JP2013145929A - Connection structure and connection method of wiring board - Google Patents

Connection structure and connection method of wiring board Download PDF

Info

Publication number
JP2013145929A
JP2013145929A JP2013095043A JP2013095043A JP2013145929A JP 2013145929 A JP2013145929 A JP 2013145929A JP 2013095043 A JP2013095043 A JP 2013095043A JP 2013095043 A JP2013095043 A JP 2013095043A JP 2013145929 A JP2013145929 A JP 2013145929A
Authority
JP
Japan
Prior art keywords
wiring board
substrate
conductive
connected body
cof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013095043A
Other languages
Japanese (ja)
Other versions
JP5464291B2 (en
Inventor
Tomoyuki Kubo
智幸 久保
Yuji Shinkai
祐次 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2013095043A priority Critical patent/JP5464291B2/en
Publication of JP2013145929A publication Critical patent/JP2013145929A/en
Application granted granted Critical
Publication of JP5464291B2 publication Critical patent/JP5464291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To improve connection strength between a connected object and a wiring board.SOLUTION: An input contact of a piezoelectric actuator and a board-side contact of a COF of a printer are electrically connected via a conductive part made of conductive resin containing metallic material and thermosetting resin. The piezoelectric actuator and the COF are mechanically connected to each other via a reinforcement part 62 in addition to the conductive part. The reinforcement part 62 is located at a position different from the conductive part in the COF 50 and arranged at a position across a surface of a solder resist 54 and a surface of a flexible substrate 52.

Description

本発明は、配線基板の接続構造及び接続方法に関する。   The present invention relates to a wiring board connection structure and a connection method.

従来から、アクチュエータやセンサなどの電気接点を備えた被接続体に対して、配線基板を接続して、この配線基板を介して被接続体へ信号の送受信や電力供給などを行うものが知られている。このような被接続体と配線基板の接続構造として、例えば、特許文献1には、インクジェットヘッドの圧電アクチュエータ(被接続体)に対するFPC(配線基板)の接続において、圧電アクチュエータとFPCの電気接点を導通させるハンダ(導通部)で電気的に接続するとともに、導通用のハンダとは異なる位置に、圧電アクチュエータとFPCを機械的に接続する補強用のハンダ(補強部)を設けている。   2. Description of the Related Art Conventionally, a wiring board is connected to a connected body having an electrical contact such as an actuator or a sensor, and signals are transmitted / received and power is supplied to the connected body through the wiring board. ing. As such a connection structure between a connected body and a wiring board, for example, Patent Document 1 discloses an electrical contact between a piezoelectric actuator and an FPC in connection of an FPC (wiring board) to a piezoelectric actuator (connected body) of an inkjet head. The solder is electrically connected by the solder (conduction part) to be conducted, and the reinforcing solder (reinforcing part) for mechanically connecting the piezoelectric actuator and the FPC is provided at a position different from the solder for conduction.

また、種々の理由を考慮して、ハンダではない材料を用いた被接続体と配線基板の接続構造として、例えば、特許文献2には、導電性粒子と熱硬化性の絶縁性接着剤を含む導電性樹脂を、フレキシブルプリント基板の配線端子(基板側接点)と被接続体であるプラズマディスプレイパネルの電極(電気接点)との間に設けて、フレキシブルプリント基板を加熱しながらプラズマディスプレイパネルに向かって加圧することによって、この導電性樹脂を硬化させて両者を電気的及び機械的に接続する構造が開示されている。   In consideration of various reasons, for example, Patent Document 2 includes a conductive particle and a thermosetting insulating adhesive as a connection structure between a connected body and a wiring board using a material other than solder. Conductive resin is provided between the wiring terminal (substrate side contact) of the flexible printed circuit board and the electrode (electrical contact) of the plasma display panel, which is the connected body, toward the plasma display panel while heating the flexible printed circuit board. A structure is disclosed in which the conductive resin is cured by pressurizing and the both are electrically and mechanically connected.

特開2006−231913号公報(図10)Japanese Patent Laying-Open No. 2006-231913 (FIG. 10) 特開2005−197001号公報(図1)Japanese Patent Laying-Open No. 2005-197001 (FIG. 1)

しかしながら、特許文献2に記載の接続構造のように、被接続体と配線基板とを、被接続体の電気接点と配線基板の基板側接点との導通を図る導電性樹脂で接続しているだけでは、ハンダの場合に比べて、被接続体と配線基板の接続強度は不十分であり、被接続体からの配線基板の剥離やずれが生じやすい。   However, as in the connection structure described in Patent Document 2, the connected body and the wiring board are simply connected by a conductive resin that establishes electrical connection between the electrical contact of the connected body and the board-side contact of the wiring board. Then, compared with the case of solder | pewter, the connection strength of a to-be-connected body and a wiring board is inadequate, and peeling and deviation | shift of a wiring board from a to-be-connected body are easy to produce.

そこで、特許文献2に記載されているような、被接続体と配線基板を接点間の導通に用いる導電性樹脂で接続している構造において、被接続体と配線基板の接続強度を向上させようとすると、接点間の導通に用いる導通部である導電性樹脂と同じ材料を用いて、補強部として導電性樹脂を配置するのが一般的である。   Therefore, in a structure in which the connected body and the wiring board are connected by a conductive resin used for conduction between the contacts as described in Patent Document 2, the connection strength between the connected body and the wiring board will be improved. Then, it is common to arrange the conductive resin as the reinforcing portion using the same material as the conductive resin that is the conductive portion used for conduction between the contacts.

ところで、配線基板は、可撓性基板の上に配線や基板側接点が形成され、基板側接点が露出されるとともに、配線が保護用のソルダーレジストなどの被覆膜で覆われている。このとき、補強部が被覆膜の表面または可撓性基板の表面に重なるように配置されるのが一般的であるが、これでは被接続体と配線基板の接続強度が十分に得られないことが分かった。   By the way, the wiring board has wiring and substrate side contacts formed on a flexible substrate, the substrate side contacts are exposed, and the wiring is covered with a coating film such as a protective solder resist. At this time, the reinforcing portion is generally arranged so as to overlap the surface of the coating film or the surface of the flexible substrate, but this does not provide sufficient connection strength between the connected body and the wiring substrate. I understood that.

そこで、本発明の目的は、被接続体との接続強度をより向上させた配線基板の接続構造及び製造方法を提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a wiring board connection structure and a manufacturing method in which the connection strength with a body to be connected is further improved.

本発明の配線基板の接続構造は、電気接点を備えた被接続体に配線基板を接続する配線基板の接続構造であって、前記配線基板は、前記被接続体と対向する面に基板側接点が設けられた絶縁性樹脂からなる可撓性基板と、前記可撓性基板の前記被接続体と対向する面を、前記基板側接点及び一部領域を除いて覆う被覆膜と、を有しており、前記被接続体の前記電気接点と前記配線基板の前記基板側接点は、金属材料と熱硬化性樹脂とを含む導電性樹脂からなる導通部を介して電気的に接続されており、前記被接続体と前記配線基板の間には、前記導通部に加えて、前記導通部と同じ前記導電性樹脂からなり、前記被接続体と前記配線基板を導通せず、前記被接続体と前記配線基板を機械的に接続する補強部が設けられており、前記補強部は、前記配線基板の、前記導通部とは異なる位置であり、且つ、前記被覆膜の表面と前記可撓性基板の前記一部領域の表面とにまたがる位置に配置されている。   The wiring board connection structure of the present invention is a wiring board connecting structure for connecting a wiring board to a connected body having an electrical contact, and the wiring board has a board-side contact on a surface facing the connected body. A flexible substrate made of an insulating resin, and a coating film covering a surface of the flexible substrate facing the connected body except for the substrate-side contact and a part of the region. The electrical contact of the connected body and the board-side contact of the wiring board are electrically connected via a conductive portion made of a conductive resin containing a metal material and a thermosetting resin. In addition to the conductive part, the conductive body is made of the same conductive resin between the connected body and the wiring board, and the connected body and the wiring board are not electrically connected. And a reinforcing portion for mechanically connecting the wiring board, the reinforcing portion is The serial wiring board, a position different from the conducting portion, and is disposed in a position spanning the said surface of a part of the surface and the flexible substrate of the coating film.

本発明の配線基板の接続構造によると、補強部を配線基板の被覆膜の表面と可撓性基板の表面とにまたがる位置に配置しているため、補強部が配線基板の被覆膜の表面、または、可撓性基板の表面にだけ重なって配置されている場合に比べて、被接続体と配線基板の接続強度をより向上させて、被接続体からの配線基板のずれや剥離を防止することができる。   According to the wiring board connection structure of the present invention, the reinforcing portion is arranged at a position straddling the surface of the coating film of the wiring board and the surface of the flexible substrate. Compared to the case where it is placed only on the surface or the surface of the flexible board, the connection strength between the connected body and the wiring board is further improved, and the wiring board is displaced or peeled off from the connected body. Can be prevented.

また、前記導通部は、所定の一方向に沿って複数並んで導通部列を構成し、前記導通部列は、前記一方向と直交する直交方向に沿って複数並び、前記複数の導電部列のうちの第1導電部列に属する導電部は、これに隣接する第2導電部列に属する導電部と前記一方向において位置が異なるように配置され、さらに、前記第2導電部列は、前記第1導電部列よりも前記一方向において前記またがる位置から離れており、前記補強部は、前記一方向に沿って前記第2導電部列と並んで配置されることが好ましい。 In addition, a plurality of the conductive portions are arranged along a predetermined one direction to form a conductive portion row, and a plurality of the conductive portion rows are arranged along an orthogonal direction orthogonal to the one direction, and the plurality of conductive portion rows The conductive parts belonging to the first conductive part row are arranged so that the positions of the conductive parts belonging to the second conductive part row adjacent thereto are different in the one direction, and the second conductive part row is It is preferable that the first conductive portion row is farther from the position in the one direction than the first conductive portion row, and the reinforcing portion is arranged alongside the second conductive portion row along the one direction.

さらに、前記導通部は、所定の一方向に沿って複数並んで導通部列を構成し、前記導通部列は、前記一方向と直交する直交方向に沿って複数並び、前記補強部は、前記直交方向において、前記複数の導通部列のうちの2列の導通部列の間に配置されていることが好ましい。   Furthermore, a plurality of the conduction parts are arranged along a predetermined direction to form a conduction part row, the conduction part rows are arranged along a direction orthogonal to the one direction, and the reinforcement part is In the orthogonal direction, it is preferable that the conductive portion rows are arranged between two of the plurality of conductive portion rows.

加えて、前記絶縁性樹脂は、前記基板側接点及び一部領域を露出する開口が形成され、前記開口は、矩形状であり、さらに、前記開口の縁の一部が内側に窪んでおり、前記補強部は、前記開口の縁の一部をまたがるように配置されていることが好ましい。   In addition, the insulating resin is formed with an opening that exposes the substrate-side contact and a partial region, the opening is rectangular, and a part of the edge of the opening is recessed inward, It is preferable that the reinforcing portion is disposed so as to straddle part of the edge of the opening.

また、前記配線基板は、前記被接続体と接続された領域から所定の一方向に引き出されており、前記補強部は、前記配線基板の、前記基板側接点よりも前記一方向側に配置されており、前記配線基板と平行で且つ前記一方向と直交する幅方向に長尺な形状を有していてもよい。これによると、配線基板の引き出された部分に被接続体から離れる方向の力が加わったときに、最も力を受ける配線基板の一方向と直交する幅方向に沿った部分において、補強部が幅方向に長尺な形状で配置されており、接続強度をその部分において向上させることができ、被接続体からの配線基板の剥離を一層防止することができる。   The wiring board is pulled out in a predetermined direction from a region connected to the connected body, and the reinforcing portion is disposed on the one direction side of the wiring board with respect to the board-side contact. And may have a shape that is long in the width direction parallel to the wiring substrate and perpendicular to the one direction. According to this, when a force in a direction away from the connected body is applied to the drawn-out portion of the wiring board, the reinforcing portion has a width in a portion along the width direction orthogonal to one direction of the wiring board receiving the most force. It is arranged in an elongated shape in the direction, the connection strength can be improved at that portion, and the separation of the wiring board from the connected body can be further prevented.

前記配線基板は、前記被接続体と接続された領域から所定の一方向に引き出されており、前記補強部は、引き出される方向に向かって、前記配線基板の、前記可撓性基板の表面、前記被覆膜の表面の順にまたがる位置に配置されていることが好ましい。これによると、被接続体からの配線基板の剥離をより一層防止することができる。   The wiring board is pulled out in a predetermined direction from a region connected to the body to be connected, and the reinforcing portion is in a direction of being pulled out, the surface of the flexible board of the wiring board, It is preferable that they are arranged at positions that cross the order of the surface of the coating film. According to this, the peeling of the wiring board from the connected body can be further prevented.

また、前記被接続体は、圧電層を含む圧電アクチュエータであることが好ましい。仮に、導電性樹脂からなる導通部と補強部の、被接続体と配線基板に対する密着性を高めて、被接続体と配線基板の接続強度を向上させようとしたときには、両者の接続の際に加圧を大きくすることが考えられるが、これでは圧電層が破壊されやすい。そこで、被接続体と配線基板の接続強度を向上させるために、両者を接続する際の加圧を大きくすることが困難な場合においても、補強部を配線基板の被覆膜の表面と可撓性基板の表面にまたがる位置に配置することで、被接続体と配線基板の接続強度を向上させることができる。   Moreover, it is preferable that the said to-be-connected body is a piezoelectric actuator containing a piezoelectric layer. If it is attempted to improve the connection strength between the connected body and the wiring board by improving the adhesion between the conductive part and the reinforcing part made of conductive resin to the connected body and the wiring board, It is conceivable to increase the pressure, but this easily breaks the piezoelectric layer. Therefore, in order to improve the connection strength between the body to be connected and the wiring board, even if it is difficult to increase the pressure applied when connecting the two, the reinforcing portion is flexible with the surface of the coating film of the wiring board. The connection strength between the body to be connected and the wiring board can be improved by disposing it at a position across the surface of the conductive substrate.

さらに、前記補強部は、複数のバンプが密集して配置されたバンプ群で構成されていることが好ましい。仮に、1つのバンプ群に属する複数のバンプの総和と同じ、1つの体積の大きなバンプを補強部にすると、被接続体と配線基板の間において、加圧により押しつぶされるバンプの広がり方を制御するのは困難であり、広がってほしくない方向に広がるおそれがある。例えば、補強部が導通部に向かって広がってしまい、導通部とショートしてしまうと、導通部の抵抗値が大きくなってしまうことなどが懸念される。そこで、複数のバンプから構成されるバンプ群を補強部とすることで、それぞれのバンプの配置を決めるだけで、補強部の形状を容易に制御することができる。   Furthermore, it is preferable that the reinforcing portion is constituted by a bump group in which a plurality of bumps are densely arranged. Assuming that a single large-volume bump, which is the same as the sum of a plurality of bumps belonging to one bump group, is used as the reinforcing portion, the spread of the bumps that are crushed by pressure between the connected body and the wiring board is controlled. Is difficult and may spread in the direction you do not want it to spread. For example, if the reinforcing part spreads toward the conducting part and short-circuits with the conducting part, there is a concern that the resistance value of the conducting part will increase. Therefore, by using a bump group composed of a plurality of bumps as the reinforcing portion, the shape of the reinforcing portion can be easily controlled only by determining the arrangement of each bump.

また、前記配線基板は、前記被接続体と接続された領域から所定の一方向に引き出されており、1つの前記バンプ群に属する前記複数のバンプは、前記配線基板の、前記基板側接点よりも前記一方向側において、前記配線基板と平行で且つ前記一方向と直交する幅方向に並べて配置されていることが好ましい。これによると、配線基板の引き出された部分に被接続体から離れる方向の力が加わったときに、最も力を受ける配線基板の一方向と直交する幅方向に沿った部分において、補強部を構成する複数のバンプが幅方向に並んでおり、接続強度をその部分において向上させることができ、被接続体からの配線基板の剥離を一層防止することができる。   Further, the wiring board is drawn out in a predetermined direction from a region connected to the connected body, and the plurality of bumps belonging to one bump group are formed from the board-side contacts of the wiring board. Also, on the one direction side, it is preferable that they are arranged side by side in a width direction parallel to the wiring board and orthogonal to the one direction. According to this, when a force in a direction away from the connected body is applied to the drawn-out part of the wiring board, the reinforcing part is configured in a part along the width direction orthogonal to one direction of the wiring board that receives the most force. The plurality of bumps to be arranged are arranged in the width direction, the connection strength can be improved in that portion, and the separation of the wiring board from the connected body can be further prevented.

本発明の配線基板の接続方法は、電気接点を備えた被接続体に、前記被接続体と対向する面に基板側接点が設けられた絶縁性樹脂からなる可撓性基板と、前記可撓性基板の前記被接続体と対向する面を、前記基板側接点及び一部領域を除いて覆う被覆膜とを有する配線基板に接続する配線基板の接続方法であって、前記被接続体の前記電気接点の上、または、前記配線基板の前記基板側接点の上に、金属材料と熱硬化性樹脂とを含む導電性樹脂を付着させる第1付着工程と、前記配線基板との接続姿勢において、前記被接続体の、前記配線基板における前記被覆膜の表面と前記可撓性基板の前記一部領域の表面とにまたがる領域と対向する領域、または、前記配線基板の、前記被覆膜の表面と前記可撓性基板の前記一部領域の表面とにまたがる領域に、前記導電性樹脂を付着させる第2付着工程と、前記第1付着工程及び前記第2付着工程の後に、前記被接続体の前記電気接点と前記配線基板の前記基板側接点が対向するように位置合わせして、前記被接続体と前記配線基板を互いに加熱しながら押し付けて、前記被接続体と前記配線基板を接着する接着工程と、を備えており、前記接着工程において、前記第1付着工程で付着させた前記導電性樹脂は、前記電気接点と前記基板側接点を電気的に接続しており、前記第2付着工程で付着させた前記導電性樹脂は、前記被接続体と前記配線基板を導通せず、前記被接続体と前記配線基板の機械的な接続を補強している。   The wiring board connecting method of the present invention includes a flexible substrate made of an insulating resin having a substrate-side contact provided on a surface facing the connected body on a connected body having an electrical contact, and the flexible A wiring board connection method for connecting to a wiring board having a coating film that covers a surface of the conductive substrate facing the connected body except for the substrate-side contact and a partial region, In a first attachment step of attaching a conductive resin containing a metal material and a thermosetting resin on the electrical contact or on the board-side contact of the wiring board, and in a connection posture with the wiring board A region of the body to be connected facing a region spanning a surface of the coating film on the wiring substrate and a surface of the partial region of the flexible substrate, or the coating film of the wiring substrate And the surface of the partial area of the flexible substrate. After the second attaching step for attaching the conductive resin to the region, the first attaching step, and the second attaching step, the electrical contact of the connected body and the substrate-side contact of the wiring board face each other. And bonding the bonded body and the wiring board by heating and pressing the connected body and the wiring board to each other, and bonding the connected body and the wiring board. The conductive resin adhered in the first attaching step electrically connects the electrical contact and the substrate side contact, and the conductive resin attached in the second attaching step is connected to the connected body. The wiring board is not conducted, and mechanical connection between the connected body and the wiring board is reinforced.

本発明の配線基板の接続方法によると、補強部を配線基板の被覆膜の表面と可撓性基板の表面とにまたがる位置に配置しているため、補強部を配線基板の被覆膜の表面、または、可撓性基板の表面にだけ配置している場合に比べて、被接続体と配線基板の接続強度をより向上させて、被接続体からの配線基板のずれや剥離を防止することができる。   According to the wiring board connection method of the present invention, the reinforcing portion is disposed at a position straddling the surface of the coating film of the wiring board and the surface of the flexible substrate. Compared with the case where it is arranged only on the surface or the surface of the flexible substrate, the connection strength between the connected body and the wiring board is further improved, and the displacement and peeling of the wiring board from the connected body are prevented. be able to.

補強部を配線基板の被覆膜の表面と可撓性基板の表面とにまたがる位置に配置することで、補強部が配線基板の被覆膜の表面、または、可撓性基板の表面にだけ重なって配置されている場合に比べて、被接続体と配線基板の接続強度をより向上させて、被接続体からの配線基板のずれや剥離を防止することができる。   By arranging the reinforcing part at a position across the surface of the coating film of the wiring board and the surface of the flexible board, the reinforcing part is only on the surface of the coating film of the wiring board or the surface of the flexible board. Compared with the case where they are overlapped, the connection strength between the connected body and the wiring board can be further improved, and the displacement and peeling of the wiring board from the connected body can be prevented.

本実施形態に係るプリンタの概略平面図である。1 is a schematic plan view of a printer according to an embodiment. インクジェットヘッドの平面図である。It is a top view of an inkjet head. COFの平面図である。It is a top view of COF. 図2及び図3の部分拡大図であり、(a)は図2のP1部の拡大図であり、(b)は図3のP2部の拡大図である。4 is a partially enlarged view of FIG. 2 and FIG. 3, (a) is an enlarged view of a P1 portion of FIG. 2, and (b) is an enlarged view of a P2 portion of FIG. 図4(a)のA−A線断面図である。It is the sectional view on the AA line of Fig.4 (a). 図4(b)のB−B線断面図である。It is the BB sectional view taken on the line of FIG.4 (b). 圧電アクチュエータとCOFの接続強度について説明する写真であり、(a)は比較例1におけるCOFと圧電アクチュエータの補強部を含む縦断面図であり、(b)は比較例1におけるCOF側の剥離面であり、(c)は比較例2におけるCOFと圧電アクチュエータの補強部を含む縦断面図であり、(d)は比較例2におけるCOF側の剥離面であり、(e)は実施例におけるCOF側の剥離面である。It is the photograph explaining the connection strength of a piezoelectric actuator and COF, (a) is a longitudinal cross-sectional view containing the reinforcement part of COF and a piezoelectric actuator in the comparative example 1, (b) is the peeling surface by the side of the COF in the comparative example 1 (C) is a longitudinal sectional view including the reinforcing portion of the COF and the piezoelectric actuator in Comparative Example 2, (d) is a peeling surface on the COF side in Comparative Example 2, and (e) is the COF in Example. This is the side peeling surface. 圧電アクチュエータとCOFとを接続する工程について説明する図であり、(a)は付着工程であり、(b)は接着工程であり、(c)は完成時である。It is a figure explaining the process of connecting a piezoelectric actuator and COF, (a) is an adhesion process, (b) is an adhesion process, (c) is the time of completion. 変形例1における図4(b)相当の図である。It is a figure equivalent to FIG.4 (b) in the modification 1. FIG. 変形例2における図4(b)相当の図である。It is a figure equivalent to Drawing 4 (b) in modification 2.

以下、本発明の好適な実施形態について説明する。本実施形態は、記録用紙に対してインクを噴射するインクジェットヘッドを有するインクジェットプリンタに本発明を適用した一例である。   Hereinafter, preferred embodiments of the present invention will be described. This embodiment is an example in which the present invention is applied to an inkjet printer having an inkjet head that ejects ink onto a recording sheet.

まず、本実施形態のプリンタの概略構成について説明する。図1は、本実施形態に係るプリンタの概略構成図である。図1に示すように、プリンタ1は、所定の走査方向(図1の左右方向)に沿って往復移動可能に構成されたキャリッジ2と、このキャリッジ2に搭載されたインクジェットヘッド3と、記録用紙Pを走査方向と直交する紙送り方向に搬送する搬送機構4などを備えている。   First, a schematic configuration of the printer of this embodiment will be described. FIG. 1 is a schematic configuration diagram of a printer according to the present embodiment. As shown in FIG. 1, a printer 1 includes a carriage 2 configured to be reciprocally movable along a predetermined scanning direction (left-right direction in FIG. 1), an inkjet head 3 mounted on the carriage 2, and a recording sheet. A transport mechanism 4 for transporting P in the paper feed direction orthogonal to the scanning direction is provided.

キャリッジ2は、走査方向に平行に延びる2本のガイド軸17に沿って往復移動可能に構成されている。また、キャリッジ2には、無端ベルト18が連結されており、キャリッジ駆動モータ19によって無端ベルト18が走行駆動されたときに、キャリッジ2は、無端ベルト18の走行にともなって走査方向に移動するようになっている。   The carriage 2 is configured to be reciprocally movable along two guide shafts 17 extending in parallel with the scanning direction. An endless belt 18 is connected to the carriage 2, and when the endless belt 18 is driven to travel by the carriage drive motor 19, the carriage 2 moves in the scanning direction as the endless belt 18 travels. It has become.

このキャリッジ2には、インクジェットヘッド3が搭載されている。インクジェットヘッド3は、その下面(図1の紙面向こう側の面)に複数のノズル35(図5参照)を備えている。このインクジェットヘッド3は、搬送機構4により図1の下方(紙送り方向)に搬送される記録用紙Pに対して、図示しないインクカートリッジから供給されたインクを複数のノズル35から噴射するように構成されている。   An ink jet head 3 is mounted on the carriage 2. The ink-jet head 3 includes a plurality of nozzles 35 (see FIG. 5) on the lower surface (the surface on the other side of the paper in FIG. 1). The inkjet head 3 is configured to eject ink supplied from an ink cartridge (not shown) from a plurality of nozzles 35 onto a recording paper P that is transported downward (paper feeding direction) in FIG. Has been.

搬送機構4は、インクジェットヘッド3よりも搬送方向上流側に配置された給紙ローラ12と、インクジェットヘッド3よりも搬送方向下流側に配置された排紙ローラ13と、を有している。給紙ローラ12と排紙ローラ13は、それぞれ、給紙モータ10と排紙モータ11により回転駆動される。そして、この搬送機構4は、給紙ローラ12により、記録用紙Pを図1の上方からインクジェットヘッド3へ搬送するとともに、排紙ローラ13により、インクジェットヘッド3によって画像や文字などが記録された記録用紙Pを図1の下方へ排出する。   The transport mechanism 4 includes a paper feed roller 12 disposed on the upstream side in the transport direction with respect to the ink jet head 3 and a paper discharge roller 13 disposed on the downstream side in the transport direction with respect to the ink jet head 3. The paper feed roller 12 and the paper discharge roller 13 are rotationally driven by a paper feed motor 10 and a paper discharge motor 11, respectively. The transport mechanism 4 transports the recording paper P from above in FIG. 1 to the ink jet head 3 by the paper feed roller 12, and records the images and characters recorded by the ink jet head 3 by the paper discharge roller 13. The paper P is discharged downward in FIG.

次に、インクジェットヘッド3について説明する。図2は、COF側から見たインクジェットヘッドの平面図である。図3は、インクジェットヘッド側から見たCOFの平面図である。図4は、図2及び図3の部分拡大図であり、(a)は図2のP1部の拡大図であり、(b)は図3のP2部の拡大図である。図5は、図4(a)のA−A線断面図である。なお、図2に示すインクジェットヘッドの平面図では、圧電アクチュエータ31の上方に配置されるCOF50を2点鎖線で示している。また、図3においては、ドライバICと基板側接点を接続する配線の図示を省略している。さらに、図4(a)においては、個別電極をハッチングで示し、図4(b)においては、ソルダーレジストをハッチングで示している。   Next, the inkjet head 3 will be described. FIG. 2 is a plan view of the inkjet head viewed from the COF side. FIG. 3 is a plan view of the COF as seen from the inkjet head side. 4 is a partially enlarged view of FIG. 2 and FIG. 3, (a) is an enlarged view of the P1 portion of FIG. 2, and (b) is an enlarged view of the P2 portion of FIG. FIG. 5 is a cross-sectional view taken along line AA in FIG. In the plan view of the inkjet head shown in FIG. 2, the COF 50 disposed above the piezoelectric actuator 31 is indicated by a two-dot chain line. Further, in FIG. 3, illustration of wiring for connecting the driver IC and the substrate side contact is omitted. Further, in FIG. 4A, the individual electrodes are indicated by hatching, and in FIG. 4B, the solder resist is indicated by hatching.

図2〜図5に示すように、インクジェットヘッド3は、インク流路が形成された流路ユニット30と、流路ユニット30のインク流路内のインクに噴射圧力を付与する圧電アクチュエータ31(被接続体)と、圧電アクチュエータ31の上面を覆う配線基板50(Chip On Film:COF)とを有している。   As shown in FIGS. 2 to 5, the inkjet head 3 includes a flow path unit 30 in which an ink flow path is formed, and a piezoelectric actuator 31 (covered) that applies an ejection pressure to the ink in the ink flow path of the flow path unit 30. Connection body) and a wiring board 50 (Chip On Film: COF) covering the upper surface of the piezoelectric actuator 31.

流路ユニット30には、図示しない4つのインクカートリッジにそれぞれ接続される4つのインク供給口32と、各インク供給口32に接続され、図2の上下方向(紙送り方向)に沿って延びるマニホールド33と、各マニホールド33に連通した複数の圧力室34と、複数の圧力室34にそれぞれ連通する複数のノズル35が形成されている。   The flow path unit 30 includes four ink supply ports 32 connected to four ink cartridges (not shown), and manifolds connected to the ink supply ports 32 and extending in the vertical direction (paper feeding direction) in FIG. 33, a plurality of pressure chambers 34 communicating with each manifold 33, and a plurality of nozzles 35 communicating with the plurality of pressure chambers 34, respectively.

複数の圧力室34が紙送り方向に延在するマニホールド33に沿って配列されることで、1つの圧力室列8が構成されている。さらに、走査方向に関して隣接する2つの圧力室列8によって1つの圧力室群7が構成され、流路ユニット30には、走査方向に並んだ合計5つの圧力室群7が設けられている。なお、5つの圧力室群7のうち、図2中右側に位置する2つの圧力室群7は、インク供給口32からブラックインクが供給される、ブラック用の圧力室群7である。また、図2中左側に位置する3つの圧力室群7は、3つのインク供給口32からそれぞれ3色のカラーインク(イエロー、マゼンタ、シアン)が供給される、カラー用の圧力室群7である。   A plurality of pressure chambers 34 are arranged along the manifold 33 extending in the paper feeding direction, thereby forming one pressure chamber row 8. Furthermore, one pressure chamber group 7 is constituted by two pressure chamber rows 8 adjacent in the scanning direction, and the flow path unit 30 is provided with a total of five pressure chamber groups 7 arranged in the scanning direction. Of the five pressure chamber groups 7, the two pressure chamber groups 7 located on the right side in FIG. 2 are black pressure chamber groups 7 to which black ink is supplied from the ink supply port 32. Further, the three pressure chamber groups 7 located on the left side in FIG. 2 are color pressure chamber groups 7 to which three color inks (yellow, magenta, cyan) are respectively supplied from the three ink supply ports 32. is there.

複数の圧力室34にそれぞれ連通する複数のノズル35は、流路ユニット30の下面に貫通している。また、これら複数のノズル35も、複数の圧力室34と同様に配列されており、図2中右側には、2つの圧力室群7にそれぞれ対応した、ブラックインクを噴射する2つのノズル群が配置され、図2中左側には、3つの圧力室群7にそれぞれ対応した、3色のカラーインク用を噴射する3つのノズル群が配置されている。   A plurality of nozzles 35 communicating with the plurality of pressure chambers 34 penetrates the lower surface of the flow path unit 30. The plurality of nozzles 35 are also arranged in the same manner as the plurality of pressure chambers 34. On the right side in FIG. 2, there are two nozzle groups for ejecting black ink corresponding to the two pressure chamber groups 7, respectively. In the left side of FIG. 2, three nozzle groups for ejecting three color inks corresponding to the three pressure chamber groups 7 are arranged.

圧電アクチュエータ31は、複数の圧力室34を覆うように流路ユニット30に接合された振動板40と、振動板40の上面に配置された圧電層41と、圧電層41の上面に複数の圧力室34と対応して設けられた複数の個別電極42と、複数の個別電極42の端部に形成された複数の入力接点43(電気接点)とを有している。   The piezoelectric actuator 31 includes a diaphragm 40 joined to the flow path unit 30 so as to cover the plurality of pressure chambers 34, a piezoelectric layer 41 disposed on the upper surface of the diaphragm 40, and a plurality of pressures on the upper surface of the piezoelectric layer 41. A plurality of individual electrodes 42 provided corresponding to the chamber 34 and a plurality of input contacts 43 (electrical contacts) formed at ends of the plurality of individual electrodes 42 are provided.

そして、この圧電アクチュエータ31は、後述するCOF50のドライバIC51から個別電極42に所定の駆動信号が供給されたときに、圧電層41に生じる圧電歪みを利用して、振動板40に撓み変形を生じさせるようになっている。この振動板40の撓み変形により圧力室34の容積が変動することで、圧力室34内のインクに圧力が付与され、圧力室34に連通するノズル35からインクが噴射される。複数の入力接点43は、複数のノズル35に対応して紙送り方向に所定間隔をあけて並べて配置されているとともに、この列が走査方向に並べて配置されている。   The piezoelectric actuator 31 uses the piezoelectric distortion generated in the piezoelectric layer 41 when a predetermined drive signal is supplied from the driver IC 51 of the COF 50 to be described later to the individual electrode 42 to cause the diaphragm 40 to bend and deform. It is supposed to let you. When the volume of the pressure chamber 34 fluctuates due to the bending deformation of the vibration plate 40, pressure is applied to the ink in the pressure chamber 34, and ink is ejected from the nozzle 35 communicating with the pressure chamber 34. The plurality of input contacts 43 are arranged side by side with a predetermined interval in the paper feed direction corresponding to the plurality of nozzles 35, and this row is arranged side by side in the scanning direction.

次に、COF50について説明する。図2、図5に示すように、COF50は、複数の個別電極42が配置された圧電アクチュエータ31の上面に接続されており、紙送り方向に沿ってインク供給口32とは反対側に引き出されて、上方に折り曲げられている。また、COF50の引き出された側の先端部近傍にはドライバIC51が配置されている。   Next, the COF 50 will be described. As shown in FIGS. 2 and 5, the COF 50 is connected to the upper surface of the piezoelectric actuator 31 on which a plurality of individual electrodes 42 are arranged, and is drawn out to the side opposite to the ink supply port 32 along the paper feed direction. And bent upward. In addition, a driver IC 51 is disposed in the vicinity of the leading end of the COF 50 that is pulled out.

また、図3及び図4(b)に示すように、COF50は、基板52と、基板52の一方の面に形成された複数の基板側接点53と、基板52の基板側接点53が形成された面に実装されたドライバIC51と、基板52の基板側接点53が形成された面を覆うソルダーレジスト54(被覆膜)とを有している。   As shown in FIGS. 3 and 4B, the COF 50 includes a substrate 52, a plurality of substrate-side contacts 53 formed on one surface of the substrate 52, and a substrate-side contact 53 of the substrate 52. And a solder resist 54 (covering film) that covers the surface of the substrate 52 on which the substrate-side contact 53 is formed.

基板52は、ポリイミドフィルムからなる矩形状の絶縁性基板であり、可撓性を有している。複数の基板側接点53は、銅箔などの金属箔からなり、圧電アクチュエータ31の上面に接続されたときに、基板52の圧電アクチュエータ31と対向する下面52a(図3の紙面手前の面)に形成されており、圧電アクチュエータ31に設けられた複数の入力接点43と対向するように、基板52の長手方向に所定間隔をあけて並べて配置されているとともに、この列が幅方向に並べて配置されている。そして、複数の基板側接点53は、基板52に形成された複数の配線56(図4(b)参照)によってドライバIC51とそれぞれ接続されている。   The substrate 52 is a rectangular insulating substrate made of a polyimide film and has flexibility. The plurality of substrate-side contacts 53 are made of a metal foil such as a copper foil, and when connected to the upper surface of the piezoelectric actuator 31, the lower surface 52a (the surface on the front side of the paper in FIG. 3) facing the piezoelectric actuator 31 of the substrate 52. The rows are arranged at predetermined intervals in the longitudinal direction of the substrate 52 so as to face the plurality of input contacts 43 provided on the piezoelectric actuator 31, and the rows are arranged in the width direction. ing. The plurality of substrate-side contacts 53 are connected to the driver IC 51 by a plurality of wirings 56 (see FIG. 4B) formed on the substrate 52, respectively.

ドライバIC51は、複数の配線56を介して複数の個別電極42のそれぞれに対して駆動信号を供給するものである。ドライバIC51が供給する駆動信号は、電源電位とグランド電位の電位の切り替えによって生成されたパルス信号であり、このパルス信号の波形によってノズル35から噴射される液滴径や噴射タイミングが異なる。   The driver IC 51 supplies a drive signal to each of the plurality of individual electrodes 42 via the plurality of wirings 56. The drive signal supplied by the driver IC 51 is a pulse signal generated by switching between the power supply potential and the ground potential, and the droplet diameter and ejection timing ejected from the nozzle 35 differ depending on the waveform of this pulse signal.

ソルダーレジスト54は、絶縁性樹脂からなり、ドライバIC51の実装される領域52b、幅方向の両端に配置された1列の基板側接点53を囲む領域52c、及び、この両端の2列の基板側接点53を除く残りの基板側接点53を走査方向に関して近接する2列の基板側接点53ごとに囲む領域52dを除いて、基板52の下面52aを覆っている。すなわち、ドライバIC51、複数の基板側接点53、及び、複数の基板側接点53の周囲における基板52の下面52aが、ソルダーレジスト54から露出している。   The solder resist 54 is made of an insulating resin, and includes a region 52b where the driver IC 51 is mounted, a region 52c surrounding one row of substrate-side contacts 53 arranged at both ends in the width direction, and two rows of substrate sides at both ends. The lower surface 52 a of the substrate 52 is covered except for the region 52 d surrounding the remaining substrate-side contacts 53 excluding the contacts 53 for each of the two rows of substrate-side contacts 53 adjacent in the scanning direction. That is, the driver IC 51, the plurality of substrate side contacts 53, and the lower surface 52 a of the substrate 52 around the plurality of substrate side contacts 53 are exposed from the solder resist 54.

次に、COF50と圧電アクチュエータ31との接続構造について説明する。図6は、図4(b)のB−B線断面図である。なお、図6においては、COF50単体の断面図ではなく、COF50に圧電アクチュエータ31が接続されているときの断面図としている。また、圧電アクチュエータ31の振動板40の図示を省略し、COF50と圧電アクチュエータ31の上下関係を逆にして図示している。COF50は、複数の基板側接点53と圧電アクチュエータ31の複数の入力接点43が対向して、基板側接点53と入力接点43をそれぞれ導通(電気的に接続)させながら機械的に接続する複数の導通部60(図5参照)と、圧電アクチュエータ31との接続強度を向上させるための複数の補強部62(図6参照)で、圧電アクチュエータ31に機械的に接続されている。なお、以下の説明においては、機械的に接続することを単に「接続する」と表現する。   Next, a connection structure between the COF 50 and the piezoelectric actuator 31 will be described. FIG. 6 is a cross-sectional view taken along line BB in FIG. 6 is not a sectional view of the COF 50 alone, but a sectional view when the piezoelectric actuator 31 is connected to the COF 50. In addition, the illustration of the diaphragm 40 of the piezoelectric actuator 31 is omitted, and the vertical relationship between the COF 50 and the piezoelectric actuator 31 is reversed. In the COF 50, a plurality of substrate-side contacts 53 and a plurality of input contacts 43 of the piezoelectric actuator 31 face each other, and a plurality of mechanically connected while electrically connecting (electrically connecting) the substrate-side contacts 53 and the input contacts 43, respectively. A plurality of reinforcing portions 62 (see FIG. 6) for improving the connection strength between the conduction portion 60 (see FIG. 5) and the piezoelectric actuator 31 are mechanically connected to the piezoelectric actuator 31. In the following description, mechanical connection is simply expressed as “connect”.

複数の導通部60は、金属材料と熱硬化性樹脂とを含む導電性樹脂からなり、基板52の複数の基板側接点53と圧電アクチュエータ31の複数の入力接点43との間に設けられて、両者を導通させるとともに、接続している。   The plurality of conductive portions 60 are made of a conductive resin including a metal material and a thermosetting resin, and are provided between the plurality of substrate-side contacts 53 of the substrate 52 and the plurality of input contacts 43 of the piezoelectric actuator 31. Both are made conductive and connected.

複数の補強部62は、複数の導通部60と同じ導電性樹脂からなり、基板52と圧電アクチュエータ31の間の、複数の導通部60よりもドライバIC51側(COF50の引き出されている側)において、走査方向に1列に並んで設けられている。そして、各補強部62は、平面視で走査方向に長尺な楕円状をしており、COF50側の接着面50aを見ると、基板側接点53の列を囲む領域52c、52d内の基板52の表面とソルダーレジスト54の表面とにまたがる位置に配置されている。導通部60と補強部62は、ペースト状の導電性樹脂を基板52または圧電アクチュエータ31の所定の位置に塗布して、COF50を圧電アクチュエータ31に向かって加熱しながら加圧することで、導電性樹脂を硬化させて形成される。   The plurality of reinforcing portions 62 are made of the same conductive resin as the plurality of conducting portions 60, and are closer to the driver IC 51 (the side where the COF 50 is drawn) than the plurality of conducting portions 60 between the substrate 52 and the piezoelectric actuator 31. Are arranged in a line in the scanning direction. Each reinforcing portion 62 has an elliptical shape that is long in the scanning direction in plan view. When the bonding surface 50a on the COF 50 side is viewed, the substrates 52 in the regions 52c and 52d surrounding the row of the substrate side contacts 53 are provided. Is disposed at a position straddling the surface of the solder resist 54 and the surface of the solder resist 54. The conductive portion 60 and the reinforcing portion 62 apply a paste-like conductive resin to a predetermined position of the substrate 52 or the piezoelectric actuator 31 and pressurize the COF 50 while heating it toward the piezoelectric actuator 31. Is formed by curing.

ところで、COF50は、圧電アクチュエータ31から離れる方向(上方)に折り曲げられて使用されるため、圧電アクチュエータ31から離れる方向の力に抗って、圧電アクチュエータ31から剥離しないように、圧電アクチュエータ31とCOF50の接続強度を向上させる必要がある。   By the way, since the COF 50 is bent and used in a direction away from the piezoelectric actuator 31 (upward), the piezoelectric actuator 31 and the COF 50 are prevented from peeling from the piezoelectric actuator 31 against a force in a direction away from the piezoelectric actuator 31. It is necessary to improve the connection strength.

しかしながら、圧電アクチュエータ31の圧電層41は圧力がかかりすぎると破壊されやすい。また、導通部60となる導電性樹脂に圧力がかかりすぎると、入力接点43から個別電極42にこの導電性樹脂がはみ出しやすくなる。そして、導電性樹脂が個別電極42まではみ出すと、この個別電極42と重なる圧電層41部分と対向し、撓み変形する振動板40の変形を阻害することになり、ノズル35からのインクの噴射特性が低下してしまう。上述したような問題が生じないように、COF50と圧電アクチュエータ31の接続時に加圧を大きくするのは困難である。   However, the piezoelectric layer 41 of the piezoelectric actuator 31 is likely to be destroyed if too much pressure is applied. Further, if the conductive resin that becomes the conductive portion 60 is excessively pressured, the conductive resin easily protrudes from the input contact 43 to the individual electrode 42. When the conductive resin protrudes up to the individual electrode 42, it opposes the portion of the piezoelectric layer 41 that overlaps the individual electrode 42 and inhibits the deformation of the vibration plate 40 that is bent and deformed. Will fall. It is difficult to increase the pressure when connecting the COF 50 and the piezoelectric actuator 31 so that the above-described problems do not occur.

そこで、本実施形態においては、圧電アクチュエータ31とCOF50は、複数の導通部60で接続されているのに加えて、さらに、接続補強を目的とした複数の補強部62で接続されている。そして、複数の補強部62は、接続強度をより向上させるために、基板52の表面とソルダーレジスト54の表面とにまたがる位置においてCOF50に接着されている。   Therefore, in the present embodiment, the piezoelectric actuator 31 and the COF 50 are connected by a plurality of reinforcing portions 62 for the purpose of reinforcing connection in addition to being connected by a plurality of conducting portions 60. The plurality of reinforcing portions 62 are bonded to the COF 50 at positions that extend over the surface of the substrate 52 and the surface of the solder resist 54 in order to further improve the connection strength.

仮に、補強部62が、COF50の基板52の表面にだけ接着しているときには(これを、以下、比較例1とする)、補強部62自身の強度は比較的強い。そして、COF50を圧電アクチュエータ31の圧電層41から剥離すると、基板52と補強部62の接着面で剥離し、いわゆる界面破壊が生じる。   If the reinforcing portion 62 is bonded only to the surface of the substrate 52 of the COF 50 (hereinafter referred to as Comparative Example 1), the strength of the reinforcing portion 62 itself is relatively strong. When the COF 50 is peeled off from the piezoelectric layer 41 of the piezoelectric actuator 31, the COF 50 is peeled off at the bonding surface between the substrate 52 and the reinforcing portion 62, and so-called interface breakdown occurs.

また、補強部62が、COF50のソルダーレジスト54の表面にだけ接着しているときには(これを、以下、比較例2とする)、補強部62内のクラック部分が多く、補強部62自身の強度は弱い。これは、比較例2で補強部62が接着しているソルダーレジスト54が、比較例1で補強部62が接着している基板52よりも硬いことが理由として考えられる。   In addition, when the reinforcing portion 62 is adhered only to the surface of the solder resist 54 of the COF 50 (hereinafter referred to as Comparative Example 2), there are many crack portions in the reinforcing portion 62, and the strength of the reinforcing portion 62 itself. Is weak. This is considered because the solder resist 54 to which the reinforcing portion 62 is bonded in Comparative Example 2 is harder than the substrate 52 to which the reinforcing portion 62 is bonded in Comparative Example 1.

詳述すると、比較例1では、基板52と圧電層41をペースト状の導電性樹脂で接着してから硬化させると、導電性樹脂の硬化時の熱収縮に基板52が追従して、導電性樹脂に引っ張られて圧電層41に近づく方向に若干撓むため、導電性樹脂が硬化して形成された補強部62内のクラック部分は存在しない。一方、比較例2では、ソルダーレジスト54と圧電層41をペースト状の導電性樹脂で接着してから硬化させると、ソルダーレジスト54が硬いために、導電性樹脂の硬化時の熱収縮に追従せずに、熱収縮を阻害することになり、導電性樹脂が硬化して形成された補強部62内のクラック部分が多くなる。したがって、COF50を圧電アクチュエータ31の圧電層41から剥離すると、クラック部分を起点にして破壊が生じる。   More specifically, in Comparative Example 1, when the substrate 52 and the piezoelectric layer 41 are bonded together with a paste-like conductive resin and cured, the substrate 52 follows the heat shrinkage at the time of curing of the conductive resin, and the conductive property is increased. Since it is pulled by the resin and slightly bends in the direction approaching the piezoelectric layer 41, there is no crack in the reinforcing portion 62 formed by curing the conductive resin. On the other hand, in Comparative Example 2, when the solder resist 54 and the piezoelectric layer 41 are bonded with a paste-like conductive resin and then cured, the solder resist 54 is hard, so that the thermal shrinkage at the time of curing of the conductive resin can be followed. Therefore, the thermal contraction is inhibited, and the crack portion in the reinforcing portion 62 formed by curing the conductive resin increases. Therefore, when the COF 50 is peeled off from the piezoelectric layer 41 of the piezoelectric actuator 31, destruction occurs starting from the crack portion.

一方、図6に示すように、本実施形態の実施例として、補強部62が、基板52の表面とソルダーレジスト54の表面とにまたがる位置に接着されている場合において、COF50と圧電層41をペースト状の導電性樹脂で接着してから硬化させると、導電性樹脂の硬化時の熱収縮に、基板52の導電性樹脂と接着されている部分が追従して、導電性樹脂に引っ張られて圧電層41に近づく方向に若干撓む。すると、基板52と圧電層41の間の導電性樹脂に加えて、ソルダーレジスト54と圧電層41の間の導電性樹脂も、この撓みの影響を受けて、熱収縮することが可能となり、導電性樹脂が硬化して形成された補強部62にクラック部分は存在しない。   On the other hand, as shown in FIG. 6, as an example of the present embodiment, in the case where the reinforcing portion 62 is bonded to a position across the surface of the substrate 52 and the surface of the solder resist 54, the COF 50 and the piezoelectric layer 41 are bonded. When cured after pasting with a paste-like conductive resin, the portion of the substrate 52 bonded to the conductive resin follows the thermal shrinkage at the time of curing of the conductive resin, and is pulled by the conductive resin. It bends slightly in the direction approaching the piezoelectric layer 41. Then, in addition to the conductive resin between the substrate 52 and the piezoelectric layer 41, the conductive resin between the solder resist 54 and the piezoelectric layer 41 can also be thermally shrunk under the influence of this bending, and the conductive resin. There is no crack portion in the reinforcing portion 62 formed by curing the functional resin.

そして、COF50を圧電アクチュエータ31の圧電層41から剥離すると、基板52の表面に補強部62が接着されている部分においては、基板52と補強部62の接着面で剥離し、且つ、ソルダーレジスト54の表面に補強部62が接着されている部分においては、ソルダーレジスト54と補強部62の接着面で剥離せずに、ソルダーレジスト54が破壊されて剥離し、いわゆる基材破壊が生じる。   When the COF 50 is peeled from the piezoelectric layer 41 of the piezoelectric actuator 31, the portion where the reinforcing portion 62 is bonded to the surface of the substrate 52 is peeled off at the bonding surface between the substrate 52 and the reinforcing portion 62, and the solder resist 54 is peeled off. In the portion where the reinforcing portion 62 is bonded to the surface of the solder resist 54, the solder resist 54 is broken and peeled off without peeling at the bonding surface between the solder resist 54 and the reinforcing portion 62, and so-called base material breakage occurs.

また、比較例1と比較例2を比べると、比較例1のようなポリイミドフィルムからなる絶縁性の基板52と導電性樹脂の接着よりも、比較例2のような絶縁性樹脂からなるソルダーレジスト54と導電性樹脂の接着の方が、化学結合が強く、両者の接着強度が強い。したがって、本実施例は、比較例1と比べて、接着強度の強い接着面を有し、且つ、比較例2の場合と比べて、補強部62自体の強度が向上している。これにより、実施例が、比較例1及び比較例2に比べて、接着強度が強いことがわかる。   Further, comparing Comparative Example 1 and Comparative Example 2, the solder resist made of an insulating resin as in Comparative Example 2 rather than the adhesion between the insulating substrate 52 made of a polyimide film as in Comparative Example 1 and a conductive resin. The bond between the conductive resin 54 and the conductive resin is stronger in chemical bond and stronger in bond strength between the two. Therefore, this example has an adhesive surface with a stronger adhesive strength than that of Comparative Example 1, and the strength of the reinforcing portion 62 itself is improved as compared with the case of Comparative Example 2. Thus, it can be seen that the adhesive strength of the example is higher than that of the comparative example 1 and the comparative example 2.

次に、COF50に対する補強部62の接着位置の違いによる圧電アクチュエータ31とCOF50の接続強度の違いを検証した結果について説明する。図7は、圧電アクチュエータとCOFの接続強度について説明する写真であり、(a)は比較例1におけるCOFと圧電アクチュエータの補強部を含む縦断面図であり、(b)は比較例1におけるCOF側の剥離面であり、(c)は比較例2におけるCOFと圧電アクチュエータの補強部を含む縦断面図であり、(d)は比較例2におけるCOF側の剥離面であり、(e)は実施例におけるCOF側の剥離面である。   Next, the result of verifying the difference in connection strength between the piezoelectric actuator 31 and the COF 50 due to the difference in the bonding position of the reinforcing portion 62 to the COF 50 will be described. 7A and 7B are photographs for explaining the connection strength between the piezoelectric actuator and the COF. FIG. 7A is a longitudinal sectional view including the COF and the reinforcing portion of the piezoelectric actuator in Comparative Example 1, and FIG. 7B is the COF in Comparative Example 1. (C) is a longitudinal cross-sectional view including the COF and the reinforcing portion of the piezoelectric actuator in Comparative Example 2, (d) is the COF side peeling surface in Comparative Example 2, and (e) is a side peeling surface. It is the peeling surface by the side of COF in an Example.

ここでは、基板52は、厚み38μmのポリイミドフィルム(デュポン社製 カプトンEN−C)からなる矩形状の絶縁性基板を使用している。また、ソルダーレジスト54は、ポリイミド系の絶縁性樹脂(日立化成工業社製 SN−9000)を使用している。そして、導通部60や補強部62となる導電性樹脂は、金属材料であるAgが約8割を占め、残りを熱硬化性樹脂であるエポキシ樹脂を使用している。   Here, the substrate 52 is a rectangular insulating substrate made of a polyimide film having a thickness of 38 μm (Kapton EN-C manufactured by DuPont). The solder resist 54 is made of polyimide insulating resin (SN-9000 manufactured by Hitachi Chemical Co., Ltd.). And as for the conductive resin used as the conduction | electrical_connection part 60 and the reinforcement part 62, Ag which is a metal material occupies about 80%, and the remainder uses the epoxy resin which is a thermosetting resin.

上述したように、補強部62が、COF50側において、基板52の表面とソルダーレジスト54の表面とにまたがる位置に接着されているものを実施例、基板52の表面にだけ接着されているものを比較例1、ソルダーレジスト54の表面にだけ接着されているものを比較例2として、圧電アクチュエータ31からCOF50を剥離したときの、COF50側の剥離面の状態を比較する。   As described above, the reinforcing portion 62 is bonded to the COF 50 side at a position across the surface of the substrate 52 and the surface of the solder resist 54. In the embodiment, the reinforcing portion 62 is bonded only to the surface of the substrate 52. Comparative Example 1 is a comparative example 2 that is adhered only to the surface of the solder resist 54, and the state of the peeling surface on the COF 50 side when the COF 50 is peeled from the piezoelectric actuator 31 is compared.

図7(a)に示すように、比較例1として、補強部162が、COF150の基板152の表面にだけ接着しているときには、補強部162自身の強度は比較的強い。そして、COF150を圧電アクチュエータ31の圧電層41から剥離すると、図7(b)に示すように、基板152と補強部162の接着面で剥離しており、いわゆる界面破壊が生じている。   As shown in FIG. 7A, as Comparative Example 1, when the reinforcing portion 162 is bonded only to the surface of the substrate 152 of the COF 150, the strength of the reinforcing portion 162 itself is relatively strong. When the COF 150 is peeled off from the piezoelectric layer 41 of the piezoelectric actuator 31, as shown in FIG. 7B, the COF 150 is peeled off at the bonding surface between the substrate 152 and the reinforcing portion 162, and so-called interface destruction occurs.

次に、図7(c)に示すように、比較例2として、補強部262が、COF250のソルダーレジスト254の表面にだけ接着しているときには、補強部262内のクラック部分(補強部262内の黒い線状の部分)が多く、補強部162自身の強度は弱いことがわかる。これは、上述したように、比較例2において補強部262が接着しているソルダーレジスト254は、比較例1において補強部162が接着している基板152よりも硬いことが理由として考えられる。そして、COF250を圧電アクチュエータ31の圧電層41から剥離すると、図7(d)に示すように、クラック部分を起点にして破壊が生じている。   Next, as shown in FIG. 7C, as Comparative Example 2, when the reinforcing portion 262 is adhered only to the surface of the solder resist 254 of the COF 250, the crack portion in the reinforcing portion 262 (inside the reinforcing portion 262). It can be seen that the strength of the reinforcing portion 162 itself is weak. As described above, this is considered because the solder resist 254 to which the reinforcing portion 262 is bonded in the comparative example 2 is harder than the substrate 152 to which the reinforcing portion 162 is bonded in the comparative example 1. Then, when the COF 250 is peeled off from the piezoelectric layer 41 of the piezoelectric actuator 31, as shown in FIG.

一方、図6に示すように、本実施形態の実施例として、補強部62が、基板52の表面とソルダーレジスト54の表面とにまたがる位置に接着されている場合において、COF50と圧電層41をペースト状の導電性樹脂で接着してから硬化させると、導電性樹脂が硬化して形成された補強部62にクラック部分は存在しない。   On the other hand, as shown in FIG. 6, as an example of the present embodiment, in the case where the reinforcing portion 62 is bonded to a position across the surface of the substrate 52 and the surface of the solder resist 54, the COF 50 and the piezoelectric layer 41 are bonded. When cured after bonding with a paste-like conductive resin, there is no crack in the reinforcing portion 62 formed by curing the conductive resin.

そして、COF50を圧電アクチュエータ31の圧電層41から剥離すると、図7(e)に示すように、基板52の表面に補強部62が接着されている部分においては、基板52と補強部62の接着面で剥離し、且つ、ソルダーレジスト54の表面に補強部62が接着されている部分においては、ソルダーレジスト54と補強部62の接着面で剥離せずに、ソルダーレジスト54が破壊されて剥離しており、いわゆる基材破壊が生じている。この検証結果からも、実施例が、比較例1及び比較例2に比べて、接着強度が強いことがわかる。   Then, when the COF 50 is peeled off from the piezoelectric layer 41 of the piezoelectric actuator 31, as shown in FIG. 7E, in the portion where the reinforcing portion 62 is bonded to the surface of the substrate 52, the bonding between the substrate 52 and the reinforcing portion 62 is performed. At the portion where the reinforcing portion 62 is bonded to the surface of the solder resist 54, the solder resist 54 is broken and peeled off without peeling at the bonding surface of the solder resist 54 and the reinforcing portion 62. In other words, so-called base material destruction occurs. From this verification result, it can be seen that the adhesive strength of the example is higher than that of the comparative example 1 and the comparative example 2.

次に、圧電アクチュエータ31とCOF50の接続方法について説明する。図8は、圧電アクチュエータとCOFとを接続する工程について説明する図であり、(a)は付着工程であり、(b)は接着工程であり、(c)は完成時である。なお、図8において、圧電アクチュエータ31の振動板40の図示は省略し、圧電層41のみ図示している。また、この断面図は、走査方向に沿った導通部60の断面図、及び、走査方向に沿ったCOF50の基板52の表面とソルダーレジスト54の表面とにまたがった補強部62の断面図を図示可能に、一方向に沿った断面図ではなく、紙送り方向にずれた2本の走査方向に沿った断面図からなる。   Next, a method for connecting the piezoelectric actuator 31 and the COF 50 will be described. FIG. 8 is a diagram illustrating a process of connecting the piezoelectric actuator and the COF. (A) is an adhesion process, (b) is an adhesion process, and (c) is a completed stage. In FIG. 8, the illustration of the diaphragm 40 of the piezoelectric actuator 31 is omitted, and only the piezoelectric layer 41 is shown. In addition, this cross-sectional view shows a cross-sectional view of the conductive portion 60 along the scanning direction and a cross-sectional view of the reinforcing portion 62 extending over the surface of the substrate 52 of the COF 50 and the surface of the solder resist 54 along the scanning direction. Possible, it is not a cross-sectional view along one direction but a cross-sectional view along two scanning directions shifted in the paper feeding direction.

まず、図8(a)に示すように、圧電アクチュエータ31の圧電層41の表面における複数の入力接点43、及び、COF50と対向したときに、基板52の表面とソルダーレジスト54の表面とにまたがる領域と重なり合うようなマスク穴70aが形成されたマスク70を、圧電層41上に設置する。その後、マスク穴70aにペースト状の導電性樹脂71を堆積させた後、マスク70を圧電層41上から取り除く(第1、第2付着工程)。   First, as shown in FIG. 8A, when facing the plurality of input contacts 43 and the COF 50 on the surface of the piezoelectric layer 41 of the piezoelectric actuator 31, it straddles the surface of the substrate 52 and the surface of the solder resist 54. A mask 70 in which a mask hole 70 a that overlaps the region is formed is placed on the piezoelectric layer 41. Thereafter, a paste-like conductive resin 71 is deposited in the mask hole 70a, and then the mask 70 is removed from the piezoelectric layer 41 (first and second attaching steps).

次に、図8(b)に示すように、COF50の長手方向が紙送り方向と平行となるように、圧電アクチュエータ31の圧電層41の上面にCOF50を対向させて配置する。このとき、COF50の複数の基板側接点53と圧電アクチュエータ31の複数の入力接点43が対向するように位置合わせする。すると、入力接点43上ではなく、圧電層41上に形成された導電性樹脂71は、基板52の表面とソルダーレジスト54の表面とにまたがる領域と対向する。   Next, as shown in FIG. 8B, the COF 50 is disposed to face the upper surface of the piezoelectric layer 41 of the piezoelectric actuator 31 so that the longitudinal direction of the COF 50 is parallel to the paper feed direction. At this time, alignment is performed so that the plurality of substrate-side contacts 53 of the COF 50 and the plurality of input contacts 43 of the piezoelectric actuator 31 face each other. Then, the conductive resin 71 formed not on the input contact 43 but on the piezoelectric layer 41 is opposed to a region extending over the surface of the substrate 52 and the surface of the solder resist 54.

そして、COF50を圧電層41と反対側から圧電層41に向かって図示しないヒータにて加熱しながら加圧する。すると、図8(c)に示すように、圧電アクチュエータ31の複数の入力接点43上の導電性樹脂71が、COF50の複数の基板側接点53と導通しながら接続され、硬化して導通部60となるとともに、圧電層41上の導電性樹脂が、COF50の基板52の表面とソルダーレジスト54の表面とにまたがる位置に接続され、硬化して補強部62となる(接着工程)。以上のようにして、COF50と圧電アクチュエータ31は接続される。   The COF 50 is pressurized while being heated by a heater (not shown) from the side opposite to the piezoelectric layer 41 toward the piezoelectric layer 41. Then, as shown in FIG. 8C, the conductive resin 71 on the plurality of input contacts 43 of the piezoelectric actuator 31 is connected to the plurality of substrate-side contacts 53 of the COF 50 while being conductive, cured, and connected to the conductive portion 60. At the same time, the conductive resin on the piezoelectric layer 41 is connected to a position straddling the surface of the substrate 52 of the COF 50 and the surface of the solder resist 54 and hardened to become the reinforcing portion 62 (adhesion step). As described above, the COF 50 and the piezoelectric actuator 31 are connected.

本実施形態における圧電アクチュエータ31とCOF50の接続構造によると、補強部62をCOF50のソルダーレジスト54の表面と基板52の表面とにまたがる位置(実施例)に配置しているため、補強部62をCOF50の基板52の表面(比較例1)、または、ソルダーレジスト54の表面(比較例2)にだけ配置している場合に比べて、圧電アクチュエータ31とCOF50の接続強度をより向上させて、圧電アクチュエータ31からのCOF50のずれや剥離を防止することができる。   According to the connection structure of the piezoelectric actuator 31 and the COF 50 in the present embodiment, the reinforcing portion 62 is disposed at a position (example) that spans the surface of the solder resist 54 of the COF 50 and the surface of the substrate 52. Compared with the case where the COF 50 is disposed only on the surface of the substrate 52 (Comparative Example 1) or on the surface of the solder resist 54 (Comparative Example 2), the connection strength between the piezoelectric actuator 31 and the COF 50 is further improved. Deviation and peeling of the COF 50 from the actuator 31 can be prevented.

また、COF50の引き出された部分に圧電アクチュエータ31から離れる方向の力が加わったときに、最も力を受けるCOF50の走査方向に沿った部分において、複数の補強部62が走査方向に並び、且つ、走査方向に長尺に押しつぶされているため、接続強度をその部分において局所的に向上させることができ、圧電アクチュエータ31からのCOF50の剥離を一層防止することができる。   Further, when a force in a direction away from the piezoelectric actuator 31 is applied to the extracted portion of the COF 50, a plurality of reinforcing portions 62 are arranged in the scanning direction in a portion along the scanning direction of the COF 50 that receives the most force, and Since it is crushed long in the scanning direction, the connection strength can be locally improved in that portion, and the peeling of the COF 50 from the piezoelectric actuator 31 can be further prevented.

また、圧電層41を含む圧電アクチュエータ31のように、加圧が困難な被接続体に対しても、補強部62をCOF50のソルダーレジスト54の表面と基板52の表面とにまたがる位置に配置することで、導電性樹脂の硬化時の熱収縮に基板52が追従して、導電性樹脂に引っ張られて圧電層41に近づく方向に若干撓む。それにともない、基板52と圧電層41の間の導電性樹脂に加えて、ソルダーレジスト54と圧電層41の間の導電性樹脂も、この撓みの影響を受けて、熱収縮することが可能となり、導電性樹脂が硬化して形成された補強部62のクラック部分が存在しなくなる。したがって、加圧が困難な圧電アクチュエータ31などの被接続体とCOF50の接続強度を向上させることができる。   In addition, the reinforcing portion 62 is disposed at a position across the surface of the solder resist 54 of the COF 50 and the surface of the substrate 52 even for a connected body that is difficult to press, such as the piezoelectric actuator 31 including the piezoelectric layer 41. Thus, the substrate 52 follows the heat shrinkage at the time of curing of the conductive resin, and is slightly bent in a direction approaching the piezoelectric layer 41 by being pulled by the conductive resin. Accordingly, in addition to the conductive resin between the substrate 52 and the piezoelectric layer 41, the conductive resin between the solder resist 54 and the piezoelectric layer 41 can also be thermally shrunk under the influence of this bending, The crack part of the reinforcement part 62 formed by the conductive resin being cured does not exist. Therefore, the connection strength between the COF 50 and the connected body such as the piezoelectric actuator 31 that is difficult to pressurize can be improved.

次に、本実施形態に種々の変更を加えた変形例について説明する。ただし、上述した実施形態と同様の構成を有するものについては、同じ符号を付して適宜その説明を省略する。   Next, modified examples in which various changes are made to the present embodiment will be described. However, those having the same configuration as that of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted as appropriate.

本実施形態においては、検証用のソルダーレジスト54として、ポリイミド系の絶縁性樹脂(日立化成工業社製 SN−9000)を例に挙げて説明したが、エポキシ系の絶縁性樹脂(例えば、アサヒ化学研究所製 CCR−232GF)やアクリル系の絶縁性樹脂(例えば、PSR)をソルダーレジストの材料としてもよい。このように、ソルダーレジストとして、エポキシ系の絶縁性樹脂やアクリル系の絶縁性樹脂を使用したとしても、化学結合が強い接着面を得ることができ、上述した実施形態と同様の効果を奏することができる。   In the present embodiment, a polyimide insulating resin (SN-9000 manufactured by Hitachi Chemical Co., Ltd.) has been described as an example of the solder resist 54 for verification. However, an epoxy insulating resin (for example, Asahi Chemical) Laboratories CCR-232GF) or acrylic insulating resin (for example, PSR) may be used as the material for the solder resist. As described above, even when an epoxy insulating resin or an acrylic insulating resin is used as the solder resist, an adhesive surface having a strong chemical bond can be obtained, and the same effect as the above-described embodiment can be obtained. Can do.

また、本実施形態においては、基板52として、ポリイミドフィルムを用いていたが、ポリイミドフィルムに限らず、一般的なフィルム状の基板であれば、ソルダーレジスト54よりも可撓性を有しているのは、当然であり、本実施形態と同様の効果を奏することができる。   In the present embodiment, a polyimide film is used as the substrate 52. However, the substrate 52 is not limited to the polyimide film, and is more flexible than the solder resist 54 as long as it is a general film substrate. Of course, the same effects as in the present embodiment can be obtained.

さらに、本実施形態においては、1つの補強部62は、走査方向に長尺に押しつぶされた1つのバンプ状の導電性樹脂からなっていたが、1つの補強部が、複数のバンプ状の導電性樹脂が密集して配置されたバンプ群で構成されていてもよい(変形例1)。図9は、変形例1における図4(b)相当の図である。例えば、図9に示すように、1つの補強部80は、複数のバンプ状の導電性樹脂81が密集して走査方向に並んで配置されたバンプ群82で構成されており、それぞれが接続時の加圧により押しつぶされて接続している。なお、補強部80は、導通を目的としていないため、複数の導電性樹脂81は互いに接続されていなくてもよい。上述した実施形態では、圧電アクチュエータ31とCOF50の間において、加圧により押しつぶされる補強部62の広がり方を制御するのは比較的困難であり、広がってほしくない方向に広がるおそれがある。例えば、補強部62が導通部60に向かって広がってしまい、導通部60とショートしてしまうと、導通部60の抵抗値が大きくなってしまうことなどが懸念される。そこで、上述した変形例のように、複数のバンプ状の導電性樹脂81から構成されるバンプ群82を補強部80とすることで、それぞれのバンプ状の導電性樹脂81の配置を決めるだけで、補強部80の形状を容易に制御することができる。   Furthermore, in the present embodiment, one reinforcing portion 62 is made of one bump-shaped conductive resin that is squeezed in the scanning direction, but one reinforcing portion has a plurality of bump-shaped conductive resins. It may be composed of a group of bumps in which a conductive resin is densely arranged (Modification 1). FIG. 9 is a diagram corresponding to FIG. For example, as shown in FIG. 9, one reinforcing portion 80 is composed of a bump group 82 in which a plurality of bump-shaped conductive resins 81 are densely arranged in the scanning direction. It is crushed by the pressure of the connection. In addition, since the reinforcement part 80 does not aim at conduction | electrical_connection, the some conductive resin 81 does not need to be mutually connected. In the above-described embodiment, it is relatively difficult to control the expansion of the reinforcing portion 62 that is crushed by pressurization between the piezoelectric actuator 31 and the COF 50, and there is a possibility that the piezoelectric actuator 31 and the COF 50 may expand in a direction that is not desired to expand. For example, if the reinforcing portion 62 spreads toward the conducting portion 60 and shorts with the conducting portion 60, there is a concern that the resistance value of the conducting portion 60 increases. Therefore, as in the above-described modification, the bump group 82 composed of a plurality of bump-shaped conductive resins 81 is used as the reinforcing portion 80, so that only the arrangement of the respective bump-shaped conductive resins 81 is determined. The shape of the reinforcing part 80 can be easily controlled.

また、本実施形態においては、補強部62は、COF50の引き出される方向と直交する方向(走査方向)に沿って、COF50の、ソルダーレジスト54の表面と基板52の表面にまたがる位置に配置されていた、すなわち、COF50との接着面の、補強部62の基板52の表面に接着されている部分と補強部62のソルダーレジスト54の表面に接着されている部分は、走査方向に並んで配置されてが、どのように配置されていてもよい(変形例2)。例えば、図10(a)に示すように、補強部162は、引き出される方向に向かって、COF150の、基板52の表面、ソルダーレジスト154の表面の順にまたがる位置に配置されていてもよい。そして、補強部162は、COF150の長手方向の折り曲げられる位置よりも基板側接点53側に配置されている。さらに、ソルダーレジスト154が、円弧状に形成されており、補強部162は、ソルダーレジスト154の円弧部分と基板52の表面にまたがった位置に配置されている。これにより、補強部162は、折り曲げ位置から離れて配置されているため、COF150を折り曲げた際に補強部162に加わる力を小さくして、圧電アクチュエータ31からの剥離を防止することができる。また、補強部162が円弧状のソルダーレジスト154にまたがっていることで、接続強度がより向上する。   Further, in the present embodiment, the reinforcing portion 62 is disposed at a position of the COF 50 across the surface of the solder resist 54 and the surface of the substrate 52 along a direction (scanning direction) orthogonal to the direction in which the COF 50 is pulled out. That is, the portion of the bonding surface with the COF 50 that is bonded to the surface of the substrate 52 of the reinforcing portion 62 and the portion that is bonded to the surface of the solder resist 54 of the reinforcing portion 62 are arranged side by side in the scanning direction. However, it may be arranged in any way (Modification 2). For example, as illustrated in FIG. 10A, the reinforcing portion 162 may be disposed at a position across the COF 150 in the order of the surface of the substrate 52 and the surface of the solder resist 154 in the drawing direction. The reinforcing portion 162 is disposed closer to the substrate-side contact 53 than the position where the COF 150 is bent in the longitudinal direction. Further, the solder resist 154 is formed in an arc shape, and the reinforcing portion 162 is disposed at a position straddling the arc portion of the solder resist 154 and the surface of the substrate 52. Thereby, since the reinforcement part 162 is arrange | positioned away from the bending position, the force added to the reinforcement part 162 when the COF150 is bent can be made small, and peeling from the piezoelectric actuator 31 can be prevented. Further, since the reinforcing portion 162 extends over the arc-shaped solder resist 154, the connection strength is further improved.

さらに、上述した図10(a)の形態の補強部162を、基板側接点53から離して配置してもよい。例えば、図10(b)に示すように、補強部262は、図10(a)に示す補強部162よりも最も近くに位置していた基板側接点53から離れるように右側にずれて配置されている。このように、補強部262をどの基板側接点53からもできるだけ離れた位置に配置することで、マイグレーションやショートの危険性を低減することができる。   Further, the reinforcing portion 162 in the form of FIG. 10A described above may be disposed away from the substrate-side contact 53. For example, as shown in FIG. 10B, the reinforcing portion 262 is arranged so as to be shifted to the right side so as to be away from the board-side contact 53 located closest to the reinforcing portion 162 shown in FIG. ing. In this way, by arranging the reinforcing portion 262 at a position as far as possible from any substrate-side contact 53, the risk of migration or short-circuit can be reduced.

また、本実施形態においては、COF50との接着面の、補強部62の基板52の表面に接着されている部分と補強部62のソルダーレジスト54の表面に接着されている部分は、補強部62の長尺方向に並んで配置されていたが、どのように配置されていてもよい。例えば、補強部62のソルダーレジスト54の表面に接着されている部分を、補強部62の基板52の表面に接着されている部分が囲んでいてもよい。   In the present embodiment, the portion of the bonding surface with the COF 50 that is bonded to the surface of the substrate 52 of the reinforcing portion 62 and the portion that is bonded to the surface of the solder resist 54 of the reinforcing portion 62 are the reinforcing portion 62. However, it may be arranged in any way. For example, a portion of the reinforcing portion 62 that is bonded to the surface of the solder resist 54 may be surrounded by a portion of the reinforcing portion 62 that is bonded to the surface of the substrate 52.

また、本実施形態においては、第1、第2付着工程において、COF50側ではなく、圧電アクチュエータ31側に導通部60や補強部62となる導電性樹脂71を付着させていたが、COF50側にこの導電性樹脂71を付着させてもよい。   In the present embodiment, in the first and second attaching steps, the conductive resin 71 serving as the conductive portion 60 and the reinforcing portion 62 is attached not to the COF 50 side but to the piezoelectric actuator 31 side. The conductive resin 71 may be attached.

さらに、本実施形態では、補強部62は、機械的な接続だけを目的としていたが、例えば、GNDなどの導通用として使用されてもよい。   Furthermore, in the present embodiment, the reinforcing portion 62 is intended only for mechanical connection, but may be used for conduction such as GND.

以上説明した実施形態及びその変更形態は、インクジェットヘッドの圧電アクチュエータとCOFの接続構造及び接続方法に本発明を適用したものであるが、本発明の適用対象はこのような圧電アクチュエータへの接続構造には限られるものではない。例えば、液晶ディスプレイの液晶セルと液晶セルを駆動するドライバICが実装されたCOFの接続構造及び接続方法など、その用途にかかわらず、あらゆる被接続体と配線基板の接続構造や接続方法に本発明を適用することが可能である。   In the above-described embodiment and its modification, the present invention is applied to the connection structure and connection method between the piezoelectric actuator of the inkjet head and the COF. The application target of the present invention is such a connection structure to such a piezoelectric actuator. It is not limited to. For example, the present invention can be applied to any connection structure and connection method between a connected body and a wiring board, regardless of its use, such as a connection structure and connection method of a COF in which a liquid crystal cell of a liquid crystal display and a driver IC for driving the liquid crystal cell are mounted. It is possible to apply.

1 プリンタ
31 圧電アクチュエータ
43 入力接点
50 COF
52 基板
53 基板側接点
54 ソルダーレジスト
60 導通部
62 補強部
1 Printer 31 Piezoelectric Actuator 43 Input Contact 50 COF
52 Substrate 53 Substrate side contact 54 Solder resist 60 Conducting portion 62 Reinforcing portion

Claims (10)

電気接点を備えた被接続体に配線基板を接続する配線基板の接続構造であって、
前記配線基板は、前記被接続体と対向する面に基板側接点が設けられた絶縁性樹脂からなる可撓性基板と、
前記可撓性基板の前記被接続体と対向する面を、前記基板側接点及び一部領域を除いて覆う被覆膜と、を有しており、
前記被接続体の前記電気接点と前記配線基板の前記基板側接点は、金属材料と熱硬化性樹脂とを含む導電性樹脂からなる導通部を介して電気的に接続されており、
前記被接続体と前記配線基板の間には、前記導通部に加えて、前記導通部と同じ前記導電性樹脂からなり、前記被接続体と前記配線基板を導通せず、前記被接続体と前記配線基板を機械的に接続する補強部が設けられており、
前記補強部は、前記配線基板の、前記導通部とは異なる位置であり、且つ、前記被覆膜の表面と前記可撓性基板の前記一部領域の表面とにまたがる位置に配置されていることを特徴とする配線基板の接続構造。
A wiring board connection structure for connecting a wiring board to a connected body having electrical contacts,
The wiring board includes a flexible substrate made of an insulating resin having a substrate-side contact provided on a surface facing the connected body;
A coating film that covers a surface of the flexible substrate that faces the connected body except for the substrate-side contact and a partial region;
The electrical contact of the body to be connected and the board-side contact of the wiring board are electrically connected via a conductive portion made of a conductive resin containing a metal material and a thermosetting resin,
Between the connected body and the wiring board, in addition to the conducting part, the conductive resin is the same as the conducting part, and does not conduct the connected body and the wiring board. A reinforcing part for mechanically connecting the wiring board is provided,
The reinforcing portion is disposed at a position different from the conducting portion of the wiring board and across the surface of the coating film and the surface of the partial region of the flexible substrate. A wiring board connection structure characterized by the above.
前記導通部は、所定の一方向に沿って複数並んで導通部列を構成し、前記導通部列は、前記一方向と直交する直交方向に沿って複数並び、
前記複数の導電部列のうちの第1導電部列に属する導電部は、これに隣接する第2導電部列に属する導電部と前記一方向において位置が異なるように配置され、
さらに、前記第2導電部列は、前記第1導電部列よりも前記一方向において前記またがる位置から離れており、
前記補強部は、前記一方向に沿って前記第2導電部列と並んで配置されることを特徴とする請求項1に記載の配線基板の接続構造。
A plurality of the conductive portions are arranged along a predetermined direction to form a conductive portion row, and a plurality of the conductive portion rows are arranged along an orthogonal direction orthogonal to the one direction,
The conductive portions belonging to the first conductive portion row among the plurality of conductive portion rows are arranged so that the positions thereof in the one direction are different from the conductive portions belonging to the second conductive portion row adjacent thereto,
Furthermore, the second conductive portion row is farther from the position across the one direction than the first conductive portion row,
2. The wiring board connection structure according to claim 1, wherein the reinforcing portion is arranged alongside the second conductive portion row along the one direction.
前記導通部は、所定の一方向に沿って複数並んで導通部列を構成し、前記導通部列は、前記一方向と直交する直交方向に沿って複数並び、
前記補強部は、前記直交方向において、前記複数の導通部列のうちの2列の導通部列の間に配置されていることを特徴とする請求項1に記載の配線基板の接続構造。
A plurality of the conductive portions are arranged along a predetermined direction to form a conductive portion row, and a plurality of the conductive portion rows are arranged along an orthogonal direction orthogonal to the one direction,
The wiring board connection structure according to claim 1, wherein the reinforcing portion is disposed between two conductive portion rows of the plurality of conductive portion rows in the orthogonal direction.
前記絶縁性樹脂は、前記基板側接点及び一部領域を露出する開口が形成され、
前記開口は、矩形状であり、さらに、前記開口の縁の一部が内側に窪んでおり、
前記補強部は、前記開口の縁の一部をまたがるように配置されていることを特徴とする請求項1〜3のいずれか1項に記載の配線基板の接続構造。
The insulating resin is formed with an opening exposing the substrate side contact and a partial region,
The opening has a rectangular shape, and a part of the edge of the opening is recessed inward,
The wiring board connection structure according to claim 1, wherein the reinforcing portion is disposed so as to straddle part of an edge of the opening.
前記配線基板は、前記被接続体と接続された領域から所定の一方向に引き出されており、
前記補強部は、前記配線基板の、前記基板側接点よりも前記一方向側に配置されており、前記配線基板と平行で且つ前記一方向と直交する幅方向に長尺な形状を有していることを特徴とする請求項1〜4のいずれか1項に記載の配線基板の接続構造。
The wiring board is pulled out in a predetermined direction from a region connected to the connected body,
The reinforcing portion is disposed on the one side of the wiring board with respect to the board-side contact, and has a shape that is long in the width direction parallel to the wiring board and perpendicular to the one direction. The wiring board connection structure according to claim 1, wherein the wiring board connection structure is a wiring board connection structure.
前記配線基板は、前記被接続体と接続された領域から所定の一方向に引き出されており、
前記補強部は、引き出される方向に向かって、前記配線基板の、前記可撓性基板の表面、前記被覆膜の表面の順にまたがる位置に配置されていることを特徴とする請求項1〜5のいずれか1項に記載の配線基板の接続構造。
The wiring board is pulled out in a predetermined direction from a region connected to the connected body,
The said reinforcement part is arrange | positioned in the position extended over the surface of the said flexible substrate and the surface of the said coating | coated film of the said wiring board in the direction pulled out. The connection structure of the wiring board according to any one of the above.
前記被接続体は、圧電層を含む圧電アクチュエータであることを特徴とする請求項1〜6のいずれか1項に記載の配線基板の接続構造。   The wiring board connection structure according to claim 1, wherein the connected body is a piezoelectric actuator including a piezoelectric layer. 前記補強部は、複数のバンプが密集して配置されたバンプ群で構成されていることを特徴とする請求項1〜7のいずれか1項に記載の配線基板の接続構造。   The wiring board connection structure according to any one of claims 1 to 7, wherein the reinforcing portion is configured by a bump group in which a plurality of bumps are densely arranged. 前記配線基板は、前記被接続体と接続された領域から所定の一方向に引き出されており、
1つの前記バンプ群に属する前記複数のバンプは、前記配線基板の、前記基板側接点よりも前記一方向側において、前記配線基板と平行で且つ前記一方向と直交する幅方向に並べて配置されていることを特徴とする請求項8に記載の配線基板の接続構造。
The wiring board is pulled out in a predetermined direction from a region connected to the connected body,
The plurality of bumps belonging to one bump group are arranged side by side in the width direction parallel to the wiring board and perpendicular to the one direction on the one side of the wiring board with respect to the board-side contact. The wiring board connection structure according to claim 8, wherein:
電気接点を備えた被接続体に、前記被接続体と対向する面に基板側接点が設けられた絶縁性樹脂からなる可撓性基板と、前記可撓性基板の前記被接続体と対向する面を、前記基板側接点及び一部領域を除いて覆う被覆膜とを有する配線基板に接続する配線基板の接続方法であって、
前記被接続体の前記電気接点の上、または、前記配線基板の前記基板側接点の上に、金属材料と熱硬化性樹脂とを含む導電性樹脂を付着させる第1付着工程と、
前記配線基板との接続姿勢において、前記被接続体の、前記配線基板における前記被覆膜の表面と前記可撓性基板の前記一部領域の表面とにまたがる領域と対向する領域、または、前記配線基板の、前記被覆膜の表面と前記可撓性基板の前記一部領域の表面とにまたがる領域に、前記導電性樹脂を付着させる第2付着工程と、
前記第1付着工程及び前記第2付着工程の後に、前記被接続体の前記電気接点と前記配線基板の前記基板側接点が対向するように位置合わせして、前記被接続体と前記配線基板を互いに加熱しながら押し付けて、前記被接続体と前記配線基板を接着する接着工程と、を備えており、
前記接着工程において、
前記第1付着工程で付着させた前記導電性樹脂は、前記電気接点と前記基板側接点を電気的に接続しており、
前記第2付着工程で付着させた前記導電性樹脂は、前記被接続体と前記配線基板を導通せず、前記被接続体と前記配線基板の機械的な接続を補強していることを特徴とする配線基板の接続方法。
A flexible substrate made of an insulating resin having a substrate-side contact provided on a surface facing the connected body, to the connected body having an electrical contact, and facing the connected body of the flexible substrate A wiring board connection method for connecting a surface to a wiring board having a coating film that covers the substrate side contact and excluding a part of the surface,
A first attaching step of attaching a conductive resin containing a metal material and a thermosetting resin on the electrical contact of the connected body or on the board-side contact of the wiring board;
In the connection posture with the wiring board, a region of the body to be connected facing a region extending across the surface of the coating film on the wiring substrate and the surface of the partial region of the flexible substrate, or A second attachment step of attaching the conductive resin to a region of the wiring board that spans the surface of the coating film and the surface of the partial region of the flexible substrate;
After the first attaching step and the second attaching step, the connected body and the wiring board are aligned by aligning the electrical contact of the connected body and the board-side contact of the wiring board to face each other. An adhesive process in which the objects to be connected and the wiring board are adhered to each other by pressing while heating each other, and
In the bonding step,
The conductive resin adhered in the first adhesion step electrically connects the electrical contact and the substrate side contact,
The conductive resin attached in the second attaching step does not conduct the connected body and the wiring board, and reinforces the mechanical connection between the connected body and the wiring board. Wiring board connection method.
JP2013095043A 2013-04-30 2013-04-30 Wiring board connection structure and connection method Active JP5464291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095043A JP5464291B2 (en) 2013-04-30 2013-04-30 Wiring board connection structure and connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095043A JP5464291B2 (en) 2013-04-30 2013-04-30 Wiring board connection structure and connection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010210420A Division JP2012069548A (en) 2010-09-21 2010-09-21 Structure and method for connecting wiring board

Publications (2)

Publication Number Publication Date
JP2013145929A true JP2013145929A (en) 2013-07-25
JP5464291B2 JP5464291B2 (en) 2014-04-09

Family

ID=49041529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095043A Active JP5464291B2 (en) 2013-04-30 2013-04-30 Wiring board connection structure and connection method

Country Status (1)

Country Link
JP (1) JP5464291B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167780U (en) * 1987-04-22 1988-11-01
JPH09148731A (en) * 1995-11-17 1997-06-06 Fujitsu Ltd Method for manufacturing construction for connection between wiring boards
JP2006066772A (en) * 2004-08-30 2006-03-09 Matsushita Electric Ind Co Ltd Flexible printed-wiring board
JP2006088630A (en) * 2004-09-27 2006-04-06 Brother Ind Ltd Connection structure of flexible wiring board and connection method
JP2009081152A (en) * 2007-09-25 2009-04-16 Brother Ind Ltd Wiring board, liquid ejection device with the same, and method for joining head unit and wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167780U (en) * 1987-04-22 1988-11-01
JPH09148731A (en) * 1995-11-17 1997-06-06 Fujitsu Ltd Method for manufacturing construction for connection between wiring boards
JP2006066772A (en) * 2004-08-30 2006-03-09 Matsushita Electric Ind Co Ltd Flexible printed-wiring board
JP2006088630A (en) * 2004-09-27 2006-04-06 Brother Ind Ltd Connection structure of flexible wiring board and connection method
JP2009081152A (en) * 2007-09-25 2009-04-16 Brother Ind Ltd Wiring board, liquid ejection device with the same, and method for joining head unit and wiring board

Also Published As

Publication number Publication date
JP5464291B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5233937B2 (en) Method for manufacturing liquid discharge head and liquid discharge head
JP5382010B2 (en) WIRING BOARD AND WIRING BOARD MANUFACTURING METHOD
JP2008183880A (en) Recording apparatus and its wiring connection method
JP4973377B2 (en) Liquid transfer device and method for manufacturing liquid transfer device
EP2769846B1 (en) Liquid ejection apparatus and connection method for flexible wiring board
JP2012069548A (en) Structure and method for connecting wiring board
JP4617801B2 (en) Flexible wiring board connection structure and connection method
JP6311361B2 (en) Method for manufacturing liquid ejection device, and liquid ejection device
JP5464291B2 (en) Wiring board connection structure and connection method
JP5187141B2 (en) Flexible wiring member manufacturing method, flexible wiring member, piezoelectric actuator unit manufacturing method, and piezoelectric actuator unit
US11345147B2 (en) Liquid ejection head
JP3928572B2 (en) Inkjet head unit
JP4985623B2 (en) Wiring member connection method, wiring member manufacturing method, and wiring member
JP2008235586A (en) Flexible wiring material for mounting circuit component
JP5146381B2 (en) Liquid ejection device
JP2009056756A (en) Manufacturing method of actuator unit, actuator unit, and liquid jetting head using the same
JP2010284822A (en) Recording head and manufacturing method thereof
JP2009262417A (en) Droplet discharge head and its manufacturing method
JP2010260187A (en) Wiring unit, manufacturing method for wiring unit, liquid ejection head, and manufacturing method for liquid ejection head
JP2010201870A (en) Joint structure of wiring board and method of manufacturing the joint structure
JP6375973B2 (en) Liquid ejection device and method of manufacturing liquid ejection device
JP2010094880A (en) Liquid droplet delivering apparatus and process for manufacturing the same
JP4849112B2 (en) Wiring board and method of manufacturing wiring board
JP5045633B2 (en) Wiring member and liquid transfer device
JP2009241508A (en) Liquid droplet ejection head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5464291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150