JP2013147726A - Corrosion resistant steel material for oil tank - Google Patents

Corrosion resistant steel material for oil tank Download PDF

Info

Publication number
JP2013147726A
JP2013147726A JP2012011378A JP2012011378A JP2013147726A JP 2013147726 A JP2013147726 A JP 2013147726A JP 2012011378 A JP2012011378 A JP 2012011378A JP 2012011378 A JP2012011378 A JP 2012011378A JP 2013147726 A JP2013147726 A JP 2013147726A
Authority
JP
Japan
Prior art keywords
steel material
steel
mass
corrosion
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012011378A
Other languages
Japanese (ja)
Other versions
JP5884167B2 (en
Inventor
Kazuhiko Shiotani
和彦 塩谷
Masaji Murase
正次 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012011378A priority Critical patent/JP5884167B2/en
Publication of JP2013147726A publication Critical patent/JP2013147726A/en
Application granted granted Critical
Publication of JP5884167B2 publication Critical patent/JP5884167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion resistant steel material for an oil tank, in an oil tank filled with crude oil, heavy oil, light oil or the like, capable of suppressing pitting corrosion generated at the inside face of the bottom plate of the coated steel material thereof and effectively preventing the hole opening of the bottom plate.SOLUTION: The componential composition of a steel material is controlled to include, by mass, 0.03 to 0.25% C, 0.01 to 0.50% Si, 0.1 to 2.0% Mn, ≤0.035% P, ≤0.015% S, 0.005 to 0.10% Al, 0.001 to 0.01% N, 0.001 to 0.20% Sn and 0.001 to 0.050% Nb, and further including one or two selected from 0.005 to 0.5% W and 0.01 to 1.0% Mo, and the balance Fe with inevitable impurities, and further, solid solution Nb is included in the range of 0.0005 to 0.050% into the steel material.

Description

本発明は、原油、重油および軽油等の石油を充填する地上石油タンク、特に地上円筒形石油タンク底板の腐食を好適に抑制することができる石油タンク用耐食鋼材に関するものである。
なお、本発明でいう石油タンク用耐食鋼材とは、主に厚鋼板および薄鋼板を指すものである。
The present invention relates to a corrosion resistant steel material for oil tanks that can suitably suppress the corrosion of above-ground oil tanks filled with oil such as crude oil, heavy oil, and light oil, and in particular, the bottom plate of an above-mentioned cylindrical oil tank.
In addition, the corrosion-resistant steel material for oil tanks referred to in the present invention mainly refers to thick steel plates and thin steel plates.

地上石油タンクには、原油や重油、軽油等を充填するが、底板内面の孔食状の腐食に起因して、底板に穴が開き、内容物が流出する事故が頻発している。この原因としては、石油自身の腐食性は小さく、石油を充填したときに底板表面にNaClを含んだ少量の水が滞留することが報告されている。   Ground oil tanks are filled with crude oil, heavy oil, light oil, etc., but due to pitting corrosion on the inner surface of the bottom plate, there are frequent accidents in which holes are opened in the bottom plate and the contents flow out. As the cause of this, it is reported that the corrosiveness of petroleum itself is small, and a small amount of water containing NaCl stays on the bottom plate surface when it is filled with petroleum.

一方、防食仕様として、底板内面にはガラスフレーク入りビニルエステル樹脂が主に塗装されており、これ自身は非常に防食性が高い。しかしながら、塗装の施工不良や塗装後の傷などにより、塗膜に欠陥が生じ、この塗膜欠陥部において、孔食状の腐食が発生、成長し、底板鋼板に穴があく。従って、石油タンク底板内面での孔食状の腐食を抑制し、底板の穴あきを防止する耐食鋼が望まれている。   On the other hand, as an anticorrosion specification, vinyl ester resin containing glass flakes is mainly coated on the inner surface of the bottom plate, which itself has a very high anticorrosion property. However, a defect occurs in the coating film due to poor coating work or scratches after coating, and pitting corrosion occurs and grows in the defective portion of the coating film, and the bottom plate steel plate is perforated. Accordingly, there is a demand for corrosion resistant steel that suppresses pitting corrosion on the inner surface of the bottom plate of the oil tank and prevents perforation of the bottom plate.

上記石油環境における孔食を抑制する鋼材として以下のものが提案されている。
すなわち、特許文献1には、C:0.001〜0.2mass%の鋼において、Mo,WとCuとを複合添加し、不純物であるP,Sの含有量を制限することにより、原油油槽で生じる全面腐食、局部腐食を抑制した鋼が開示されている。
また、特許文献2には、C:0.01〜0.3mass%の鋼において、Ni:0.01〜3mass%を添加することにより、タンカーにおける原油タンクであるカーゴオイルタンクの耐全面腐食性や耐孔食性を高めた鋼が開示されている。
さらに、特許文献3には、C:0.01〜0.2mass%の鋼において、Cu:0.05〜2mass%、W:0.01〜1mass%を添加し、原油タンク、特にタンカーにおける原油タンクであるカーゴオイルタンクの耐全面腐食性や耐孔食性を高めた鋼が開示されている。
The following are proposed as steel materials for suppressing pitting corrosion in the petroleum environment.
That is, in Patent Document 1, C: 0.001 to 0.2 mass% of steel, Mo, W, and Cu are added together, and the content of P and S as impurities is limited, so that the entire surface generated in a crude oil tank. Steels that suppress corrosion and local corrosion are disclosed.
Patent Document 2 discloses that the corrosion resistance and pitting corrosion resistance of a cargo oil tank, which is a crude oil tank in a tanker, can be obtained by adding Ni: 0.01-3 mass% in steel of C: 0.01-0.3 mass%. Enhanced steel is disclosed.
Further, in Patent Document 3, Cu: 0.05-2 mass% and W: 0.01-1 mass% are added to steel of C: 0.01 to 0.2 mass%, and a crude oil tank, particularly a cargo oil tank which is a crude oil tank in a tanker, is added. Steels having improved overall corrosion resistance and pitting corrosion resistance are disclosed.

しかしながら、特許文献1では、厚さ10μm以上の塗膜を1層以上形成したものも対象としているが、塗装鋼材での耐孔食性は不明である。
また、特許文献2では防食処理が施された鋼材、特許文献3では防食皮膜を備えた鋼材も対象としているが、いずれも塗装鋼材での耐孔食性は不明である。
However, Patent Document 1 also deals with an object in which one or more coating films having a thickness of 10 μm or more are formed, but pitting corrosion resistance in a coated steel material is unknown.
Patent Document 2 also deals with steel materials that have been subjected to anticorrosion treatment, and Patent Document 3 deals with steel materials that have an anticorrosion coating, but the pitting corrosion resistance of painted steel materials is unknown.

特開2004−204344号公報JP 2004-204344 A 特開2003−082435号公報Japanese Patent Laid-Open No. 2003-082435 特開2005−325439号公報JP 2005-325439 A

本発明は、上記の現状に鑑み開発されたもので、原油、重油、軽油等を充填する石油タンクにおいて、その塗装鋼材の底板内面に発生する孔食を抑制して、底板の穴あきを効果的に防止することができる石油タンク用耐食鋼材を提供することを目的とする。   The present invention was developed in view of the above situation, and in a petroleum tank filled with crude oil, heavy oil, light oil, etc., the pitting corrosion that occurs on the inner surface of the bottom plate of the coated steel material is suppressed, and the perforation of the bottom plate is effective. An object of the present invention is to provide a corrosion-resistant steel material for oil tanks that can be prevented.

さて、発明者らは、上記の要請に応えるべく、塗装鋼材の耐孔食性向上について、鋭意研究、検討を重ねた。
その結果、鋼材成分を適正に規定することで、塗装傷などの塗膜欠陥部からの孔食進展を効果的に抑制でき、石油タンクの耐孔食性を著しく改善できることの知見を得た。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
Now, in order to meet the above-mentioned demands, the inventors have intensively studied and examined the improvement of pitting corrosion resistance of coated steel materials.
As a result, it was found that by appropriately defining the steel material component, it is possible to effectively suppress the pitting corrosion progress from the coating film defect portion such as a paint scratch and to significantly improve the pitting corrosion resistance of the oil tank.
The present invention has been completed based on the above findings and further studies.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.03〜0.25%、Si:0.01〜0.50%、Mn:0.1〜2.0%、P:0.035%以下、S:0.015%以下、Al:0.005〜0.10%、N:0.001〜0.01%、Sn:0.001〜0.20%およびNb:0.001〜0.050%を含有し、さらにW:0.005〜0.5%およびMo:0.01〜1.0%のうちから選んだ1種または2種を含有し、残部がFeおよび不可避不純物からなる鋼材であって、該鋼材中に固溶Nbを0.0005〜0.050%含有することを特徴とする石油タンク用耐食鋼材。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.03-0.25%, Si: 0.01-0.50%, Mn: 0.1-2.0%, P: 0.035% or less, S: 0.015% or less, Al: 0.005-0.10%, N: 0.001-0.01% Sn: 0.001 to 0.20% and Nb: 0.001 to 0.050%, W: 0.005 to 0.5%, and Mo: 0.01 to 1.0%, one or two selected, the balance being Fe and A corrosion-resistant steel material for petroleum tanks, characterized in that it is a steel material consisting of inevitable impurities, and 0.0005 to 0.050% of solid solution Nb is contained in the steel material.

2.上記成分組成に加えて、質量%で、Sb:0.001〜0.20%を含有することを特徴とする前記1に記載の石油タンク用耐食鋼材。 2. 2. The corrosion resistant steel material for a petroleum tank as described in 1 above, which contains, in addition to the above component composition, Sb: 0.001 to 0.20% by mass.

3.上記成分組成に加えて、質量%で、Cr:0.01〜0.5%および Co:0.01〜0.5%のうちから選んだ1種または2種を含有することを特徴とする前記1または2に記載の石油タンク用耐食鋼材。 3. 3. Petroleum according to 1 or 2 above, wherein, in addition to the above component composition, one or two selected from Cr: 0.01 to 0.5% and Co: 0.01 to 0.5% are contained by mass%. Corrosion resistant steel for tanks.

4.上記成分組成に加えて、さらに下記のグループA〜Cのうちから選んだ少なくとも一つのグループの元素を含有することを特徴とする前記1〜3のいずれかに記載の石油タンク用耐食鋼材。

グループA:質量%で、Ti:0.001〜0.05%、Zr:0.002〜0.1%およびV:0.002〜0.1%のうちから選んだ1種または2種以上
グループB:質量%で、B:0.0001〜0.003%
グループC:質量%で、Ca:0.0002〜0.01%、REM:0.0002〜0.015%およびY:0.0001〜0.1%のうちから選んだ1種または2種以上
4). 4. The corrosion resistant steel material for a petroleum tank according to any one of 1 to 3, further comprising at least one element selected from the following groups A to C in addition to the above component composition.
Group A: By mass%, Ti: 0.001 to 0.05%, Zr: 0.002 to 0.1%, and V: 0.002 to 0.1% or more selected from Group B: Mass%, B: 0.0001 to 0.003%
Group C:% by mass, Ca: 0.0002 to 0.01%, REM: 0.0002 to 0.015%, and Y: 0.0001 to 0.1%

本発明によれば、原油、重油、軽油等を充填する石油タンクにおいて、その塗装鋼材の底板内面に発生する孔食を効果的に抑制することができ、その結果、底板における穴あきの発生を防止することができる。   According to the present invention, in oil tanks filled with crude oil, heavy oil, light oil, etc., pitting corrosion occurring on the inner surface of the bottom plate of the coated steel material can be effectively suppressed, and as a result, the occurrence of perforations in the bottom plate can be prevented. can do.

以下、本発明を具体的に説明する。
まず、本発明において、鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
C:0.03〜0.25%
Cは、鋼材強度を上昇させるのに有効な元素であり、本発明では所望の強度(好ましくは引張り強さ(TS)で400MPa以上)を得るために0.03%以上の含有を必要とする。一方、0.25%を超える含有は、溶接熱影響部の靭性を低下させる。よって、C量は0.03〜0.25%の範囲とする。なお、好ましくは0.05〜0.20%の範囲である。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. In addition,% showing the following component composition shall mean the mass% unless there is particular notice.
C: 0.03-0.25%
C is an element effective for increasing the strength of the steel material. In the present invention, it is necessary to contain 0.03% or more in order to obtain a desired strength (preferably a tensile strength (TS) of 400 MPa or more). On the other hand, the content exceeding 0.25% lowers the toughness of the heat affected zone. Therefore, the C content is in the range of 0.03 to 0.25%. In addition, Preferably it is 0.05 to 0.20% of range.

Si:0.01〜0.50%
Siは、脱酸剤として、また鋼材の強度を高める目的で添加される元素であり、本発明では0.01%以上を含有させる。しかしながら、0.50%を超える添加は、鋼の靭性を劣化させるので、Siの上限は0.50%とする。なお、好ましくは0.05〜0.40%の範囲である。
Si: 0.01-0.50%
Si is an element added as a deoxidizer and for the purpose of increasing the strength of the steel material. In the present invention, Si is contained in an amount of 0.01% or more. However, addition exceeding 0.50% deteriorates the toughness of the steel, so the upper limit of Si is 0.50%. In addition, Preferably it is 0.05 to 0.40% of range.

Mn:0.1〜2.0%
Mnは、熱間脆性を防止し、鋼材の強度を高める効果があるので、0.1%以上添加する。しかしながら、2.0%を超えるMnの添加は、鋼の靭性および溶接性を低下させるため、2.0%以下とする。なお、好ましくは0.3〜1.6%の範囲である。
Mn: 0.1-2.0%
Mn has the effect of preventing hot brittleness and increasing the strength of the steel material, so 0.1% or more is added. However, addition of Mn exceeding 2.0% decreases the toughness and weldability of the steel, so it is made 2.0% or less. In addition, Preferably it is 0.3 to 1.6% of range.

P:0.035%以下
Pは、鋼の母材靭性、さらには溶接性および溶接部靭性を劣化させる有害元素であり、極力低減することが好ましい。特に、Pの含有量が0.035%を超えると、母材靭性および溶接部靭性の劣化が大きくなる。よって、Pは0.035%以下とする。
P: 0.035% or less P is a harmful element that deteriorates the base metal toughness of steel, as well as the weldability and weld zone toughness, and is preferably reduced as much as possible. In particular, when the P content exceeds 0.035%, the deterioration of the base metal toughness and weld zone toughness increases. Therefore, P is set to 0.035% or less.

S:0.015%以下
Sは、鋼の靭性および溶接性を劣化させる有害元素であるので極力低減することが望ましい。特に、Sの含有量が0.015%を超えると、母材靭性および溶接部靭性の劣化が大きくなる。よって、Sは0.015%以下とする。なお、好ましくは0.008%以下である。
S: 0.015% or less Since S is a harmful element that deteriorates the toughness and weldability of steel, it is desirable to reduce it as much as possible. In particular, when the S content exceeds 0.015%, the deterioration of the base metal toughness and weld zone toughness increases. Therefore, S is set to 0.015% or less. In addition, Preferably it is 0.008% or less.

Al:0.005〜0.10%
Alは、脱酸剤として有用であるので0.005%以上含有させる。しかしながら、0.10%を超える含有は、溶接部靭性に悪影響を及ぼすので、0.10%以下に制限する。なお、好ましくは0.07%以下である。
Al: 0.005-0.10%
Al is contained as 0.005% or more because it is useful as a deoxidizer. However, the content exceeding 0.10% adversely affects the weld zone toughness, so it is limited to 0.10% or less. In addition, Preferably it is 0.07% or less.

N:0.001〜0.01%
Nは、鋼材の靱性に悪影響を及ぼす元素であるので、その含有量の上限を0.01%とする。一方、0.001%未満への低減は、脱ガスの能力上困難であるので、その含有量の下限を0.001%とする。なお、好ましくは、0.007%以下である。
N: 0.001 to 0.01%
N is an element that adversely affects the toughness of the steel material, so the upper limit of its content is 0.01%. On the other hand, since reduction to less than 0.001% is difficult in terms of degassing ability, the lower limit of the content is set to 0.001%. In addition, Preferably, it is 0.007% or less.

Sn:0.001〜0.20%
Snは、本発明の鋼材において、最も重要な耐食性向上元素である。Snは、鋼材が腐食するのに伴って錆層中に存在し、錆粒子を微細化する作用を有する。そして、錆粒子の微細化に伴い、Feのアノード反応を抑制する。さらに、アノード反応の抑制に伴い、カソード反応であるH2OとO2から生成するOH-の生成を抑制し、塗膜膨れ先端部でのアルカリ化を抑制する。このアルカリ化の抑制により、その後の塗膜膨れを抑制する。塗膜膨れの抑制により、鋼材の深さ方向への腐食の進行も抑制する。かような効果は、0.001%以上のSn含有で発現するが、Sn含有量が0.20%を超えると、母材靭性およびHAZ部靭性を劣化させる。このため、Snは0.001〜0.20%の範囲で含有させるものとする。なお、好ましくは0.01〜0.15%の範囲である。
Sn: 0.001 to 0.20%
Sn is the most important element for improving corrosion resistance in the steel material of the present invention. Sn is present in the rust layer as the steel material corrodes, and has the effect of refining the rust particles. As the rust particles become finer, the anode reaction of Fe is suppressed. Further, along with the suppression of the anode reaction, the generation of OH generated from H 2 O and O 2, which is a cathode reaction, is suppressed, and alkalinization at the tip of the coating film bulge is suppressed. By suppressing this alkalinization, the subsequent swelling of the coating film is suppressed. By suppressing the swelling of the coating film, the progress of corrosion in the depth direction of the steel material is also suppressed. Such an effect is manifested with a Sn content of 0.001% or more, but when the Sn content exceeds 0.20%, the base metal toughness and HAZ part toughness are deteriorated. For this reason, Sn shall be contained in the range of 0.001 to 0.20%. In addition, Preferably it is 0.01 to 0.15% of range.

Nb:0.001〜0.050%
Nbは、本発明の鋼材において、Snに次いで、重要な耐食性向上元素である。Nbは、鋼材が腐食するのに伴って錆層中に存在し、錆粒子を微細化する作用を有する。そして、錆粒子の微細化に伴い、Feのアノード反応を抑制する。さらに、アノード反応の抑制に伴い、カソード反応であるH2OとO2から生成するOH-の生成を抑制し、塗膜膨れ先端部でのアルカリ化を抑制する。このアルカリ化の抑制により、その後の塗膜膨れを抑制する。塗膜膨れの抑制により、鋼材の深さ方向への腐食の進行も抑制する。かような効果は、0.001%以上のNb含有で発現するが、Nb含有量が0.050%を超えると、溶接継手HAZ靭性を劣化させる。このため、 Nbは0.001〜0.050%の範囲で含有させるものとする。なお、好ましくは0.004〜0.020%の範囲である。
Nb: 0.001 to 0.050%
Nb is an important element for improving corrosion resistance after Sn in the steel material of the present invention. Nb is present in the rust layer as the steel material corrodes, and has the effect of refining the rust particles. As the rust particles become finer, the anode reaction of Fe is suppressed. Further, along with the suppression of the anode reaction, the generation of OH generated from H 2 O and O 2, which is a cathode reaction, is suppressed, and alkalinization at the tip of the coating film bulge is suppressed. By suppressing this alkalinization, the subsequent swelling of the coating film is suppressed. By suppressing the swelling of the coating film, the progress of corrosion in the depth direction of the steel material is also suppressed. Such an effect is manifested when the Nb content is 0.001% or more, but when the Nb content exceeds 0.050%, the weld joint HAZ toughness is deteriorated. For this reason, Nb shall be contained in the range of 0.001 to 0.050%. In addition, Preferably it is 0.004 to 0.020% of range.

固溶Nb:0.0005〜0.050%
Nbは、上記したような耐食性向上作用を有するが、Nbは鋼中で固溶Nb、あるいは析出Nbとして存在する。このうち、耐食性を向上させているのは固溶Nbである。すなわち、固溶Nb量が0.0005%以上で耐食性が発現し、0.050%超でその効果が飽和する。このため、固溶Nb量は0.0005〜0.050%の範囲で含有させるものとした。
Solid solution Nb: 0.0005 to 0.050%
Nb has the effect of improving corrosion resistance as described above, but Nb exists as solid solution Nb or precipitated Nb in the steel. Of these, solid solution Nb improves the corrosion resistance. That is, corrosion resistance is manifested when the solid solution Nb content is 0.0005% or more, and the effect is saturated when it exceeds 0.050%. For this reason, the amount of solid solution Nb shall be contained in 0.0005 to 0.050% of range.

W:0.005〜0.5%およびMo:0.01〜1.0%のうちから選んだ1種または2種
Wは、重要な耐食性向上元素の1つである。この耐食性向上効果は、W:0.005%以上の含有で発現する。しかしながら、0.5%を超えると、その効果が飽和する。よって、W含有量は0.005〜0.5%の範囲とする。
Wが、耐食性向上効果を有する理由は、次のとおりである。すなわち、鋼板が腐食するのに伴って、生成する錆の中にWO4 2-が生成し、このWO4 2-の存在によって、塩化物イオンが鋼板表面に侵入するのが抑制され、さらに鋼板表面のアノード部などのpHが下がった部位で、難溶性のFeWO4が生成し、このFeWO4の存在によっても、塩化物イオンの鋼板表面への侵入が抑制され、塩化物イオンの鋼板表面への侵入が抑制されることによって、鋼板の腐食が効果的に抑制される。また、WO4 2-の鋼材表面への吸着によるインヒビター作用によっても、鋼の腐食が抑制される。
One or two selected from W: 0.005-0.5% and Mo: 0.01-1.0% W is one of the important elements for improving corrosion resistance. This effect of improving corrosion resistance is manifested when the content of W is 0.005% or more. However, if it exceeds 0.5%, the effect is saturated. Therefore, the W content is in the range of 0.005 to 0.5%.
The reason why W has an effect of improving the corrosion resistance is as follows. That is, as the steel sheet corrodes, WO 4 2- is generated in the generated rust, and the presence of this WO 4 2- suppresses chloride ions from entering the steel sheet surface. When the pH of the surface, such as the anode part, decreases, poorly soluble FeWO 4 is produced, and the presence of this FeWO 4 also suppresses the entry of chloride ions to the steel sheet surface, and chloride ions enter the steel sheet surface. By inhibiting the intrusion of steel, corrosion of the steel sheet is effectively suppressed. Moreover, corrosion of steel is also suppressed by the inhibitor action by adsorption of WO 4 2- on the steel material surface.

Moは、Wと同様、本発明の鋼材においては、重要な耐食性向上元素の1つである。この耐食性向上効果は、Mo:0.01%以上の含有で発現する。しかしながら、1.0%超えると、その効果が飽和する。よって、Mo含有量は0.01〜1.0%の範囲とする。
Moが、耐食性向上効果を有する理由は、鋼板が腐食するのに伴って、生成する錆の中にMoO4 2-が生成し、このMoO4 2-の存在によって、塩化物イオンが鋼板表面に侵入するのが抑制され、塩化物イオンの鋼板表面への侵入が抑制されることによって、鋼板の腐食が効果的に抑制されるからである。
WとMoは、酸素酸を形成する点において一致するので、両元素を選択的あるいは複合して含有させることができる。なお、Moに比し、Wは低pH環境で難溶性のFeWO4が生成する点および鋼材表面への吸着によるインヒビター効果が高い点でより優れており、そのため、WはMoよりも含有量が少なくても良好な耐食性を発揮することができる。
Mo, like W, is one of the important elements for improving corrosion resistance in the steel material of the present invention. This effect of improving corrosion resistance is manifested when Mo: 0.01% or more is contained. However, if it exceeds 1.0%, the effect is saturated. Therefore, the Mo content is in the range of 0.01 to 1.0%.
The reason why Mo has an effect of improving corrosion resistance is that MoO 4 2- is generated in the generated rust as the steel sheet corrodes, and the presence of MoO 4 2- makes chloride ions on the surface of the steel sheet. This is because the penetration of the steel sheet is suppressed and the corrosion of the steel sheet is effectively suppressed by suppressing the penetration of chloride ions into the steel sheet surface.
Since W and Mo coincide with each other in forming an oxygen acid, both elements can be contained selectively or in combination. Compared to Mo, W is superior in that it produces poorly soluble FeWO 4 in a low pH environment and has a high inhibitor effect due to adsorption to the steel surface. Therefore, W has a higher content than Mo. At least, good corrosion resistance can be exhibited.

以上、基本成分について説明したが、本発明では、その他にも、以下に述べる元素を必要に応じて適宜含有させることができる。
Sb:0.001〜0.20%
Sbは、耐食性を向上させる効果があり、補助的に含有させることができる。このSbの効果は、鋼板表面のアノード部など、pHが下がった部位での腐食を抑制できるところにある。この効果は、0.001%以上のSb含有で発現するが、0.20%超えでは、母材靭性およびHAZ部靭性を劣化させるため、0.001〜0.20%の範囲が好ましい。
Although the basic components have been described above, in the present invention, other elements described below can be appropriately contained as necessary.
Sb: 0.001 to 0.20%
Sb has an effect of improving the corrosion resistance, and can be contained auxiliary. The effect of this Sb is that it can suppress corrosion at sites where the pH is lowered, such as the anode portion on the surface of the steel sheet. This effect is exhibited when the Sb content is 0.001% or more. However, if it exceeds 0.20%, the base material toughness and the HAZ part toughness are deteriorated, so the range of 0.001 to 0.20% is preferable.

Cr:0.01〜0.5%およびCo:0.01〜0.5%のうちから選んだ1種または2種
CrおよびCoはいずれも、鋼材強度を高める元素であり、必要に応じて添加することができる。この効果は0.01%以上の含有で発現する。しかしながら、いずれの元素も含有量が0.5%を超えると、溶接熱影響部の靭性を劣化させる。そこで、これらの元素はいずれも0.01〜0.5%の範囲で含有させるものとした。
One or two selected from Cr: 0.01-0.5% and Co: 0.01-0.5%
Both Cr and Co are elements that increase the strength of the steel material, and can be added as necessary. This effect appears when the content is 0.01% or more. However, if the content of any element exceeds 0.5%, the toughness of the heat affected zone is deteriorated. Therefore, these elements are all contained in the range of 0.01 to 0.5%.

さらに、本発明では、以下に述べるグループA〜Cのうちから選んだ少なくとも一つのグループの元素を適宜含有させることができる。
グループA:Ti:0.001〜0.05%、Zr:0.002〜0.1%およびV:0.002〜0.1%のうちから選んだ1種または2種以上
Ti,ZrおよびVはいずれも、Nとの親和力が強く、TiN、ZrNおよびVNとして析出して、溶接熱影響部でのオーステナイト粒の粗大化を抑制し、溶接熱影響部の高靭性化に寄与する。このような効果は、Tiでは0.001%以上、Zrでは0.002%以上、Vでは0.002%以上の含有で認められる。しかしながら、Tiが0.05%超、Zrが0.1%超、Vが0.1%超になると、TiN,ZrN,VNの粗大化により、かえって靭性の劣化を招く。このため、Tiは0.001〜0.05%、Zrは0.002〜0.1%、Vは0.002〜0.1%の範囲で含有させるものとする。
Furthermore, in this invention, the element of the at least 1 group selected from the group AC described below can be contained suitably.
Group A: One or more selected from Ti: 0.001-0.05%, Zr: 0.002-0.1% and V: 0.002-0.1%
Ti, Zr, and V all have a strong affinity with N and precipitate as TiN, ZrN, and VN to suppress the austenite grain coarsening in the weld heat affected zone, and to increase the toughness of the weld heat affected zone. Contribute. Such an effect is recognized when the content is 0.001% or more for Ti, 0.002% or more for Zr, and 0.002% or more for V. However, if Ti exceeds 0.05%, Zr exceeds 0.1%, and V exceeds 0.1%, TiN, ZrN, and VN become coarser, leading to deterioration of toughness. Therefore, Ti is contained in the range of 0.001 to 0.05%, Zr in the range of 0.002 to 0.1%, and V in the range of 0.002 to 0.1%.

グループB:B:0.0001〜0.003%
Bは、鋼材の強度を高める元素であり、必要に応じて含有させることができる。上記の効果を得るためには、0.0001%以上含有させることが好ましいが、0.003%を超えて含有させると、靭性が劣化する。よって、Bは0.0001〜0.003%の範囲で含有させることが好ましい。
Group B: B: 0.0001-0.003%
B is an element that increases the strength of the steel material, and can be contained as necessary. In order to acquire said effect, it is preferable to contain 0.0001% or more, but when it contains exceeding 0.003%, toughness will deteriorate. Therefore, it is preferable to contain B in the range of 0.0001 to 0.003%.

グループC:Ca:0.0002〜0.01%、REM:0.0002〜0.015%、Y:0.0001〜0.1%のうちから選んだ1種または2種以上
Ca,REMおよびYはいずれも、溶接熱影響部の靭性向上に効果のある元素であり、必要に応じて含有させることができる。この効果は、Ca:0.0002%以上、REM:0.0002%以上、Y:0.0001%以上の含有で得られるが、Ca:0.01%を超えて、REM:0.015%を超えて、Y:0.1%を超えて、それぞれ含有させると、かえって靭性の劣化を招くので、Ca,REMおよびYは、それぞれ上記の範囲で含有させることが好ましい。
Group C: Ca: 0.0002 to 0.01%, REM: 0.0002 to 0.015%, Y: 0.0001 to 0.1% selected from one or more
Ca, REM and Y are all elements effective in improving the toughness of the weld heat affected zone, and can be contained as necessary. This effect is obtained when Ca: 0.0002% or more, REM: 0.0002% or more, Y: 0.0001% or more, Ca: over 0.01%, REM: over 0.015%, Y: over 0.1% If each of them is contained, the toughness is deteriorated. Ca, REM and Y are preferably contained in the above ranges.

本発明の鋼材において、上記以外の成分は、Feおよび不可避不純物である。但し、本発明の効果を損なわない範囲内であれば、上記以外の成分の含有を拒むものではない。   In the steel material of the present invention, components other than those described above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

次に、本発明鋼材の製造方法について説明する。
上記した好適成分組成になる溶鋼を、転炉、電気炉等の公知の方法で溶製し、連続鋳造法や造塊法等の公知の方法でスラブやビレット等の鋳素材とする。なお、溶製に際して、真空脱ガス精錬等を実施してもよい。溶鋼の成分調整方法は、公知の鋼精錬方法に従えばよい。ついで、上記の鋼素材を所望の寸法形状に熱間圧延する際には、1000〜1350℃の温度に加熱する。加熱温度が1000℃未満では変形抵抗が大きく、熱間圧延が難しくなる。一方、1350℃を超える加熱は、表面痕の発生原因となったり、スケールロスや燃料原単位が増加したりする。好ましくは1050〜1300℃の範囲である。なお、鋼素材の温度が、もともと1000〜1350℃の範囲の場合、加熱せず、そのまま熱間圧延をしてよい。熱間圧延後は、所望の強度、靭性を得るために、空冷または加速冷却を行う。また、冷却後、再加熱処理を施してもよい。
Next, the manufacturing method of this invention steel material is demonstrated.
The molten steel having the above-mentioned preferred component composition is melted by a known method such as a converter or an electric furnace, and is made into a casting material such as a slab or billet by a known method such as a continuous casting method or an ingot casting method. In addition, vacuum degassing refining or the like may be performed at the time of melting. The component adjustment method of molten steel should just follow a well-known steel refining method. Next, when the steel material is hot-rolled to a desired size and shape, it is heated to a temperature of 1000 to 1350 ° C. When the heating temperature is less than 1000 ° C., the deformation resistance is large and hot rolling becomes difficult. On the other hand, heating above 1350 ° C causes surface marks, increases scale loss, and increases fuel consumption. Preferably it is the range of 1050-1300 degreeC. In addition, when the temperature of the steel material is originally in the range of 1000 to 1350 ° C., the steel material may be hot-rolled as it is without being heated. After hot rolling, air cooling or accelerated cooling is performed to obtain desired strength and toughness. Further, after cooling, a reheating treatment may be performed.

なお、本発明の鋼材を塗装鋼材として使用する際に用いる塗料については、特に制限はないが、以下の塗料がとりわけ有利に適合する。すなわち、鋼材表面のブラスト後のプライマーとして、1)ビスフェノール系ビニルエステル樹脂を塗布し、その後、2)ノボラック系ガラスフレーク入りビニルエステル樹脂を塗布する。
また、上記1)の塗料を塗布・乾燥した後の塗膜厚みは20〜80μm程度とすることが好ましい。そして、上記2)の塗料を塗布、乾燥した後の塗膜厚みは600〜840μm程度とすることが好ましい。
In addition, there is no restriction | limiting in particular about the coating material used when using the steel material of this invention as a coating steel material, However, The following coating materials adapt especially advantageously. That is, as a primer after blasting on the surface of a steel material, 1) a bisphenol vinyl ester resin is applied, and then 2) a vinyl ester resin containing novolac glass flakes is applied.
Moreover, it is preferable that the coating film thickness after apply | coating and drying the coating material of said 1) shall be about 20-80 micrometers. And it is preferable that the coating-film thickness after apply | coating and drying the coating material of said 2) shall be about 600-840 micrometers.

以下、本発明の実施例について具体的に説明する。
表1に示す成分組成になる溶鋼を、真空溶解炉で溶製または転炉で溶製後、連続鋳造によりスラブとした。ついで、熱間圧延により12mm厚の鋼板とした。
Examples of the present invention will be specifically described below.
The molten steel having the composition shown in Table 1 was made into a slab by continuous casting after melting in a vacuum melting furnace or in a converter. Subsequently, the steel sheet was 12 mm thick by hot rolling.

得られた各鋼板について、母材の引張特性(YS,TS,El)および衝撃特性(0℃での吸収エネルギーvEO)を調査した。
また、溶接部靭性の評価として、入熱量:50kJ/cmの溶接熱影響部:1mm(ヒュージョンラインから母材側に1mm入った箇所)相当の再現熱サイクルを付与し、シャルピー衝撃試験により、0℃での吸収エネルギーvE0を測定した。
さらに、上記の鋼板から、10mmt×150mmW×150mmLの試験片を採取し、各試験片を実際の原油タンク底板、重油タンク底板、軽油タンク底板に溶接にて取り付けた。その後、試験片の表面をブラストしたのち、ビスフェノール系ビニルエステル樹脂(プライマー)を50μm厚塗装した。その後、ノボラック系ガラスフレーク入りビニルエステル樹脂を2回塗りにて720μm厚塗装した。その後、試験片中央部に地鉄まで至る2mmφの塗膜欠陥を形成した後、暴露試験に供した。暴露試験期間は1年間であり、1年後、試験片を取り外し、その後、試験片表面の塗膜を除去し、2mmφ塗膜欠陥部に生じた孔食の深さをデプスゲージにより測定した。そして、孔食速度(mm/y)を算出した。
表2に機械的特性についての調査結果を、また表3に暴露試験結果を示す。
For each steel sheet obtained was investigated tensile properties of the base material (YS, TS, El) and impact properties (absorbed energy vE O at 0 ° C.).
In addition, as an evaluation of weld toughness, a heat input area of heat input: 50 kJ / cm, a heat affected zone of the weld: 1 mm (1 mm from the fusion line on the base metal side) was given a reproducible thermal cycle. The absorbed energy vE 0 at 0 ° C. was measured.
Further, 10 mmt × 150 mmW × 150 mmL test pieces were collected from the steel plate, and each test piece was attached to an actual crude oil tank bottom plate, heavy oil tank bottom plate, and light oil tank bottom plate by welding. Then, after blasting the surface of the test piece, a 50 μm thick bisphenol vinyl ester resin (primer) was applied. Thereafter, a vinyl ester resin containing novolac glass flakes was applied twice to a thickness of 720 μm. Then, after forming a 2 mmφ coating film defect reaching the ground iron in the center of the test piece, it was subjected to an exposure test. The exposure test period was one year. After one year, the test piece was removed, and then the coating film on the surface of the test piece was removed, and the depth of pitting corrosion occurring on the 2 mmφ coating film defect portion was measured with a depth gauge. Then, the pitting corrosion rate (mm / y) was calculated.
Table 2 shows the survey results on mechanical properties, and Table 3 shows the results of exposure tests.

Figure 2013147726
Figure 2013147726

Figure 2013147726
Figure 2013147726

Figure 2013147726
Figure 2013147726

表2に示したとおり、本発明の鋼材成分組成を満たす発明例No.1〜15はいずれも、ベース鋼であるNo.16に比べて、母材靱性については言うまでもなく、溶接部靭性についても優れていることが分かる。
また、表3に示したとおり、本発明の鋼材成分組成を満たす発明例No.1〜15はいずれも、ベース鋼であるNo.16に比べて、原油タンク、重油タンクおよび軽油タンクに適用したいずれの場合も孔食速度が60%以下であり、良好な塗装耐食性を有していることが分かる。
これに対し、本発明の鋼材成分組成を満たさないNo.17〜20の孔食速度は、ベース鋼であるNo.16に対し小さくはなっているが、その孔食速度はベース鋼に対して、60%超えであり、本発明に比べると十分な孔食抑制効果を有しているとは言えない。
As shown in Table 2, Invention Examples Nos. 1 to 15 satisfying the steel component composition of the present invention are not limited to the base material toughness as compared to No. 16 being the base steel, but also toughness of the welded portion. It turns out that it is excellent.
Moreover, as shown in Table 3, all of Invention Examples No. 1 to 15 satisfying the steel component composition of the present invention were applied to crude oil tanks, heavy oil tanks and light oil tanks as compared to No. 16 which is a base steel. In either case, the pitting corrosion rate is 60% or less, and it can be seen that the film has good coating corrosion resistance.
In contrast, the pitting corrosion rate of No. 17 to 20 that does not satisfy the steel material composition of the present invention is smaller than that of No. 16, which is the base steel, but the pitting corrosion rate is lower than that of the base steel. Thus, it is over 60%, and it cannot be said that it has a sufficient pitting corrosion suppressing effect as compared with the present invention.

Claims (4)

質量%で、C:0.03〜0.25%、Si:0.01〜0.50%、Mn:0.1〜2.0%、P:0.035%以下、S:0.015%以下、Al:0.005〜0.10%、N:0.001〜0.01%、Sn:0.001〜0.20%およびNb:0.001〜0.050%を含有し、さらにW:0.005〜0.5%およびMo:0.01〜1.0%のうちから選んだ1種または2種を含有し、残部がFeおよび不可避不純物からなる鋼材であって、該鋼材中に固溶Nbを0.0005〜0.050%含有することを特徴とする石油タンク用耐食鋼材。   In mass%, C: 0.03-0.25%, Si: 0.01-0.50%, Mn: 0.1-2.0%, P: 0.035% or less, S: 0.015% or less, Al: 0.005-0.10%, N: 0.001-0.01% Sn: 0.001 to 0.20% and Nb: 0.001 to 0.050%, W: 0.005 to 0.5%, and Mo: 0.01 to 1.0%, one or two selected, the balance being Fe and A corrosion-resistant steel material for petroleum tanks, characterized in that it is a steel material consisting of inevitable impurities, and 0.0005 to 0.050% of solid solution Nb is contained in the steel material. 上記成分組成に加えて、質量%で、Sb:0.001〜0.20%を含有することを特徴とする請求項1に記載の石油タンク用耐食鋼材。   The corrosion resistant steel material for a petroleum tank according to claim 1, wherein, in addition to the above component composition, Sb: 0.001 to 0.20% is contained in mass%. 上記成分組成に加えて、質量%で、Cr:0.01〜0.5%および Co:0.01〜0.5%のうちから選んだ1種または2種を含有することを特徴とする請求項1または2に記載の石油タンク用耐食鋼材。   3. In addition to the above component composition, it contains one or two selected from Cr: 0.01 to 0.5% and Co: 0.01 to 0.5% by mass%. Corrosion resistant steel for oil tanks. 上記成分組成に加えて、さらに下記のグループA〜Cのうちから選んだ少なくとも一つのグループの元素を含有することを特徴とする請求項1〜3のいずれかに記載の石油タンク用耐食鋼材。

グループA:質量%で、Ti:0.001〜0.05%、Zr:0.002〜0.1%およびV:0.002〜0.1%のうちから選んだ1種または2種以上
グループB:質量%で、B:0.0001〜0.003%
グループC:質量%で、Ca:0.0002〜0.01%、REM:0.0002〜0.015%およびY:0.0001〜0.1%のうちから選んだ1種または2種以上
The corrosion resistant steel material for a petroleum tank according to any one of claims 1 to 3, further comprising at least one element selected from the following groups A to C in addition to the component composition.
Group A: By mass%, Ti: 0.001 to 0.05%, Zr: 0.002 to 0.1%, and V: 0.002 to 0.1% or more selected from Group B: Mass%, B: 0.0001 to 0.003%
Group C:% by mass, Ca: 0.0002 to 0.01%, REM: 0.0002 to 0.015%, and Y: 0.0001 to 0.1%
JP2012011378A 2012-01-23 2012-01-23 Corrosion resistant steel for above-ground oil tanks Active JP5884167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011378A JP5884167B2 (en) 2012-01-23 2012-01-23 Corrosion resistant steel for above-ground oil tanks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011378A JP5884167B2 (en) 2012-01-23 2012-01-23 Corrosion resistant steel for above-ground oil tanks

Publications (2)

Publication Number Publication Date
JP2013147726A true JP2013147726A (en) 2013-08-01
JP5884167B2 JP5884167B2 (en) 2016-03-15

Family

ID=49045520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011378A Active JP5884167B2 (en) 2012-01-23 2012-01-23 Corrosion resistant steel for above-ground oil tanks

Country Status (1)

Country Link
JP (1) JP5884167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150604A (en) * 2017-03-14 2018-09-27 Jfeスチール株式会社 Steel and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262441A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Steel for crude oil tank and its production method
JP2007291494A (en) * 2006-03-30 2007-11-08 Jfe Steel Kk Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2009046750A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2009046751A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2009127076A (en) * 2007-11-22 2009-06-11 Sumitomo Metal Ind Ltd Corrosion resistant steel product for cargo oil tank
JP2010185108A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Corrosion-resistant steel material for ship, and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262441A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Steel for crude oil tank and its production method
JP2007291494A (en) * 2006-03-30 2007-11-08 Jfe Steel Kk Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2009046750A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2009046751A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2009127076A (en) * 2007-11-22 2009-06-11 Sumitomo Metal Ind Ltd Corrosion resistant steel product for cargo oil tank
JP2010185108A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Corrosion-resistant steel material for ship, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150604A (en) * 2017-03-14 2018-09-27 Jfeスチール株式会社 Steel and method for producing the same

Also Published As

Publication number Publication date
JP5884167B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5119595B2 (en) Corrosion resistant steel for shipbuilding
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
JP4935578B2 (en) Corrosion resistant steel for ships
JP5353283B2 (en) Corrosion-resistant steel for marine vessels and method for producing the same
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
JP5979063B2 (en) Method for producing marine steel with excellent corrosion resistance and base metal toughness
JP5130828B2 (en) High strength marine corrosion resistant steel and method for producing the same
JP5453835B2 (en) Corrosion resistant steel for ships
JP5861335B2 (en) Welded joint with excellent corrosion resistance
JP5076961B2 (en) High strength marine corrosion resistant steel with excellent high heat input weld toughness and method for producing the same
JP5796409B2 (en) Corrosion resistant steel for ship ballast tank
JP5958102B2 (en) Corrosion-resistant steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP2009046751A (en) Corrosion-resistant steel material for ship and manufacturing method therefor
JP2012001810A (en) Welded joint having excellent corrosion resistance and crude oil tank
JP6260755B1 (en) Steel for ship ballast tank and ship
JP5526667B2 (en) Hot rolled section steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP2010229526A (en) Highly-corrosion-resistant painted steel material
JP6079074B2 (en) Painted corrosion resistant steel for above-ground oil tanks
JP5157519B2 (en) Corrosion-resistant steel for marine vessels with excellent high heat input weld toughness and method for producing the same
JP5884167B2 (en) Corrosion resistant steel for above-ground oil tanks
JP4506933B2 (en) Steel material suitable for large heat input welding for steel frames
JP5454599B2 (en) Corrosion-resistant steel for marine vessels and method for producing the same
TWI469846B (en) A thick steel sheet excellent in fatigue resistance in the thickness direction and a method for producing the same, and a thick welded steel joint
JP6536181B2 (en) Corrosion prevention method for steel for crude oil tank, crude oil tank and crude oil tank
JP2011094184A (en) Highly corrosion resistant painted steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5884167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250