JP2013145181A - Hardening process evaluation device and method for evaluating hardening process - Google Patents

Hardening process evaluation device and method for evaluating hardening process Download PDF

Info

Publication number
JP2013145181A
JP2013145181A JP2012005693A JP2012005693A JP2013145181A JP 2013145181 A JP2013145181 A JP 2013145181A JP 2012005693 A JP2012005693 A JP 2012005693A JP 2012005693 A JP2012005693 A JP 2012005693A JP 2013145181 A JP2013145181 A JP 2013145181A
Authority
JP
Japan
Prior art keywords
quenching
voltage
polar coordinates
depth
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012005693A
Other languages
Japanese (ja)
Inventor
Yukio Uozumi
由紀夫 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Machine Industry Co Ltd
Original Assignee
Aichi Machine Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Machine Industry Co Ltd filed Critical Aichi Machine Industry Co Ltd
Priority to JP2012005693A priority Critical patent/JP2013145181A/en
Publication of JP2013145181A publication Critical patent/JP2013145181A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a hardening process evaluation device capable of highly accurately determining a level of hardening depth by a hardening process.SOLUTION: The hardening process evaluation device includes: voltage application means for applying an AC exciting voltage to exciting coils 45 and 55; receiving coils 46 and 56 capable of detecting an induced voltage and an induced current caused by an eddy current generated in an inspection object component 1 by application of the AC exciting voltage; and coordinate transformation means that measures an amplitude value of the induced voltage and a phase difference between the induced voltage and the induced current and transforms the amplitude value of the induced voltage and the phase difference into polar coordinates. The level of the hardening depth by the hardening process performed on the inspection object component 1 is determined on the basis of the polar coordinates.

Description

本発明は、検査対象部品に施された焼入れ処理による焼入れ深さの程度を精度良く判定することのできる焼入れ処理評価装置および焼入れ処理評価方法に関するものである。   The present invention relates to a quenching process evaluation apparatus and a quenching process evaluation method capable of accurately determining the degree of quenching depth by quenching process applied to a part to be inspected.

従来、この種の焼入れ処理評価装置としては、渦電流センサを用いて非破壊で検査対象部品の焼入れ深さを評価するものが提案されている。   Conventionally, as this type of quenching processing evaluation apparatus, an apparatus that evaluates the quenching depth of a component to be inspected nondestructively using an eddy current sensor has been proposed.

特許第3087499号公報Japanese Patent No. 3087499 特開2002−14081号公報JP 2002-14081 A

上記特許文献1に開示されている装置では、検査対象部品に交流励磁信号を励磁した際に生ずる渦電流による検出信号の交流励磁信号に対する位相差と、実際の焼入れ硬化層深さとの相関関係から求めた回帰直線を検量線として用いることにより、位相差から焼入れ硬化層深さを求めるものであるが、検出信号の交流励磁信号に対する位相差だけでは、焼入れ硬化層深さを一義的に決定できないとの見解もある(特許文献2)。
なお、高周波焼入れの場合は、図7に示すように、硬化層深さの分布は明確であり、特許文献1に開示されている装置により判定が可能であるが、浸炭焼入れの場合には、図8に示すように、硬化層深さの分布がなだらかであり、特許文献1に開示されているような測定方法では、ばらつきが大きくなり、判定が困難となるという問題点があり、焼入れ硬化層深さを精度良く判定するには更なる改良の余地があった。
In the apparatus disclosed in Patent Document 1, the correlation between the phase difference with respect to the AC excitation signal of the detection signal caused by the eddy current generated when the AC excitation signal is excited on the component to be inspected, and the actual hardened and hardened layer depth is obtained. By using the obtained regression line as a calibration curve, the hardening hardening layer depth is obtained from the phase difference, but the hardening hardening layer depth cannot be uniquely determined only by the phase difference of the detection signal with respect to the AC excitation signal. There is also an opinion (Patent Document 2).
In the case of induction hardening, as shown in FIG. 7, the distribution of the hardened layer depth is clear and can be determined by the apparatus disclosed in Patent Document 1, but in the case of carburizing and quenching, As shown in FIG. 8, the distribution of the hardened layer depth is gentle, and the measurement method as disclosed in Patent Document 1 has a problem that the variation becomes large and the determination becomes difficult. There was room for further improvement in determining the layer depth with high accuracy.

本発明は、検査対象部品に施された焼入れ処理による焼入れ深さの程度を精度良く判定することのできる焼入れ処理評価装置および焼入れ処理評価方法の提供を目的とし、この目的の少なくとも一部を達成するために以下の手段を採った。
本発明の焼入れ処理評価装置は、
検査対象部品に施された焼入れ処理を評価する焼入れ処理評価装置であって、
交流励磁電圧を印加する電圧印加手段と、
該電圧印加手段により検査対象部品に前記交流励磁電圧を印加することにより、前記検査対象部品に生ずる渦電流に起因する被誘導電圧および被誘導電流を検出可能な検出手段と、
前記被誘導電圧の振幅値および該被誘導電圧と前記被誘導電流との位相差を計測する計測手段と、
計測された前記被誘導電圧の振幅値および前記位相差を極座標に変換する座標変換手段と、
前記極座標に基づいて前記検査対象部品に施された前記焼入れ処理による焼入れ深さの程度を判定する判定手段と、
を備えることを要旨とする。
An object of the present invention is to provide a quenching treatment evaluation apparatus and a quenching treatment evaluation method that can accurately determine the degree of quenching depth by quenching treatment applied to a part to be inspected, and achieve at least a part of this object. The following measures were taken.
The quenching treatment evaluation apparatus of the present invention is
A quenching process evaluation device for evaluating a quenching process performed on a part to be inspected,
Voltage application means for applying an AC excitation voltage;
Detecting means capable of detecting induced voltage and induced current caused by eddy current generated in the inspection target component by applying the AC excitation voltage to the inspection target component by the voltage applying means;
Measuring means for measuring an amplitude value of the induced voltage and a phase difference between the induced voltage and the induced current;
Coordinate conversion means for converting the measured amplitude value of the induced voltage and the phase difference into polar coordinates;
Determination means for determining the degree of quenching depth by the quenching process applied to the inspection target component based on the polar coordinates;
It is a summary to provide.

本発明の焼入れ処理評価装置は、検査対象部品に交流励磁電圧を励磁した際に生ずる渦電流に起因する被誘導電圧および被誘導電流を検出し、被誘導電圧の振幅値および被誘導電圧と被誘導電流との位相差を極座標に変換し、変換した極座標に基づいて検査対象部品に施された焼入れ処理による焼入れ深さの程度を判定するものであり、焼入れ深さの程度を精度良く判定することができる。   The quenching processing evaluation apparatus of the present invention detects induced voltage and induced current caused by eddy current generated when an AC excitation voltage is excited on a component to be inspected, and detects the amplitude value of the induced voltage, the induced voltage, and the induced voltage. The phase difference from the induced current is converted into polar coordinates, and the degree of quenching depth by the quenching treatment applied to the inspection target part is determined based on the converted polar coordinates, and the degree of quenching depth is accurately determined. be able to.

また、本発明の焼入れ処理評価装置において、前記判定手段は、前記焼入れ深さの程度に基づき予め設定した程度別領域のどの領域内に前記極座標があるかを判定することにより前記焼入れ処理の深さの程度を判定する手段であるものとすることもできる。
こうすれば、焼入れ深さの程度に基づき予め設定した程度別領域のどの領域内に極座標があるかを判定するだけであるから、焼入れ深さの程度を簡易に判定することができる。
Further, in the quenching processing evaluation apparatus according to the present invention, the determination means determines the depth of the quenching process by determining in which region of the degree-specific regions that are set in advance is based on the degree of the quenching depth. It may be a means for determining the degree of the length.
By doing so, it is only possible to determine in which region of the different regions set in advance based on the degree of quenching depth, the degree of quenching depth can be easily determined.

また、程度別領域のどの領域内に極座標があるかを判定する焼入れ処理評価装置において、前記程度別領域は、複数の前記検査対象部品についての前記極座標の分布に基づいて設定されてなるものとすることもできる。
こうすれば、程度別領域を容易に設定することができる。
Further, in the quenching processing evaluation apparatus for determining in which region of the degree-specific region the polar coordinate is, the degree-specific region is set based on a distribution of the polar coordinates for the plurality of parts to be inspected. You can also
By so doing, it is possible to easily set the degree-specific areas.

また、程度別領域のどの領域内に極座標があるかを判定する焼入れ処理評価装置において、前記程度別領域は、前記焼入れ深さの規格値の範囲内でのみ設定されてなるものとすることもできる。
こうすれば、程度別領域をより容易に設定することができる。
Further, in the quenching processing evaluation apparatus that determines in which region of the degree-specific region the polar coordinate is, the degree-specific region may be set only within the range of the standard value of the quenching depth. it can.
By so doing, it is possible to set the degree-specific area more easily.

また、本発明の焼入れ処理評価装置において、前記判定手段は、前記極座標が予め設定された焼入れ深さ規格範囲内であるか否かを判定し、前記極座標が前記焼入れ深さ規格範囲内であると判定した時にだけ前記焼入れ処理の深さの程度を判定する手段であるものとすることもできる。
こうすれば、焼入れ処理による焼入れ深さの程度が規格範囲内のものだけ、焼入れ処理の深さの程度を判定すれば良いため、判定を迅速なものとすることができる。
Moreover, in the quenching treatment evaluation apparatus of the present invention, the determination means determines whether or not the polar coordinates are within a preset quenching depth standard range, and the polar coordinates are within the quenching depth standard range. It can also be a means for determining the degree of the depth of the quenching process only when it is determined.
By doing so, it is only necessary to determine the degree of the depth of the quenching process when the degree of the quenching depth by the quenching process is within the standard range, so that the determination can be made quickly.

また、極座標が規格範囲内であると判定した時にだけ、焼入れ処理の深さの程度を判定する仕様の焼入れ処理評価装置において、
前記電圧印加手段は、一の前記検査対象部品に対して複数の周波数で時分割に連続して前記交流励磁電圧を励磁可能な手段であり、
前記計測手段は、前記複数の周波数に対応する複数の前記被誘導電圧の振幅値および前記複数の周波数に対応する複数の前記位相差を計測する手段であり、
前記座標変換手段は、計測された複数の前記被誘導電圧の振幅値および複数の前記位相差を極座標に変換する手段であり、
前記判定手段は、前記複数の周波数に対応する複数の前記極座標の全てが前記規格範囲内であると判定した時にだけ前記焼入れ処理の深さの程度を判定する手段であるものとすることもできる。
こうすれば、焼入れ層深さの程度をより正確に判定することができる。
In addition, in the quenching process evaluation apparatus of the specification that determines the degree of the depth of the quenching process only when it is determined that the polar coordinates are within the standard range,
The voltage application means is means capable of exciting the AC excitation voltage continuously in a time-division manner at a plurality of frequencies with respect to one part to be inspected.
The measuring means is a means for measuring a plurality of amplitude values of the induced voltages corresponding to the plurality of frequencies and a plurality of the phase differences corresponding to the plurality of frequencies,
The coordinate conversion means is means for converting the measured amplitude values of the induced voltages and the phase differences into polar coordinates,
The determination means may be means for determining the degree of the depth of the quenching process only when it is determined that all of the plurality of polar coordinates corresponding to the plurality of frequencies are within the standard range. .
In this way, the degree of the quenching layer depth can be determined more accurately.

また、本発明の焼入れ処理評価方法は、
検査対象部品に施された焼入れ処理を評価する焼入れ処理評価方法であって、
(a)前記検査対象部品に交流励磁電圧を印加し、
(b)該交流励磁電圧の印加により前記検査対象部品に生ずる渦電流に起因する被誘導電圧および被誘導電流を検出し、
(c)前記被誘導電圧の振幅値および該被誘導電圧と前記被誘導電流との位相差を計測し、
(d)計測された前記被誘導電圧の振幅値および前記位相差を極座標に変換し、
(e)前記極座標に基づいて前記検査対象部品に施された前記焼入れ処理による焼入れ深さの程度を判定することを要旨とする。
Moreover, the quenching treatment evaluation method of the present invention is:
A quenching process evaluation method for evaluating a quenching process performed on a part to be inspected,
(A) applying an AC excitation voltage to the inspection target component;
(B) detecting an induced voltage and an induced current caused by an eddy current generated in the inspection target component by application of the AC excitation voltage;
(C) measuring the amplitude value of the induced voltage and the phase difference between the induced voltage and the induced current;
(D) converting the measured amplitude value of the induced voltage and the phase difference into polar coordinates;
(E) The gist is to determine the degree of quenching depth by the quenching treatment applied to the inspection target part based on the polar coordinates.

本発明の焼入れ処理評価方法によれば、検査対象部品に交流励磁電圧を励磁した際に生ずる渦電流に起因する被誘導電圧および被誘導電流を検出し、被誘導電圧の振幅値および被誘導電圧と被誘導電流との位相差を極座標に変換し、変換した極座標に基づいて検査対象部品に施された焼入れ処理による焼入れ深さの程度を判定するものであるため、焼入れ深さの程度を精度良く判定することができる。   According to the quenching evaluation method of the present invention, the induced voltage and induced current caused by the eddy current generated when the AC excitation voltage is excited on the inspection target component are detected, and the amplitude value and induced voltage of the induced voltage are detected. The phase difference between the current and the induced current is converted into polar coordinates, and the degree of quenching depth by the quenching treatment applied to the part to be inspected is judged based on the converted polar coordinates. Can be judged well.

焼入れ処理評価装置1の概略構成図である。It is a schematic block diagram of the quenching process evaluation apparatus 1. 測定治具4,5における励磁コイル45,55および受信コイル46,56の電気的な接続状態を模式的に示す電気回路図である。3 is an electric circuit diagram schematically showing an electrical connection state of exciting coils 45 and 55 and receiving coils 46 and 56 in measuring jigs 4 and 5. FIG. 焼入れ層深さの評価処理のプログラムの一例を示すフローチャートである。It is a flowchart which shows an example of the program of the quenching layer depth evaluation process. 被誘導電圧Vと被誘導電流Iとの関係を示す関係図である。FIG. 5 is a relationship diagram showing a relationship between induced voltage V and induced current I. 焼入れ層深さ規格範囲マップの一例を示す図である。It is a figure which shows an example of a hardened layer depth specification range map. 焼入れ層深さ程度マップの一例を示す図である。It is a figure which shows an example of a quenching layer depth grade map. 高周波焼入れの硬化層深さの分布を示す図である。It is a figure which shows distribution of the hardened layer depth of induction hardening. 浸炭焼入れの硬化層深さの分布を示す図である。It is a figure which shows distribution of the hardened layer depth of carburizing quenching.

次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、焼入れ処理評価装置1の概略構成図である。
なお、実施例においては、検査対象部品が歯車の場合を例示しており、歯車2の歯部2aの歯面に施されている焼入れ処理による焼入れ深さの程度を判定することができるものであり、特に、判定が困難であった浸炭焼入れ処理された焼入れ層の深さを精度良く判定することができる焼入れ処理評価装置1である。
Next, the form for implementing this invention is demonstrated using an Example.
FIG. 1 is a schematic configuration diagram of a quenching treatment evaluation apparatus 1.
In addition, in an Example, the case where a test object component is a gear is illustrated, and the grade of the hardening depth by the hardening process currently given to the tooth surface of the tooth part 2a of the gear 2 can be determined. In particular, it is a quenching treatment evaluation apparatus 1 that can accurately determine the depth of a quenching layer that has been subjected to carburizing and quenching that has been difficult to determine.

実施例の焼入れ処理評価装置1は、検査対象部品である評価する歯車2をセット可能な測定治具4と、温度の影響をある程度抑制するために用いられる補正歯車3をセット可能な測定治具5と、測定治具4および測定治具5に電気的に接続された交流電源6と、同じく測定治具4および測定治具5に電気的に接続された計測器7と、装置全体をコントロールする電子制御ユニット8とを備える。
検査対象部品である評価する歯車2は、中心に軸孔2bが形成されており、外周の歯部2aの歯面には浸炭焼入れ処理が施されて焼入れ層が形成されている。
なお、温度の影響をある程度抑制し測定精度を向上させるために、実施例では、補正歯車3を用いる。この補正歯車3は、評価する歯車2と同形のものであり、実施例では、中心に軸孔3bが形成され、外周の歯部3aの歯面の焼入れ処理が焼入れ層深さ規格範囲内であってほぼ中央値であるものを用いるものとした。なお、補正歯車3は、焼入れ処理を施していないものを用いるものとしても構わない。
The quenching processing evaluation apparatus 1 according to the embodiment includes a measurement jig 4 that can set a gear 2 to be evaluated, which is a component to be inspected, and a measurement jig that can set a correction gear 3 that is used to suppress the influence of temperature to some extent. 5, the measuring jig 4 and the AC power source 6 electrically connected to the measuring jig 5, the measuring instrument 7 also electrically connected to the measuring jig 4 and the measuring jig 5, and the entire apparatus are controlled. The electronic control unit 8 is provided.
The gear 2 to be evaluated, which is a component to be inspected, has a shaft hole 2b formed at the center, and a carburizing and quenching process is performed on the tooth surface of the outer peripheral tooth portion 2a to form a hardened layer.
In the embodiment, the correction gear 3 is used in order to suppress the influence of temperature to some extent and improve the measurement accuracy. The correction gear 3 has the same shape as the gear 2 to be evaluated. In the embodiment, the shaft hole 3b is formed in the center, and the quenching treatment of the tooth surface of the outer peripheral tooth portion 3a is within the quenching layer depth standard range. Therefore, the median value was used. The correction gear 3 may be one that has not been quenched.

測定治具4,5は、同材料で同一形状に形成されており、例えばナイロン製のベース部41,51と、ナイロン製であって円筒状に形成された外周枠体42,52と、外周枠体42,52に設置された励磁コイル45,55および受信コイル46,56とから構成されている。
ベース部41,51の中央部には、上方へ突出した円柱状の凸部41a,51aが形成されており、この凸部41a,51aの外周にそれぞれ評価する歯車2および補正歯車3の軸孔2b,3bを嵌め込んで評価する歯車2および補正歯車3をセットすることができる。
The measuring jigs 4 and 5 are made of the same material and have the same shape. For example, the base parts 41 and 51 made of nylon, the outer peripheral frames 42 and 52 made of nylon and formed in a cylindrical shape, and the outer circumference It consists of exciting coils 45 and 55 and receiving coils 46 and 56 installed in the frames 42 and 52.
Columnar convex portions 41a and 51a projecting upward are formed at the central portions of the base portions 41 and 51. The shaft holes of the gear 2 and the correction gear 3 to be evaluated on the outer circumferences of the convex portions 41a and 51a, respectively. It is possible to set the gear 2 and the correction gear 3 to be evaluated by fitting 2b and 3b.

励磁コイル45,55は、導電体からなるコイルであり、複数の異なる周波数の交流電圧が印加されることにより評価する歯車2や補正歯車3に各周波数に対応する誘導電流(渦電流)を発生させるものである。励磁コイル45,55は、外周枠体42,52内に外周枠体42,52と同心状に設置されており、実施例では、ベース部41,51からの高さが15mm程度の位置に配置するものとした。
受信コイル46,56は、励磁コイル45,55と同一特性を有するコイルとして構成されており、評価する歯車2および補正歯車3に発生する誘導電流(渦電流)に起因する被誘導電圧V1,V2を検出する。受信コイル46,56は、各励磁コイル45,55の内側に励磁コイル45,55と同心状に配置されており、実施例では、セットされる評価する歯車2および補正歯車3の歯部2a,3aの歯幅のほぼ中央付近に配置するものとした。
The excitation coils 45 and 55 are coils made of a conductor, and generate induction currents (eddy currents) corresponding to the respective frequencies in the gear 2 and the correction gear 3 to be evaluated by applying AC voltages having a plurality of different frequencies. It is something to be made. The exciting coils 45 and 55 are installed concentrically with the outer peripheral frames 42 and 52 in the outer peripheral frames 42 and 52, and in the embodiment, are arranged at positions where the height from the base portions 41 and 51 is about 15 mm. To do.
The receiving coils 46 and 56 are configured as coils having the same characteristics as the exciting coils 45 and 55, and induced voltages V 1 and V 2 due to induced currents (eddy currents) generated in the gear 2 to be evaluated and the correction gear 3. Is detected. The receiving coils 46 and 56 are arranged concentrically with the exciting coils 45 and 55 inside the exciting coils 45 and 55. In the embodiment, the toothed portion 2a of the gear 2 to be evaluated and the correction gear 3 are set. It was supposed to be arranged near the center of the tooth width of 3a.

励磁コイル45,55、受信コイル46,56、評価する歯車2および補正歯車3それぞれの位置関係を調整するために、ベース部41,51と外周枠対42,52との間にリング状のスペーサー43,53が配置され、ベース部41,51と評価する歯車2および補正歯車3との間にリング状のスペーサー44,54が配置されている。
なお、励磁コイル45,55、受信コイル46,56、評価する歯車2および補正歯車3それぞれの位置関係は、上述した関係に限定されるものではなく、それぞれの形状や評価部位に応じて最適な位置関係は変更されるものである。
In order to adjust the positional relationship among the excitation coils 45 and 55, the reception coils 46 and 56, the gear 2 to be evaluated, and the correction gear 3, a ring-shaped spacer is provided between the base portions 41 and 51 and the outer peripheral frame pairs 42 and 52. 43 and 53 are disposed, and ring-shaped spacers 44 and 54 are disposed between the base portions 41 and 51 and the gear 2 and the correction gear 3 to be evaluated.
The positional relationships among the exciting coils 45 and 55, the receiving coils 46 and 56, the gear 2 to be evaluated, and the correction gear 3 are not limited to the above-described relationships, and are optimal depending on the shape and evaluation portion. The positional relationship is changed.

図2は、測定治具4,5における励磁コイル45,55および受信コイル46,56の電気的な接続状態を模式的に示す電気回路図である。
励磁コイル45,55は、図2に示すように、互いに直列に接続されるとともに両端が後述する交流電源6に接続されており、閉回路が構成されている。
また、受信コイル46,56は、互いに直列に接続されるとともに両端が計測器7に接続されており、閉回路が構成されている。
ここで、各コイルの巻き方や回路の構成は、測定治具4(励磁コイル45および受信コイル46内)に評価する歯車2がセットされていないとき、または、評価する歯車2として補正歯車3と組織・形状が完全に一致するものがセットされたときに計測器7が値0を出力するように設計されている。
即ち、計測器7は、評価する歯車2に発生する誘導電流に起因する被誘導電圧V1および被誘導電流I1の補正歯車3に発生する誘導電流に起因する被誘導電圧V2および被誘導電流I2に対する相対値としての被誘導電圧Vおよび被誘導電流Iを計測する。このように、相対値(差分値)としての被誘導電圧Vおよび被誘導電流Iを計測することにより、温度の影響をある程度抑制することができる。
FIG. 2 is an electric circuit diagram schematically showing an electrical connection state of the exciting coils 45 and 55 and the receiving coils 46 and 56 in the measuring jigs 4 and 5.
As shown in FIG. 2, the exciting coils 45 and 55 are connected in series with each other and both ends thereof are connected to an AC power source 6 described later, thereby forming a closed circuit.
Further, the receiving coils 46 and 56 are connected in series with each other and both ends thereof are connected to the measuring instrument 7 to form a closed circuit.
Here, the winding method of each coil and the circuit configuration are such that when the gear 2 to be evaluated is not set in the measuring jig 4 (in the exciting coil 45 and the receiving coil 46) or the correction gear 3 is used as the gear 2 to be evaluated. Is designed so that the measuring instrument 7 outputs a value of 0 when a tissue or shape that completely matches is set.
In other words, the measuring instrument 7 has the induced voltage V1 caused by the induced current generated in the gear 2 to be evaluated and the induced voltage V2 caused by the induced current generated in the correction gear 3 of the induced current I1 and the induced current I2. The induced voltage V and the induced current I are measured as relative values. Thus, by measuring the induced voltage V and the induced current I as relative values (difference values), the influence of temperature can be suppressed to some extent.

交流電源6は、所定の周波数を有する所定の振幅の交流電圧を発生する電力源として構成されており、複数の周波数の交流電圧(交流励磁信号V1)を選択的に励磁コイル45,55に時分割に連続して印加することができるように、励磁信号線6a,6bにより励磁コイル45,55それぞれの両端と電気的に接続されている。
電子制御ユニット8は、CPU8aを中心とするマイクロプロセッサとして構成されており、CPU8aの他に処理プログラムを記憶するROM8cと、データを一時的に記憶するRAM8bと、図示しない入出力ポートとを備える。電子制御ユニット8には、計測器7からの被誘導電圧Vおよび被誘導電流Iなどが入力ポートを介して入力されている。また、電子制御ユニット8からは、交流電源6への印加信号などが出力ポートを介して出力されている。
The AC power source 6 is configured as a power source that generates an AC voltage having a predetermined frequency and having a predetermined frequency, and selectively supplies an AC voltage (AC excitation signal V1) having a plurality of frequencies to the excitation coils 45 and 55. The excitation signal lines 6a and 6b are electrically connected to both ends of the excitation coils 45 and 55 so as to be continuously applied in the division.
The electronic control unit 8 is configured as a microprocessor centered on the CPU 8a, and includes a ROM 8c for storing a processing program, a RAM 8b for temporarily storing data, and an input / output port (not shown) in addition to the CPU 8a. The induced voltage V and induced current I from the measuring instrument 7 are input to the electronic control unit 8 through the input port. Further, an application signal to the AC power source 6 is output from the electronic control unit 8 through an output port.

次に、こうして構成された焼入れ処理評価装置1の電子制御ユニット8により実行される焼入れ層深さの評価処理について説明する。
図3は、焼入れ処理評価装置1における電子制御ユニット8により実行される焼入れ層深さの評価処理のプログラムの一例を示すフローチャートである。この処理プログラムは、ROM8c内に記憶されている。
Next, the quenching layer depth evaluation process executed by the electronic control unit 8 of the quenching process evaluation apparatus 1 configured as described above will be described.
FIG. 3 is a flowchart showing an example of a quenching layer depth evaluation process program executed by the electronic control unit 8 in the quenching process evaluation apparatus 1. This processing program is stored in the ROM 8c.

焼入れ層深さ評価処理が実行されると、電子制御ユニット8のCPU8aは、まず、励磁コイル45,55に複数の異なる周波数の交流電圧が時分割に連続して印加されるよう交流電源6に印加信号を出力する(ステップS1)。
ここで、複数の異なる周波数は、実施例では、焼入れ不良品であることが判定し易い周波数を実験などにより予め求めておき、設定しておくものとした。即ち、焼入れ不良品における後述する極座標P(X,Y)を後述する焼入れ層深さ規格範囲マップにプロットしたときに、極座標P(X,Y)が焼入れ層深さ規格範囲マップの焼入れ層深さ規格範囲Mから大きく外れた位置にプロットされるような周波数を選定する。
When the quenching layer depth evaluation process is executed, the CPU 8a of the electronic control unit 8 first applies the AC power supply 6 to the excitation coils 45 and 55 so that AC voltages of a plurality of different frequencies are continuously applied in time division. An application signal is output (step S1).
Here, in the embodiment, a plurality of different frequencies are determined and set in advance by experimentation or the like so that it is easy to determine that they are poorly quenched. That is, when polar coordinates P (X, Y), which will be described later, in a hardened defective product are plotted on a quench layer depth standard range map, which will be described later, the polar coordinates P (X, Y) are the quench layer depth of the quench layer depth standard range map. A frequency is selected that is plotted at a position greatly deviating from the standard range M.

次に、各周波数に対応する複数の被誘導電圧Vおよび被誘導電流Iを計測器7から読み込むとともに(ステップS2)、被誘導電圧Vと被誘導電流Iとの間の位相差φを各周波数毎に求める(ステップS3)。そして、各周波数に対応する被誘導電圧Vと位相差φとを極座標P(X,Y)に変換する処理を実施する(ステップS4)。
図4は、被誘導電圧Vと被誘導電流Iとの関係を示す関係図である。被誘導電圧Vと被誘導電流Iとの間には、図4に示すように、位相差φが生じており、被誘導電圧Vの振幅値V1と位相差φとの極座標P(X,Y)が焼入れ層深さと相関があることは周知であるため、その詳細説明については省略する。ここで、X=V1cosφ,Y=V1sinφである。
Next, a plurality of induced voltages V and induced currents I corresponding to the respective frequencies are read from the measuring instrument 7 (step S2), and the phase difference φ between the induced voltage V and the induced current I is determined for each frequency. It is obtained every time (step S3). And the process which converts the induced voltage V and phase difference (phi) corresponding to each frequency into the polar coordinate P (X, Y) is implemented (step S4).
FIG. 4 is a relationship diagram showing the relationship between the induced voltage V and the induced current I. As shown in FIG. 4, there is a phase difference φ between the induced voltage V and the induced current I, and polar coordinates P (X, Y between the amplitude value V1 of the induced voltage V and the phase difference φ. ) Is well known to correlate with the quenching layer depth, and therefore detailed description thereof is omitted. Here, X = V1cosφ and Y = V1sinφ.

こうして各周波数に対応する極座標P(X,Y)を求めると、これら極座標P(X,Y)が焼入れ層深さ規格範囲M内であるか否かを判定する処理を実行する(ステップS5)。
ここで、焼入れ層深さ規格範囲Mは、良品、即ち、焼入れ層深さ規格範囲内であることが既知である複数の評価する歯車2について極座標P’(X’,Y’)を求めて、これら複数の極座標P’(X’,Y’)の分布から焼入れ層深さ規格範囲を設定するとともに予め焼入れ層深さ規格範囲マップとしてROM8cに記憶しておき、極座標P(X,Y)が与えられるとROM8cに記憶された焼入れ層深さ規格範囲マップ上に極座標P(X,Y)をプロットすることにより、極座標P(X,Y)が焼入れ層深さ規格範囲M内にあるか否かを判定するものとした。
焼入れ層深さ規格範囲マップは、各周波数毎に設定される。焼入れ層深さ規格範囲Mは、実施例では、0.65mm〜0.90mmとした。焼入れ層深さ規格範囲マップの一例を図5に示す。
なお、極座標P’(X’,Y’)の算出において使用する補正歯車3が、後述する焼入れ層深さ程度判定マップの作成および今後焼入れ層深さを判定する際においても使用される。
When the polar coordinates P (X, Y) corresponding to the respective frequencies are thus obtained, processing for determining whether or not these polar coordinates P (X, Y) are within the hardened layer depth standard range M is executed (step S5). .
Here, the hardened layer depth standard range M is a non-defective product, that is, a polar coordinate P ′ (X ′, Y ′) is obtained for a plurality of gears 2 to be evaluated that are known to be within the hardened layer depth standard range. A hardened layer depth standard range is set from the distribution of the plurality of polar coordinates P ′ (X ′, Y ′) and stored in the ROM 8c in advance as a hardened layer depth standard range map. Is plotted, the polar coordinates P (X, Y) are within the hardened layer depth standard range M by plotting the polar coordinates P (X, Y) on the hardened layer depth standard range map stored in the ROM 8c. Judgment was made on whether or not.
The hardened layer depth standard range map is set for each frequency. The quenching layer depth standard range M was 0.65 mm to 0.90 mm in the examples. An example of the hardened layer depth standard range map is shown in FIG.
Note that the correction gear 3 used in the calculation of the polar coordinates P ′ (X ′, Y ′) is also used when creating a hardened layer depth degree determination map described later and determining the hardened layer depth in the future.

各周波数に対応する極座標P(X,Y)が全て焼入れ層深さ規格範囲M内(0.65mm〜0.90mm)であると判定されると、続いて、焼入れ層深さの程度を判定する処理が実行される(ステップS6)。
ここで、焼入れ層深さの程度判定は、焼入れ層深さ規格範囲内(0.65mm〜0.90mm)であって焼入れ層の深さが既知である複数の評価歯車1を、所定幅(例えば、0.05mm)の焼入れ層深さ毎に極座標P’’(X’’,Y’’)を求めて、これら所定幅(例えば、0.05mm)の焼入れ層深さ毎の極座標P’’(X’’,Y’’)の分布から所定幅(例えば、0.05mm)の焼入れ層深さ毎の領域を設定し、予め焼入れ層深さ程度マップとしてROM8cに記憶しておき、極座標P(X,Y)が与えられるとROM8cに記憶された焼入れ層深さ程度マップ上に極座標P(X,Y)をプロットすることにより、極座標P(X,Y)が焼入れ層深さ程度マップ上どの領域に属するかを判定することにより行うものとした。
なお、焼入れ層深さ程度判定は、実施例では、複数の異なる周波数全てについて実施するのではなく、代表する1つの周波数について実施するものとした。代表する周波数の選定は、焼入れ層深さ程度マップを作成した際に、各領域の境界が明確となる周波数を選定するものとすれば良い。焼入れ層深さ程度マップの一例を図6に示す。
If it is determined that the polar coordinates P (X, Y) corresponding to each frequency are all within the hardened layer depth standard range M (0.65 mm to 0.90 mm), then the degree of the hardened layer depth is determined. The process to perform is executed (step S6).
Here, the degree determination of the hardened layer depth is determined by using a plurality of evaluation gears 1 within a hardened layer depth standard range (0.65 mm to 0.90 mm) and having a known hardened layer depth of a predetermined width ( For example, polar coordinates P ″ (X ″, Y ″) are obtained for each quenching layer depth of 0.05 mm, and polar coordinates P ′ for each quenching layer depth having a predetermined width (for example, 0.05 mm) are obtained. A region for each depth of the hardened layer having a predetermined width (for example, 0.05 mm) is set from the distribution of '(X ″, Y ″), and is stored in advance in the ROM 8c as a hardened layer depth degree map. When P (X, Y) is given, the polar coordinates P (X, Y) are plotted on the hardened layer depth degree map by plotting the polar coordinates P (X, Y) on the hardened layer depth degree map stored in the ROM 8c. The determination is made by determining which region the image belongs to.
In the embodiment, the quenching layer depth degree determination is not performed for all of a plurality of different frequencies, but is performed for one representative frequency. The representative frequency may be selected by selecting a frequency at which the boundary of each region becomes clear when the hardened layer depth degree map is created. An example of the hardened layer depth degree map is shown in FIG.

焼入れ層深さ程度マップは、図6に示すように、焼入れ層深さが0.65mm〜0.70mmの領域M1、焼入れ層深さが0.70mm〜0.75mmの領域M2、焼入れ層深さが0.75mm〜0.80mmの領域M3、焼入れ層深さが0.80mm〜0.85mmの領域M4および焼入れ層深さが0.85mm〜0.90mmの領域M5および領域M1〜M5以外のNG領域(焼入れ層深さが0.65mm未満および0.90mmより大きい領域)から構成されている。このように、焼入れ層の深さが既知である複数の極座標の分布に基づいて焼入れ層深さ程度マップを作成するだけだから、焼入れ層深さ程度マップを容易に作成でき、判定も容易なものとすることができる。
こうして、焼入れ層深さの程度が判定されると、評価する歯車2が「良品」である旨および焼入れ層深さの程度(例えば、0.65mm〜0.70mm)を出力して(ステップS7)、本処理を終了する
一方、ステップS5における極座標P(X,Y)が焼入れ層深さ規格範囲M内であるか否かの判定において、極座標P(X,Y)が焼入れ層深さ規格範囲M外であると判定されたときには、「不良品」である旨を出力して(ステップS8)、本処理を終了する。
As shown in FIG. 6, the hardened layer depth degree map includes a region M1 having a hardened layer depth of 0.65 mm to 0.70 mm, a region M2 having a hardened layer depth of 0.70 mm to 0.75 mm, and a hardened layer depth. Area M3 having a thickness of 0.75 mm to 0.80 mm, area M4 having a quenching layer depth of 0.80 mm to 0.85 mm, area M5 having a quenching layer depth of 0.85 mm to 0.90 mm, and areas M1 to M5 NG region (region where the quenching layer depth is less than 0.65 mm and greater than 0.90 mm). In this way, the hardened layer depth degree map can be easily created and judged easily because only the hardened layer depth degree map is created based on the distribution of multiple polar coordinates with known hardened layer depths. It can be.
When the degree of quenching layer depth is determined in this way, the fact that the gear 2 to be evaluated is “non-defective” and the degree of quenching layer depth (for example, 0.65 mm to 0.70 mm) is output (step S7). On the other hand, in the determination of whether or not the polar coordinates P (X, Y) are within the hardened layer depth standard range M in step S5, the polar coordinates P (X, Y) are the hardened layer depth standards. When it is determined that the value is outside the range M, a message indicating “defective product” is output (step S8), and this process is terminated.

以上説明した実施例の焼入れ処理評価装置1によれば、評価する歯車2と補正歯車3とに発生する渦電流の差分に起因する被誘導電圧Vおよび被誘導電流Iを計測するとともに、被誘導電圧Vと被誘導電流Iとの位相差φを算出し、被誘導電圧Vと位相差φとを極座標P(X,Y)に変換して、焼入れ層深さ程度マップ上のどの領域に極座標P(X,Y)が属するのかを判定するから、焼入れ層深さの程度を簡易かつ精度良く判定することができる。しかも、評価する歯車2と補正歯車3とに発生する渦電流の差分を検出するから、温度の影響をある程度抑制でき、測定精度を向上することができる。   According to the quenching processing evaluation apparatus 1 of the embodiment described above, the induced voltage V and the induced current I resulting from the difference between the eddy currents generated in the gear 2 to be evaluated and the correction gear 3 are measured, and the induced The phase difference φ between the voltage V and the induced current I is calculated, the induced voltage V and the phase difference φ are converted into polar coordinates P (X, Y), and the polar coordinates are set in any region on the hardened layer depth degree map. Since it is determined whether P (X, Y) belongs, the degree of the quenching layer depth can be determined easily and accurately. In addition, since the difference between the eddy currents generated in the gear 2 to be evaluated and the correction gear 3 is detected, the influence of temperature can be suppressed to some extent, and the measurement accuracy can be improved.

また、実施例の焼入れ処理評価装置1によれば、まず、極座標P(X,Y)が焼入れ層深さ規格範囲内であるか否かを判定し、焼入れ層深さ規格範囲内である場合にのみ焼入れ層深さの程度を判定するから、迅速に判定することができる。   Further, according to the quenching treatment evaluation apparatus 1 of the example, first, it is determined whether or not the polar coordinates P (X, Y) are within the quenching layer depth standard range, and are within the quenching layer depth standard range. Since only the degree of the quenching layer depth is determined, it can be quickly determined.

さらに、実施例の焼入れ処理評価装置1によれば、複数の異なる周波数の交流電圧に対応する複数の焼入れ層深さ規格範囲マップを有し、複数の異なる周波数の交流電圧に対応して測定された複数の極座標P(X,Y)の全てが、対応する焼入れ層深さ規格範囲内にあるときにだけ焼入れ層深さの程度を判定する。即ち、測定した極座標P(X,Y)が確実に焼入れ層深さ規格範囲内であることを確認した上で焼入れ層深さの程度を判定するから、迅速かつ精度良く焼入れ層深さの程度を判定することができる。   Furthermore, according to the quenching treatment evaluation apparatus 1 of the embodiment, the quenching layer depth standard range map corresponding to a plurality of AC voltages of different frequencies is provided, and measured according to the AC voltages of a plurality of different frequencies. The degree of the quenching layer depth is determined only when all of the plurality of polar coordinates P (X, Y) are within the corresponding quenching layer depth specification range. That is, since the degree of the quenching layer depth is determined after confirming that the measured polar coordinates P (X, Y) are surely within the quenching layer depth specification range, the degree of the quenching layer depth is determined quickly and accurately. Can be determined.

実施例の焼入れ処理評価装置1では、まず、極座標P(X,Y)が焼入れ層深さ規格範囲内であるか否かを判定し、焼入れ層深さ規格範囲内である場合にのみ焼入れ層深さの程度を判定するものとしたが、焼入れ層深さ規格範囲内であるか否かの判定は行なわずに、直接、焼入れ層深さの程度を判定するものとしても構わない。   In the quenching treatment evaluation apparatus 1 of the example, first, it is determined whether or not the polar coordinates P (X, Y) are within the quenching layer depth standard range, and only when the quenching layer depth is within the quenching layer depth standard range. Although the degree of the depth is determined, the degree of the quenched layer depth may be directly determined without determining whether the depth is within the standard range of the quenched layer depth.

実施例の焼入れ処理評価装置1では、焼入れ層深さ規格範囲内においてのみ焼入れ層深さ程度を判定可能な領域を設定するものとしたが、焼入れ層深さ規格範囲外においても焼入れ層深さ程度を判定可能な領域を設定するものとしても構わない。こうすれば、どの程度規格から外れているかを推定することができる。   In the quenching treatment evaluation apparatus 1 of the example, the region where the quenching layer depth degree can be determined only within the quenching layer depth standard range is set, but the quenching layer depth is also outside the quenching layer depth standard range. An area where the degree can be determined may be set. In this way, it is possible to estimate how far the standard deviates.

実施例の焼入れ処理評価装置1では、複数の異なる周波数の交流電圧を励磁コイル45,55に印加するものとしたが、単一の周波数の交流電圧を励磁コイル45,55に印加するものしても差し支えない。   In the quenching treatment evaluation apparatus 1 of the embodiment, an AC voltage having a plurality of different frequencies is applied to the excitation coils 45 and 55, but an AC voltage having a single frequency is applied to the excitation coils 45 and 55. There is no problem.

実施例の焼入れ処理評価装置1では、補正歯車3は、歯部3aの歯面の焼入れ処理が焼入れ層深さ規格範囲内であってほぼ中央値であるものとしたが、焼入れ層深さ規格範囲内であれば、例えば、焼入れ層深さ規格範囲の上限値や下限値であっても構わない。   In the quenching treatment evaluation apparatus 1 of the example, the correction gear 3 is such that the quenching treatment of the tooth surface of the tooth portion 3a is within the quenching layer depth standard range and is almost the median value. As long as it is within the range, for example, it may be the upper limit value or the lower limit value of the hardened layer depth standard range.

実施例の焼入れ処理評価装置1では、補正歯車3を用いて温度の影響をある程度抑制するものとしたが、補正歯車3は用いなくても差し支えない。   In the quenching evaluation apparatus 1 of the embodiment, the correction gear 3 is used to suppress the influence of temperature to some extent, but the correction gear 3 may not be used.

実施例の焼入れ処理評価装置1では、歯車における焼入れ深さの程度を評価する装置について説明したが、軸部材やベアリングなどの焼入れ処理、特に、浸炭焼入れ処理された検査対象部品についても同様に焼入れ深さの程度を評価することができることはいうまでもない。この場合、測定治具4,5や励磁コイル45,55、受信コイル46,56は、検査対象部品に対応した形状、材質、配置にすれば良い。   In the quenching processing evaluation apparatus 1 of the embodiment, the apparatus for evaluating the degree of quenching depth in the gears has been described. However, quenching processing of shaft members, bearings, and the like, in particular, the parts to be inspected that have been carburized and quenched are similarly quenched. It goes without saying that the degree of depth can be evaluated. In this case, the measurement jigs 4 and 5, the excitation coils 45 and 55, and the reception coils 46 and 56 may be formed in a shape, material, and arrangement corresponding to the inspection target component.

1 焼入れ処理評価装置
2 歯車(検査対象部品)
2a,3a 歯部
3 補正歯車
4 測定治具(歯車用)
5 測定治具(補正歯車用)
6 電源
7 計測器
8 電子制御ユニット
41,51 ベース部
42,52 外周枠体
45,55 励磁コイル
46,56 受信コイル
1 Quenching evaluation device 2 Gears (parts to be inspected)
2a, 3a Tooth part 3 Correction gear 4 Measurement jig (for gear)
5 Measuring jig (for correction gear)
6 Power supply 7 Measuring instrument 8 Electronic control unit 41, 51 Base part 42, 52 Outer frame body 45, 55 Excitation coil 46, 56 Reception coil

Claims (7)

検査対象部品に施された焼入れ処理を評価する焼入れ処理評価装置であって、
交流励磁電圧を印加する電圧印加手段と、
該電圧印加手段により検査対象部品に前記交流励磁電圧を印加することにより、前記検査対象部品に生ずる渦電流に起因する被誘導電圧および被誘導電流を検出可能な検出手段と、
前記被誘導電圧の振幅値および該被誘導電圧と前記被誘導電流との位相差を計測する計測手段と、
計測された前記被誘導電圧の振幅値および前記位相差を極座標に変換する座標変換手段と、
前記極座標に基づいて前記検査対象部品に施された前記焼入れ処理による焼入れ深さの程度を判定する判定手段と、
を備える焼入れ処理評価装置。
A quenching process evaluation device for evaluating a quenching process performed on a part to be inspected,
Voltage application means for applying an AC excitation voltage;
Detecting means capable of detecting induced voltage and induced current caused by eddy current generated in the inspection target component by applying the AC excitation voltage to the inspection target component by the voltage applying means;
Measuring means for measuring an amplitude value of the induced voltage and a phase difference between the induced voltage and the induced current;
Coordinate conversion means for converting the measured amplitude value of the induced voltage and the phase difference into polar coordinates;
Determination means for determining the degree of quenching depth by the quenching process applied to the inspection target component based on the polar coordinates;
A quenching processing evaluation apparatus comprising:
前記判定手段は、前記焼入れ深さの程度に基づき予め設定した程度別領域のどの領域内に前記極座標があるかを判定することにより前記焼入れ処理の深さの程度を判定する手段である請求項1に記載の焼入れ処理評価装置。   The determination means is means for determining the degree of the depth of the quenching process by determining in which region of the degree-specific regions that are set in advance based on the degree of the quenching depth, the polar coordinates are present. The quenching treatment evaluation apparatus according to 1. 前記程度別領域は、複数の前記検査対象部品についての前記極座標の分布に基づいて設定されてなる請求項2に記載の焼入れ処理評価装置。   The quenching processing evaluation apparatus according to claim 2, wherein the degree-specific region is set based on a distribution of the polar coordinates for a plurality of parts to be inspected. 前記程度別領域は、前記焼入れ深さの規格値の範囲内でのみ設定されてなる請求項2または請求項3に記載の焼入れ処理評価装置。   The quenching process evaluation apparatus according to claim 2 or 3, wherein the degree-specific region is set only within a range of a standard value of the quenching depth. 前記判定手段は、前記極座標が予め設定された焼入れ深さ規格範囲内であるか否かを判定し、前記極座標が前記焼入れ深さ規格範囲内であると判定した時にだけ前記焼入れ処理の深さの程度を判定する手段である請求項1乃至請求項4何れかに記載の焼入れ処理評価装置。   The determination means determines whether or not the polar coordinates are within a preset quenching depth standard range, and only when it is determined that the polar coordinates are within the quenching depth standard range, the depth of the quenching process. The quenching processing evaluation apparatus according to any one of claims 1 to 4, wherein the quenching processing evaluation apparatus is a means for determining the degree of the above. 前記電圧印加手段は、一の前記検査対象部品に対して複数の周波数で時分割に連続して前記交流励磁電圧を励磁可能な手段であり、
前記計測手段は、前記複数の周波数に対応する複数の前記被誘導電圧の振幅値および前記複数の周波数に対応する複数の前記位相差を計測する手段であり、
前記座標変換手段は、計測された複数の前記被誘導電圧の振幅値および複数の前記位相差を極座標に変換する手段であり、
前記判定手段は、前記複数の周波数に対応する複数の前記極座標の全てが前記規格範囲内であると判定した時にだけ前記焼入れ処理の深さの程度を判定する手段である請求項5に記載の焼入れ処理評価装置。
The voltage application means is means capable of exciting the AC excitation voltage continuously in a time-division manner at a plurality of frequencies with respect to one part to be inspected.
The measuring means is a means for measuring a plurality of amplitude values of the induced voltages corresponding to the plurality of frequencies and a plurality of the phase differences corresponding to the plurality of frequencies,
The coordinate conversion means is means for converting the measured amplitude values of the induced voltages and the phase differences into polar coordinates,
The said determination means is a means which determines the grade of the depth of the said quenching process, only when it determines with all the several said polar coordinates corresponding to the said several frequency being in the said specification range. Quenching evaluation device.
検査対象部品に施された焼入れ処理を評価する焼入れ処理評価方法であって、
(a)前記検査対象部品に交流励磁電圧を印加し、
(b)該交流励磁電圧の印加により前記検査対象部品に生ずる渦電流に起因する被誘導電圧および被誘導電流を検出し、
(c)前記被誘導電圧の振幅値および該被誘導電圧と前記被誘導電流との位相差を計測し、
(d)計測された前記被誘導電圧の振幅値および前記位相差を極座標に変換し、
(e)前記極座標に基づいて前記検査対象部品に施された前記焼入れ処理による焼入れ深さの程度を判定する
焼入れ処理評価方法。
A quenching process evaluation method for evaluating a quenching process performed on a part to be inspected,
(A) applying an AC excitation voltage to the inspection target component;
(B) detecting an induced voltage and an induced current caused by an eddy current generated in the inspection target component by application of the AC excitation voltage;
(C) measuring the amplitude value of the induced voltage and the phase difference between the induced voltage and the induced current;
(D) converting the measured amplitude value of the induced voltage and the phase difference into polar coordinates;
(E) A quenching process evaluation method for determining a degree of quenching depth by the quenching process performed on the inspection target part based on the polar coordinates.
JP2012005693A 2012-01-13 2012-01-13 Hardening process evaluation device and method for evaluating hardening process Pending JP2013145181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012005693A JP2013145181A (en) 2012-01-13 2012-01-13 Hardening process evaluation device and method for evaluating hardening process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012005693A JP2013145181A (en) 2012-01-13 2012-01-13 Hardening process evaluation device and method for evaluating hardening process

Publications (1)

Publication Number Publication Date
JP2013145181A true JP2013145181A (en) 2013-07-25

Family

ID=49041036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012005693A Pending JP2013145181A (en) 2012-01-13 2012-01-13 Hardening process evaluation device and method for evaluating hardening process

Country Status (1)

Country Link
JP (1) JP2013145181A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134106A (en) * 2006-11-27 2008-06-12 Toyota Motor Corp Method and device for inspecting hardening pattern
JP2008170233A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Hardening depth measuring instrument and method
US20080290866A1 (en) * 2007-05-23 2008-11-27 Cuffe John M Method and apparatus for digital measurement of an eddy current signal
JP2009031224A (en) * 2007-07-30 2009-02-12 Toyota Motor Corp Eddy current sensor, quench depth inspection apparatus, and quench depth inspection method
JP2009236679A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Determination reference data creating apparatus, determination reference data creating method and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134106A (en) * 2006-11-27 2008-06-12 Toyota Motor Corp Method and device for inspecting hardening pattern
JP2008170233A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Hardening depth measuring instrument and method
US20080290866A1 (en) * 2007-05-23 2008-11-27 Cuffe John M Method and apparatus for digital measurement of an eddy current signal
JP2009031224A (en) * 2007-07-30 2009-02-12 Toyota Motor Corp Eddy current sensor, quench depth inspection apparatus, and quench depth inspection method
JP2009236679A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Determination reference data creating apparatus, determination reference data creating method and program

Similar Documents

Publication Publication Date Title
RU2666176C2 (en) Device and method of checking surface property
JP5483268B2 (en) Surface property inspection method
TWI645188B (en) Surface characteristics inspection method and surface characteristics inspection apparatus
JP2010164306A (en) Method and device for hardened depth
KR20170120167A (en) Rope damage diagnosis test equipment and rope damage diagnosis test method
TWI691710B (en) Device and method for evaluating surface properties of steel members
KR20200020939A (en) Surface property evaluation method, surface property evaluation device and surface property evaluation system
JP2007040865A (en) Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material
JP2011185623A (en) Device for evaluation of surface treatment
JP5138014B2 (en) Nondestructive inspection equipment, nondestructive inspection method
RU2696909C1 (en) Method and device for hot measurement, during rolling, size of metal profiles
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JP2012159437A (en) Method for detecting periodic defect and periodic defect detecting device
US10132906B2 (en) Multi-element sensor array calibration method
TWI692637B (en) Method for inspecting surface property of steel product
JP5061850B2 (en) Hardening pattern measurement method
JP2013145181A (en) Hardening process evaluation device and method for evaluating hardening process
JP3739118B2 (en) Method and apparatus for nondestructive inspection of quench hardened layer depth
JP6015954B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
JP2019086460A (en) Processor, checker and processing method
JP4978360B2 (en) Quenching depth measuring device and quenching depth measuring method
JP6007923B2 (en) Thinning detection device
JP5615161B2 (en) Quenching range detection method and quenching range inspection method
TWI801617B (en) Non-destructive inspection methods for steel
SE1451454A1 (en) A method of calibrating an evaluation arrangement by sensingmagnetic Barkhausen noise

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161213