JP2013146748A - Method for producing compact by using cold isostatic pressing - Google Patents

Method for producing compact by using cold isostatic pressing Download PDF

Info

Publication number
JP2013146748A
JP2013146748A JP2012007758A JP2012007758A JP2013146748A JP 2013146748 A JP2013146748 A JP 2013146748A JP 2012007758 A JP2012007758 A JP 2012007758A JP 2012007758 A JP2012007758 A JP 2012007758A JP 2013146748 A JP2013146748 A JP 2013146748A
Authority
JP
Japan
Prior art keywords
mold
molding
cold isostatic
partition
isostatic pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012007758A
Other languages
Japanese (ja)
Inventor
Isao Narita
勲 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012007758A priority Critical patent/JP2013146748A/en
Publication of JP2013146748A publication Critical patent/JP2013146748A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of obtaining easily and stably a large-sized compact.SOLUTION: The method for producing a compact is used to produce the compact by using a cold isostatic pressing, and is characterized in that the compact is obtained by preparing a molding die made from a soft material, which has at least one or more partition dies for dividing an inner space of the molded molding die, by filling a powder for molding in the inner space separated with the partition die, by putting this into a pressure vessel of the cold isostatic pressing device, and by pressurizing the powder for molding with isotropic pressure.

Description

本発明は、静水圧を使用してセラミックス等の粉体を等方加圧して成形体を得る成型方法に関する。   The present invention relates to a molding method for obtaining a compact by isostatically pressing a powder such as ceramics using hydrostatic pressure.

近年、セラミックス材からなる工業用部材は、大型で複雑形状化へと移行している。セラミックス等を用いて構造部材を製造する場合、原料粉末に1000kgf/cm2以上の圧力をかけニアネットシェープ成形(限りなく最終製品に近い形状に固化)後、焼結し、所望する製品形状を省工程で作製する試みが行われ、先ず第一に、大型で均一な高密度の成形体を得る必要がある。 In recent years, industrial members made of ceramic materials have shifted to large-sized and complicated shapes. When manufacturing structural members using ceramics, etc., press the raw material powder at a pressure of 1000 kgf / cm 2 or more to form a near net shape (solidify into a shape that is as close as possible to the final product) and then sinter to obtain the desired product shape. Attempts have been made to produce in a reduced number of processes, and first of all, it is necessary to obtain a large, uniform, high-density molded body.

一般的に高密度の成形体を得る成形方法としては、金型プレス成型法や冷間静水圧成形法(特許文献1,2)などがある。   In general, as a molding method for obtaining a high-density molded body, there are a die press molding method and a cold isostatic pressing method (Patent Documents 1 and 2).

金型プレス成形法では所望する製品の形状が、例えば単純な円柱形状で、アスペクト比(直径に対する円柱の長さの比)が1以上のものを成形する場合に、加圧面に加えられた圧力を成形体内部へ伝播させ粉末成形体を作製するため、金属性の成形型に原料粉末を数回に分けて入れ、順次、加圧する多段アクション法に頼らざるを得なかった。この場合は、作業が煩雑になることや成形型に入る原料粉末の量が成形初期と後期で異なることがあり、成形体の密度が不均一となりやすい問題がある。さらには、例えば直径300mmの成形体を得る場合、700トン以上のプレス機と加圧力に耐える十分な強度と構造の専用金属製成形型が必要であり、かかる費用が高価になる問題がある。   In the die press molding method, the desired product shape is, for example, a simple cylindrical shape, and the pressure applied to the pressing surface when molding an aspect ratio (ratio of the length of the cylinder to the diameter) of 1 or more. In order to produce a powder compact by propagating the inside of the compact, it was necessary to rely on a multi-stage action method in which the raw material powder was put into a metallic mold in several batches and pressed sequentially. In this case, there is a problem that the work becomes complicated and the amount of the raw material powder entering the mold may be different between the early stage and the later stage, and the density of the molded body tends to be uneven. Furthermore, for example, when a molded body having a diameter of 300 mm is obtained, a press machine of 700 tons or more and a dedicated metal mold having sufficient strength and structure to withstand the applied pressure are necessary, and there is a problem that such costs are expensive.

一方、冷間静水圧成形法では、原料粉末に成形圧力の伝播媒体である水等が浸透することがないような軟質成形型が使用される。軟質成形型は、圧力伝達媒体中であらゆる方向から加圧されることにより内部に充填した原料粉末と共に圧縮され、軟質成形型内壁のおおよその形状が成形体に付与される。静水圧で等方加圧することから金型プレス成形法に比べ大型で均一な密度分布を持つ粉末成形体を得やすく、そのサイズは軟質成形型のサイズに依存し、圧力容器寸法内の大きさで自由にかつ安価に得られるため一般的に用いられている。   On the other hand, in the cold isostatic pressing method, a soft mold is used so that water, which is a propagation medium of molding pressure, does not penetrate into the raw material powder. The soft mold is compressed together with the raw material powder filled therein by being pressurized from all directions in the pressure transmission medium, and the approximate shape of the inner wall of the soft mold is imparted to the molded body. Because it is isostatically pressed with hydrostatic pressure, it is easy to obtain a large and uniform powder compact with a uniform density distribution compared to the mold press molding method. The size depends on the size of the soft mold and is within the dimensions of the pressure vessel. It is generally used because it can be obtained freely and inexpensively.

特開2006−193797号公報JP 2006-193797 A 特開2003−266198号公報JP 2003-266198 A

しかしながら、これら従来の冷間静水圧成形方法(特許文献1)における一つの成形型の成形用粉体充填部は一気室からなり、得られる成形体は1個のみであった。そのため、複数個の成形体が必要な場合には、成形型を必要個数分用意し同時に成型処理したり、一つの成形型で複数回成形処理するかのどちらかによらなければならず、成形コストが高いものとなってしまう問題があった。   However, in the conventional cold isostatic pressing method (Patent Document 1), the molding powder filling portion of one molding die is composed of a single chamber, and only one molded body is obtained. Therefore, when a plurality of molded bodies are required, it is necessary to prepare either the required number of molds and perform the molding process at the same time or perform the molding process multiple times with one mold. There was a problem that the cost would be high.

ここで、特許文献2では、剛体からなる板体を間に挟むことで、複数個の成形体を同時に得る方法が記載されている。しかしながら、この方法では、成形用粉体を充填する内部空間を形成する他の成形型自体も剛体とするために、圧縮成形の方向が一軸方向に限定されてしまい、前述のアスペクト比が1以上となるような、大型の成形体を得ることが困難であるという問題があった。   Here, Patent Document 2 describes a method of simultaneously obtaining a plurality of molded bodies by sandwiching plate bodies made of rigid bodies therebetween. However, in this method, since the other molding die forming the internal space filled with the molding powder itself is also a rigid body, the compression molding direction is limited to a uniaxial direction, and the aforementioned aspect ratio is 1 or more. There has been a problem that it is difficult to obtain a large-sized molded product.

本発明はこれらの問題を解決し、容易に安定して大型の成形体を得ることができる方法を提供することを目的とする。   An object of the present invention is to solve these problems and to provide a method capable of easily and stably obtaining a large-sized molded product.

上記目的を達成するために本発明の成形体の製造方法は、冷間静水圧成形方法を用いた成形体の製造方法であって、軟質材からなる成形型において、形成された成形型の内部空間を分割する、少なくとも1枚以上の間仕切り型を有し、概間仕切り型によって仕切られた内部空間内に成形用粉体を充填し、これを冷間静水圧成形装置の圧力容器内に入れ、概成形用粉体を等方加圧して成形体を得ることを特徴とする。   In order to achieve the above object, a method for producing a molded body according to the present invention is a method for producing a molded body using a cold isostatic pressing method, in a mold made of a soft material. Dividing the space, having at least one partition mold, filling the molding powder into the internal space partitioned by the roughly partition mold, and placing it in the pressure vessel of the cold isostatic press, It is characterized in that a compact is obtained by isostatically pressing a roughly molding powder.

また、本発明の成形体の製造方法の好ましい態様としては、前記記載の成形型において、間仕切り用成形型のショアーA硬度が40以下である。   Moreover, as a preferable aspect of the manufacturing method of the molded object of this invention, the Shore A hardness of the shaping | molding die for partitions is 40 or less in the said shaping | molding die.

また、本発明の成型体の製造方法の好ましい態様としては、前記記載の成形型において、間仕切り用成形型の厚みが、2〜10mm以下である。   Moreover, as a preferable aspect of the manufacturing method of the molded object of this invention, in the said shaping | molding die, the thickness of the shaping | molding die for partitions is 2-10 mm or less.

本発明の製造方法によると、容易に安定して大型の成形体を得ることができる。   According to the production method of the present invention, a large molded article can be obtained easily and stably.

本発明の冷間静水圧成形方法の説明に供せられる成形型の横断面概略図Schematic cross-sectional view of a mold provided for explanation of the cold isostatic pressing method of the present invention 本発明の冷間静水圧成形方法の説明に供せられる圧力容器の横断面概略図Schematic cross-sectional view of a pressure vessel provided for explanation of the cold isostatic pressing method of the present invention

以下、本発明の実施の形態について、図面を用いて説明する。図1は本発明の実施の形態による冷間静水圧成形方法の説明に供せられる成形型の横断面概略図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a mold used for explaining a cold isostatic pressing method according to an embodiment of the present invention.

冷間静水圧成形方法とは、例えば、円筒状等の圧力容器に水等の液体を注入し、この液体内に成形用粉体を袋状等のゴム等の軟質材からなる成形用型に封入して浸漬させ、成形用型の外部に液圧をかけることにより、成形用粉体を等方加圧し成形体を得る方法である。   The cold isostatic pressing method is, for example, injecting a liquid such as water into a cylindrical pressure vessel, and molding powder into a molding die made of a soft material such as bag-like rubber. This is a method of obtaining a molded body by isotropically pressing a molding powder by enclosing and immersing and applying hydraulic pressure to the outside of the molding die.

本発明では、天然ゴムやニトリルゴム等の軟質材からなる分割可能な成形用型枠である下フタ型2、筒型3で囲まれた内部空間に、原料粉末、例えば、ジルコニアセラミックス粉末等の成形用粉体5を一定量充填し、間仕切り型4を挿入したのち残りの成形用粉体5を充填し、上フタ型1で封をし、各接合部にシーリング処理をする。これを、図2に示した、圧力容器8としての水槽中に入れ、水圧を加えて成形用型枠の外部から、1000kgf/cm2の水圧を加え等方加圧する事により、成形用粉体5を圧縮し成形体6を得る。 In the present invention, raw powder such as zirconia ceramic powder is placed in the inner space surrounded by the lower lid mold 2 and the cylindrical mold 3 which are separable molds made of soft materials such as natural rubber and nitrile rubber. A predetermined amount of the molding powder 5 is filled, the partition mold 4 is inserted, the remaining molding powder 5 is filled, the upper lid mold 1 is sealed, and each joint is sealed. This is placed in a water tank as a pressure vessel 8 shown in FIG. 2, and water pressure is applied and isotropically pressurized by applying a water pressure of 1000 kgf / cm 2 from the outside of the mold, thereby forming powder. 5 is compressed to obtain a molded body 6.

この方法によって、従来の冷間静水圧成形方法である間仕切り型の無い成形体を得る方法に比べて、一度に複数の成形体を得ることが出来る。   By this method, it is possible to obtain a plurality of molded bodies at a time as compared with the conventional cold isostatic pressing method for obtaining a molded body without a partition mold.

即ち、本発明の実施の形態による成形体6は、上フタ型1及び下フタ型2の間に少なくとも一枚の板体である間仕切り型4を設け、各間仕切り型の間に成形用粉体5を充填して、等方加圧することによって、一回の成形処理で一つの成形型から、複数個を同時に得るものである。さらに、各層の成形用粉体の充填量を変えることにより、厚さの異なる成形体を一度に成形することも可能である。   That is, in the molded body 6 according to the embodiment of the present invention, the partition mold 4 that is at least one plate body is provided between the upper lid mold 1 and the lower lid mold 2, and the molding powder is provided between the partition molds. By filling 5 and isotropically pressing, a plurality of molds can be obtained simultaneously from one mold by a single molding process. Furthermore, it is possible to form molded bodies having different thicknesses at once by changing the filling amount of the molding powder in each layer.

ここで、間仕切り型の材質が、金属等からなる剛体の場合、水圧が加えられ成形用型枠の外部から圧力が伝播する際に、成形型枠である筒3との接部において、軟質材からなる筒3が圧縮変形するのに対し、間仕切り型4は座屈変形するために、充填された成形用粉体5の圧縮変形に異方性が生じ、得られる成形体6に割れが発生する場合がある。更には、成形型枠である筒型3自体に間仕切り型4が食い込み、破損させる場合がある。そのため、前記間仕切り型の材質は、他の成形型枠と同様に軟質材とするものである。   Here, in the case where the material of the partition mold is a rigid body made of metal or the like, the soft material is applied at the contact portion with the cylinder 3 that is the molding mold when water pressure is applied and the pressure propagates from the outside of the molding mold. Since the partition 3 is buckled and deformed while the cylinder 3 made of the material is compressively deformed, anisotropy occurs in the compressive deformation of the filled molding powder 5 and cracks occur in the resulting molded body 6. There is a case. Furthermore, the partition mold 4 may bite into the tubular mold 3 itself, which is a forming mold, and be damaged. Therefore, the material of the partition mold is a soft material as in other molds.

軟質材とは、冷水圧成形方法の加圧時に圧縮変型するものである。また、加圧時に収縮し、放圧時に元の形状に戻りやすい、変形性と形状記憶性が高く、かつ変形が繰り返されても破損しにくいものであることが好ましい。天然ゴムやシリコンゴム、ブタジエンゴム等が例示される。   The soft material is a material that undergoes compression deformation at the time of pressurization in the cold water pressure molding method. Moreover, it is preferable that it shrinks at the time of pressurization, easily returns to its original shape at the time of pressure release, has high deformability and shape memory property, and is not easily damaged even if deformation is repeated. Examples include natural rubber, silicon rubber, butadiene rubber and the like.

前記間仕切り型に関して、更に詳細に説明をする。   The partition type will be described in more detail.

間仕切り型は上記軟質材であれば特に限定されないが、その硬度は小さい程、成形用型枠の外部から圧力が伝播する際の圧縮変形性も良好となり、得られる成形体6も密度変化の少ない均質で高強度のものが得られる。間仕切り用成形型のショアーA硬度が40より大きい場合、成形型の圧縮変形性が低く追従できなくなる場合があり、部分的な屈曲が間仕切り型に発現する場合がある。得られる成形体表面は、間仕切り型の形状を転写されるために、同様の部分的な凹凸が生じる場合があり、更には同箇所から割れる場合がある。そのため、前記間仕切り型のショアーA硬度は40以下が好ましい。さらに、30以下が好ましく、20以下がより好ましい。   The partition mold is not particularly limited as long as it is the above-mentioned soft material. However, the smaller the hardness, the better the compressive deformability when pressure is propagated from the outside of the molding mold, and the resulting molded body 6 has less density change. A homogeneous and high strength product is obtained. If the Shore A hardness of the partition mold is greater than 40, the mold may have low compressive deformability and may not be able to follow, and partial bending may appear in the partition mold. Since the shape of the partition mold is transferred to the surface of the obtained molded body, similar partial unevenness may occur, and further, it may break from the same location. Therefore, the partition type Shore A hardness is preferably 40 or less. Furthermore, 30 or less is preferable and 20 or less is more preferable.

前記間仕切り型の厚みも同様の性状をもち、厚みが小さい程、間仕切り型4の圧縮変形性も良好となる。しかしながら、成形型枠へ間仕切り型を挿入する際に、傾けたり歪み易くなるため、充填した成形用粉体上に位置させる際、凹凸が生じ、均一な形状の成形体6が得られなくなる場合がある。そのため、一定量の形状保持性を持つ厚み範囲が好ましい。間仕切り用成形型の厚みが2mmより小さい場合、圧縮変形性は高くなるが、形状保持性が低くなるため、上述の問題を生じ、得られる成形体の表面にうねりを生じさせる場合がある。一方、10mmより大きい場合、形状保持性は高くなるが、圧縮変形性が低くなるため、間仕切り型の外周部に位置する成形体の外周角部分が割れる場合がある。そのため、間仕切り型の厚みは2〜10mmの範囲が好ましい。   The partition mold has the same thickness, and the smaller the thickness, the better the compressibility of the partition mold 4. However, since the partition mold is easily tilted or distorted when the partition mold is inserted into the mold, there is a case where unevenness occurs when the mold is positioned on the filled molding powder, and the uniform shaped molded body 6 cannot be obtained. is there. Therefore, a thickness range having a certain amount of shape retention is preferable. When the thickness of the partition mold is smaller than 2 mm, the compressive deformability increases, but the shape retainability decreases, and thus the above-described problem may occur, and the surface of the resulting molded body may be swelled. On the other hand, when it is larger than 10 mm, the shape retaining property is improved, but the compressive deformability is lowered, so that the outer peripheral corner portion of the molded body located on the outer peripheral portion of the partition mold may be broken. Therefore, the thickness of the partition mold is preferably in the range of 2 to 10 mm.

成形体用粉末としては、冷間静水圧成形方法による成形が可能なものであればよく、正方晶系ジルコニア、アルミナ、窒化珪素、炭化珪素等のセラミックス粉末、あるいはこれら2種類以上を含む複合セラミックス粉末が例示される。   The powder for the molded body is not particularly limited as long as it can be molded by a cold isostatic pressing method, and ceramic powders such as tetragonal zirconia, alumina, silicon nitride, silicon carbide, or composite ceramics containing two or more of these. Examples are powders.

以下、実施例により本発明を詳細に説明する。実施例の測定、評価は以下のように行った。   Hereinafter, the present invention will be described in detail by way of examples. The measurement and evaluation of the examples were performed as follows.

(1)成形体表面のうねり
成形用粉体充填部が円柱状である成形用型枠内において、高さ方向中間位置に間仕切り型を介する構成とした成形型から成形体を得る際、得られる成形体の間仕切り型に接する面における面内の高さを測定し、次式により求めた平均値を求めた。
(最大高さ)−(最小高さ)
(2)成形体の割れ
成形体表面を観察して割れの発生した個数を確認した。サンプル数は10個とし、10個中割れたサンプルがないときは「優秀」、10個中8個以上割れが無いときは「良好」、10個中3個以上割れがあったときは「可」として評価した。
(1) Waviness of the surface of the molded body Obtained when a molded body is obtained from a molding mold having a configuration in which a partition mold is interposed at an intermediate position in the height direction in a molding mold in which the powder filling portion for molding is cylindrical. The in-plane height of the surface in contact with the partition mold of the molded body was measured, and the average value obtained by the following formula was determined.
(Maximum height)-(minimum height)
(2) Cracking of molded body The number of cracks was confirmed by observing the surface of the molded body. The number of samples shall be 10, "excellent" if there is no sample that is cracked in 10, "good" if there are no cracks in 10 or more, "good" if there are 3 or more cracks in 10 ".

(3)焼結体の相対密度
焼結体の実測密度を理論密度で除して、それを百分率で表した値を相対密度とした。ここでセラミックス焼結体の実測密度は、アルキメデス法により測定した。またセラミックス焼結体の理論密度は、以下の値を用いた。ジルコニアセラミックス:6.09g/cm2
(4)間仕切り型の硬度(ショアーA硬度)
間仕切り型の硬度は、JIS K6253(2006)に規定された、デュロメータ硬さ試験方法に従い測定した。装置はタイプAデュロメータ硬度計を用いた。測定は60mm×60mm×10mmの試験片を作成し、接触時間を3秒として5回測定し、中心値を求めた。
(3) Relative density of sintered body The measured density of the sintered body was divided by the theoretical density, and the value expressed as a percentage was taken as the relative density. Here, the measured density of the ceramic sintered body was measured by the Archimedes method. Moreover, the following values were used for the theoretical density of the ceramic sintered body. Zirconia ceramics: 6.09 g / cm 2
(4) Partition type hardness (Shore A hardness)
The hardness of the partition type was measured according to the durometer hardness test method defined in JIS K6253 (2006). The apparatus used was a type A durometer hardness tester. The measurement produced the test piece of 60 mm x 60 mm x 10 mm, measured 5 times by making contact time 3 seconds, and calculated | required the center value.

(実施例1)
平均粒径60μmのジルコニア粉末を、成形用粉体充填部の寸法が、直径φ600mm、高さ500mmの円柱状成形用型枠(天然ゴム製、厚み10mm、硬度A40)内に充填し、高さ方向中間の250mm位置に、表1の実施例1に示す条件とした間仕切り型を介する構成とした成形型を、冷間静水圧成形装置により、1000kgf/cm2の圧力で等方加圧成形をし、得られた成形体の割れの有無を確認した。その後、成形体から直径φ30mm、高さ30mmの円柱を切り出し、電気炉で600℃まで25℃/時間で昇温後、さらに昇温し1400℃で3時間焼結し得られた焼結体の密度を測定した。結果は表1に示す通り、うねり量は3mmで、成形体に割れは生じず「優秀」、焼結体の相対密度は99.3%であった。
Example 1
A zirconia powder having an average particle diameter of 60 μm is filled into a cylindrical molding mold (made of natural rubber, thickness 10 mm, hardness A40) having a diameter of a molding powder filling portion of a diameter of 600 mm and a height of 500 mm. An isostatic press molding at a pressure of 1000 kgf / cm 2 is performed by a cold isostatic pressing apparatus at a position 250 mm in the middle with a partition mold configured as shown in Example 1 in Table 1 using a cold isostatic pressing apparatus. And the presence or absence of the crack of the obtained molded object was confirmed. Thereafter, a cylinder having a diameter of 30 mm and a height of 30 mm was cut out from the molded body, heated to 600 ° C. at 25 ° C./hour in an electric furnace, further heated, and sintered at 1400 ° C. for 3 hours. Density was measured. As a result, as shown in Table 1, the amount of undulation was 3 mm, the molded body was not cracked and was “excellent”, and the relative density of the sintered body was 99.3%.

(実施例2)
表1の実施例2に示す条件とした以外は実施例1と同様にして作成し、評価を行った。結果は表1に示す通り、うねり量は5mmで、成形体の10個中8個に割れは生じず「良好」、焼結体の相対密度は99.2%であった。
(Example 2)
A sample was prepared and evaluated in the same manner as in Example 1 except that the conditions shown in Example 2 of Table 1 were used. As a result, as shown in Table 1, the amount of undulation was 5 mm, 8 out of 10 molded bodies were not cracked, and “good”, and the relative density of the sintered body was 99.2%.

(実施例3)
表1の実施例3に示す条件とした以外は実施例1と同様にして作成し、評価を行った。結果は表1に示す通り、うねり量は3mmで、成形体に割れは生じず「優秀」、焼結体の相対密度は99.2%であった。
(Example 3)
A sample was prepared and evaluated in the same manner as in Example 1 except that the conditions shown in Example 3 of Table 1 were used. As a result, as shown in Table 1, the amount of undulation was 3 mm, the molded body was not cracked and was “excellent”, and the relative density of the sintered body was 99.2%.

(実施例4)
表1の実施例4に示す条件とした以外は実施例1と同様にして作成し、評価を行った。結果は表1に示す通り、うねり量は4mmで、成形体の10個中9個に割れは生じず「良好」、焼結体の相対密度は99.3%であった。
Example 4
It was created and evaluated in the same manner as in Example 1 except that the conditions shown in Example 4 of Table 1 were used. As a result, as shown in Table 1, the amount of undulation was 4 mm, 9 out of 10 molded bodies were not cracked, and “good”, and the relative density of the sintered body was 99.3%.

(実施例5)
表1の実施例5に示す条件とした以外は実施例1と同様にして作成し、評価を行った。結果は表1に示す通り、うねり量は4mmで、成形体の10個中9個に割れは生じず「良好」、焼結体の相対密度は99.3%であった。
(Example 5)
It was created and evaluated in the same manner as in Example 1 except that the conditions shown in Example 5 of Table 1 were used. As a result, as shown in Table 1, the amount of undulation was 4 mm, 9 out of 10 molded bodies were not cracked, and “good”, and the relative density of the sintered body was 99.3%.

(実施例6)
表1の実施例6に示す条件とした以外は実施例1と同様にして作成し、評価を行った。結果は表1に示す通り、うねり量は5mmで、成形体の10個中8個に割れは生じず「良好」、焼結体の相対密度は99.2%であった。
(Example 6)
It was created and evaluated in the same manner as in Example 1 except that the conditions shown in Example 6 of Table 1 were used. As a result, as shown in Table 1, the amount of undulation was 5 mm, 8 out of 10 molded bodies were not cracked, and “good”, and the relative density of the sintered body was 99.2%.

Figure 2013146748
Figure 2013146748

(比較例1)
間仕切り型をSUS304材からなる剛体にした以外は、実施例1と同様にして作成し、評価を行った。結果は表2に示す通りである。しかし、成形時に間仕切り型が筒型を破損させ、圧力伝播媒体である水が成形型内に入り、正常な圧粉体が得られなかったため、圧粉体のうねり、割れ、焼結体密度測定が出来なかった。
(Comparative Example 1)
The partition mold was prepared and evaluated in the same manner as in Example 1 except that the partition mold was a rigid body made of SUS304 material. The results are as shown in Table 2. However, because the partition mold breaks the cylinder mold at the time of molding, water as the pressure propagation medium enters the mold, and a normal green compact was not obtained. I couldn't.

Figure 2013146748
Figure 2013146748

1 上フタ型
2 下フタ型
3 筒型
4 間仕切り型
5 成形用粉体
6 成形体
7 水
8 加圧容器
1 Upper lid mold 2 Lower lid mold 3 Cylindrical mold 4 Partition mold 5 Molding powder 6 Molded body 7 Water 8 Pressurized container

Claims (3)

冷間静水圧成形方法を用いた成形体の製造方法であって、軟質材からなる成形型において、形成された成形型の内部空間を分割する、少なくとも1枚以上の間仕切り型を有し、概間仕切り型によって仕切られた内部空間内に成形用粉体を充填し、これを冷間静水圧成形装置の圧力容器内に入れ、概成形用粉体を等方加圧して成形体を得ることを特徴とする冷間静水圧成形方法を用いた成形体の製造方法。 A method for producing a molded body using a cold isostatic pressing method, wherein a molding die made of a soft material has at least one partition die that divides an inner space of the formed molding die, Filling the internal space partitioned by the partition mold with the molding powder, placing it in the pressure vessel of the cold isostatic press, and isotropically pressurizing the molding powder to obtain a compact. The manufacturing method of the molded object using the cold isostatic pressing method characterized. 間仕切り型のショアーA硬度が40以下である請求項1に記載の冷間静水圧成形方法を用いた成形体の製造方法。 The method for producing a molded body using the cold isostatic pressing method according to claim 1, wherein the partition type has a Shore A hardness of 40 or less. 間仕切り型の厚みが、2〜10mmである請求項1または2に記載の冷間静水圧成形方法を用いた成形体の製造方法。 The manufacturing method of the molded object using the cold isostatic pressing method of Claim 1 or 2 whose thickness of a partition type | mold is 2-10 mm.
JP2012007758A 2012-01-18 2012-01-18 Method for producing compact by using cold isostatic pressing Pending JP2013146748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007758A JP2013146748A (en) 2012-01-18 2012-01-18 Method for producing compact by using cold isostatic pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007758A JP2013146748A (en) 2012-01-18 2012-01-18 Method for producing compact by using cold isostatic pressing

Publications (1)

Publication Number Publication Date
JP2013146748A true JP2013146748A (en) 2013-08-01

Family

ID=49044823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007758A Pending JP2013146748A (en) 2012-01-18 2012-01-18 Method for producing compact by using cold isostatic pressing

Country Status (1)

Country Link
JP (1) JP2013146748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106182398A (en) * 2016-07-08 2016-12-07 苏州珂玛材料技术有限公司 A kind of moulding process of ceramic plunger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106182398A (en) * 2016-07-08 2016-12-07 苏州珂玛材料技术有限公司 A kind of moulding process of ceramic plunger

Similar Documents

Publication Publication Date Title
JP4110533B2 (en) Manufacturing method of Mo-based target material
Khasanov et al. Net shaping nanopowders with powerful ultrasonic action and methods of density distribution control
US4216017A (en) Method and equipment for sintering under pressure
US9321188B2 (en) Method for manufacturing of ceramic electro-insulating pipes
CN105777133A (en) Manufacturing method and special die for one-step-formed multi-curved-face integral bullet-proof plates
CN110372394B (en) High-plasticity high-elasticity boron nitride compact ceramic and preparation method thereof
JP2013146748A (en) Method for producing compact by using cold isostatic pressing
KR101496331B1 (en) High purity tube type ceramic-molding apparatus high purity tube type ceramic-molding method using same
JP2013204051A (en) Method for manufacturing cylindrical sputtering target material
CN112053843B (en) Forming and mould pressing method for large-size sintered neodymium iron boron blank
JP2015175034A (en) Method for producing sputtering target material
Kang et al. Densification behavior of iron powder during cold stepped compaction
Berezin et al. Influence of stress state conditions on densification behavior of titanium sponge
CN104271290B (en) The manufacture method of microscler light metal blank
JP2006193797A (en) Mold for producing compact for sputtering target and method for producing sputtering target
JP4706980B2 (en) Manufacturing method of Mo target material
JPH07278607A (en) Powder molding method using segmental die
Belousova et al. Evaluating the effectiveness of axial and isostatic pressing methods of ceramic granular powder
JP2023077507A (en) Sintered compact production method, pre-sintering molded body and sintered compact
CN216707835U (en) Forming die of jumbo size block pottery
KR101626077B1 (en) CIP complex mold for manufacturing alumina plate
KR102061270B1 (en) Mold system for hot pressed ceramic with air hole
JP2022142810A (en) Method for manufacturing molding
Hammes et al. Relationship between Cold Isostatic Pressing and Uniaxial Compression of Powder Metallurgy
Edgar et al. Optimal design of the spiral type of collector die for dry powder compaction