JP2013145254A - Glass lenticular lens structure and stereoscopic display device, and method of manufacturing glass lenticular lens structure - Google Patents

Glass lenticular lens structure and stereoscopic display device, and method of manufacturing glass lenticular lens structure Download PDF

Info

Publication number
JP2013145254A
JP2013145254A JP2010097804A JP2010097804A JP2013145254A JP 2013145254 A JP2013145254 A JP 2013145254A JP 2010097804 A JP2010097804 A JP 2010097804A JP 2010097804 A JP2010097804 A JP 2010097804A JP 2013145254 A JP2013145254 A JP 2013145254A
Authority
JP
Japan
Prior art keywords
glass
lenticular lens
lens structure
coating film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010097804A
Other languages
Japanese (ja)
Inventor
Kazushi Tsujimura
一志 辻村
Minoru Sekine
実 関根
Hisao Iguma
久夫 猪熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010097804A priority Critical patent/JP2013145254A/en
Priority to PCT/JP2011/059864 priority patent/WO2011132750A1/en
Publication of JP2013145254A publication Critical patent/JP2013145254A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lenticular lens structure and a manufacturing method of the same which can achieve a stereoscopic display device capable of coping with enlargement and miniaturization of a screen, and a stereoscopic display device using the lenticular lens structure.SOLUTION: A lenticular lens is formed on a substrate glass by a manufacturing method including steps of: forming a paste coating film containing a glass frit and a binder, of which the softening points are lower than that of the substrate glass, on the substrate glass; pressing a shaping mold to the coating film at a first temperature softening the binder; removing the binder at a second temperature higher than the first temperature; and melting the glass frit at a third temperature higher than the second temperature.

Description

本発明は、立体表示装置などに用いられるガラス製のレンチキュラーレンズ構造体、および、その製造方法、ならびに、前記ガラス製のレンチキュラーレンズ構造体を用いた立体画像の表示装置に関する。   The present invention relates to a glass lenticular lens structure used in a stereoscopic display device, a manufacturing method thereof, and a stereoscopic image display device using the glass lenticular lens structure.

専用のメガネ等が不要な立体表示装置として、レンチキュラーレンズ方式の立体表示装置が知られている。この方式では、レンチキュラーレンズ(シート)によって表示ユニットからの光線方向を制御し、左右それぞれの目に異なる画像を認識させることにより、視聴者に映像を立体的に見せることができる。   As a stereoscopic display device that does not require special glasses or the like, a lenticular lens type stereoscopic display device is known. In this method, the direction of the light beam from the display unit is controlled by a lenticular lens (sheet), and different images are recognized by the left and right eyes, so that the viewer can see the image three-dimensionally.

このような立体表示装置に用いられるレンチキュラーレンズは、樹脂製が一般的であるが、特許文献1は、ガラス製のレンチキュラーレンズ(レンズアレイユニット)を用いる立体画像の表示装置を開示している。   The lenticular lens used in such a stereoscopic display device is generally made of resin, but Patent Document 1 discloses a stereoscopic image display device using a glass lenticular lens (lens array unit).

特開2008−191325号公報JP 2008-191325 A

特許文献1に開示されるガラス製のレンチキュラーレンズは、ガラス製の基体とガラス製のレンズアレイ層とを一体的に形成したもので、特許文献1は、ガラス基板の表面に加工を施して、表面に、直接、レンチキュラーレンズの形状を開示している。すなわち、特許文献1に記載されるガラス製のレンチキュラーレンズは、レンズアレイ層と基体とが単一のガラスから構成されている。   The glass lenticular lens disclosed in Patent Document 1 is formed by integrally forming a glass substrate and a glass lens array layer. Patent Document 1 applies processing to the surface of a glass substrate, The shape of the lenticular lens is disclosed directly on the surface. That is, in the lenticular lens made of glass described in Patent Document 1, the lens array layer and the substrate are made of a single glass.

しかしながら、レンチキュラーレンズのような細かいレンズ形状をガラスの表面に直接形成する成型は、一般的に、樹脂レンズの成形に比較して形状創成加工が難しく、また、生産性が劣るという問題点がある。そのため、特許文献1に記載のガラス製のレンチキュラーレンズは、形状精度の低下や、表示装置のコスト高の要因となる。   However, molding in which a fine lens shape such as a lenticular lens is directly formed on the surface of the glass is generally difficult to create a shape and inferior in productivity as compared with resin lens molding. . Therefore, the glass lenticular lens described in Patent Document 1 causes a decrease in shape accuracy and a high cost of the display device.

また、画面の大型化に伴い、画面の周辺の映像光を視聴者に届けるためにより大きく光を曲げる必要がある。或いは、携帯電話や携帯ゲーム機など、表示装置と視聴者の距離が近い用途では、レンチキュラーレンズの焦点距離をより短くすることが求められる。
これらのためにはレンチキュラーレンズの曲率を大きくする必要があるが、ガラスの表面に直接レンズを形成する手法では、曲率を大きくしようとすればするほど、形状創成が難しくなる傾向がある。一方で、同じレンズ曲率形状であれば、屈折率の高いガラスを使用することによっても焦点距離を短く出来るが、一般的に高屈折率ガラスは高価であり、コスト増大の要因となる。
Further, as the screen becomes larger, it is necessary to bend the light more greatly in order to deliver the image light around the screen to the viewer. Alternatively, in applications where the distance between the display device and the viewer is close, such as a mobile phone or a portable game machine, it is required to shorten the focal length of the lenticular lens.
For these reasons, it is necessary to increase the curvature of the lenticular lens. However, in the method of forming the lens directly on the surface of the glass, as the curvature increases, the shape creation tends to become difficult. On the other hand, if the lens curvature shape is the same, the focal length can be shortened by using glass having a high refractive index, but generally high refractive index glass is expensive and causes an increase in cost.

本発明は、以上説明した従来の実情を鑑みて提案されたものであり、全てがガラス製で、焦点距離を短く出来るレンチキュラーレンズ構造体、およびこのレンチキュラーレンズ構造体を利用した立体表示装置を提供する。   The present invention has been proposed in view of the above-described conventional situation, and provides a lenticular lens structure that is all made of glass and capable of shortening a focal length, and a stereoscopic display device using the lenticular lens structure. To do.

前記目的を達成するために、本発明のガラス製レンチキュラーレンズ構造体は、基板ガラス上に、前記基板ガラスとは異なる組成のガラスからなるレンチキュラーレンズが形成されていることを特徴とするガラス製レンチキュラーレンズ構造体を提供する。   In order to achieve the above object, the glass lenticular lens structure of the present invention is characterized in that a lenticular lens made of glass having a composition different from that of the substrate glass is formed on the substrate glass. A lens structure is provided.

このような本発明のガラス製レンチキュラーレンズ構造体において、前記レンチキュラーレンズを構成するガラスの屈折率が、前記基板ガラスの屈折率以上であるのが好ましく、また、前記レンチキュラーレンズを構成するガラスの厚みが300μm以下であることを特徴とするのが好ましい。   In such a glass lenticular lens structure of the present invention, the refractive index of the glass constituting the lenticular lens is preferably equal to or higher than the refractive index of the substrate glass, and the thickness of the glass constituting the lenticular lens Is preferably 300 μm or less.

また、本発明の立体表示装置は、前記本発明のガラス製レンチキュラーレンズ構造体と、前記ガラス製レンチキュラーレンズ構造体に対面して配置される、画素位置が固定されている表示ユニットとを備えたことを特徴とする立体表示装置を提供する。   Further, the stereoscopic display device of the present invention includes the glass lenticular lens structure of the present invention and a display unit that is arranged facing the glass lenticular lens structure and has a fixed pixel position. A stereoscopic display device is provided.

さらに、本発明のガラス製レンチキュラーレンズ構造体の製造方法は、基板ガラスの表面に、前記基板ガラスの軟化点よりも低い軟化点を有するガラスフリットおよびバインダを含むペーストを塗布して塗膜を形成する工程と、前記バインダが軟化する第1の温度で、凹凸が形成された成形型を前記塗膜の表面に押し当てて離し、前記塗膜の前記表面に凹凸を形成する工程と、前記第1の温度よりも高い第2の温度で、前記塗膜中のバインダを除去する工程と、前記第2の温度よりも高い第3の温度で、前記ガラスフリットを融着させる工程とを有することを特徴とするガラス製レンチキュラーレンズ構造体の製造方法を提供する。   Furthermore, in the method for producing a glass lenticular lens structure of the present invention, a coating film is formed by applying a paste containing a glass frit and a binder having a softening point lower than the softening point of the substrate glass on the surface of the substrate glass. Pressing the mold with the irregularities formed on the surface of the coating film at a first temperature at which the binder is softened and releasing the mold, and forming the irregularities on the surface of the coating film; A step of removing the binder in the coating film at a second temperature higher than the temperature of 1, and a step of fusing the glass frit at a third temperature higher than the second temperature. A method for producing a glass lenticular lens structure is provided.

本発明によれば、熱に対して安定した映像を実現し、画面の大型化にも対応でき、また携帯電話や携帯ゲーム機にも好適なガラス製のレンチキュラーレンズ構造体、および、これを用いる立体表示装置を、低コストで容易に実現できる。   According to the present invention, a glass lenticular lens structure that realizes a stable image against heat, can cope with an increase in screen size, and is suitable for a mobile phone or a portable game machine, and the same are used. A stereoscopic display device can be easily realized at low cost.

本発明の立体表示装置の一例を概念的に示す図である。It is a figure which shows notionally an example of the three-dimensional display apparatus of this invention. 図1に示される立体表示装置に用いられるガラス製レンチキュラーレンズ構造体の一例を概念的に示す図であって、(A)は上面図、(B)は(A)におけるA−A線の断面図、(C)は(B)の部分拡大図である。It is a figure which shows notionally an example of the glass lenticular lens structure used for the three-dimensional display apparatus shown by FIG. 1, Comprising: (A) is a top view, (B) is the cross section of the AA in (A). (C) is a partially enlarged view of (B). 本発明のガラス製レンチキュラーレンズ構造体の別の例を概念的に示す図であって、(A)は上面図、(B)は(A)におけるA−A線の断面図ある。It is a figure which shows notionally another example of the glass lenticular lens structure of this invention, Comprising: (A) is a top view, (B) is sectional drawing of the AA line in (A). (A)〜(E)は、本発明ガラス製のレンチキュラーレンズ構造体の製造方法の一例を説明するための概念図である。(A)-(E) are the conceptual diagrams for demonstrating an example of the manufacturing method of the lenticular lens structure body made from this invention glass. 図4に示すガラス製レンチキュラーレンズ構造体の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the glass lenticular lens structure shown in FIG.

以下、本発明のガラス製レンチキュラーレンズ構造体および立体表示装置、ならびに、ガラス製レンチキュラーレンズ構造体の製造方法について、添付の図を参照しながら詳細に説明する。   Hereinafter, a glass lenticular lens structure and a stereoscopic display device according to the present invention, and a method for producing a glass lenticular lens structure will be described in detail with reference to the accompanying drawings.

図1に、本発明の立体表示装置の構成の一例を概念的に示す。
図1に示す立体表示装置10(以下、表示装置10とする)は、レンチキュラーレンズを用いて立体画像(いわゆる3D画像)を表示する装置であって、表示ユニット12と、光線制御素子である、本発明のガラス製レンチキュラーレンズ構造体14とを備えて構成されている。
FIG. 1 conceptually shows an example of the configuration of the stereoscopic display device of the present invention.
A stereoscopic display device 10 (hereinafter referred to as a display device 10) shown in FIG. 1 is a device that displays a stereoscopic image (so-called 3D image) using a lenticular lens, and is a display unit 12 and a light beam control element. The glass lenticular lens structure 14 of the present invention is provided.

本発明において、表示ユニット12には、特に限定は無く、例えば、液晶表示パネル、プラズマ表示パネル、有機EL(エレクトロルミネッセンス)表示パネル、電界放出型表示パネル、CRT(Cathode Ray Tube)など、画素位置が固定されているものであれば、公知の表示ユニットが、各種、利用可能である。   In the present invention, the display unit 12 is not particularly limited. For example, a pixel position such as a liquid crystal display panel, a plasma display panel, an organic EL (electroluminescence) display panel, a field emission display panel, a CRT (Cathode Ray Tube), etc. As long as is fixed, various known display units can be used.

ガラス製レンチキュラーレンズ構造体14(以下、レンズ構造体14とする)は、図1に示すように、表示ユニット12の前面(画像表示面の前)に固定される。
なお、図1に示す例では、レンズ構造体14は、表示ユニット12に密着した状態で固定されているが、本発明は、これに限定はされず、レンズ構造体14と表示ユニット12とは、間隙を有して配置されてもよく、あるいは、レンズ構造体14と表示ユニット12との間に、光学的な作用を発現する部材等の何らかの部材が配置されてもよい。
A glass lenticular lens structure 14 (hereinafter referred to as a lens structure 14) is fixed to the front surface of the display unit 12 (in front of the image display surface) as shown in FIG.
In the example shown in FIG. 1, the lens structure 14 is fixed in close contact with the display unit 12, but the present invention is not limited to this, and the lens structure 14 and the display unit 12 are Alternatively, a gap may be provided, or some member such as a member that exhibits an optical action may be provided between the lens structure 14 and the display unit 12.

レンズ構造体14は、表示ユニット12が出射する光線(表示画像)を屈折し、その光線方向を制御するもので、図2に概念的に示すように、基板ガラス20と、直線型のレンチキュラーレンズ24とからなるものであり、基板ガラス20を表示ユニット12に向けて、表示ユニット12の前面に固定される。
なお、図2(A)は、上面図(レンズ構造体14の光軸方向の光入射面側から見た図)である。図2(B)は、図1と同じ方向から見た、図2(A)のA−A線における断面図である。さらに、図2(C)は、図2(B)の部分拡大図である。
The lens structure 14 refracts a light beam (display image) emitted from the display unit 12 and controls the direction of the light beam. As shown conceptually in FIG. 2, the lens structure 14 and a linear lenticular lens are used. 24, and is fixed to the front surface of the display unit 12 with the substrate glass 20 facing the display unit 12.
2A is a top view (viewed from the light incident surface side of the lens structure 14 in the optical axis direction). 2B is a cross-sectional view taken along the line AA of FIG. 2A as viewed from the same direction as FIG. Further, FIG. 2C is a partially enlarged view of FIG.

レンズ構造体14において、基板ガラス20およびレンチキュラーレンズ24は、共に互いに組成の異なるガラス製であり、かつ、両者は接着剤層等を介すことなく(接着剤等を用いずに)、直接、接触して形成されている。ここで、基板ガラス20と、レンチキュラーレンズ24とが樹脂製の接着剤等を介さずに接合されていることを「一体化されている」という。
すなわち、このレンズ構造体14は、本発明のガラス製レンチキュラーレンズ構造体であり、基板ガラス20とレンチキュラーレンズ24とは、互いに異なる組成のガラスで形成される。
In the lens structure 14, the substrate glass 20 and the lenticular lens 24 are both made of glass having different compositions, and both of them directly without using an adhesive layer or the like (without using an adhesive or the like), It is formed in contact. Here, the fact that the substrate glass 20 and the lenticular lens 24 are joined without using a resin adhesive or the like is referred to as “integrated”.
That is, the lens structure 14 is a glass lenticular lens structure of the present invention, and the substrate glass 20 and the lenticular lens 24 are formed of glasses having different compositions.

図示例において、基板ガラス20は平板状の板ガラスである。
本発明において、基板ガラス20の形成材料には特に限定はなく、各種のガラス材料が全て利用可能である。一例として、ソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウ珪酸ガラス、無アルカリガラス等が例示される。
基板ガラス20は、光学部品(光学素子)であるレンズ構造体14を構成するものである。従って、基板ガラス20は透明性が高く、光学特性に優れたガラスで形成されるのが好ましい。特に、高い光透過性を考慮すると、ソーダライムシリケートガラス、ソーダライムシリケートガラスの鉄分量を少なくした、所謂高透過ガラス等のガラスは好適に利用される。
In the illustrated example, the substrate glass 20 is a flat plate glass.
In the present invention, the material for forming the substrate glass 20 is not particularly limited, and various glass materials can be used. As an example, soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, alkali-free glass and the like are exemplified.
The substrate glass 20 constitutes the lens structure 14 that is an optical component (optical element). Therefore, it is preferable that the substrate glass 20 is formed of glass having high transparency and excellent optical characteristics. In particular, considering high light transmittance, soda lime silicate glass, so-called highly transmissive glass or the like with reduced iron content in soda lime silicate glass is preferably used.

本発明において、基板ガラス20の厚さにも特に限定はなく、レンズ構造体14の設計、要求される光学特性や強度等に応じて、適宜選択すればよいが、0.5〜3mmであるのが好ましい。
基板ガラス20の厚さを上記範囲とすることにより、工程上での基板ガラス20の破損を防止できるという点で好ましい。
In the present invention, the thickness of the substrate glass 20 is not particularly limited, and may be appropriately selected according to the design of the lens structure 14, required optical characteristics, strength, etc., but is 0.5 to 3 mm. Is preferred.
By setting the thickness of the substrate glass 20 within the above range, it is preferable in that the substrate glass 20 can be prevented from being damaged in the process.

レンチキュラーレンズ24は、直線的なシリンドリカルレンズ(片面が平面状の円筒形レンズ)を、複数、並列に配置したレンズで構成されたレンズであり、図2(B)に示されるような凸凹形状の断面を有する。
このとき、図2(C)に示すように、レンチキュラーレンズ24を構成するシリンドリカルレンズの垂直断面の円弧の高さをレンズ高さh、円弧の半径をレンズ半径rとする。
The lenticular lens 24 is a lens composed of a plurality of linear cylindrical lenses (cylindrical lenses having a flat surface on one side) arranged in parallel. The lenticular lens 24 has an irregular shape as shown in FIG. Has a cross section.
At this time, as shown in FIG. 2C, the height of the circular arc in the vertical section of the cylindrical lens constituting the lenticular lens 24 is the lens height h, and the radius of the circular arc is the lens radius r.

なお、図2に示す例において、レンズ構造体14を構成するレンチキュラーレンズ24は、図2(A)に示すように、一方向(Y方向)に直線状に延在するシリンドリカルレンズを、Y方向と直交するX方向に並列に配置したものである。
しかしながら、本発明は、これに限定はされず、公知のレンチキュラーレンズの構成が、各種、利用可能である。一例として、図3(A)および(B)に示す(ガラス製レンチキュラー)レンズ構造体26のレンチキュラーレンズ28のように、シリンドリカルレンズの配列方向であるX方向と直交するY方向に対して、シリンドリカルレンズの配列軸を傾けた形状のものでも良い。
In the example shown in FIG. 2, the lenticular lens 24 constituting the lens structure 14 is a cylindrical lens that extends linearly in one direction (Y direction), as shown in FIG. Are arranged in parallel in the X direction orthogonal to.
However, the present invention is not limited to this, and various configurations of known lenticular lenses can be used. As an example, like the lenticular lens 28 of the (glass lenticular) lens structure 26 shown in FIGS. 3A and 3B, the cylindrical direction is in the Y direction orthogonal to the X direction, which is the arrangement direction of the cylindrical lenses. It may have a shape in which the lens arrangement axis is inclined.

本発明のレンズ構造体14において、レンチキュラーレンズ24の形成材料には、特に限定はなく、基板ガラス20とは異なる組成のガラスであれば、各種のガラスが利用可能である。
一例として、SiO2―B23−Al23系、SiO2―B23―Bi23系、B23―ZnO―Bi23系、SiO2―B23―ZnO系、SiO2―BaO―B23系、B23―BaO―ZnO系、SnO―ZnO―P25系、B23−ZnO−La23系、P25−B23−R’2O−R”O−TiO2−Nb25−WO3−Bi23系、TeO2−ZnO系、B23−Bi23系、SiO2―Bi23系、SiO2−ZnO系、B23−ZnO系、P25−ZnO系、ZnO−B23−SiO2−Al23系、Bi23−B23−SiO2−Al23、Bi23−ZnO−B23−SiO2系、Bi23−ZnO−B23−SiO2−Al23系、P25−Nb25−TiO2−R’2O系、SiO2−TiO2−R’2O−R”O系、SiO2−B23−Nb25−R’2O系、P25−R’2O−R”O系、SiO2−Bi23−R’2O系、SiO2−Bi23−BaO系、SiO2−Bi23−La23−R”O系等の各種のガラスが好適に例示される。なお、上記式において、R’はアルカリ金属元素、R”はアルカリ土類金属元素を、それぞれ示す。
In the lens structure 14 of the present invention, the material for forming the lenticular lens 24 is not particularly limited, and various types of glass can be used as long as the glass has a composition different from that of the substrate glass 20.
For example, SiO 2 —B 2 O 3 —Al 2 O 3 system, SiO 2 —B 2 O 3 —Bi 2 O 3 system, B 2 O 3 —ZnO—Bi 2 O 3 system, SiO 2 —B 2 O 3— ZnO system, SiO 2 —BaO—B 2 O 3 system, B 2 O 3 —BaO—ZnO system, SnO—ZnO—P 2 O 5 system, B 2 O 3 —ZnO—La 2 O 3 system, P 2 O 5 —B 2 O 3 —R ′ 2 O—R ″ O—TiO 2 —Nb 2 O 5 —WO 3 —Bi 2 O 3 , TeO 2 —ZnO, B 2 O 3 —Bi 2 O 3 Type, SiO 2 —Bi 2 O 3 type, SiO 2 —ZnO type, B 2 O 3 —ZnO type, P 2 O 5 —ZnO type, ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 type, Bi 2 O 3 —B 2 O 3 —SiO 2 —Al 2 O 3 , Bi 2 O 3 —ZnO—B 2 O 3 —SiO 2 , Bi 2 O 3 —ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 type, P 2 O 5 —Nb 2 O 5 —T iO 2 —R ′ 2 O, SiO 2 —TiO 2 —R ′ 2 O—R ″ O, SiO 2 —B 2 O 3 —Nb 2 O 5 —R ′ 2 O, P 2 O 5 —R '2 O-R "O-based, SiO 2 -Bi 2 O 3 -R ' 2 O -based, SiO 2 -Bi 2 O 3 -BaO-based, SiO 2 -Bi 2 O 3 -La 2 O 3 -R" O Various types of glass such as a system are preferably exemplified. In the above formula, R ′ represents an alkali metal element, and R ″ represents an alkaline earth metal element.

本発明において、レンチキュラーレンズ24を形成するガラスの屈折率には、特に限定は無いが、基板ガラス20の屈折率以上であることが好ましい。
レンチキュラーレンズ24を形成するガラスの屈折率が基板ガラス20の屈折率よりも低いと、基板ガラス20とレンチキュラーレンズ24との界面で全反射が起こり、透過率が低下したり、2重像が発生したりする可能性がある。
In the present invention, the refractive index of the glass forming the lenticular lens 24 is not particularly limited, but is preferably equal to or higher than the refractive index of the substrate glass 20.
If the refractive index of the glass forming the lenticular lens 24 is lower than the refractive index of the substrate glass 20, total reflection occurs at the interface between the substrate glass 20 and the lenticular lens 24, resulting in a decrease in transmittance or generation of a double image. There is a possibility of doing.

また、レンチキュラーレンズ24の厚みtにも、特に限定は無いが、300μm以下であることが好ましい。レンチキュラーレンズ24の厚みが300μmを超えると、後述するレンチキュラーレンズ製造工程において、ガラスフリット融着時の収縮が大きくなり、クラックが発生したり、ガラスが割れてしまう可能性がある。
一方、レンチキュラーレンズ24の厚みの下限は特に無いが、後述するガラスフリットの粒子径と同程度の厚みになると、ガラスフリットを融着させてレンズ表面を平滑にすること、および、レンズ形状を維持することの両立が難しくなる可能性がある。
以上の点を考慮すると、レンチキュラーレンズ24のより好ましい厚みtは、10〜200μmである。
Further, the thickness t of the lenticular lens 24 is not particularly limited, but is preferably 300 μm or less. If the thickness of the lenticular lens 24 exceeds 300 μm, in the lenticular lens manufacturing process described later, shrinkage at the time of fusing the glass frit increases, and cracks may occur or the glass may break.
On the other hand, there is no particular lower limit on the thickness of the lenticular lens 24, but when the thickness is about the same as the particle diameter of the glass frit described later, the glass frit is fused to smooth the lens surface and the lens shape is maintained. It can be difficult to do both.
Considering the above points, the more preferable thickness t of the lenticular lens 24 is 10 to 200 μm.

さらに、レンチキュラーレンズ24のレンズ高さhやレンズ半径rは、組み合わせる表示装置12の解像度(画素ピッチ)、要求される焦点距離、鑑賞距離、視野角等に応じて、公知の立体画像の表示装置に用いられるレンチキュラーレンズと同様に、適宜、設定すればよい。   Furthermore, the lens height h and the lens radius r of the lenticular lens 24 are determined according to the resolution (pixel pitch) of the display device 12 to be combined, the required focal length, viewing distance, viewing angle, and the like. Similar to the lenticular lens used in the above, it may be set appropriately.

このような基板ガラス20とガラス製のレンチキュラーレンズ24とからなるレンズ構造体14(本発明のガラス製レンチキュラーレンズ構造体)は、後述する本発明の製造方法で好適に製造することができ、大型のガラス製のレンチキュラーレンズ構造体を容易に製造することができる。
すなわち、本発明は、立体表示装置等の画面サイズ大型化に、容易に対応することが可能である。また、本発明によればレンズ構造体14の熱膨張が少ないので、この点でも画面サイズの大型化に容易に対応できる。
The lens structure 14 (glass lenticular lens structure of the present invention) composed of such a substrate glass 20 and a glass lenticular lens 24 can be suitably manufactured by the manufacturing method of the present invention to be described later. The glass lenticular lens structure can be easily manufactured.
That is, the present invention can easily cope with an increase in the screen size of a stereoscopic display device or the like. Further, according to the present invention, since the thermal expansion of the lens structure 14 is small, it is possible to easily cope with an increase in screen size in this respect.

本発明のレンズ構造体14の製造方法は、まず、基板ガラス20に、基板ガラス20よりも軟化点の低いガラスのフリットとバインダとを含むガラスフリットペーストを塗布する。なお、塗布により得られた塗膜は、必要に応じて乾燥してもよい。
次に、塗膜に、第1の温度で成形型をプレスして、成形型の形状を転写させる。次に、転写された塗膜に対し、第1の温度よりも高温の第2の温度で脱バインダを行う。さらに、第2の温度よりも高温で、かつ、基板ガラス20の軟化点よりも低温の第3の温度で焼成を行なって、ガラスフリットの融着を行う。
In the manufacturing method of the lens structure 14 of the present invention, first, a glass frit paste containing a glass frit having a softening point lower than that of the substrate glass 20 and a binder is applied to the substrate glass 20. In addition, you may dry the coating film obtained by application | coating as needed.
Next, the mold is pressed onto the coating film at a first temperature to transfer the shape of the mold. Next, the transferred coating film is debindered at a second temperature higher than the first temperature. Further, the glass frit is fused by firing at a third temperature higher than the second temperature and lower than the softening point of the substrate glass 20.

以下、図4(A)〜(E)、および、図5のフローチャートを用いて、本発明のレンズ構造体14の製造方法の一例を、具体的に説明する。   Hereinafter, an example of the manufacturing method of the lens structure 14 according to the present invention will be described in detail with reference to FIGS. 4A to 4E and the flowchart of FIG.

初めに、図4(A)に示すように、基板ガラス20を準備する。
他方で、レンチキュラーレンズ24となるガラスフリットペースト(以下、ペーストとする)を調製する。このペーストは、少なくとも、ガラスフリット(ガラスの微粒子)と、バインダとを混合(混練)してなる、バインダ中にガラスフリットを分散してなるペーストである。
First, as shown in FIG. 4A, a substrate glass 20 is prepared.
On the other hand, a glass frit paste (hereinafter referred to as a paste) to be the lenticular lens 24 is prepared. This paste is a paste obtained by mixing (kneading) at least glass frit (glass fine particles) and a binder, in which the glass frit is dispersed in the binder.

ガラスフリット(すなわち、レンチキュラーレンズ24となるガラス)は、基板ガラス20よりも軟化点が低いガラスであるのが好ましく、特に、基板ガラス20の軟化点よりも50℃以上低いガラスからなるガラスフリットであるのが好ましい。すなわち、本発明においては、レンチキュラーレンズ24は、基板ガラス20の軟化点よりも低い軟化点を有する材料で形成されるのが好ましい。
ガラスフリットの軟化点が基板ガラス20の軟化点よりも低く、特に50℃以上低ければ、後述する焼成工程において、基板ガラス20が熱変形することを好適に防止して、レンチキュラーレンズ24となるガラスフリットの融着を行うことが出来る。例えば、基板ガラス20がソーダライムガラスである場合、軟化点が730℃付近なので、ガラスフリットの軟化点は680℃以下であるのが好ましい。
The glass frit (that is, the glass that becomes the lenticular lens 24) is preferably a glass having a softening point lower than that of the substrate glass 20, and in particular, a glass frit made of glass that is 50 ° C. lower than the softening point of the substrate glass 20. Preferably there is. That is, in the present invention, the lenticular lens 24 is preferably formed of a material having a softening point lower than the softening point of the substrate glass 20.
If the softening point of the glass frit is lower than the softening point of the substrate glass 20, particularly 50 ° C. or more, it is preferable to prevent the substrate glass 20 from being thermally deformed in the baking step described later and to form the lenticular lens 24. The frit can be fused. For example, when the substrate glass 20 is soda lime glass, since the softening point is around 730 ° C., the softening point of the glass frit is preferably 680 ° C. or less.

一方で、ガラスフリットの軟化点は、ペーストに含まれるバインダの分解温度よりも高温であるのが好ましい。バインダの種類によっても異なるが、特に、ガラスフリットの軟化点は350℃以上であることが好ましい。
このような軟化点を有するガラスフリットを用いることにより、後述する第2の温度による脱バインダ工程において、脱バインダとガラスの融着が同時に起こることを好適に防止できる。
On the other hand, the softening point of the glass frit is preferably higher than the decomposition temperature of the binder contained in the paste. Although it varies depending on the type of binder, the softening point of the glass frit is particularly preferably 350 ° C. or higher.
By using a glass frit having such a softening point, it is possible to suitably prevent the binder and glass from fusing at the same time in the binder removal step at the second temperature described later.

なお、ガラスフリットは、軟化点付近の温度領域における温度変化に対する粘度変化が小さい方が好ましい。
この粘度変化が小さいと、後述する第3の温度によるガラスフリットの焼結工程における形状の崩れを小さくすることができ、微細な形状を有するガラス製構造体をより高精度に作製することができる。
The glass frit preferably has a smaller viscosity change with respect to a temperature change in a temperature region near the softening point.
When this change in viscosity is small, it is possible to reduce the collapse of the shape in the glass frit sintering step due to the third temperature described later, and it is possible to produce a glass structure having a fine shape with higher accuracy. .

ガラスフリットの平均粒子径は10μm以下であるのが好ましい。
ガラスフリットの平均粒子径を10μm以下とすることにより、ペーストを塗布/乾燥して形成された塗膜の表面粗度が大きくなるのを防止して、後述するプレス工程における成形型の形状の転写をより確実に行なうことが可能となり、さらに、成形型の破損をより確実に防止できる。
なお、粒子径の下限には特に限定は無いが、ガラスフリットを作製する際におけるガラス粉砕のコストを考慮すると、0.5μm程度以上が好ましい。
The average particle size of the glass frit is preferably 10 μm or less.
By setting the average particle size of the glass frit to 10 μm or less, it is possible to prevent the surface roughness of the coating film formed by applying / drying the paste from increasing, and to transfer the shape of the mold in the press process described later. Can be performed more reliably, and further, damage to the mold can be prevented more reliably.
The lower limit of the particle diameter is not particularly limited, but is preferably about 0.5 μm or more in consideration of the cost of pulverizing the glass when producing the glass frit.

前述のように、(ガラスフリット)ペーストは、少なくともガラスフリットと、バインダとを混合してなるペーストである。
本発明において、バインダは、ペーストを基板ガラス20上に保持し、後述するプレス工程においてガラスフリットが基板ガラス20から剥がれないよう、ガラスとの密着性を発現する役割、およびプレス工程において、ペーストを塗布して形成された塗膜の硬さを調整し、成形型の形状転写性を向上させる役割を果たす。
As described above, the (glass frit) paste is a paste formed by mixing at least glass frit and a binder.
In the present invention, the binder holds the paste on the substrate glass 20, and plays a role of developing adhesiveness with the glass so that the glass frit is not peeled off from the substrate glass 20 in the pressing step described later, and in the pressing step. It plays the role of adjusting the hardness of the coating film formed by coating and improving the shape transferability of the mold.

バインダ(バインダ樹脂)には、特に限定はなく、各種の樹脂が利用可能である。
一例として、ニトロセルロース、アセチルセルロース、エチルセルロース、カルボキシメチルセルロース、メチルセルロース等のセルロース系高分子、天然ゴム、ポリブタジエンゴム、クロロプレンゴム、アクリルゴム、イソプレン系合成ゴム、環化ゴム等の天然高分子や、ポリエチレン、ポリプロピレン、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリスチレン、ポリビニルアルコール、ポリビニルブチラール、ポリ酢酸ビニル、ポリエステル、ポリカーボネート、ポリアクリルニトリル、ポリ塩化ビニル、ポリアミド、ポリウレタン等の合成高分子等が例示される。
これらの樹脂は単独で用いてもよく、あるいは、混合または共重合体として用いてもよい。
The binder (binder resin) is not particularly limited, and various resins can be used.
Examples include cellulose polymers such as nitrocellulose, acetylcellulose, ethylcellulose, carboxymethylcellulose, and methylcellulose, natural polymers such as natural rubber, polybutadiene rubber, chloroprene rubber, acrylic rubber, isoprene synthetic rubber, and cyclized rubber, and polyethylene. And synthetic polymers such as polypropylene, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl alcohol, polyvinyl butyral, polyvinyl acetate, polyester, polycarbonate, polyacrylonitrile, polyvinyl chloride, polyamide, polyurethane, etc. .
These resins may be used alone, or may be used as a mixture or a copolymer.

この製造方法において、ペースト中のガラスフリットの含有率には特に限定は無いが、20〜90wt%であるのが好ましい。
ペースト中におけるガラスフリットの含有率を20wt%以上とすることにより、1回のペーストの塗布で、十分な膜厚を確保することができ、所望の膜厚を得るために複数回の塗布を行なうことによるコストアップを抑制できる。他方、ペースト中におけるガラスフリットの含有率を90wt%以下とすることにより、ペーストの粘度が高くなり過ぎることを防止して、好適にペーストを均一に塗布することが可能となる。またガラスフリットの含有率を90wt%以下とすることにより、ペースト中におけるバインダの量も十分に確保でき、これにより、十分な基板ガラス20と塗膜との密着性を得ることができる。
上記の点を考慮すると、ペースト中におけるガラスフリットの含有率は、より好ましくは50〜80wt%である。
In this production method, the glass frit content in the paste is not particularly limited, but is preferably 20 to 90 wt%.
By setting the glass frit content in the paste to 20 wt% or more, a sufficient film thickness can be ensured by a single application of the paste, and a plurality of applications are performed to obtain a desired film thickness. The cost increase by this can be suppressed. On the other hand, by setting the content of glass frit in the paste to 90 wt% or less, the viscosity of the paste is prevented from becoming too high, and the paste can be applied uniformly and suitably. In addition, by setting the glass frit content to 90 wt% or less, the amount of the binder in the paste can be sufficiently secured, and thereby sufficient adhesion between the substrate glass 20 and the coating film can be obtained.
Considering the above points, the glass frit content in the paste is more preferably 50 to 80 wt%.

他方、この製造方法で用いるペーストにおいて、バインダの含有量にも特に限定はないが、ガラスフリット100重量部に対し、バインダが1〜50重量部が好ましい。
ガラスフリット100重量部に対し、バインダを1重量部以上とすることにより、基板ガラス20と塗膜との密着性を十分に確保することができる。また、ガラスフリット100重量部に対し、バインダを50重量部以下とすることにより、後述するプレス工程における塗膜の剛性を十分に得ることができ、成形型への塗膜の付着等も防止できる。また、バインダを50重量部以下とすることにより、脱バインダ工程によって生じる空隙を少なくでき、その後のガラスフリットの焼成工程における形状変化を小さくして、レンチキュラーレンズ24の形状の制御を、より高精度に行なうことができる。
上記の点を考慮すると、ペースト中におけるバインダの量は、より好ましくは、ガラスフリット100重量部に対して5〜30重量部である。
On the other hand, in the paste used in this production method, the binder content is not particularly limited, but the binder is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the glass frit.
By setting the binder to 1 part by weight or more with respect to 100 parts by weight of the glass frit, sufficient adhesion between the substrate glass 20 and the coating film can be ensured. Further, by setting the binder to 50 parts by weight or less with respect to 100 parts by weight of the glass frit, it is possible to sufficiently obtain the rigidity of the coating film in the pressing process described later, and to prevent the coating film from adhering to the mold. . Further, by setting the binder to 50 parts by weight or less, voids generated by the binder removal process can be reduced, and the shape change in the subsequent glass frit baking process can be reduced, thereby controlling the shape of the lenticular lens 24 with higher accuracy. Can be done.
Considering the above points, the amount of the binder in the paste is more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the glass frit.

なお、ペーストには、このような成分以外に、ペーストの粘度調整や、ガラスへの塗布性を向上させるために、必要に応じて溶剤を含んでいても良い。
溶剤としては、トルエン、キシレンテトラリン等の炭化水素系、メタノール、エタノール等のアルコール系、アセトン、メチルエチルケトン等のケトン系、酢酸メチル、酢酸エチル等のエステル系、エチレングリコール系、ジエチレングリコール系の各溶剤などが使用できる。
さらに、ペーストには、塗布性を向上させるための界面活性剤や、塗膜の硬さを調整するための可塑剤等を必要に応じて添加しても良い。
In addition to such components, the paste may contain a solvent as necessary in order to adjust the viscosity of the paste and improve the coating property to glass.
Solvents include hydrocarbons such as toluene and xylenetetralin, alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, esters such as methyl acetate and ethyl acetate, ethylene glycol and diethylene glycol solvents. Can be used.
Furthermore, you may add surfactant for improving applicability | paintability, the plasticizer for adjusting the hardness of a coating film, etc. to a paste as needed.

ペーストの調製方法には特に限定はなく、例えば、ガラスフリットおよびバインダ、あるいはさらに溶剤等のそれ以外の必要な成分を、混合装置や混練装置に所定量投入し、ガラスフリットが均一に分散するように十分に混合(混練)すればよい。
一例として、バインダと溶剤との混合物(いわゆるビヒクル)を調製し、ビヒクルに、ガラスフリット、および、その他の成分を投入、混合して、ペーストを調製すればよい。
The paste preparation method is not particularly limited. For example, a predetermined amount of glass frit and a binder or other necessary components such as a solvent is added to a mixing device or a kneading device so that the glass frit is uniformly dispersed. Can be sufficiently mixed (kneaded).
As an example, a paste may be prepared by preparing a mixture of a binder and a solvent (so-called vehicle), adding glass frit and other components to the vehicle, and mixing them.

このようにしてペーストを調製したら、図4(B)に示すように、ペーストを基板ガラス20の表面に塗布する。
本発明の製造方法において、ペーストの塗布方法には特に限定は無く、公知の塗布方法が各種利用可能である。
一例として、ローラー塗布、手塗り、刷毛塗り、スピンコート、ディップコート、スクリーン印刷、カーテンフロー、バーコート、ダイコート、グラビアコート、マイクログラビアコート、リバースコート、ロールコート、フローコート、スプレーコート等の塗布方法が例示される。
これらのうち、大面積塗布が容易であり、また、1回の塗布で十分な厚膜が得られる等理由から、ダイコートやスクリーン印刷が好ましく利用される。
After the paste is prepared in this way, the paste is applied to the surface of the substrate glass 20 as shown in FIG.
In the production method of the present invention, the paste coating method is not particularly limited, and various known coating methods can be used.
For example, roller coating, hand coating, brush coating, spin coating, dip coating, screen printing, curtain flow, bar coating, die coating, gravure coating, micro gravure coating, reverse coating, roll coating, flow coating, spray coating, etc. A method is illustrated.
Of these, die coating and screen printing are preferably used because large-area coating is easy and a sufficiently thick film can be obtained by one coating.

なお、ペーストの塗布厚は、形成するレンチキュラーレンズ24の厚みt(形状高さ)、後述する成形型で形成するレンチキュラーレンズ24の凹凸の形状等に応じて、適宜設定すればよい。   The paste coating thickness may be set as appropriate according to the thickness t (shape height) of the lenticular lens 24 to be formed, the shape of the irregularities of the lenticular lens 24 to be formed with a mold described later, and the like.

さらに、図4(B)に示すように、ペーストを基板ガラス20の表面に塗布したら、必要に応じて、塗膜(すなわちペースト)を乾燥して塗膜30とする。
ペーストの乾燥方法には特に限定はなく、例えば、ペーストが塗布された基板ガラス20をオーブンで加熱する方法、UVを照射する方法等を用いることができる。
なお、加熱によりペーストの塗膜を乾燥させる場合は、バインダが変質しない程度の温度で加熱することが好ましい。具体的には、大気中において80〜200℃の温度で、5〜60分間の加熱であるのが好ましい。
Furthermore, as shown in FIG. 4B, when the paste is applied to the surface of the substrate glass 20, the coating film (that is, the paste) is dried to form the coating film 30 as necessary.
The method for drying the paste is not particularly limited, and for example, a method of heating the substrate glass 20 coated with the paste in an oven, a method of irradiating UV, or the like can be used.
In addition, when drying the coating film of a paste by heating, it is preferable to heat at the temperature which does not change a binder. Specifically, the heating is preferably performed at a temperature of 80 to 200 ° C. in the atmosphere for 5 to 60 minutes.

また、塗膜の乾燥を行なうと、塗膜30の層厚はペーストの塗布厚よりも薄くなるので、この際には、乾燥後に得られる塗膜30の層厚を考慮して、前述のペーストの塗布厚を設定するのが好ましい。   Further, when the coating film is dried, the layer thickness of the coating film 30 becomes thinner than the coating thickness of the paste. In this case, in consideration of the layer thickness of the coating film 30 obtained after drying, the paste described above is used. It is preferable to set the coating thickness.

このようにして塗膜30を基板ガラス20の表面に形成したら、次いで塗膜30を加熱して第1の温度とする。
なお、塗膜30の加熱方法には特に限定はなく、オーブンで加熱する方法等、公知の加熱方法が各種利用可能である。この点に関しては、以下の第2の温度および第3の温度への加熱も同様である。
When the coating film 30 is thus formed on the surface of the substrate glass 20, the coating film 30 is then heated to a first temperature.
In addition, there is no limitation in particular in the heating method of the coating film 30, Various well-known heating methods, such as the method of heating with an oven, can be utilized. In this regard, the following heating to the second temperature and the third temperature is the same.

第1の温度には、特に限定はなく、塗膜30のバインダが軟化して、成形型32によるプレス成形が可能となる温度を、バインダの種類等に応じて、適宜、設定すればよいが、100〜200℃とするのが好ましい。
後述するように、本発明においては、この塗膜30を第1の温度にして、成形型32でプレスすることにより、塗膜30をレンチキュラーレンズ24の形状に成形する。ここで、第1の温度を100℃以上とすることにより、多くのペーストについて、ペースト層を十分に軟化することができ、正確な成形を行なうことが可能となる。また、第1の温度を200℃以下とすることにより、温度が高すぎることに起因するバインダの軟化し過ぎを抑制して、これに起因する成形型への付着や、加熱し過ぎによるバインダの分解や変質を、好適に防止することができる。
The first temperature is not particularly limited, and the temperature at which the binder of the coating film 30 is softened and can be press-molded by the mold 32 may be appropriately set according to the type of the binder. 100 to 200 ° C. is preferable.
As will be described later, in the present invention, the coating film 30 is formed into the shape of the lenticular lens 24 by pressing the coating film 30 with the molding die 32 at the first temperature. Here, by setting the first temperature to 100 ° C. or higher, the paste layer can be sufficiently softened for many pastes, and accurate molding can be performed. In addition, by setting the first temperature to 200 ° C. or lower, it is possible to suppress excessive softening of the binder due to the temperature being too high, and the adhesion of the binder to the mold caused by this or excessive heating of the binder. Decomposition and alteration can be suitably prevented.

塗膜30を第1の温度としたら、図4(C)〜図4(D)に示すように、形成するレンチキュラーレンズ24の凹凸の形状に応じた凹凸が形成された押圧面を有する成形型32によって塗膜30をプレス(押圧)する。
なお、プレスを行う際には、成形型32は加熱されていても良い。成形型32の加熱温度には、特に限定はなく、塗膜30と同様に、バインダの種類等に応じて、適宜、設定すれば良いが、100〜200℃とするのが好ましい。
When the coating film 30 is set to the first temperature, as shown in FIGS. 4C to 4D, a mold having a pressing surface on which irregularities corresponding to the irregularities of the lenticular lens 24 to be formed are formed. The coating film 30 is pressed (pressed) by 32.
In addition, when pressing, the shaping | molding die 32 may be heated. The heating temperature of the mold 32 is not particularly limited, and may be set as appropriate according to the type of the binder and the like, as with the coating film 30, but is preferably 100 to 200 ° C.

図示例において、成形型32は、ロール型の成形型であり、円筒の周面に、周方向に延在する凹部(溝)32aを、円筒の中心線方向に配列してなるものである。この凹部32aは、すなわち、レンチキュラーレンズ24を構成するシリンドリカルレンズに応じた円弧状の凹部である。
また、この成形型32は、円筒の中心線と一致する支軸32bによって、支持部材34に回転自在に軸支される。このような成形型32を、図4(D)に示すように、塗膜30に押圧して、矢印方向に移動することにより、略円筒形状の成形型32を塗膜30に押圧したまま、支軸32bを中心に回転して矢印方向に転がす。
In the illustrated example, the forming die 32 is a roll-type forming die, and is formed by arranging concave portions (grooves) 32a extending in the circumferential direction on the circumferential surface of the cylinder in the direction of the center line of the cylinder. In other words, the concave portion 32 a is an arc-shaped concave portion corresponding to the cylindrical lens constituting the lenticular lens 24.
The mold 32 is rotatably supported on the support member 34 by a support shaft 32b coinciding with the center line of the cylinder. As shown in FIG. 4D, such a mold 32 is pressed against the coating film 30 and moved in the direction of the arrow, so that the substantially cylindrical molding mold 32 is pressed against the coating film 30. It rotates around the support shaft 32b and rolls in the direction of the arrow.

次いで、図4(D)〜図4(E)に示すように、成形型32を塗膜30から取り外す。
これにより、塗膜30に成形型32の形状を転写して、レンチキュラーレンズ24の凹凸に応じた所定の形状に成形することができる。
Next, as shown in FIGS. 4D to 4E, the mold 32 is removed from the coating film 30.
As a result, the shape of the mold 32 can be transferred to the coating film 30 and molded into a predetermined shape corresponding to the irregularities of the lenticular lens 24.

本発明の製造方法においては、バルクガラスを直接成形するのではなく、より柔らかい塗膜30をプレス成形することで、プレスの温度や圧力を低く抑え、プレス条件をマイルド(穏やか)にすることができるので、高価なプレス金型の損耗を殆ど無くして長寿命とすることができ、低コストで、ガラス製構造体を作製することが可能となる。しかも、本発明の製造方法は、柔らかい塗膜30を、比較的低温かつ低圧力でプレス成形するので、非常に微細な成形を行なうことができ、微細な凹凸を有する総ガラス製のレンチキュラーレンズ構造体を、高精度に製造することができる。
また、塗膜30の成形性や、塗膜30と成形型32との離型性(剥離性)を、ペーストに含有させるバインダで制御することができる。すなわち、成形性や離型性が、ガラスフリットの材料特性には依存しないので、ガラスフリットの材料選択範囲が広い。
In the manufacturing method of the present invention, the bulk glass is not directly molded, but the softer coating film 30 is press-molded to keep the press temperature and pressure low and to make the press conditions mild. Therefore, the wear of the expensive press mold can be almost eliminated and the life can be extended, and the glass structure can be manufactured at low cost. In addition, since the manufacturing method of the present invention press-molds the soft coating film 30 at a relatively low temperature and low pressure, it is possible to perform very fine molding, and a lenticular lens structure made of total glass having fine irregularities. The body can be manufactured with high accuracy.
Moreover, the moldability of the coating film 30 and the releasability (peelability) between the coating film 30 and the mold 32 can be controlled by a binder contained in the paste. That is, since the moldability and releasability do not depend on the material characteristics of the glass frit, the glass frit material selection range is wide.

成形型32の形成材料には、特に限定はなく、所望の寸法精度を付与することができ、塗膜30のプレスによる変形が少なく必要な精度を維持することができ、かつ、プレス時の温度により軟化や変質をしない材料であれば、各種のものが利用可能である。
例えば、金属、セラミックス等が使用できる。具体的には、金属型の材質としてはニッケルや焼き入れ鋼、その他、セラミック焼成品のプレス成形型に使用される各種のものが例示される。また、セラミック型の材質としては、窒化珪素、アルミナ、ジルコニア等がある。
The forming material of the mold 32 is not particularly limited, and can provide desired dimensional accuracy, can maintain the required accuracy with little deformation of the coating film 30 by pressing, and the temperature during pressing. Various materials can be used as long as they do not soften or change quality.
For example, metal, ceramics, etc. can be used. Specifically, examples of the material of the metal mold include nickel, hardened steel, and various other materials used for press-molding ceramic fired products. Further, as the ceramic type material, there are silicon nitride, alumina, zirconia and the like.

ここで、図4に示す例では、成形型32として、連続的に成形を行なうことができるロール型を例示している。
平面型の成形型の場合、2次元の型加工が容易であるが、その反面、面全体に荷重をかける必要があり、プレス面積に応じてより多くの荷重を必要とし、且つロール型に比べ離型がし難い。
他方、ロール型の場合は、例えば、図3に示すような、レンチキュラーレンズ28を構成するシリンドリカルレンズが傾斜して配列されるような、複雑な2次元加工が難しい。その反面、成形型の荷重が線状に集中してかかるため、少ない荷重で良好に形状転写でき、かつ、離型も容易である。
従って、成形型32は、直線型のシリンドリカルレンズを配列してなるレンチキュラーレンズの形状については、ロール型の成形型が、好適に利用可能である。
Here, in the example shown in FIG. 4, a roll die that can be continuously formed is illustrated as the forming die 32.
In the case of a flat type mold, two-dimensional mold processing is easy, but on the other hand, it is necessary to apply a load to the entire surface, and more load is required depending on the press area, and compared to a roll mold. It is difficult to release.
On the other hand, in the case of the roll type, for example, complicated two-dimensional processing in which cylindrical lenses constituting the lenticular lens 28 are inclined and arranged as shown in FIG. 3 is difficult. On the other hand, since the load of the mold is concentrated in a line shape, the shape can be transferred satisfactorily with a small load, and the mold release is easy.
Therefore, as the mold 32, a roll mold can be suitably used for the shape of a lenticular lens formed by arranging linear cylindrical lenses.

なお、本発明の製造方法においては、後述する第2の温度での脱バインダ工程において成形した塗膜30からバインダが抜け、さらに、第3の温度での焼成工程において、塗膜30内に存在する空隙、および、脱バインダによって生じた空隙を埋めるようにガラスフリットが融着する。
そのため、成形型32で成形した塗膜30全体では、体積収縮が避けられない。従って、塗膜30をプレス成形する成形型32は、その収縮を織り込んで、金型の形状を設計することが必要である。
In the production method of the present invention, the binder is removed from the coating film 30 formed in the binder removal step at the second temperature described later, and further, the coating film 30 exists in the baking step at the third temperature. The glass frit is fused so as to fill the voids generated and the voids generated by the binder removal.
Therefore, volume shrinkage is unavoidable in the entire coating film 30 formed by the mold 32. Therefore, the mold 32 for press-molding the coating film 30 needs to design the shape of the mold by incorporating the shrinkage.

成形型32によるプレス圧力は、ペーストの材料によっても異なるが、10〜80MPaであるのが好ましい。
プレス圧力を10MPa以上とすることにより、成形型32の形状を確実にペースト層に転写することができ、すなわち、十分な成形型形状の転写性を得ることができる。また、プレス圧力を80MPa以下とすることにより、圧力が高すぎることに起因する基板ガラス20や成形型32の破損を好適に防止できる。上記の点を考慮すると、成形型32によるプレス圧力は、より好ましくは、30〜50MPaである。
なお、成形型32による塗膜30のプレス速度にも特に限定は無いが、早すぎると十分な成形が困難となり、遅すぎると生産性の低下につながるので、毎分2〜50cmが好ましい。
Although the press pressure by the shaping | molding die 32 changes with paste materials, it is preferable that it is 10-80 Mpa.
By setting the pressing pressure to 10 MPa or more, the shape of the mold 32 can be reliably transferred to the paste layer, that is, sufficient transferability of the mold shape can be obtained. Further, by setting the press pressure to 80 MPa or less, it is possible to suitably prevent the substrate glass 20 and the mold 32 from being damaged due to the pressure being too high. Considering the above points, the press pressure by the mold 32 is more preferably 30 to 50 MPa.
In addition, although there is no limitation in particular also in the press speed of the coating film 30 by the shaping | molding die 32, since sufficient shaping | molding will become difficult if too early, and it will lead to the fall of productivity when too late, 2-50 cm / min is preferable.

このようにして、成形型32によって塗膜30をプレスして成形したら、次いで、塗膜30(ペースト)を第1の温度よりも高温の第2の温度にして、塗膜30からバインダを除去する脱バインダ工程を行なう。   After the coating film 30 is pressed by the mold 32 and molded in this manner, the coating film 30 (paste) is then brought to a second temperature higher than the first temperature, and the binder is removed from the coating film 30. A binder removal step is performed.

第2の温度すなわち脱バインダ温度は、バインダの種類に応じて、適宜設定すればよいが、300〜500℃であるのが好ましい。また、脱バインダ時間(塗膜30を第2の温度に保つ時間)は、バインダの種類やペースト中のバインダの量によっても異なるが、5〜60分が好ましい。
なお、第2の温度による脱バインダは、バインダの酸化分解を進めるため、大気雰囲気中で行なうのが好ましい。
The second temperature, that is, the binder removal temperature may be appropriately set according to the type of the binder, but is preferably 300 to 500 ° C. The binder removal time (time for keeping the coating film 30 at the second temperature) varies depending on the type of binder and the amount of binder in the paste, but is preferably 5 to 60 minutes.
Note that the binder removal at the second temperature is preferably performed in an air atmosphere in order to promote oxidative decomposition of the binder.

このようにして、脱バインダを行なったら、次いで、第2の温度よりも高温で、かつ、基板ガラス20の軟化点よりも低温の第3の温度で焼成を行い、ガラスフリットを融着して、レンチキュラーレンズ24を完成させ、さらに、基板ガラス20とレンチキュラーレンズ24とを融着して、基板ガラス20とレンチキュラーレンズ24とが一体化されたレンズ構造体14を完成する。   After the binder removal is performed in this manner, firing is then performed at a third temperature higher than the second temperature and lower than the softening point of the substrate glass 20, and the glass frit is fused. Then, the lenticular lens 24 is completed, and the substrate glass 20 and the lenticular lens 24 are fused to complete the lens structure 14 in which the substrate glass 20 and the lenticular lens 24 are integrated.

第3の温度すなわち焼成温度は、使用するガラスフリットに応じて、適宜設定すればよいが、350〜650℃で行うのが好ましい。
また、焼成雰囲気は大気下でも構わないが、フリット膜中に存在する気泡を積極的に膜外に排出するために、減圧下で焼成するのがより好ましい。
これにより、レンチキュラーレンズ24中に気泡が存在しなくなり、より透明性の高い膜を得ることが出来る。
The third temperature, that is, the firing temperature, may be appropriately set according to the glass frit used, but it is preferably performed at 350 to 650 ° C.
The firing atmosphere may be in the air, but it is more preferred to fire under reduced pressure in order to positively discharge bubbles present in the frit film out of the film.
Thereby, bubbles do not exist in the lenticular lens 24, and a film with higher transparency can be obtained.

本発明の製造方法においては、バインダが分解する第2の温度まで塗膜30を加熱して、一定時間保持して脱バインダ処理を行い、その後、さらに、ガラスフリットの融着が起こる第3の温度まで加熱して一定時間保持して焼成を行い、ガラスフリットの融着を行うことが好ましい。
しかしながら、本発明はこれに限定はされず、例えばバインダが分解し易い物である場合などは、第1の温度による塗膜30の成形終了後、第1の温度から、第3の温度まで、漸次(あるいは段階的に)、塗膜30の温度を上昇していき、ガラスフリットの融着が起こる第3の温度まで加熱する途中で、脱バインダを終了させる方法も、好適に利用可能である。すなわち、この際には、第2の温度は一定温度ではなく、第1の温度超で、第3の温度未満の昇温中の温度が、第2の温度となる。
In the manufacturing method of the present invention, the coating film 30 is heated to a second temperature at which the binder is decomposed, and the binder removal treatment is performed by holding the coating film for a certain period of time. Thereafter, the glass frit is further fused. It is preferable that the glass frit is fused by heating to a temperature and holding for a certain period of time for firing.
However, the present invention is not limited to this. For example, in the case where the binder is easily decomposed, after the formation of the coating film 30 at the first temperature, from the first temperature to the third temperature, A method of terminating the binder removal while heating up to the third temperature at which the frit of the glass frit occurs gradually (or stepwise) can be suitably used. . That is, in this case, the second temperature is not a constant temperature, and the temperature that is higher than the first temperature and that is lower than the third temperature is the second temperature.

このような本発明の製造方法は、バルクのガラスを直接プレス成形するのではなく、より柔らかい(ガラスフリット)塗膜30をプレスして、成形を行なうので、低コストで、材料および形状の選択自由度が高く、大面積化も容易であり、微細な凹凸の成形も可能である。   Such a manufacturing method of the present invention does not directly press-mold bulk glass but presses a softer (glass frit) coating film 30 to perform molding, so that the selection of materials and shapes can be performed at low cost. The degree of freedom is high, the area can be easily increased, and fine irregularities can be formed.

以上、本発明のガラス製レンチキュラーレンズ構造体、立体表示装置、および、ガラス製レンチキュラーレンズ構造体の製造方法について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのはもちろんである。   As described above, the glass lenticular lens structure, the stereoscopic display device, and the method for producing the glass lenticular lens structure of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and the gist of the present invention. Of course, various improvements and changes may be made without departing from the scope of the present invention.

以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。本発明はこれらに限られるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention. The present invention is not limited to these.

[実施例1]
<1.塗膜の形成>
まず初めに、バインダ(ブチラール樹脂:株式会社クラレ製 MowitalB30HH)20重量部を、溶剤(ブチルカルブトールアセテート)80重量部に溶解し、バインダ溶液(ビヒクル)を調製した。
続いて、このバインダ溶液100重量部と、ガラスフリット(Bi23−ZnO−B23−SiO2−Al23系ガラス、熱膨張係数79±5×10-7/℃、軟化点578℃、屈折率1.72)100重量部とを混合して攪拌し、(ガラスフリット)ペーストを調製した。
[Example 1]
<1. Formation of coating film>
First, 20 parts by weight of a binder (butyral resin: Mowital B30HH manufactured by Kuraray Co., Ltd.) was dissolved in 80 parts by weight of a solvent (butyl carbitol acetate) to prepare a binder solution (vehicle).
Subsequently, 100 parts by weight of this binder solution, glass frit (Bi 2 O 3 —ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 glass, thermal expansion coefficient 79 ± 5 × 10 −7 / ° C., softening A point of 578 ° C. and a refractive index of 1.72) and 100 parts by weight were mixed and stirred to prepare a (glass frit) paste.

基板ガラス20として、板厚300m角のソーダライムガラスを用意した。
この基板ガラス20に、マスク厚200μmのメタルマスクを用い、スクリーン印刷法によって、調製したペーストを塗布した。その後、ペーストを塗布した基板ガラス20を、乾燥機に入れて、180℃で40分乾燥することにより、厚さが150μmの塗膜30が形成された基板ガラス20を得た。
As the substrate glass 20, soda lime glass having a plate thickness of 300 m square was prepared.
The prepared paste was applied to the substrate glass 20 by a screen printing method using a metal mask having a mask thickness of 200 μm. Thereafter, the substrate glass 20 to which the paste was applied was placed in a dryer and dried at 180 ° C. for 40 minutes to obtain a substrate glass 20 on which a coating film 30 having a thickness of 150 μm was formed.

<2.プレス>
上記塗膜30が形成された基板ガラス20を、定盤を120℃に加熱したプレス機にセットした。塗膜30の上に、200℃に加熱した、レンチキュラーレンズに対応する凹凸が形成されたロール状の成形型32を乗せ、基板ガラスにかかる圧力が45MPaになるようにして毎分3.3cmの速度でプレスした。
なお、成形型32は、ニッケル製で、成形型32(円筒)の周方向に延在する、半径が90μmで深さが90μmの円弧状の凹部(溝)32aを、プレス幅が500mmとなるように成形型32の中心線方向に連続的に配列してなるものを用いた。
<2. Press>
The substrate glass 20 on which the coating film 30 was formed was set in a press machine whose surface plate was heated to 120 ° C. On the coating film 30, a roll-shaped molding die 32 heated to 200 ° C. and having irregularities corresponding to the lenticular lens is placed, and the pressure applied to the substrate glass is 3.3 cm / min. Pressed at speed.
The forming die 32 is made of nickel and extends in the circumferential direction of the forming die 32 (cylinder). The arc-shaped concave portion (groove) 32a having a radius of 90 μm and a depth of 90 μm is formed into a press width of 500 mm. Thus, what was continuously arranged in the center line direction of the mold 32 was used.

その後、成形型32を塗膜30から離し、成形型32の形状(すなわちレンチキュラーレンズ24)が転写された塗膜30を得た。任意の10点でレンズ半径rおよびレンズ高hを測定し、その平均値を塗膜30のレンズ半径rおよびレンズ高hさとした。
その結果、レンズ半径rは約90μm、レンズ高さhは約90μmであり、成形型32の形状が精度良く転写されていた。なお、レンズ半径rおよびレンズ高さhは、塗膜の断面を光学顕微鏡で観測することにより得た。
Thereafter, the mold 32 was separated from the coating film 30 to obtain the coating film 30 onto which the shape of the mold 32 (that is, the lenticular lens 24) was transferred. The lens radius r and the lens height h were measured at arbitrary 10 points, and the average values were taken as the lens radius r and the lens height h of the coating film 30.
As a result, the lens radius r was about 90 μm, the lens height h was about 90 μm, and the shape of the mold 32 was accurately transferred. The lens radius r and the lens height h were obtained by observing the cross section of the coating film with an optical microscope.

<3.焼成>
成形型32の形状が転写された塗膜30が形成された基板ガラス20を、焼成炉に入れ、大気雰囲気中で10℃/分の昇温速度で450℃まで昇温し、450℃で90分保持して脱バインダを行った。
その後、焼成炉内を30Paに減圧し、かつ10℃/分の昇温速度で540℃まで昇温し、540℃で30分保持することで焼成して、ガラスフリットの融着を行い、図2に示されるような、基板ガラス20とレンチキュラーレンズ24とが、直接接合された(ガラス製レンチキュラー)レンズ構造体14を得た。
<3. Firing>
The substrate glass 20 on which the coating film 30 to which the shape of the mold 32 has been transferred is formed is placed in a firing furnace, heated to 450 ° C. at a temperature increase rate of 10 ° C./min in the air atmosphere, and 90 ° C. at 90 ° C. The binder was removed by holding for a minute.
Thereafter, the inside of the firing furnace is depressurized to 30 Pa, heated to 540 ° C. at a heating rate of 10 ° C./min, and held at 540 ° C. for 30 minutes to perform firing, thereby fusing the glass frit. As shown in FIG. 2, the lens structure 14 in which the substrate glass 20 and the lenticular lens 24 were directly joined (glass lenticular) was obtained.

<4.評価>
得られたレンズ構造体14のレンズ形状を、以下の手法により測定した。すなわち、レンチキュラーレンズ24を構成するシリンドリカルレンズの延在方向(図2(A)のY方向)に対して、垂直方向(同X方向)に沿って、レンズ面の表面輪郭形状を測定した。
測定したレンズ構造体14の形状は、焼成による収縮や軟化したフリットガラスのダレ等の影響により、成形型32の形状が転写された塗膜30のそれよりも主に垂直方向に収縮したような形状であった。そこで、形状のダレの大きいレンズ谷部を除外したレンズ有効部に円をフィッティングすることによりレンズ半径rを、レンズ頂点−レンズ谷部最低点の差からレンズ高さhを、それぞれ求めた。
その結果、レンズ半径rは86.9μm、レンズ高さhは60.4μmであった。材料の屈折率から計算すると、焦点距離は121μmである。
これと全く同じ形状で、PMMA(ポリメチルメタアクリレート 屈折率1.5)製のレンチキュラーレンズを、同じ基板ガラス20に接着してなる、レンチキュラーレンズ構造体の場合について、焦点距離を計算すると、焦点距離は174μmとなった。すなわち、本発明のレンズ構造体14は、PMMA製のレンチキュラーレンズを用いる同構成のレンズ構造体に比して、焦点距離を174μmから121μmと、約7割小さくすることができる。
逆に、このPMMA製のレンチキュラーレンズを用いる同構成の構造体で、同じ焦点距離121μmを得ようとした場合、レンズ半径は60.3μmとやはり7割の値となり、レンズとしては、それだけきつい形状となり、製作がより難しい形状となる。
また、一般的なソーダライムガラス(屈折率 1.51)もPMMAとほぼ同じ屈折率であるので、ソーダライムガラスを直接成型する方法においても、PMMAと同等の形状を実現する必要があり、製作が難しい形状となる。
以上の結果より、本発明の効果は、明らかである。
<4. Evaluation>
The lens shape of the obtained lens structure 14 was measured by the following method. That is, the surface contour shape of the lens surface was measured along the vertical direction (X direction) with respect to the extending direction of the cylindrical lens constituting the lenticular lens 24 (Y direction in FIG. 2A).
The shape of the measured lens structure 14 seems to have shrunk mainly in the vertical direction from that of the coating film 30 to which the shape of the molding die 32 was transferred due to shrinkage due to baking or sagging of the softened frit glass. It was a shape. Therefore, a lens radius r was obtained by fitting a circle to a lens effective portion excluding a lens trough having a large shape sag, and a lens height h was obtained from the difference between the lens apex and the lens trough lowest point.
As a result, the lens radius r was 86.9 μm, and the lens height h was 60.4 μm. When calculated from the refractive index of the material, the focal length is 121 μm.
When the focal length is calculated in the case of a lenticular lens structure in which a lenticular lens made of PMMA (polymethyl methacrylate refractive index 1.5) is bonded to the same substrate glass 20 in exactly the same shape, the focal length is calculated. The distance was 174 μm. That is, the lens structure 14 of the present invention can reduce the focal length from 174 μm to 121 μm by about 70% compared to the lens structure having the same configuration using a PMMA lenticular lens.
On the other hand, when trying to obtain the same focal length of 121 μm with the structure having the same configuration using this PMMA lenticular lens, the lens radius is 60.3 μm, which is also 70% of the value. Thus, the shape becomes more difficult to manufacture.
In addition, since general soda lime glass (refractive index 1.51) has almost the same refractive index as PMMA, it is necessary to realize the same shape as PMMA even in the method of directly molding soda lime glass. Becomes a difficult shape.
From the above results, the effect of the present invention is clear.

本発明は、特に、レンチキュラーレンズ方式の立体表示装置に利用可能である。   The present invention is particularly applicable to a lenticular lens type stereoscopic display device.

10 (立体)表示装置
12 表示ユニット
14,26 (ガラス製レンチキュラー)レンズ構造体
20 基板ガラス
24,28 レンチキュラーレンズ
30 塗膜
32 成形型
34 支持部材
DESCRIPTION OF SYMBOLS 10 (3D) display apparatus 12 Display unit 14,26 (Glass lenticular) Lens structure 20 Substrate glass 24,28 Lenticular lens 30 Coating film 32 Mold 34 Support member

Claims (5)

基板ガラス上に、前記基板ガラスとは異なる組成のガラスからなるレンチキュラーレンズが形成されていることを特徴とするガラス製レンチキュラーレンズ構造体。   A glass lenticular lens structure, wherein a lenticular lens made of glass having a composition different from that of the substrate glass is formed on the substrate glass. 前記レンチキュラーレンズを構成するガラスの屈折率が、前記基板ガラスの屈折率以上であることを特徴とする請求項1に記載のガラス製レンチキュラーレンズ構造体。   The glass lenticular lens structure according to claim 1, wherein a refractive index of the glass constituting the lenticular lens is equal to or higher than a refractive index of the substrate glass. 前記レンチキュラーレンズを構成するガラスの厚みが300μm以下であることを特徴とする請求項1または2に記載のガラス製レンチキュラーレンズ構造体。   The glass lenticular lens structure according to claim 1 or 2, wherein the glass constituting the lenticular lens has a thickness of 300 µm or less. 請求項1〜3のいずれかに記載のガラス製レンチキュラーレンズ構造体と、前記ガラス製レンチキュラーレンズ構造体に対面して配置される、画素位置が固定されている表示ユニットとを備えたことを特徴とする立体表示装置。   A glass lenticular lens structure according to any one of claims 1 to 3, and a display unit arranged to face the glass lenticular lens structure and having a fixed pixel position. 3D display device. 基板ガラスの表面に、前記基板ガラスの軟化点よりも低い軟化点を有するガラスフリットおよびバインダを含むペーストを塗布して塗膜を形成する工程と、
前記バインダが軟化する第1の温度で、凹凸が形成された成形型を前記塗膜の表面に押し当てて離し、前記塗膜の前記表面に凹凸を形成する工程と、
前記第1の温度よりも高い第2の温度で、前記塗膜中のバインダを除去する工程と、
前記第2の温度よりも高い第3の温度で、前記ガラスフリットを融着させる工程とを有することを特徴とするガラス製レンチキュラーレンズ構造体の製造方法。
Applying a paste containing a glass frit and a binder having a softening point lower than the softening point of the substrate glass on the surface of the substrate glass to form a coating film;
At a first temperature at which the binder is softened, pressing the mold on which the unevenness is formed against the surface of the coating film and releasing it, and forming the unevenness on the surface of the coating film;
Removing the binder in the coating film at a second temperature higher than the first temperature;
And a step of fusing the glass frit at a third temperature higher than the second temperature. A method for producing a glass lenticular lens structure.
JP2010097804A 2010-04-21 2010-04-21 Glass lenticular lens structure and stereoscopic display device, and method of manufacturing glass lenticular lens structure Withdrawn JP2013145254A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010097804A JP2013145254A (en) 2010-04-21 2010-04-21 Glass lenticular lens structure and stereoscopic display device, and method of manufacturing glass lenticular lens structure
PCT/JP2011/059864 WO2011132750A1 (en) 2010-04-21 2011-04-21 Glass lenticular lens structure, three dimensional display device, and production method for glass lenticular lens structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097804A JP2013145254A (en) 2010-04-21 2010-04-21 Glass lenticular lens structure and stereoscopic display device, and method of manufacturing glass lenticular lens structure

Publications (1)

Publication Number Publication Date
JP2013145254A true JP2013145254A (en) 2013-07-25

Family

ID=44834266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097804A Withdrawn JP2013145254A (en) 2010-04-21 2010-04-21 Glass lenticular lens structure and stereoscopic display device, and method of manufacturing glass lenticular lens structure

Country Status (2)

Country Link
JP (1) JP2013145254A (en)
WO (1) WO2011132750A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023187448A1 (en) * 2022-03-31 2023-10-05 Visutek 3D Gmbh Auto-stereoscopic visual projection screen and optical barrier associated with said screen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242303A (en) * 1993-02-19 1994-09-02 Nippon Sheet Glass Co Ltd Plate-like lens array and its production
JPH09230112A (en) * 1996-02-27 1997-09-05 Toray Ind Inc Microlens array and its production
JP5024992B2 (en) * 2007-02-02 2012-09-12 株式会社ジャパンディスプレイセントラル Display device
JP2009040628A (en) * 2007-08-08 2009-02-26 Toray Ind Inc Photosensitive glass paste for microlens and microlens array using the same
JP2011059156A (en) * 2009-09-07 2011-03-24 Seiko Epson Corp Method of manufacturing microlens array and microlens array manufactured by the method

Also Published As

Publication number Publication date
WO2011132750A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
US7033534B2 (en) Method for forming microstructures on a substrate using a mold
JP6086954B2 (en) Optical bent glass plate and method for producing the same
US7288013B2 (en) Method of forming microstructures on a substrate and a microstructured assembly used for same
EP2423714A1 (en) Antireflection film, method for manufacturing antireflection film, and display apparatus
WO2011132753A1 (en) Method for producing glass member, and planar lens and glass paste
WO2017086322A1 (en) Lenticular structure
JP4654864B2 (en) Method for manufacturing plasma display panel
CN1756643A (en) Method for producing optical sheet, optical sheet, and method for producing lenticular lens sheet
WO2015012161A1 (en) Second mold to which irregular first mold pattern has been transferred, second mold manufacturing method, method for manufacturing article using second mold, optical panel manufacturing method and optical element manufacturing method
WO2011132750A1 (en) Glass lenticular lens structure, three dimensional display device, and production method for glass lenticular lens structure
TW200529280A (en) Manufacturing process of substrate for image display panel
JP2011059156A (en) Method of manufacturing microlens array and microlens array manufactured by the method
US11066320B2 (en) Cover glass and a manufacturing method thereof using glass wool
JP2014089228A (en) Microlens array manufacturing method and microlens array
JP3776615B2 (en) Photosensitive paste and plasma display panel substrate using the same
JP2013088721A (en) Glass optical member and luminaire
JP3667969B2 (en) Method for manufacturing plasma display panel
JPH1116490A (en) Manufacture of barrier rib for plasma display panel and substrate for plasma display panel
JPH11283506A (en) Base board for plasma display device and its manufacture
JP2010501108A (en) Mold having a surface-modified non-molding region
KR20010053974A (en) Plastic film for manufacturing barrier rib and a method for manufacturing barrier rib for plasma display panel
JP2014089227A (en) Microlens array manufacturing method and microlens array
JP2008027800A (en) Forming method of dielectric layer of plasma display panel
JP2018091965A (en) Lenticular structure body, and backlight unit using the same
JP2000285815A (en) Substrate for plasma display device and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806