を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and can directly observe the porosity and relative density of a saturated sand layer in real time, and can visualize a liquefaction phenomenon. An object of the present invention is to provide a measuring method and a measuring device used for the method.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題に
鑑み鋭意研究した結果、砂層の比抵抗と間隙率との間に
成り立つ関係を利用して、砂層の複数の測定点での間隙
率を比抵抗により計測しうること、また、振動中の比抵
抗値の分布を2次元又は3次元的に画像化することによ
り、非接触かつリアルタイムに平面的にないしは立体的
に砂層の間隙率もしくは相対密度の分布及び変化を計測
することができ、さらにはこれを画像化することにより
液状化現象の発生状況を視覚的に把握、評価しうること
を見出し、この知見に基づき本発明をなすに至った。す
なわち本発明は、(1)振動を与えた飽和砂層中の複数
点の各計測位置における比抵抗値と時間との関係をグラ
フ化することにより前記飽和砂層中の液状化現象の発生
を可視化することを特徴とする比抵抗を用いた液状化現
象の計測・可視化方法、(2)前記の液状化現象の発生
を画像化する(1)項記載の計測方法、(3)液状化現
象の発生をリアルタイムで画像化し、可視化する(1)
又は(2)項記載の計測方法、(4)所定の計測位置の
液状化現象に伴う比抵抗の急激な変化で示される液状化
収縮面を画像表示によって可視化する(1)、(2)又
は(3)項記載の計測方法、(5)加振手段、電源及び
一対の電流電極を有する飽和砂層容器の、砂層内部もし
くは側面となる位置に複数の電位電極を設けて、該電位
電極間の比抵抗値を連続的に計測する手段を有すること
を特徴とする液状化現象の計測装置、(6)複数の電位
電極が砂層内部もしくは側面の直線上に、垂直位置のみ
が異なる位置で設けられていることを特徴とする(5)
項記載の液状化現象の計測装置、及び(7)複数の電位
電極が砂層内部もしくは側面となる平行な2つの面上に
設けられていることを特徴とする(5)項記載の液状化
現象の計測装置を提供するものである。本発明において
飽和砂層とは、水で飽和した砂層をいう。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above-mentioned problems, and as a result, have taken advantage of the relationship established between the resistivity and the porosity of the sand layer to determine the gap at a plurality of measurement points of the sand layer. The porosity of the sand layer can be measured non-contactly and in real time in a two-dimensional or three-dimensional manner, by being able to measure the resistivity by resistivity and by imaging the distribution of resistivity during vibration two-dimensionally or three-dimensionally. Alternatively, it is possible to measure the distribution and change of the relative density, and furthermore, it has been found that by imaging this, the occurrence state of the liquefaction phenomenon can be visually grasped and evaluated, and the present invention is made based on this finding. Reached. That is, the present invention (1) visualizes the occurrence of the liquefaction phenomenon in the saturated sand layer by graphing the relationship between the specific resistance value and the time at each of a plurality of measurement positions in the saturated sand layer subjected to the vibration. A method for measuring and visualizing a liquefaction phenomenon using a specific resistance, (2) a measurement method according to (1), wherein the occurrence of the liquefaction phenomenon is imaged, and (3) an occurrence of the liquefaction phenomenon Image and visualize in real time (1)
Or (4) visualizing the liquefied shrinkage surface indicated by a rapid change in specific resistance due to the liquefaction phenomenon at a predetermined measurement position by image display (1), (2) or (3) The measurement method described in (3), (5) a plurality of potential electrodes are provided at positions inside or on the side of the sand layer of a saturated sand layer container having a vibration means, a power supply and a pair of current electrodes, and A device for measuring liquefaction phenomena, characterized by having means for continuously measuring the specific resistance value. (6) A plurality of potential electrodes are provided inside the sand layer or on a straight line on the side surface at only different vertical positions. (5)
(7) The liquefaction phenomenon measuring apparatus according to (5), wherein the plurality of potential electrodes are provided on two parallel surfaces which are inside or on the side surfaces of the sand layer. Is provided. In the present invention, the saturated sand layer refers to a sand layer saturated with water.

【0005】[0005]

【発明の実施の形態】まず、本発明の液状化現象の計測
方法について説明する。岩石や土が水で飽和している場
合、Archie の法則により次の式で示される関係が成り
立つことが知られている。 F=ψt/ψw=an-m ここで、Fはフォーメーションファクタと呼ばれ、ψt
は岩石や土の比抵抗、ψwは間隙水の比抵抗、nは間隙
率である。aとmは実験で求められる定数であり、クリ
ーンサンドについては室内実験で定数が得られている
(茂木ら、水曜会誌、第20巻、第1号、pp100-108、1
983)。間隙水の比抵抗値が既知で計測中に変化しない
と仮定でき、かつ、あらかじめフォーメーションファク
タと間隙率との間の定数が求められていれば、飽和砂層
の比抵抗値から砂層の間隙率nを求めることができる。
クリーンサンド以外でシルトを含む砂層などではフォー
メーションファクタと間隙率との関係についてもあらか
じめ実験によって間隙率−比抵抗曲線を求め、比抵抗値
を間隙率に変換するための近似曲線を求めておけばよ
い。比抵抗値から間隙率が求められれば、間隙比が算出
でき、その砂の最大間隙比と最小間隙比を用いてさらに
相対密度に変換することができる。しかし、地盤などの
振動中の液状化現象の発生とその下部から上部への移動
は、上部のような計測のみでは予測し、追跡することが
できない。後述の図2にも示すように、液状化現象に伴
う砂層の収縮は、加振直後から砂層の容器の下部から生
じ、上部に向かって上昇していく、ここで砂層の収縮が
起きている境界面を液状化収縮面と呼ぶことにする。換
言すれば、この液状化収縮面とはそれを境に比抵抗値
(相対密度と相関する)が明確に変化を起した境界面で
あり、液状化の前線を示す。液状化収縮面の上昇速度
は、ほぼ一定と見なすことができ、液状化収縮面の上昇
速度と開始深度が分かれば、液状化の持続時間を予測す
ることが可能である。これをより詳しく説明すると、図
2は、液状化過程における砂層の相対密度の変化を追跡
画像化した図面である。計測のステップは、加振10秒
前から加振後約1分、液状化が終了したと考えられる時
点まで連続して比抵抗変化を記録した。図2では、液状
化に伴い比抵抗の変化、つまり相対密度の変化を連続的
に観測しているが、相対密度が増加した場合に砂層が収
縮し、減少した場合には砂層が膨張したことになる。図
2から、加振開始直後から、砂層の下部の位置から(こ
の深度は加振力に対応している)砂層の相対密度が急増
する領域が発生し、上部に向かって進展していく様子が
分かる。この砂層が収縮する領域は非常に狭く、これを
砂層収縮面と呼ぶ。この砂層収縮面より上部の砂層は、
表層部の明らかにボイリングを起こしていると考えられ
る領域を除いて、相対密度は変化していない。そのた
め、砂層収縮面から排水された間隙水は、上部に向かっ
て流れ、この上部に向かって排水されていく上向き浸透
流により、砂層を構成する砂粒子の力学的バランスが崩
れることにより、せん断力が消失し、液状化現象が発生
すると考えられる。なお、本現象は、同時に計測した間
隙水圧計の結果に基づく解釈とも一致した。また、液状
化現象は、この砂層収縮面が上部に達するまで持続する
と考えられるが、この砂層収縮面の上昇速度は、砂の性
質や相対密度などの状態によって異なり、液状化現象の
予測ならびに性質を理解する上で大変重要なパラメータ
となる。本発明の液状化可視化方法は、この砂層収縮面
の上昇速度や、相対密度の変化を直接モニタリングする
ことを可能とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, measurement of the liquefaction phenomenon of the present invention
The method will be described. Where rocks and soil are saturated with water
In the case of Archie's law, the relationship
It is known to stand. F = ψt/ Ψw= an-m  Here, F is called a formation factor, and ψt
Is the specific resistance of rock and soil, ψwIs the specific resistance of the pore water, n is the gap
Rate. a and m are constants determined experimentally, and
Constants have been obtained in laboratory experiments
(Mogi et al., Wednesday Journal, Vol. 20, No. 1, pp100-108, 1
983). Pore water resistivity is known and does not change during measurement
Can be assumed, and
If a constant between the data and the porosity is determined,
The porosity n of the sand layer can be obtained from the specific resistance value of.
For sand layers containing silt other than clean sand
What is the relationship between the formation factor and the porosity?
The porosity-resistivity curve was determined by an initial experiment, and the resistivity value was calculated.
The approximate curve for converting porosity into porosity
No. If the porosity can be obtained from the specific resistance value, the porosity is calculated
Using the maximum and minimum void ratios of the sand
Can be converted to relative density. However, such as the ground
Occurrence of liquefaction during vibration and its movement from bottom to top
Can be predicted and tracked only by measurements like the top
Can not. As shown in FIG.
The sand layer contracts from the bottom of the sand layer container immediately after excitation.
And rises toward the top, where the shrinkage of the sand layer
The boundary surface that is occurring will be referred to as the liquefaction contraction surface. Exchange
In other words, this liquefaction shrinkage surface is the specific resistance value
(Correlated with relative density)
Yes, indicating a liquefaction front. Liquefaction shrinkage surface rising speed
Can be regarded as almost constant, and the rise of the liquefied shrinkage surface
Knowing the speed and starting depth predicts the duration of liquefaction
It is possible to To explain this in more detail,
2 tracks changes in the relative density of the sand layer during the liquefaction process
It is an imaged drawing. Measurement step is 10 seconds
When it is considered that liquefaction has been completed for about 1 minute after vibration
The change in resistivity was recorded continuously up to the point. In Figure 2, the liquid
Changes in resistivity, that is, changes in relative density
The sand layer was collected when the relative density increased.
If it contracts and decreases, the sand layer has expanded. Figure
From 2 immediately after the start of the excitation,
The depth of the sand corresponds to the excitation force) The relative density of the sand layer increases rapidly
A region that occurs and progresses toward the top
I understand. The area where this sand layer shrinks is very small.
It is called the sand layer contraction surface. The sand layer above this sand layer contraction surface,
It seems that the surface layer is obviously boiling
The relative density has not changed except for the region where That
Therefore, pore water drained from the sand layer contraction surface
Upward and seep to the top
The flow disrupts the mechanical balance of the sand particles that make up the sand layer.
Liquefaction occurs due to loss of shear force
It is thought that. This phenomenon occurred during the simultaneous measurement.
Consistent with the interpretation based on the pore pressure gauge results. Also liquid
This phenomenon persists until this sand layer contraction surface reaches the top
However, the rate of rise of the sand layer shrinkage surface depends on the nature of the sand.
Depends on conditions such as quality and relative density.
Important parameters for understanding predictions and properties
Becomes The liquefaction visualization method of the present invention uses the sand layer shrinkage surface
The rate of rise of the water and changes in the relative density directly
To make things possible.

【0006】本発明において、砂層中の複数点の間隙率
又は相対密度を求めて液状化収縮面を求めるために行う
比抵抗の測定は、飽和砂層の内部もしくは側面の複数点
において行う。この態様としては、深さ(垂直位置)の
み、もしくは水平位置のみが異なる複数点での計測のほ
か、深さと水平位置とが異なる複数点で計測する方法が
あり、2次元、3次元での計測が可能である。計測点の
数は、計測の態様や要求される計測の精度、砂層の種類
などにより適宜選択できるが、得られた比抵抗値を上述
のように間隙率もしくは相対密度に変換し、これを計測
位置、又は、計測位置及び時間との関係においてグラフ
化することで、砂層に発生した液状化現象を可視化して
把握できる。
In the present invention, the measurement of the specific resistance for obtaining the liquefaction shrinkage surface by obtaining the porosity or relative density of a plurality of points in the sand layer is performed at a plurality of points inside or on the side of the saturated sand layer. As this mode, in addition to measurement at a plurality of points where only the depth (vertical position) or only the horizontal position is different, there is a method of measuring at a plurality of points where the depth and the horizontal position are different. Measurement is possible. The number of measurement points can be appropriately selected depending on the measurement mode, required measurement accuracy, the type of sand layer, etc., but the obtained specific resistance value is converted into a porosity or relative density as described above, and this is measured. By graphing the position, or the relationship between the measurement position and time, the liquefaction phenomenon occurring in the sand layer can be visualized and grasped.

【0007】[0007]

【実施例】次に図面を参照して本発明の好ましい実施態
様を説明する。まず、深さのみが異なる複数点で計測す
る態様とそれに用いる装置について、図1を参照して説
明する。図中、1は円筒型の容器であり、側面に一定間
隔で電位電極2を有する。図1に示した例では、円筒容
器の直径が200mm、高さが600mmで、30本の
電位電極が2cmごとに配置されている。4は容器1の
上面と下面に設けられた銅網電流電極板であり、3は電
流電極である。5は容器1内部に充填された飽和砂層を
示す。図1には計測土槽の容器が円筒型のものを示した
が、壁が絶縁処理されたものであれば形状は特に制限は
なく、例えば矩形などであってもよい。計測土槽の深さ
方向における比抵抗分布は、壁面に多数設けられた電極
2による電位分布により計測される。電源、比抵抗の計
測器、及び加振手段は図示していない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. First, an aspect in which measurement is performed at a plurality of points that differ only in depth and an apparatus used therefor will be described with reference to FIG. In the figure, reference numeral 1 denotes a cylindrical container having potential electrodes 2 on the side surface at regular intervals. In the example shown in FIG. 1, the cylindrical container has a diameter of 200 mm and a height of 600 mm, and 30 potential electrodes are arranged every 2 cm. Reference numeral 4 denotes a copper mesh current electrode plate provided on the upper and lower surfaces of the container 1, and 3 denotes a current electrode. Reference numeral 5 denotes a saturated sand layer filled in the container 1. FIG. 1 shows a cylindrical container for the measuring earth tank, but the shape is not particularly limited as long as the wall is insulated, and may be, for example, rectangular. The specific resistance distribution in the depth direction of the measurement earthen tub is measured by an electric potential distribution by a large number of electrodes 2 provided on the wall surface. A power supply, a measuring device for specific resistance, and a vibrating means are not shown.

【0008】図2は、図1に示した装置を用い、試料と
して豊浦標準砂を使用して行った間隙率変化の計測結果
であるが、相対密度は、間隙率から計算される間隙比か
ら計算される。間隙率をφとしたとき、間隙比eは、 e=φ/(1−φ) 相対密度Dr(%)は、 Dr=(emax−e)/(emax−emin)×1
00 となる。計測は飽和砂層が液状化に至る過程、および液
状化状態が終了して飽和砂層の剛性が回復するまでの一
連の液状化過程において行った。円筒容器1の下部には
分散板(パールコン)を設置し、砂層の相対密度はボイ
リングにより調整して、砂層の厚さを50cmとした。
計測器には15チャンネルリアルタイム連続比抵抗計測
器を使用した。この計測器はサンプリング速度250m
sで、15チャンネルの比抵抗値をリアルタイムに計測
することが可能である。電極板4間に一定電流の交替直
流を流し、垂直方向に設置された電極2の間の電位を連
続的に計測することで飽和砂層の比抵抗を計測した。加
振手段には電磁式振動加振機SSV−725(サンエス
社製)を使用し、600gal、5Hz、4秒の振動を
与えた。円筒容器1の中央部には10cm間隔で2個の
間隙水圧計(P1、P2)PGM−02KG(共和電業
社製)を配置した。
FIG. 2 shows a measurement result of a porosity change performed using the apparatus shown in FIG. 1 and using Toyoura standard sand as a sample. The relative density is obtained from the porosity calculated from the porosity. Is calculated. When the porosity is φ, the gap ratio e is: e = φ / (1−φ) The relative density Dr (%) is: Dr = (e max −e) / (e max −e min ) × 1
00. The measurement was performed during the process of saturating the saturated sand layer and during a series of liquefaction processes until the liquefaction state was completed and the rigidity of the saturated sand layer was restored. A dispersion plate (Pearlcon) was installed below the cylindrical container 1, and the relative density of the sand layer was adjusted by boiling to make the thickness of the sand layer 50 cm.
As a measuring device, a 15-channel real-time continuous resistivity measuring device was used. This measuring instrument has a sampling speed of 250m
With s, it is possible to measure the specific resistance value of 15 channels in real time. The specific resistance of the saturated sand layer was measured by passing a constant alternating DC current between the electrode plates 4 and continuously measuring the potential between the electrodes 2 installed in the vertical direction. As the vibration means, an electromagnetic vibration vibrator SSV-725 (manufactured by San-S) was used, and a vibration of 600 gal, 5 Hz, and 4 seconds was applied. Two pore water pressure gauges (P1, P2) PGM-02KG (manufactured by Kyowa Electric Industry Co., Ltd.) were arranged at the center of the cylindrical container 1 at intervals of 10 cm.

【0009】図2は、横軸に時間、縦軸に深さ(砂層上
部表面からの距離)をとり、相対密度(%)の分布を示
したものである。この場合、加振と同時に間隙水圧が上
昇して液状化状態に達する。図2から分かるように、砂
層下部から上部に向けて相対密度が増加するフロントが
上昇していく様子が確認できる。この相対密度が増加す
る液状化収縮面では相対密度が急激に増加するが、液状
化収縮面到達前は、ボイリングによる相対密度増加が認
められる表層部近傍を除き、相対密度の変化は見られな
い。図2において画像を相対密度の説明のためいくつか
の領域に区分した。Aの領域が35%前後、Bの領域が
約38〜40%の領域、Cの領域が40%を越え55%
までの上昇した領域であり、Dは約37%以下の領域で
ある。Eは水相で0%と仮定している。また、図2の実
験における、加振開始後の時間と間隙水圧の関係をみる
と、液状化収縮面Lの到達と同時に間隙水圧が低下し
ていることがわかった。液状化現象の間隙水圧の消散に
関しては、自重による一次元圧密問題としてとらえられ
ているが、これまでの室内実験の結果から、上向き浸透
流の過剰間隙水圧勾配が、液状化状態継続中には限界動
水勾配に達することが明らかになっている。そこで、上
記計測の条件(砂の粒子比重2.7、水の密度1、間隙
水圧計間の砂層の厚さ10cm、間隙率50%)から砂
層10cm間の限界動水勾配に対応する差圧は8.5g
/cm2と計算される。この値から、上向き浸透流が限
界動水勾配に達しており、このことから砂層が液状化状
態に達していることがわかる。
FIG. 2 shows the distribution of relative density (%) with time on the horizontal axis and depth (distance from the upper surface of the sand layer) on the vertical axis. In this case, simultaneously with the vibration, the pore water pressure rises and reaches a liquefied state. As can be seen from FIG. 2, it can be confirmed that the front where the relative density increases from the lower part of the sand layer toward the upper part rises. The relative density rapidly increases on the liquefied shrinkage surface where the relative density increases, but before reaching the liquefied shrinkage surface, there is no change in the relative density except for the vicinity of the surface layer where the relative density increase due to boiling is observed. . In FIG. 2, the image has been divided into several regions for explanation of the relative density. The area A is about 35%, the area B is about 38 to 40%, and the area C is over 40% and 55%.
And D is an area of about 37% or less. E is assumed to be 0% in the aqueous phase. Further, in the experiment of FIG. 2, looking at the relationship between time and pore pressure after the start vibrating, simultaneously pore pressure and the arrival of the liquefaction contraction surface L f is found to be reduced. Dissipation of pore water pressure due to liquefaction is regarded as a one-dimensional consolidation problem due to its own weight.However, from the results of previous laboratory experiments, the excess pore water pressure gradient of It has been found that a critical hydraulic gradient is reached. Therefore, the differential pressure corresponding to the critical hydrodynamic gradient between the sand layers 10 cm from the above measurement conditions (sand specific gravity 2.7, water density 1, sand layer thickness between pore pressure gauges 10%, porosity 50%) Is 8.5g
/ Cm 2 . From this value, it can be seen that the upward seepage flow has reached the critical hydraulic gradient, which indicates that the sand layer has reached the liquefied state.

【0010】上記のように本発明の方法及び装置によれ
ば、試料砂層の相対密度(もしくは間隙率)の分布やそ
の変化をグラフ化によって液状化現象を可視化すること
ができ、液状化収縮面Lの存在も視覚的に明確にとら
えることができる。液状化収縮面は加振力に対応した特
定深度以上のところで発生し、そこから上昇するが、液
状化収縮面が砂上部表面に達するまでの時間が液状化現
象の継続時間と考えられる。このような、液状化地盤の
特性評価などを行ううえで必要な、液状化現象のメカニ
ズムにつながる情報を、可視化して得ることができる。
本発明方法は小型土槽を用いた室内実験で行うことがで
き、砂層の液状化性を計測・可視化することができる
が、屋外の実地盤の場合も実質的には同様にして行うこ
とができる。すなわち、発破を用いて、強い衝撃動を地
盤に加えることにより実地盤の液状化を引き起こす事が
可能である。具体的には埋め立て地の実地盤において図
1と同様に電位電極、電流電極を設け、発破をかけ、液
状化を起こした際の飽和砂層の比抵抗変化を計測し、可
視化し、これを小型土槽実験で得られたデータと照らし
合わせる方法である。
As described above, according to the method and apparatus of the present invention, the distribution of the relative density (or porosity) of the sample sand layer and its change can be visualized by graphing the liquefaction phenomenon, and the liquefaction shrinkage surface can be visualized. the presence of L f can be visually clearly capture. The liquefaction shrinkage surface is generated at a specific depth or more corresponding to the excitation force and rises from there. The time required for the liquefaction shrinkage surface to reach the upper surface of the sand is considered to be the duration of the liquefaction phenomenon. Such information necessary for performing the property evaluation of the liquefied ground and leading to the mechanism of the liquefaction phenomenon can be visualized and obtained.
The method of the present invention can be carried out in an indoor experiment using a small earthen vessel, and the liquefaction property of the sand layer can be measured and visualized. it can. That is, it is possible to cause liquefaction of the actual ground by applying a strong impact to the ground using blasting. Specifically, a potential electrode and a current electrode are provided on the actual ground of the landfill in the same way as in Fig. 1, and the specific resistance change of the saturated sand layer when blasting and liquefaction is caused is measured and visualized, and this is compacted. This is a method of comparing with data obtained in an earth tank experiment.

【0011】この液状化現象の計測・可視化により次の
知見が得られた。 1)液状化現象は、液状化収縮面の発生深度以浅で起こ
り、浅部のボイリングを起こしている領域を除き、相対
密度(比抵抗)の変化は液状化収縮面の到達によって生
じる。2)液状化収縮面の発生深度は、加振力に対応
し、加振力が強いほど液状化収縮面の発生深度は深くな
る。3)液状化収縮面より浅い砂層では、液状化収縮面
での砂層の収縮に伴い上部に排出される間隙水により上
向き浸透流が発生し、上向き浸透流により砂層の有効応
力が失われ液状化状態を呈する。4)液状化収縮面の通
過後、間隙水圧は急激に減少し液状化状態は終了する。
5)液状化収縮面の上昇温度は、砂層の透水計数や相対
密度等の地盤定数に依存する。
The following findings were obtained by measuring and visualizing the liquefaction phenomenon. 1) The liquefaction phenomenon occurs at a depth shallower than the generation depth of the liquefaction shrinkage surface, and changes in relative density (resistivity) occur when the liquefaction shrinkage surface reaches, except in a shallow region where boiling occurs. 2) The depth of occurrence of the liquefaction shrinkage surface corresponds to the excitation force, and the stronger the excitation force, the deeper the generation depth of the liquefaction shrinkage surface. 3) In the sand layer shallower than the liquefaction shrinkage surface, upward osmotic flow is generated by pore water discharged upward due to the contraction of the sand layer on the liquefaction shrinkage surface. Present state. 4) After passing through the liquefaction shrinkage surface, the pore water pressure sharply decreases and the liquefaction state ends.
5) The temperature at which the liquefied shrinkage surface rises depends on the ground constant such as the permeability coefficient and relative density of the sand layer.

【0012】次に、比抵抗分布の測定をある同一面上の
複数点で行う、2次元での計測の一態様について説明す
る。図3(a)に平行電流を用いて同一面上の複数点で
比抵抗を計測することのできる本発明の装置の一例を説
明図で示した。両端の銅もしくは鉛の板20、21の間
に平行電流を流して測定を行うためのボックスは、2枚
のプレート22、23で3つに区切られている。プレー
ト22、23は絶縁体のベース24に電極板25が多数
とりつけられたマトリクス状のものである(図3(b)
にプレート22、23の一部の拡大断面図を示した)。
中央のボックス26には砂と水からなる試料を入れ、外
側のボックス27、28には水を入れる。平行電流はボ
ックス27、28中の水を介してプレート22の電極板
25を通過して流れるので、もう1枚のプレート23の
対応する電極板との間の電位差を計測することで、その
電極間の比抵抗が計測できる(平行電源等は図示しな
い)。マトリクス電極は電極スキャナー29によって高
速で切り替えられ、比抵抗記録装置30に記録される。
これによりプレート22上の電極板25の数分のデータ
をプロットした比抵抗分布の平面画像を得ることができ
る。電極マトリクスの切り替え時間はA/Dコンバータ
のサンプリング時間に依存するが、例えば縦横15点ず
つの225点のマトリクス電極を使用した場合、サンプ
リング時間を1msとしても、全体の画像取り込みは
0.225sで終了することになる。これらのパラメー
タはコンピュータによるコントロールで設定できる可変
量であるので、実際の計測条件などに合わせて設定する
ことが可能である。
Next, one mode of two-dimensional measurement in which the resistivity distribution is measured at a plurality of points on a certain plane will be described. FIG. 3A is an explanatory diagram showing an example of the apparatus of the present invention capable of measuring the specific resistance at a plurality of points on the same surface using a parallel current. The box for measuring by applying a parallel current between the copper or lead plates 20 and 21 at both ends is divided into three by two plates 22 and 23. The plates 22 and 23 are in the form of a matrix in which a large number of electrode plates 25 are attached to an insulating base 24 (FIG. 3B).
2 is an enlarged sectional view of a part of the plates 22 and 23).
A sample consisting of sand and water is placed in the central box 26, and water is placed in the outer boxes 27 and 28. Since the parallel current flows through the electrode plate 25 of the plate 22 via the water in the boxes 27 and 28, the potential difference between the parallel electrode and the corresponding electrode plate of the other plate 23 is measured. The specific resistance between them can be measured (a parallel power supply and the like are not shown). The matrix electrodes are switched at a high speed by the electrode scanner 29 and are recorded on the resistivity recording device 30.
Thereby, it is possible to obtain a planar image of the specific resistance distribution in which data corresponding to the number of the electrode plates 25 on the plate 22 is plotted. The switching time of the electrode matrix depends on the sampling time of the A / D converter. For example, when using 225 matrix electrodes of 15 points each in the vertical and horizontal directions, even if the sampling time is 1 ms, the entire image capture is 0.225 s. Will end. Since these parameters are variable amounts that can be set by computer control, they can be set according to actual measurement conditions and the like.

【0013】図4に図3の装置を用いて計測した相対密
度分布の平面画像を示した。用いた砂層試料や加振の条
件は上記図2に示した計測と同様である。図4(a)は
液状化する前の状態、図4(b)は液状化後1秒経過
時、図4(c)は液状化後3秒経過時の状態を示す。同
図において縦軸及び横軸は、それぞれ縦位置及び横位置
の電極番号を指す(電極間隔は、1.5cm)。なお、
等高線で比抵抗の同じ部分を示した。縦軸が垂直方向の
位置、横軸が水平方向の位置であり、図2と同様に相対
密度を示している。また本発明は、前述のように実施の
変更態様として屋外での実地盤に適用しうる。この一例
の模式図を図5に示した。同図に示すように屋外に計測
孔50を削孔し、その内部に一定間隔を持つ多点の電極
群51を配置し、電流電極52と電位電極53を固定あ
るいはそのペアセットを高速で切り替え、砂層54全体
の垂直比抵抗分布を計測する方法である。原理及び作用
的には図1の実施態様と基本的に同様である。矢印a方
向に電流及び電位電極のペアセットを高速に切り替え、
砂層全体の垂直比抵抗分布を計測する。図中55は比抵
抗測定装置である。なお56は遠電極であり二極以上の
多極法により2次元比抵抗断面探査を行う場合の例を模
式的に示している。この場合の可視化の詳細は図3で述
べた方法、装置に準じて行うことができる。本発明にお
いて、3次元の計測からも上記図4で示されたと同様の
情報が得られる。さらに不均一地盤や基礎杭などが存在
する地盤では液状化による相対密度の変化が一様でな
く、場所場所によって異なる。これは液状化収縮面の上
昇速度についても同様である。変化を平面画像からとら
えることができ、構造物や基礎杭などが地盤の液状化に
与える影響などを詳細に調べることが可能となる。3次
元での計測は、3次元的に分布する複数点で比抵抗値の
計測を行う以外は上記2次元での計測と同様である。な
お、上記の態様はいずれも相対密度を色で表現してグラ
フ化したが、本発明はこれに限定されるものではない。
FIG. 4 shows a planar image of the relative density distribution measured using the apparatus shown in FIG. The sand layer sample used and the conditions of the vibration were the same as those in the measurement shown in FIG. 4 (a) shows a state before liquefaction, FIG. 4 (b) shows a state after 1 second from liquefaction, and FIG. 4 (c) shows a state after 3 seconds from liquefaction. In the figure, the vertical axis and the horizontal axis indicate the electrode numbers at the vertical position and the horizontal position, respectively (the electrode interval is 1.5 cm). In addition,
The contour shows the same part of the specific resistance. The vertical axis indicates the position in the vertical direction, and the horizontal axis indicates the position in the horizontal direction, and indicates the relative density as in FIG. Further, as described above, the present invention can be applied to actual ground outdoors as a modified embodiment. A schematic diagram of this example is shown in FIG. As shown in the figure, a measurement hole 50 is drilled outdoors, a multi-point electrode group 51 with a fixed interval is arranged inside the measurement hole 50, and the current electrode 52 and the potential electrode 53 are fixed or the pair set is switched at high speed. This is a method of measuring the vertical resistivity distribution of the entire sand layer 54. It is basically similar in principle and operation to the embodiment of FIG. High-speed switching of the pair set of current and potential electrodes in the direction of arrow a,
Measure the vertical resistivity distribution of the whole sand layer. In the figure, reference numeral 55 denotes a specific resistance measuring device. Reference numeral 56 denotes a far electrode, which schematically illustrates an example in which a two-dimensional specific resistance cross-sectional exploration is performed by a multipole method of two or more poles. The details of the visualization in this case can be performed according to the method and apparatus described in FIG. In the present invention, the same information as shown in FIG. 4 can be obtained from three-dimensional measurement. Furthermore, in a non-uniform ground or a ground where foundation piles are present, the change in relative density due to liquefaction is not uniform, and varies depending on the location. The same applies to the rising speed of the liquefied shrinkage surface. The change can be grasped from the plane image, and it becomes possible to investigate in detail the influence of the structure, the foundation pile, etc. on the liquefaction of the ground. The three-dimensional measurement is the same as the two-dimensional measurement except that the specific resistance is measured at a plurality of three-dimensionally distributed points. In each of the above embodiments, the relative density is represented by a color and graphed, but the present invention is not limited to this.

【0014】[0014]

【発明の効果】本発明によれば、砂層地盤の液状化現象
の発生状況を直接リアルタイムで計測し、可視化、画像
化することができる。これは、土槽中の砂状土ばかりで
なく実地盤についても同様である。本発明は地震の液状
化の発生の予測、計測という観点から実用上極めてその
価値が大きい。
According to the present invention, it is possible to directly measure, visualize, and image the liquefaction phenomena of the sandy ground in real time. This applies not only to the sandy soil in the earthen tank but also to the actual ground. The present invention is of great practical value from the perspective of predicting and measuring the occurrence of liquefaction of an earthquake.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様を示す説明図である。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

【図2】図1に示した装置を用いて行った計測結果であ
る。
FIG. 2 shows measurement results obtained by using the apparatus shown in FIG.

【図3】(a)は本発明の他の実施態様を示す説明図で
あり、(b)は(a)中のプレートの一部拡大断面図で
ある。
3A is an explanatory view showing another embodiment of the present invention, and FIG. 3B is a partially enlarged cross-sectional view of the plate in FIG.

【図4】図3に示した装置を用いて行った計測結果であ
り、(a)は液状化前、(b)は液状化1秒後、(c)
は液状化3秒後である。
FIGS. 4A and 4B show measurement results obtained by using the apparatus shown in FIG. 3, wherein FIG. 4A shows a state before liquefaction, FIG.
Is 3 seconds after liquefaction.

【図5】屋外での実地盤での本発明の一実施態様を示す
模式図である。
FIG. 5 is a schematic view showing an embodiment of the present invention on actual ground outdoors.

【符号の説明】[Explanation of symbols]

1 容器 2 電位電極 3 電流電極 4 銅網電流電極板 5 飽和砂層 20、21 板 22、23 プレート 24 ベース 25 電極板 26、27、28 ボックス 29 電極スキャナー 30 比抵抗記録装置 50 計測孔 51 電極群 52 電流電極 53 電位電極 54 砂層 55 比抵抗測定装置 56 遠電極 DESCRIPTION OF SYMBOLS 1 Container 2 Potential electrode 3 Current electrode 4 Copper mesh current electrode plate 5 Saturated sand layer 20, 21 plate 22, 23 plate 24 Base 25 Electrode plate 26, 27, 28 Box 29 Electrode scanner 30 Resistivity recorder 50 Measurement hole 51 Electrode group 52 current electrode 53 potential electrode 54 sand layer 55 resistivity measuring device 56 far electrode

Claims (7)

【特許請求の範囲】[The claims] 【請求項1】 振動を与えた飽和砂層中の複数点の各計
測位置における比抵抗値と時間との関係をグラフ化する
ことにより前記飽和砂層中の液状化現象の発生を可視化
することを特徴とする比抵抗を用いた液状化現象の計測
・可視化方法。
1. The occurrence of liquefaction in the saturated sand layer is visualized by graphing the relationship between the specific resistance value and time at each of a plurality of measurement points in the vibrated saturated sand layer. Of liquefaction phenomenon using specific resistance.
【請求項2】 前記の液状化現象の発生を画像化する請
求項1記載の計測方法。
2. The measuring method according to claim 1, wherein the occurrence of the liquefaction phenomenon is imaged.
【請求項3】 液状化現象の発生をリアルタイムで画像
化し、可視化する請求項1又は2記載の計測方法。
3. The measuring method according to claim 1, wherein the occurrence of the liquefaction phenomenon is visualized in real time and visualized.
【請求項4】 所定の計測位置の液状化現象に伴う比抵
抗の急激な変化で示される液状化収縮面を画像表示によ
って可視化する請求項1、2又は3記載の計測方法。
4. The measuring method according to claim 1, wherein the liquefaction contraction surface, which is indicated by a sharp change in specific resistance due to the liquefaction phenomenon at a predetermined measurement position, is visualized by image display.
【請求項5】 加振手段、電源及び一対の電流電極を有
する飽和砂層容器の、砂層内部もしくは側面となる位置
に複数の電位電極を設けて、該電位電極間の比抵抗値を
連続的に計測する手段を有することを特徴とする液状化
現象の計測装置。
5. A plurality of potential electrodes are provided at a position inside or on the side of a sand layer of a saturated sand container having a vibration means, a power source and a pair of current electrodes, and a specific resistance value between the potential electrodes is continuously measured. An apparatus for measuring liquefaction phenomena, comprising means for measuring.
【請求項6】 複数の電位電極が砂層内部もしくは側面
の直線上に、垂直位置のみが異なる位置で設けられてい
ることを特徴とする請求項5記載の液状化現象の計測装
置。
6. The liquefaction phenomena measuring device according to claim 5, wherein a plurality of potential electrodes are provided inside the sand layer or on a straight line on the side surface at only different vertical positions.
【請求項7】 複数の電位電極が砂層内部もしくは側面
となる平行な2つの面上に設けられていることを特徴と
する請求項5記載の液状化現象の計測装置。
7. The liquefaction phenomena measuring device according to claim 5, wherein a plurality of potential electrodes are provided on two parallel surfaces inside or on the side surfaces of the sand layer.
JP2001055535A 2001-02-28 2001-02-28 Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance Pending JP2002257940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001055535A JP2002257940A (en) 2001-02-28 2001-02-28 Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001055535A JP2002257940A (en) 2001-02-28 2001-02-28 Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance

Publications (1)

Publication Number Publication Date
JP2002257940A true JP2002257940A (en) 2002-09-11

Family

ID=18915709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001055535A Pending JP2002257940A (en) 2001-02-28 2001-02-28 Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance

Country Status (1)

Country Link
JP (1) JP2002257940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012501A (en) * 2009-07-06 2011-01-20 System Keisoku Kk Soil property determination method
JP2013147882A (en) * 2012-01-20 2013-08-01 Toa Harbor Works Co Ltd Calibration method and device for measuring saturation of ground
JP5526290B1 (en) * 2013-04-02 2014-06-18 報国エンジニアリング株式会社 Sampling apparatus and method for liquefaction determination
CN112878309A (en) * 2021-01-08 2021-06-01 河海大学 Electrolytic desaturation prefabricated pipe pile composite pile foundation and using method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012501A (en) * 2009-07-06 2011-01-20 System Keisoku Kk Soil property determination method
JP2013147882A (en) * 2012-01-20 2013-08-01 Toa Harbor Works Co Ltd Calibration method and device for measuring saturation of ground
JP5526290B1 (en) * 2013-04-02 2014-06-18 報国エンジニアリング株式会社 Sampling apparatus and method for liquefaction determination
CN112878309A (en) * 2021-01-08 2021-06-01 河海大学 Electrolytic desaturation prefabricated pipe pile composite pile foundation and using method

Similar Documents

Publication Publication Date Title
Tang et al. Three-dimensional characterization of desiccation cracking behavior of compacted clayey soil using X-ray computed tomography
An et al. Application of electrical resistivity method in the characterization of 2D desiccation cracking process of clayey soil
Adam et al. Shear localisation and strain distribution during tectonic faulting—New insights from granular-flow experiments and high-resolution optical image correlation techniques
Kokusho Current state of research on flow failure considering void redistribution in liquefied deposits
Israr et al. Laboratory investigation of the seepage induced response of granular soils under static and cyclic loading
Ecemis et al. Influence of consolidation properties on the cyclic re-liquefaction potential of sands
Mehrzad et al. Centrifuge study into the effect of liquefaction extent on permanent settlement and seismic response of shallow foundations
Liu et al. Field and laboratory resistivity monitoring of sediment consolidation in China's Yellow River estuary
Xu et al. Monitoring and early detection of soil desiccation cracking using distributed fibre optical sensing
Imamura et al. Response of pile groups against seismically induced lateral flow in centrifuge model tests
Kianian et al. Lateral response of trenched pipelines to large deformations in clay
Van Der Linden et al. Cone penetration testing in thinly inter-layered soils
Saghaee et al. Experimental evaluation of the performance of earth levees deteriorated by wildlife activities
JP2002257940A (en) Method and apparatus for measuring and visualizing liquefaction phenomenon using specific resistance
CN110144869A (en) A kind of more sidewall friction cylinder CPTU devices and its measurement method with rectangular pyramid protrusion
Yin et al. Morphological characteristics of desiccation-induced cracks in cohesive soils: a critical review
Zheng et al. Image processing method for observing ice lenses produced by the frost heave process
Jinguuji et al. Visualization technique for liquefaction process in chamber experiments by using electrical resistivity monitoring
Hajialilue-Bonab et al. Investigation on tamping spacing in dynamic compaction using model tests
Arnau et al. Rate effects during ice scour in sand
Bouchelghoum et al. Critical hydraulic head loss assessment for a circular sheet pile wall under axisymmetric seepage conditions
Parekh Advancing internal erosion monitoring using seismic methods in field and laboratory studies
Zhuo et al. Stability of long trench in soft soils by bentonite-water slurry
Li et al. Needle probe application for high-resolution assessment of soil spatial variability in the centrifuge
Al-Sammarraie et al. VCPT: An in-situ soil investigation method to validate vibratory pile-soil interaction models