JP2013147460A - OPTICALLY ACTIVE γ-DICYANONITRO COMPOUND AND METHOD FOR PRODUCING THE SAME - Google Patents

OPTICALLY ACTIVE γ-DICYANONITRO COMPOUND AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2013147460A
JP2013147460A JP2012009298A JP2012009298A JP2013147460A JP 2013147460 A JP2013147460 A JP 2013147460A JP 2012009298 A JP2012009298 A JP 2012009298A JP 2012009298 A JP2012009298 A JP 2012009298A JP 2013147460 A JP2013147460 A JP 2013147460A
Authority
JP
Japan
Prior art keywords
compound
optically active
dicyanonitro
malononitrile
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012009298A
Other languages
Japanese (ja)
Inventor
Takayoshi Arai
孝義 荒井
Ikiyo Oka
以気代 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2012009298A priority Critical patent/JP2013147460A/en
Publication of JP2013147460A publication Critical patent/JP2013147460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optically active γ-dicyanonitro compound and to provide a method for producing the compound.SOLUTION: There is provided a nitrile compound expressed by formula (3) (Rand Rare each independently an alkyl, acyl or aromatic group) and obtained by reacting a nitroalkene with malononitrile in the presence of a pincer palladium complex having a bisimidazolidine skeleton.

Description

本発明は、光学活性γ−ジシアノニトロ化合物とその製造方法に関し、より具体的には、ニトロアルケンへのマロノニトリル共役付加を用いた光学活性γ−ジシアノニトロ化合物の製造方法に関するものである。   The present invention relates to an optically active γ-dicyanonitro compound and a method for producing the same, and more specifically to a method for producing an optically active γ-dicyanonitro compound using a malononitrile conjugate addition to a nitroalkene.

光学活性なアミノ酸や糖を基本構成単位とする生体高分子は、高度な不斉空間を構築しており、この生体高分子を受容体とする医薬品も光学活性を有している必要がある。このような光学活性な物質を合成する方法は不斉合成法と呼ばれており、不斉合成法の中でも少量の不斉源から理論上無限の光学活性体を合成することが可能な触媒的不斉合成法は極めて有用、重要なものとなっている。   A biopolymer having an optically active amino acid or sugar as a basic structural unit constructs a highly asymmetric space, and a drug using the biopolymer as a receptor needs to have optical activity. Such a method for synthesizing an optically active substance is called an asymmetric synthesis method. Among the asymmetric synthesis methods, a catalytically capable of synthesizing a theoretically infinite optically active substance from a small amount of an asymmetric source. Asymmetric synthesis methods are extremely useful and important.

ニトロアルケンの1,4付加反応は生成物の合成的有用性が高く、ニトロアルカン等への容易な合成ステップであり、触媒的不斉合成も含め数多くの報告がなされている。今回報告するニトロアルケンとマロノニトリルの1,4付加反応の例は下記非特許文献1及び2に記載されている。   The 1,4-addition reaction of nitroalkene has high synthetic usefulness of the product, is an easy synthesis step to nitroalkane and the like, and many reports including catalytic asymmetric synthesis have been made. Examples of 1,4-addition reaction of nitroalkene and malononitrile reported here are described in Non-Patent Documents 1 and 2 below.

Okino,T;Hoashi,Y;Furukawa,T;Xu,X;Takemoto,Y、J.Am.Chem.Soc、2005、127、119Okino, T; Hoashi, Y; Furukawa, T; Xu, X; Takemoto, Y, J. et al. Am. Chem. Soc, 2005, 127, 119 Srihari,G;Marthanda,M.M、Synthetic Communications.、2009、39、896Srihari, G; Marthanda, M .; M, Synthetic Communications. 2009, 39, 896

しかしながら、ニトロアルケンとマロノニトリルの1,4付加反応において、高いエナンチオ選択性で生成物を得た報告は未だなく、効率的な触媒的不斉合成法の開発が望まれる。   However, there have been no reports of obtaining products with high enantioselectivity in the 1,4-addition reaction of nitroalkene and malononitrile, and the development of an efficient catalytic asymmetric synthesis method is desired.

そこで、本発明は、上記課題を鑑み、金属触媒による、ニトロアルケンとマロノニトリルの1,4−付加反応およびそれにより得られるニトリル化合物合成を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a 1,4-addition reaction between a nitroalkene and malononitrile using a metal catalyst and synthesis of a nitrile compound obtained thereby.

本発明者らは、上記課題について鋭意検討を行っていたところ、ビスイミダゾリジン骨格を有するピンサーパラジウム錯体の存在下、ニトロアルケンとマロノニトリルを反応させることで、不斉1,4−付加反応が進行し下記式で示されるニトリル化合物を得ることができる点を発見し、本発明を完成させるに至った。
The inventors of the present invention have been diligently examining the above problems, and asymmetric 1,4-addition reaction proceeds by reacting nitroalkene with malononitrile in the presence of a pincer palladium complex having a bisimidazolidine skeleton. The inventors have discovered that a nitrile compound represented by the following formula can be obtained, and have completed the present invention.

即ち、本発明の一手段に係る光学活性γ−ジシアノニトロ化合物を製造する方法は、下記式(1)もしくは(2)で示される触媒の存在下で、ニトロスチレンとマロノニトリルを反応させる。
That is, in the method for producing an optically active γ-dicyanonitro compound according to one means of the present invention, nitrostyrene and malononitrile are reacted in the presence of a catalyst represented by the following formula (1) or (2).

この結果、下記式(3)で示される光学活性γ−ジシアノニトロ化合物を得ることができる。
As a result, an optically active γ-dicyanonitro compound represented by the following formula (3) can be obtained.

なお上記式中、R及びRは、それぞれ独立してアルキル基、アシル基または芳香族である。 In the above formula, R 1 and R 2 are each independently an alkyl group, an acyl group or an aromatic group.

以上、本発明により、ニトロアルケンへのマロノニトリル共役付加による光学活性γ−ジシアノニトロ化合物とその製造方法を提供することができる。   As described above, according to the present invention, an optically active γ-dicyanonitro compound obtained by conjugate addition of malononitrile to a nitroalkene and a production method thereof can be provided.

以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、以下に示す実施形態に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention can be implemented in many different modes and is not limited to the embodiments shown below.

(実施形態1)
本実施形態に係るニトリル化合物の製造方法は、下記式(1)もしくは(2)で示される触媒の存在下で、ニトロアルケンとマロノニトリルを反応させる。
(Embodiment 1)
In the method for producing a nitrile compound according to this embodiment, a nitroalkene and malononitrile are reacted in the presence of a catalyst represented by the following formula (1) or (2).

本実施形態において用いられるピンサー錯体は、下記式(2)で示されるカチオン錯体で触媒活性を発現するだけでなく、中間体である下記式(1)で示される中性錯体においても高い触媒活性を発現する。   The pincer complex used in this embodiment not only exhibits catalytic activity with a cation complex represented by the following formula (2), but also has high catalytic activity even in a neutral complex represented by the following formula (1) that is an intermediate. Is expressed.

本実施形態に係る触媒は、ニトロアルケンとマロノニトリルの1,4−付加反応を行うために用いることができる。具体的には、本実施形態に係る触媒の存在下で、下記式で示される反応のように、ニトロアルケンとマロノニトリルを反応させて光学活性γ−ジシアノニトロ化合物を合成することができる。
The catalyst according to this embodiment can be used to perform a 1,4-addition reaction between a nitroalkene and malononitrile. Specifically, an optically active γ-dicyanonitro compound can be synthesized by reacting a nitroalkene and malononitrile in the presence of the catalyst according to the present embodiment, as in the reaction represented by the following formula.

ここにおいて限定されるわけではないが、R及びRはそれぞれ独立してアルキル基、アシル基または芳香族を用いることができる。アルキル基の場合、限定されるわけではないが、例えばメチル基、エチル基、又はベンジル基を挙げることができ、アシル基の場合、限定されるわけではないが、アセチル基、またはベンゾイル基を挙げることができる。また、芳香族の場合も限定されるわけではないが、例えばフェニル基、ピリジン、インドール、またはピロールを挙げることができる。 Although not limited here, R 1 and R 2 can each independently be an alkyl group, an acyl group, or an aromatic group. In the case of an alkyl group, examples thereof include, but are not limited to, for example, a methyl group, an ethyl group, or a benzyl group. be able to. Moreover, although it is not necessarily limited in the case of aromatic, for example, a phenyl group, a pyridine, indole, or pyrrole can be mentioned.

上記反応は、溶媒が制限されるわけではないが、特にテトラヒドロフラン中において行うことが好ましい。   Although the solvent is not limited, the reaction is particularly preferably carried out in tetrahydrofuran.

上記反応において、反応基質として用いられるニトロアルケンは下記式(4)で示される。なお、上記反応において、用いるニトロアルケンの量を1モルとした場合、マロノニトリルの量は1.5モル前後であることが好ましい。
In the above reaction, a nitroalkene used as a reaction substrate is represented by the following formula (4). In the above reaction, when the amount of nitroalkene used is 1 mol, the amount of malononitrile is preferably about 1.5 mol.

また、上記反応において、マロノニトリルは下記式(5)で示される。
In the above reaction, malononitrile is represented by the following formula (5).

この結果、本実施形態に係る方法によると、下記式(3)で示すニトリル化合物を得ることができる。
As a result, according to the method according to the present embodiment, a nitrile compound represented by the following formula (3) can be obtained.

(触媒の合成)
本実施形態において、触媒の合成は、合成できる限りにおいて限定されるわけではないが、例えばジアミンと(2,6−ジホルミルフェニル)ビス(トリフェニルホスフィン)金属種のクロライド体とを酸素雰囲気下で反応させることで構築することができる。具体的に説明すると、本実施形態に係る錯体は、以下の方法により合成できる。
(Catalyst synthesis)
In the present embodiment, the synthesis of the catalyst is not limited as long as it can be synthesized. It can be constructed by reacting with Specifically, the complex according to this embodiment can be synthesized by the following method.

なお上記式中、MはPdを、R、RはPhを、RはBnを、Rはt−Buを、XはCl又はOTfを表す。 In the above formula, M represents Pd, R 1 and R 2 represent Ph, R 3 represents Bn, R 4 represents t-Bu, and X represents Cl or OTf.

以上、本実施形態に係る金属触媒により、ニトロアルケンとマロノニトリルを用いた1,4−付加反応およびそれにより得られるニトリル化合物を提供することが可能となり、反応基質の拡大を行うことができる。また、本発明によると高い化学収率、高い光学純度で目的化合物を得ることができる。   As described above, the metal catalyst according to this embodiment can provide the 1,4-addition reaction using nitroalkene and malononitrile and the nitrile compound obtained thereby, and the reaction substrate can be expanded. Moreover, according to the present invention, the target compound can be obtained with high chemical yield and high optical purity.

ここで、上記実施形態に係る光学活性γ−ジシアノニトロ化合物及びその製造方法について実際に作成を行い、効果を確認した。以下具体的に説明する。   Here, the optically active γ-dicyanonitro compound and the production method thereof according to the above embodiment were actually created and the effects were confirmed. This will be specifically described below.

以上の実施形態により得られる下記式(1)で示される錯体を0.0089g、もしくは下記式(2)で示される錯体を0.0101g用い、触媒として不斉1,4−付加反応を行った。以下に具体例を説明する。
The asymmetric 1,4-addition reaction was performed as a catalyst using 0.0089 g of the complex represented by the following formula (1) obtained by the above embodiment or 0.0101 g of the complex represented by the following formula (2). . A specific example will be described below.

(実施例1)
本実施例は、無水テトラヒドロフラン1mlに溶解しtatrans−β−ニトロスチレン29.8mg、マロノニトリル19.81mgを上記触媒(1)の存在下、0℃、48時間反応させることで行なった。この結果、下記に示す化合物(3−1)を0.035g得ることができた。また(3−1)の収率は82%、エナンチオ過剰率は80%eeであった。
Example 1
The present Example was performed by dissolving in 1 ml of anhydrous tetrahydrofuran and reacting 29.8 mg of tatrans-β-nitrostyrene and 19.81 mg of malononitrile in the presence of the catalyst (1) at 0 ° C. for 48 hours. As a result, 0.035 g of the compound (3-1) shown below could be obtained. The yield of (3-1) was 82%, and the enantiomeric excess was 80% ee.

H NMR (500MHz, CDCl) δ7.50−7.46(m,3H),7.39−7.34(m, 2H),5.02−4.96(q,1H),4.95−4.89(q,1H),4.44(d,1H),4.11−4.05(m,1H) 1 H NMR (500 MHz, CDCl 3 ) δ 7.50-7.46 (m, 3H), 7.39-7.34 (m, 2H), 5.02-4.96 (q, 1H), 4. 95-4.89 (q, 1H), 4.44 (d, 1H), 4.11-4.05 (m, 1H)

13C NMR(125MHz,CDCl) δ 131.8,130.3,129.9,127.7,110.5,110.4,74.9,43.6,27.5;
Enantiomeric excess was determined by HPLC with a Chiralcel AD−Hcolumn (8:2 hexane: 2−propanol, 1.0 mL/min, 254 nm)
13 C NMR (125 MHz, CDCl 3 ) δ 131.8, 130.3, 129.9, 127.7, 110.5, 110.4, 74.9, 43.6, 27.5;
Enantiomerically excused was determined by HPLC with a chiralcel AD-Hcolumn (8: 2 hexane: 2-propanol, 1.0 mL / min, 254 nm)

minor enantiomer t = 9.9 min, major enantiomer t =11.2 min, 80% ee) minor enantiomer t r = 9.9 min, major enantiomer t r = 11.2 min, 80% ee)

IR (neat) 2258, 1554 cm−1 IR (neat) 2258, 1554 cm −1

(実施例2)
本実施例は、無水テトラヒドロフラン1mlに溶解した(E)‐1‐シクロヘキシル‐2‐ニトロエテン31.04mg、マロノニトリル19.81mg、炭酸水素ナトリウム16.80mgを上記触媒(1)の存在下、0℃、48時間反応させることで行なった。この結果、下記に示す化合物(3−2)を0.036g得ることができた。また(3−2)の収率は82%、エナンチオ過剰率は87%eeであった。
(Example 2)
In this example, 31.04 mg of (E) -1-cyclohexyl-2-nitroethene, 19.81 mg of malononitrile, and 16.80 mg of sodium bicarbonate dissolved in 1 ml of anhydrous tetrahydrofuran were added at 0 ° C. in the presence of the catalyst (1), The reaction was performed for 48 hours. As a result, 0.036 g of the following compound (3-2) could be obtained. The yield of (3-2) was 82%, and the enantiomeric excess was 87% ee.

H NMR (500MHz, CDCl) δ 4.71−4.66(dd,1H),4.61−4.55(dd, 1H),4.24(d, 1H),2.78−2.71(m,1H),1.91−1.77(m,5H),1.77−1.71(m,1H),1.40−1.11(m,4H),1.10−1.00(m,1H) 1 H NMR (500 MHz, CDCl 3 ) δ 4.71-4.66 (dd, 1H), 4.61-4.55 (dd, 1H), 4.24 (d, 1H), 2.78-2 .71 (m, 1H), 1.91-1.77 (m, 5H), 1.77-1.71 (m, 1H), 1.40-1.11 (m, 4H), 1.10 -1.00 (m, 1H)

13C NMR(125MHz,CDCl) δ 111.1,111.0,73.5,43.3,38.8,30.8,28.8,25.9,25.8,25.6,24.2;
Enantiomeric excess was determined by HPLC with a Chiralcel AD−H column (97:3 hexane: 2−propanol, 1.0 mL/min, 220 nm)
13 C NMR (125 MHz, CDCl 3 ) δ 111.1, 111.0, 73.5, 43.3, 38.8, 30.8, 28.8, 25.9, 25.8, 25.6, 24.2;
Enantiomerically excess was determined by HPLC with a chiralcel AD-H column (97: 3 hexane: 2-propanol, 1.0 mL / min, 220 nm)

major enantiomer t =35.5 min,minor enantiomer t = 42.5 min, 87% ee major enantiomer t r = 35.5 min, minor enantiomer t r = 42.5 min, 87% ee

IR (neat) 2258, 1554cm−1 IR (neat) 2258, 1554 cm −1

(実施例3)
本実施例は、無水テトラヒドロフラン1mlに溶解した(E)‐1‐シクロヘキシル‐2‐ニトロエテン31.04mg、マロノニトリル19.81mgを上記触媒(2)の存在下、0℃、48時間反応させることで行った。この結果、下記に示す化合物(3−2)を0.035g得ることができた。また(3−2)の収率は80%、エナンチオ過剰率は88%eeであった。
(Example 3)
In this example, 31.04 mg of (E) -1-cyclohexyl-2-nitroethene and 19.81 mg of malononitrile dissolved in 1 ml of anhydrous tetrahydrofuran were reacted at 0 ° C. for 48 hours in the presence of the catalyst (2). It was. As a result, 0.035 g of the following compound (3-2) could be obtained. The yield of (3-2) was 80%, and the enantiomeric excess was 88% ee.

以上の通り、本実施例によると、不斉1,4−付加反応を行うことができる有用な触媒が実現できることを確認した。   As described above, according to this example, it was confirmed that a useful catalyst capable of performing an asymmetric 1,4-addition reaction could be realized.

本発明は、光学活性γ‐ジシアノニトロ化合物を高い光学純度で供給できることから、医薬の開発と生産に有用であり、産業上の利用可能性がある。
Since the optically active γ-dicyanonitro compound can be supplied with high optical purity, the present invention is useful for the development and production of medicines and has industrial applicability.

Claims (2)

下記式(1)もしくは下記式(2)で示される触媒を用いた下記式(3)で示される光学活性γ−ジシアノニトロ化合物の製造方法。
(ここでR及びRは、それぞれ独立して、アルキル基、アシル基または芳香族である。)
A method for producing an optically active γ-dicyanonitro compound represented by the following formula (3) using a catalyst represented by the following formula (1) or the following formula (2).
(Here, R 1 and R 2 are each independently an alkyl group, an acyl group, or an aromatic group.)
下記式(3)で示される光学活性γ−ジシアノニトロ化合物。
(ここでR及びRは、それぞれ独立して、アルキル基、アシル基または芳香族である。)
An optically active γ-dicyanonitro compound represented by the following formula (3).
(Here, R 1 and R 2 are each independently an alkyl group, an acyl group, or an aromatic group.)
JP2012009298A 2012-01-19 2012-01-19 OPTICALLY ACTIVE γ-DICYANONITRO COMPOUND AND METHOD FOR PRODUCING THE SAME Pending JP2013147460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009298A JP2013147460A (en) 2012-01-19 2012-01-19 OPTICALLY ACTIVE γ-DICYANONITRO COMPOUND AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009298A JP2013147460A (en) 2012-01-19 2012-01-19 OPTICALLY ACTIVE γ-DICYANONITRO COMPOUND AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2013147460A true JP2013147460A (en) 2013-08-01

Family

ID=49045337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009298A Pending JP2013147460A (en) 2012-01-19 2012-01-19 OPTICALLY ACTIVE γ-DICYANONITRO COMPOUND AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2013147460A (en)

Similar Documents

Publication Publication Date Title
KR20130142477A (en) Method for preparation of nitrocyclopropane derivatives
Donslund et al. Enantioselective formation of cyclopropane spiroindenes from benzofulvenes by phase transfer catalysis
JP5843186B2 (en) Pyrrole and indole derivatives and process for producing the same
JP6061223B2 (en) Optically active thiochroman derivative and method for producing the same
JP2013147460A (en) OPTICALLY ACTIVE γ-DICYANONITRO COMPOUND AND METHOD FOR PRODUCING THE SAME
WO2011158720A1 (en) Method for producing (1r, 2s)-1-amino-2-vinyl cyclopropane carboxylic acid ester that has improved optical purity
Kumar et al. Cinchona alkaloid phase-transfer catalysts revisited: influence of substituted aryl groups on the enantioselectivity of glycine ester enolate alkylation
JP2015145344A (en) PRODUCTION METHOD OF α,β-DIAMINO ACID HAVING OPTICALLY ACTIVE ASYMMETRIC TETRASUBSTITUTED CARBON
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
JP2013142080A (en) Indole derivative and method for producing the same
KR101416920B1 (en) Method for preparation of δ-nitro ketone derivatives
JP4860509B2 (en) Method for producing optically active hydrazino keto ester compound
JP5471069B2 (en) Tetrahydropyridine derivative and method for producing the same
JP2015172024A (en) Chiral bicyclic diene ligand having hydrogen bond formation amide group
JP2014162744A (en) Optically active spirocyclopropyl oxindole derivative and method of producing the same
WO2013058241A1 (en) Method for producing (r)-2-amino-2-ethylhexanol
KR101548885B1 (en) Method for preparing (s)-pregabalin precursor by catalytic enantioselective micahel reaction and method for preparing (s)-pregabalin using the (s)-pregabalin precursor
JP6188066B2 (en) Optically active asymmetric bisindole compound and method for producing the same
JP2017206485A (en) Optically active 1,3-diamine derivative and method for producing the same
KR102163068B1 (en) The manufacturing method of intermediate for synthesis of silodosin and the manufacturing method of silodosin
KR101548886B1 (en) Method for preparing (r)-rolipram precursor by catalytic enantioselective micahel reaction and method for preparing (r)-rolptram using the (r)-rolipram precursor
JP2012046441A (en) Pyrrolidine derivative and method for producing the same
JP2014001177A (en) Catalytic enantioselective production method of trifluoromethyl-substituted pyrroline having asymmetric tetrasubstituted carbon
US20040267043A1 (en) Production method for optically active N-aryl-beta-amino acid compounds
KR101523191B1 (en) Method for preparation of 3-hydroxy-3-(2-oxoalkyl)-2-oxindole derivatives