JP2013144315A - Method for manufacturing joined body, joined body and metal product - Google Patents

Method for manufacturing joined body, joined body and metal product Download PDF

Info

Publication number
JP2013144315A
JP2013144315A JP2013044525A JP2013044525A JP2013144315A JP 2013144315 A JP2013144315 A JP 2013144315A JP 2013044525 A JP2013044525 A JP 2013044525A JP 2013044525 A JP2013044525 A JP 2013044525A JP 2013144315 A JP2013144315 A JP 2013144315A
Authority
JP
Japan
Prior art keywords
metal member
hardness
metal
joined body
transition region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013044525A
Other languages
Japanese (ja)
Other versions
JP6283864B2 (en
JP2013144315A5 (en
Inventor
Toshiaki Kitazawa
敏明 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP2013044525A priority Critical patent/JP6283864B2/en
Publication of JP2013144315A publication Critical patent/JP2013144315A/en
Publication of JP2013144315A5 publication Critical patent/JP2013144315A5/en
Application granted granted Critical
Publication of JP6283864B2 publication Critical patent/JP6283864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a joined body, which can manufacture a joined body that is hardly breakable even when the joined body is used under a condition where a large temperature difference is generated between a first metal member and a second metal member.SOLUTION: The method for manufacturing the joined body includes a joined body forming step of joining the first metal member 12, the second metal member 14 and a third metal member 16 to one another to form the joined body while the third metal member 16 is interposed between the first metal member 12 and the second metal member 14. The joined body forming step includes: a solid phase joining step of interposing the third metal member 16 in which longitudinal elastic modulus and hardness are relatively low, between the first metal member 12 and the second metal member 14, and then solid-state welding the metal members to one another; and a hardness transition region forming step of heating the metal members so that a first hardness transition region 13 is formed in the vicinity of a junction plane of the first metal member 12 and the third metal member 16 and also a second hardness transition region 15 is formed in the vicinity of a junction plane of the second metal member 14 and the third metal member 16.

Description

本発明は、接合体の製造方法、接合体及び金属製品に関する。   The present invention relates to a method for manufacturing a joined body, a joined body, and a metal product.

図10は、従来の接合体の製造方法を説明するために示すフローチャートである。
図11は、従来の接合体の製造方法を説明するために示す図である。図11(a)は金属部材準備工程S91を説明するために示す図であり、図11(b)及び図11(c)は接合体形成工程S92を説明するために示す図である。
FIG. 10 is a flowchart shown for explaining a conventional method of manufacturing a joined body.
FIG. 11 is a diagram for explaining a conventional method of manufacturing a joined body. FIG. 11A is a diagram for explaining the metal member preparation step S91, and FIGS. 11B and 11C are diagrams for explaining the joined body forming step S92.

従来、複数の金属部材を接合して接合体を製造する接合体の製造方法が知られている(例えば、特許文献1参照。)。従来の接合体の製造方法は、特にCrを含有する鉄鋼部材を接合して接合体を製造するのに適した方法であり、具体的には、図10及び図11に示すように、第1の金属材料からなる第1金属部材92と、第2の金属材料からなる第2金属部材94とを準備する金属部材準備工程S91と、第1金属部材92及び第2金属部材94を接合して接合体を形成する接合体形成工程S92とをこの順序で含み、接合体形成工程S92は、第1金属部材92及び第2金属部材94が溶融しない温度条件下で第1金属部材92及び第2金属部材94を固相接合する固相接合工程S92aと、接合した第1金属部材92及び第2金属部材94を所定条件の下で加熱及び徐冷することにより、2つの金属部材の間の接合力を強化する接合力強化工程S94bとをこの順序で含む。   Conventionally, a manufacturing method of a joined body which joins a plurality of metal members and manufactures a joined body is known (for example, refer to patent documents 1). The conventional method for manufacturing a joined body is a method particularly suitable for producing a joined body by joining steel members containing Cr. Specifically, as shown in FIGS. A metal member preparation step S91 for preparing a first metal member 92 made of the above metal material and a second metal member 94 made of the second metal material, and joining the first metal member 92 and the second metal member 94 together. A joined body forming step S92 for forming a joined body in this order, and the joined body forming step S92 includes a first metal member 92 and a second metal member 92 under a temperature condition in which the first metal member 92 and the second metal member 94 are not melted. A solid-phase bonding step S92a for solid-phase joining the metal member 94, and joining between the two metal members by heating and gradually cooling the joined first metal member 92 and second metal member 94 under predetermined conditions. Strengthening step S94b The including in this order.

従来の接合体の製造方法によれば、接合体の接合力を低下させる原因となる空隙や不動態層(金属部材がCrを含有する場合にはCr含有不動態層)を金属組織が変態する過程で消散させることが可能となり、その結果、接合力が高い接合体を製造することが可能となる。また、接合する金属部材のうち少なくとも1つの金属部材として、接合予定面に凹部が形成された金属部材を用いることにより、複雑な形状の内部空間(例えば、熱交換媒体を流す熱交換流路)を有する接合体を比較的容易に製造することが可能となる。このようにして製造した接合体は、各種金型、各種工具、各種構造部材等の金属製品に用いることができる。   According to the conventional method for manufacturing a joined body, the metal structure transforms voids and a passive layer (a Cr-containing passive layer when the metal member contains Cr) that causes a reduction in the joining force of the joined body. It is possible to dissipate in the process, and as a result, it is possible to manufacture a joined body having a high joining force. In addition, by using a metal member having a concave portion formed on a surface to be joined as at least one metal member of the metal members to be joined, an internal space having a complicated shape (for example, a heat exchange flow channel for flowing a heat exchange medium) It becomes possible to manufacture a joined body having a relatively easy. The joined body produced in this manner can be used for metal products such as various molds, various tools, and various structural members.

国際公開第2008/129622号International Publication No. 2008/129622

上記した方法により製造した接合体は、第1金属部材と第2金属部材との間に大きな温度差が発生しない条件でこれを使用する場合には十分に高い接合力を維持できる。しかしながら、上記した方法で製造した接合体は、これに焼き入れ処理を施すことにより硬度を高くしてこれを使用する場合においては、焼き入れ処理により第1金属部材と第2金属部材の硬度が高くなるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で当該接合体を使用した場合に、温度差に起因して発生する熱応力が接合力の限界を超えてしまい、接合体が破損してしまう場合があるという問題がある。   The joined body manufactured by the above-described method can maintain a sufficiently high joining force when it is used under the condition that a large temperature difference does not occur between the first metal member and the second metal member. However, when the joined body manufactured by the above-described method is used by increasing the hardness by subjecting it to a quenching process, the hardness of the first metal member and the second metal member is increased by the quenching process. Therefore, when the joined body is used under the condition that a large temperature difference is generated between the first metal member and the second metal member, the thermal stress generated due to the temperature difference will limit the bonding force. There is a problem that the joined body may be damaged.

そこで、本発明は上記した問題を解決するためになされたもので、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合においても破損し難い接合体を製造可能な接合体の製造方法を提供することを目的とする。また、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合においても破損し難い接合体を提供することを目的とする。さらにまた、本発明の接合体を用いた金属製品を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and is difficult to break even when a joined body is used under conditions where a large temperature difference occurs between the first metal member and the second metal member. It aims at providing the manufacturing method of the conjugate | zygote which can manufacture a conjugate | zygote. It is another object of the present invention to provide a joined body that is not easily damaged even when the joined body is used under conditions where a large temperature difference occurs between the first metal member and the second metal member. Still another object of the present invention is to provide a metal product using the joined body of the present invention.

[1]本発明の接合体の製造方法は、第1の金属材料からなる第1金属部材と、第2の金属材料からなる第2金属部材と、前記第1の金属材料及び前記第2の金属材料のいずれよりも縦弾性係数及び硬度が低い第3の金属材料からなる第3金属部材とを準備する金属部材準備工程と、前記第1金属部材と前記第2金属部材との間に前記第3金属部材を介在させた状態で前記第1金属部材、前記第2金属部材及び前記第3金属部材を接合して接合体を形成する接合体形成工程とをこの順序で含み、前記接合体形成工程は、前記第1金属部材と前記第2金属部材との間に前記第3金属部材を介在させた状態で前記第1金属部材、前記第2金属部材及び前記第3金属部材が溶融しない温度条件下で前記第1金属部材、前記第2金属部材及び前記第3金属部材を固相接合する固相接合工程と、前記第1金属部材と前記第3金属部材との接合面の近傍に前記第1金属部材と前記第3金属部材との接合面に垂直な方向に沿って前記第1金属部材から前記第3金属部材にかけて硬度が徐々に変化する第1硬度遷移領域が形成され、かつ、前記第2金属部材と前記第3金属部材との接合面の近傍に前記第2金属部材と前記第3金属部材との接合面に垂直な方向に沿って前記第2金属部材から前記第3金属部材にかけて硬度が徐々に変化する第2硬度遷移領域が形成される温度条件下で熱処理を施す硬度遷移領域形成工程とをこの順序で含むことを特徴とする。 [1] The method for manufacturing a joined body of the present invention includes a first metal member made of a first metal material, a second metal member made of a second metal material, the first metal material, and the second metal member. A metal member preparing step of preparing a third metal member made of a third metal material having a lower longitudinal elastic modulus and hardness than any of the metal materials; and between the first metal member and the second metal member, A joined body forming step of joining the first metal member, the second metal member, and the third metal member to form a joined body in the order in which the third metal member is interposed, and the joined body. In the forming step, the first metal member, the second metal member, and the third metal member are not melted with the third metal member interposed between the first metal member and the second metal member. The first metal member, the second metal member and the third metal member under temperature conditions A solid-phase bonding step for solid-phase joining the genus member, and a direction perpendicular to the bonding surface between the first metal member and the third metal member in the vicinity of the bonding surface between the first metal member and the third metal member A first hardness transition region in which the hardness gradually changes from the first metal member to the third metal member along the first metal member, and in the vicinity of the joint surface between the second metal member and the third metal member A temperature at which a second hardness transition region in which the hardness gradually changes from the second metal member to the third metal member along a direction perpendicular to the joint surface between the second metal member and the third metal member is formed. And a hardness transition region forming step in which heat treatment is performed under the above conditions.

本発明の接合体の製造方法により製造される接合体においては、第1金属部材と第2金属部材との間には、第1の金属材料及び第2の金属材料のいずれよりも縦弾性係数(ヤング率ともいう。)及び硬度が低い第3の金属材料からなる第3金属部材が存在するようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件でこれを使用した場合に、第3金属部材が、第1金属部材と第2金属部材との間に発生する熱応力を分散させる緩衝材として働くようになる。   In the joined body produced by the method for producing a joined body of the present invention, the longitudinal elastic modulus is greater between the first metal member and the second metal member than either the first metal material or the second metal material. (Also referred to as Young's modulus) and a condition that a large temperature difference occurs between the first metal member and the second metal member because the third metal member made of the third metal material having low hardness exists. When this is used, the third metal member functions as a buffer material that disperses the thermal stress generated between the first metal member and the second metal member.

また、本発明の接合体の製造方法により製造される接合体においては、第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間には、上記した第1硬度遷移領域及び第2硬度遷移領域がそれぞれ存在するようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合に、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力もが、第1硬度遷移領域及び第2硬度遷移領域において分散されることとなる。   Moreover, in the joined body manufactured by the manufacturing method of the joined body of the present invention, the first metal member and the third metal member, and the second metal member and the third metal member between the first metal member and the third metal member described above. Since the 1 hardness transition region and the 2nd hardness transition region are respectively present, when the joined body is used under a condition in which a large temperature difference is generated between the first metal member and the second metal member, the first hardness transition region and the second hardness transition region are present. The stress generated between the first metal member and the third metal member and between the second metal member and the third metal member due to the thermal stress generated between the metal member and the second metal member is also the first. It will be dispersed in the hardness transition region and the second hardness transition region.

その結果、本発明の接合体の製造方法によれば、第1金属部材と第2金属部材との間に発生する熱応力が、これら第1硬度遷移領域、第3金属部材及び第2硬度遷移領域の応力を分散するという働きにより効果的に分散されるようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合においても破損し難い接合体を製造することが可能となる。   As a result, according to the method for manufacturing a joined body of the present invention, the thermal stress generated between the first metal member and the second metal member causes the first hardness transition region, the third metal member, and the second hardness transition. Even when the joined body is used under the condition that a large temperature difference occurs between the first metal member and the second metal member because the stress of the region is effectively dispersed, it is dispersed. It becomes possible to manufacture a bonded body that is difficult to perform.

また、本発明の接合体の製造方法によれば、接合体形成工程中に硬度遷移領域形成工程を実施する中で金属部材の接合面に存在する空隙や不動態層を消散させることが可能となるため、従来の接合体の製造方法の場合と同様に、接合力が高い接合体を製造することが可能となる。   Further, according to the method for manufacturing a joined body of the present invention, it is possible to dissipate voids and passive layers existing on the joint surface of the metal member while performing the hardness transition region forming process during the joined body forming process. Therefore, as in the case of the conventional method for manufacturing a joined body, it is possible to produce a joined body having a high joining force.

また、本発明の接合体の製造方法によれば、接合する金属部材のうち少なくとも1つの金属部材として、接合予定面に凹部が形成された金属部材を用いることにより、従来の接合体の製造方法の場合と同様に、複雑な形状の内部空間を有する接合体を比較的容易に製造することが可能となる。   Further, according to the method for manufacturing a joined body of the present invention, a metal member having a concave portion formed on a surface to be joined is used as at least one metal member to be joined. As in the case of, it is possible to relatively easily manufacture a joined body having an internal space with a complicated shape.

なお、本発明の接合体の製造方法は、4層以上の金属部材が接合された構造の接合体を製造する場合にも適用することが可能である。この場合、4層以上の層のうち本発明の条件を満たす3層に着目すれば、本発明の接合体の製造方法を実施することになる。   In addition, the manufacturing method of the joined body of this invention is applicable also when manufacturing the joined body of the structure where the metal member of four or more layers was joined. In this case, if attention is paid to three layers satisfying the conditions of the present invention among the four or more layers, the method for manufacturing a joined body of the present invention is carried out.

第3の金属材料は、第1金属部材及び第2金属部材の硬度を高くするための熱処理(例えば、焼入れ処理)によっては硬度が高くなりにくい金属材料からなることが好ましい。この場合、接合体全体の硬度を高くするための熱処理を施して硬度を高くした場合であっても、第3金属部材が存在する部分についてはそれ程硬度が高くならない(つまり、縦弾性係数が高くなりすぎない)ようにすることが可能となり、その結果、第3金属部材を緩衝材として十分に働かせることが可能となる。   The third metal material is preferably made of a metal material that does not easily increase in hardness by heat treatment (for example, quenching) for increasing the hardness of the first metal member and the second metal member. In this case, even when heat treatment is performed to increase the hardness of the entire bonded body, the hardness is not so high in the portion where the third metal member is present (that is, the longitudinal elastic modulus is high). As a result, the third metal member can sufficiently function as a cushioning material.

[2]本発明の接合体の製造方法においては、前記第1硬度遷移領域は、前記第1金属部材と前記第3金属部材との接合面に垂直な方向に沿って50μm以上の厚さを有し、前記第2硬度遷移領域は、前記第2金属部材と前記第3金属部材との接合面に垂直な方向に沿って50μm以上の厚さを有することが好ましい。 [2] In the method for manufacturing a joined body according to the present invention, the first hardness transition region has a thickness of 50 μm or more along a direction perpendicular to the joining surface between the first metal member and the third metal member. Preferably, the second hardness transition region has a thickness of 50 μm or more along a direction perpendicular to a joint surface between the second metal member and the third metal member.

このような方法とすることにより、第1硬度遷移領域及び第2硬度遷移領域の厚さを十分に確保し、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力を、第1硬度遷移領域及び第2硬度遷移領域において十分に分散することが可能となる。   By adopting such a method, sufficient thicknesses of the first hardness transition region and the second hardness transition region are ensured, and the first metal is generated by the thermal stress generated between the first metal member and the second metal member. The stress generated between the member and the third metal member and between the second metal member and the third metal member can be sufficiently dispersed in the first hardness transition region and the second hardness transition region.

なお、上記の観点からは、第1硬度遷移領域が第1金属部材と第3金属部材との接合面に垂直な方向に沿って100μm以上の厚さを有し、第2硬度遷移領域が第2金属部材と第3金属部材との接合面に垂直な方向に沿って100μm以上の厚さを有することが一層好ましく、第1硬度遷移領域が第1金属部材と第3金属部材との接合面に垂直な方向に沿って200μm以上の厚さを有し、第2硬度遷移領域が第2金属部材と第3金属部材との接合面に垂直な方向に沿って200μm以上の厚さを有することがより一層好ましい。
また、接合体全体の機械的強度を一層高くするという観点からは、第1硬度遷移領域が第1金属部材と第3金属部材との接合面に垂直な方向に沿って5mm以下の厚さを有し、第2硬度遷移領域が第2金属部材と第3金属部材との接合面に垂直な方向に沿って5mm以下の厚さを有することが好ましい。
From the above viewpoint, the first hardness transition region has a thickness of 100 μm or more along the direction perpendicular to the joint surface between the first metal member and the third metal member, and the second hardness transition region is the first hardness transition region. More preferably, the second metal member has a thickness of 100 μm or more along a direction perpendicular to the joint surface between the third metal member and the first hardness transition region is a joint surface between the first metal member and the third metal member. The second hardness transition region has a thickness of 200 μm or more along the direction perpendicular to the joint surface between the second metal member and the third metal member. Is even more preferable.
Further, from the viewpoint of further increasing the mechanical strength of the entire joined body, the thickness of the first hardness transition region is 5 mm or less along the direction perpendicular to the joining surface of the first metal member and the third metal member. It is preferable that the second hardness transition region has a thickness of 5 mm or less along a direction perpendicular to the joint surface between the second metal member and the third metal member.

[3]本発明の接合体の製造方法においては、前記硬度遷移領域形成工程においては、前記第3金属部材内であって前記第1硬度遷移領域と前記第2硬度遷移領域との間に、前記第1硬度遷移領域から前記第2硬度遷移領域に向かう方向に沿って硬度が定常状態となる硬度定常領域が残る条件で熱処理を施すことが好ましい。 [3] In the manufacturing method of the joined body of the present invention, in the hardness transition region forming step, the first metal transition region and the second hardness transition region in the third metal member, It is preferable that the heat treatment is performed under a condition in which a hardness steady region in which the hardness is in a steady state remains along a direction from the first hardness transition region to the second hardness transition region.

このような方法とすることにより、縦弾性係数が比較的低い領域(第3金属部材そのままの領域)が残るため、第3金属部材に緩衝材としての働きを十分に発揮させることが可能となる。   By setting it as such a method, since the area | region (area | region as the 3rd metal member as it is) with a comparatively low longitudinal elastic modulus remains, it becomes possible to fully exhibit the function as a buffering material to the 3rd metal member. .

[4]本発明の接合体の製造方法においては、前記硬度定常領域は、前記第1硬度遷移領域から前記第2硬度遷移領域に向かう方向に沿って30μm以上の厚さを有することが好ましい。 [4] In the method for manufacturing a joined body according to the present invention, it is preferable that the hardness steady region has a thickness of 30 μm or more along a direction from the first hardness transition region to the second hardness transition region.

このような方法とすることにより、縦弾性係数が比較的低い領域(第3金属部材そのままの領域)が十分に残るため、第3金属部材に緩衝材としての働きを一層十分に発揮させることが可能となる。   By setting it as such a method, since the area | region (area | region as the 3rd metal member as it is) where a longitudinal elastic modulus is comparatively low remains sufficiently, it can make the 3rd metal member fully exhibit the function as a buffering material. It becomes possible.

なお、上記の観点からは、硬度定常領域が第1硬度遷移領域から第2硬度遷移領域に向かう方向に沿って60μm以上の厚さを有することが一層好ましく、100μm以上の厚さを有することがより一層好ましい。
また、接合体全体の機械的強度を一層高くするという観点からは、硬度定常領域が第1硬度遷移領域から第2硬度遷移領域に向かう方向に沿って3mm以下の厚さを有することが好ましい。
From the above viewpoint, it is more preferable that the hardness steady region has a thickness of 60 μm or more along the direction from the first hardness transition region to the second hardness transition region, and has a thickness of 100 μm or more. Even more preferred.
Further, from the viewpoint of further increasing the mechanical strength of the entire bonded body, it is preferable that the steady hardness region has a thickness of 3 mm or less along the direction from the first hardness transition region to the second hardness transition region.

[5]本発明の接合体の製造方法においては、前記第3金属部材の厚さは、0.3mm〜10.0mmの範囲内にあることが好ましい。 [5] In the method for manufacturing a joined body according to the present invention, the thickness of the third metal member is preferably in the range of 0.3 mm to 10.0 mm.

このような方法とすることにより、第3金属部材の厚みを緩衝材として十分なものとすることが可能となり、かつ、全体としての形態安定性が十分に高い接合体を製造することが可能となる。   By adopting such a method, it becomes possible to make the thickness of the third metal member sufficient as a cushioning material, and it is possible to produce a joined body having a sufficiently high form stability as a whole. Become.

なお、本発明において、第3金属部材の最小厚みを0.3mm〜10.0mmの範囲内としたのは、当該厚みが0.3mmより小さい場合には固相接合後に第3金属部材が第1金属部材及び第2金属部材に吸収されてしまい、第3金属部材の厚みを緩衝材として十分なものとすることが困難となる場合があるためであり、当該厚みが10.0mmより大きい場合には接合体全体としての形態安定性が十分に高い接合体を製造することが困難となる場合があるためである。この観点からは、第3金属部材の最小厚みが0.5mm〜5.0mmの範囲内にあることが一層好ましい。   In the present invention, the minimum thickness of the third metal member is set within the range of 0.3 mm to 10.0 mm because, when the thickness is smaller than 0.3 mm, the third metal member is the second metal member after solid-phase bonding. This is because it may be absorbed by the first metal member and the second metal member, and it may be difficult to make the thickness of the third metal member sufficient as a buffer material, and the thickness is greater than 10.0 mm. This is because it may be difficult to produce a joined body having sufficiently high form stability as the whole joined body. From this viewpoint, it is more preferable that the minimum thickness of the third metal member is in the range of 0.5 mm to 5.0 mm.

なお、上記[5]に記載した第3金属部材の厚みは、金属部材準備工程時のものである。   In addition, the thickness of the 3rd metal member described in said [5] is a thing at the time of a metal member preparation process.

[6]本発明の接合体の製造方法においては、前記接合体形成工程より後に、前記第3金属部材が前記接合体の表面に露出している部分(以下、露出部分という。)のうち少なくとも一部に対して、前記第1金属部材、前記第2金属部材及び前記第3金属部材が前記接合体の表面に露出している部分を溶融させた状態で、第4金属部材を溶融させながら被覆する被覆工程をさらに含み、前記被覆工程においては、前記第4金属部材と前記第3金属部材との境界面の近傍に、前記第4金属部材から前記第3金属部材に向かう方向に沿って前記第4金属部材から前記第3金属部材にかけて硬度が徐々に変化する第3硬度遷移領域が形成され、前記第4金属部材と前記第1硬度遷移領域との境界面の近傍に、前記第4金属部材から前記第1硬度遷移領域に向かう方向に沿って前記第4金属部材から前記第1硬度遷移領域にかけて硬度が徐々に変化する第4硬度遷移領域が形成され、前記第4金属部材と前記第2硬度遷移領域との境界面の近傍に、前記第4金属部材から前記第2硬度遷移領域に向かう方向に沿って前記第4金属部材から前記第2硬度遷移領域にかけて硬度が徐々に変化する第5硬度遷移領域が形成される条件で前記第4金属部材を被覆することが好ましい。 [6] In the method for manufacturing a joined body according to the present invention, after the joined body forming step, at least a portion of the portion where the third metal member is exposed on the surface of the joined body (hereinafter referred to as an exposed portion). While melting the portion where the first metal member, the second metal member, and the third metal member are exposed on the surface of the joined body, the fourth metal member is melted with respect to a part. A coating step of covering, in the coating step, in the vicinity of a boundary surface between the fourth metal member and the third metal member, along a direction from the fourth metal member toward the third metal member. A third hardness transition region in which the hardness gradually changes from the fourth metal member to the third metal member is formed, and the fourth hardness is formed in the vicinity of the boundary surface between the fourth metal member and the first hardness transition region. The first hardness transition from a metal member A fourth hardness transition region is formed in which the hardness gradually changes from the fourth metal member to the first hardness transition region along a direction toward the region, and a boundary between the fourth metal member and the second hardness transition region A fifth hardness transition region in which the hardness gradually changes from the fourth metal member to the second hardness transition region along the direction from the fourth metal member to the second hardness transition region is formed in the vicinity of the surface. It is preferable to coat the fourth metal member under the following conditions.

このような方法とすることにより、第4金属部材と第3金属部材との境界面の近傍に第3硬度遷移領域が形成される条件で第4金属部材を被覆するため、第1金属部材と第2金属部材との間に発生する熱応力により第4金属部材と第3金属部材との間に発生する応力が、第3硬度遷移領域において分散されるようにすることが可能となる。   By setting it as such a method, in order to coat | cover a 4th metal member on the conditions in which the 3rd hardness transition area | region is formed in the vicinity of the interface of a 4th metal member and a 3rd metal member, The stress generated between the fourth metal member and the third metal member due to the thermal stress generated between the second metal member and the third metal member can be dispersed in the third hardness transition region.

また、上記[6]の方法によれば、被覆工程においては第4硬度遷移領域及び第5硬度遷移領域が形成される条件で第4金属部材を被覆するため、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力が、第4硬度遷移領域及び第5硬度遷移領域においても分散されるようにすることが可能となる。   Further, according to the method [6], the first metal member and the second metal are coated in the covering step in order to cover the fourth metal member under the condition that the fourth hardness transition region and the fifth hardness transition region are formed. Stresses generated between the first metal member and the third metal member and between the second metal member and the third metal member due to the thermal stress generated between the member and the second metal member are the fourth hardness transition region and the fifth hardness. It is possible to be distributed even in the transition region.

なお、第1金属部材と第4金属部材とが異なる金属材料からなる場合には、第4金属部材から第1金属部材に向かう方向に沿って第4金属部材から第1金属部材にかけて硬度が徐々に変化する第6硬度遷移領域が形成される条件で第4金属部材を被覆することが好ましい。また、第2金属部材と第4金属部材とが異なる金属材料からなる場合には、第4金属部材から第2金属部材に向かう方向に沿って第4金属部材から第2金属部材にかけて硬度が徐々に変化する第7硬度遷移領域が形成される条件で第4金属部材を被覆することが好ましい。   When the first metal member and the fourth metal member are made of different metal materials, the hardness gradually increases from the fourth metal member to the first metal member along the direction from the fourth metal member to the first metal member. It is preferable to coat the fourth metal member under the condition that the sixth hardness transition region that changes to is formed. When the second metal member and the fourth metal member are made of different metal materials, the hardness gradually increases from the fourth metal member to the second metal member along the direction from the fourth metal member to the second metal member. It is preferable to coat the fourth metal member under the condition that the seventh hardness transition region that changes to is formed.

第1金属部材と第4金属部材とが同一の金属材料からなる場合には、第1金属部材と第4金属部材との間に明確な境界面が残らないような条件で第4金属部材を被覆することが好ましい。また、第2金属部材と第4金属部材とが同一の金属材料からなる場合には、第2金属部材と第4金属部材との間に明確な境界面が残らないような条件で第4金属部材を被覆することが好ましい。   In the case where the first metal member and the fourth metal member are made of the same metal material, the fourth metal member is mounted under such a condition that a clear boundary surface does not remain between the first metal member and the fourth metal member. It is preferable to coat. Further, when the second metal member and the fourth metal member are made of the same metal material, the fourth metal is used under such a condition that a clear boundary surface does not remain between the second metal member and the fourth metal member. It is preferable to coat the member.

本発明の接合体の製造方法においては、被覆工程より後に、被覆工程で第4金属部材を被覆した部分を平滑化する平滑化工程をさらに含むことが好ましい。このような方法とすることにより、表面が平滑な接合体を製造することが可能となる。   In the manufacturing method of the joined_body | zygote of this invention, it is preferable to further include the smoothing process of smoothing the part which coat | covered the 4th metal member at the coating process after the coating process. By setting it as such a method, it becomes possible to manufacture a joined body with a smooth surface.

[7]本発明の接合体の製造方法においては、前記第4金属部材は、前記第3の金属材料よりも硬度が高い第4の金属材料からなることが好ましい。 [7] In the method for manufacturing a joined body according to the present invention, the fourth metal member is preferably made of a fourth metal material having a hardness higher than that of the third metal material.

一般的に、縦弾性係数が低い金属材料は硬度も低くなる傾向にあり、製造した接合体において第3金属部材が露出していると、第3金属部材の部分が第1金属部材の部分及び第2金属部材の部分よりも早く損耗してしまうことが考えられる。   In general, a metal material having a low longitudinal elastic modulus tends to have a low hardness, and when the third metal member is exposed in the manufactured joined body, the third metal member portion becomes the first metal member portion and It is conceivable that the second metal member is worn earlier than the portion of the second metal member.

一方、上記[7]の方法によれば、第3の金属材料よりも硬度が高い第4の金属材料からなる第4金属部材で第3金属部材を覆うことになるため、第3金属部材の部分が第1金属部材の部分及び第2金属部材の部分よりも早く損耗してしまうのを防ぐことが可能な接合体を製造することが可能となる。   On the other hand, according to the method [7], the third metal member is covered with the fourth metal member made of the fourth metal material having a hardness higher than that of the third metal material. It becomes possible to manufacture a joined body capable of preventing the portion from being worn out earlier than the portion of the first metal member and the portion of the second metal member.

[8]本発明の接合体の製造方法においては、前記接合体形成工程と前記被覆工程との間に、前記露出部分のうち少なくとも一部を含むように、前記接合体の表面を部分的に削り取る表面切削工程をさらに含み、前記被覆工程においては、前記表面切削工程で削り取った部分を前記第4金属部材で埋めるように前記第4金属部材を被覆することが好ましい。 [8] In the method for manufacturing a joined body according to the present invention, the surface of the joined body is partially provided so as to include at least a part of the exposed portion between the joined body forming step and the covering step. It is preferable to further include a surface cutting step for scraping, and in the covering step, it is preferable to cover the fourth metal member so that a portion cut off in the surface cutting step is filled with the fourth metal member.

このような方法とすることにより、第3金属部材を含む表面が周りの面よりも低くなるため、被覆工程において第4金属部材を容易に被覆することが可能となる。   By setting it as such a method, since the surface containing a 3rd metal member becomes lower than the surrounding surface, it becomes possible to coat | cover a 4th metal member easily in a coating process.

また、上記[8]の方法によれば、内部の接合面よりも接合の強度が低い可能性がある表面の接合面を削り取り、製造する接合体全体としての機械的強度を向上させることが可能となる。   In addition, according to the method [8] above, it is possible to scrape off the joint surface of the surface that may have lower joint strength than the internal joint surface, and to improve the mechanical strength of the entire joined body to be manufactured. It becomes.

なお、表面切削工程において表面を削り取る深さ寸法は、製造する接合体に応じて任意の寸法とすることができるが、第3金属部材の厚さ寸法よりも大きい寸法(例えば、第3金属部材の厚さ寸法の2倍〜6倍)とすることが好ましい。   The depth dimension for scraping the surface in the surface cutting step can be any dimension depending on the joined body to be manufactured, but is larger than the thickness dimension of the third metal member (for example, the third metal member). 2 to 6 times the thickness dimension).

[9]本発明の接合体の製造方法においては、前記被覆工程より後に、前記接合体に蓄積されている応力を緩和するために前記接合体に熱処理を施す熱処理工程をさらに含むことが好ましい。 [9] Preferably, the method for manufacturing a joined body of the present invention further includes a heat treatment step of performing a heat treatment on the joined body after the covering step in order to relieve stress accumulated in the joined body.

このような方法とすることにより、接合体に蓄積されている応力を緩和し、接合体全体としての接合力を高めることが可能となる。   By setting it as such a method, it becomes possible to relieve | moderate the stress accumulate | stored in the conjugate | zygote and to raise the joining force as the whole conjugate | zygote.

また、上記[9]の方法によれば、上記熱処理により各硬度遷移領域の範囲を大きくし、各金属部材間に発生する応力がより一層分散されるようにすることが可能となる。   Further, according to the method [9], it is possible to enlarge the range of each hardness transition region by the heat treatment, and to further disperse the stress generated between the metal members.

なお、上記のような熱処理としては、焼きなましを含む熱処理を例示することができる。また、製造する接合体全体として高い硬度を得たい場合には、焼きなましの後に焼入れ等を行ってもよい。   An example of the heat treatment as described above is heat treatment including annealing. In addition, when it is desired to obtain high hardness as the whole joined body to be manufactured, quenching or the like may be performed after annealing.

[10]本発明の接合体は、第1の金属材料からなる第1金属部材と、第2の金属材料からなる第2金属部材と、前記第1金属部材と前記第2金属部材との間に位置し、前記第1の金属材料及び前記第2の金属材料よりも縦弾性係数及び硬度が低い第3の金属材料からなる第3金属部材とを備え、前記第3金属部材が前記第1金属部材と前記第2金属部材とに固相接合された構造を有する接合体であって、前記第1金属部材と前記第3金属部材との接合面の近傍に前記第1金属部材と前記第3金属部材との接合面に垂直な方向に沿って前記第1金属部材から前記第3金属部材にかけて硬度が徐々に変化する第1硬度遷移領域が存在し、かつ、前記第2金属部材と前記第3金属部材との接合面の近傍に前記第2金属部材と前記第3金属部材との接合面に垂直な方向に沿って前記第2金属部材から前記第3金属部材にかけて硬度が徐々に変化する第2硬度遷移領域が存在することを特徴とする。 [10] The joined body of the present invention includes a first metal member made of a first metal material, a second metal member made of a second metal material, and the first metal member and the second metal member. And a third metal member made of a third metal material having a longitudinal elastic modulus and hardness lower than those of the first metal material and the second metal material, wherein the third metal member is the first metal material. A joined body having a structure solid-phase joined to a metal member and the second metal member, wherein the first metal member and the first metal member are disposed in the vicinity of a joint surface between the first metal member and the third metal member. A first hardness transition region in which the hardness gradually changes from the first metal member to the third metal member along a direction perpendicular to the joint surface with the three metal members, and the second metal member and the third metal member In the vicinity of the joint surface with the third metal member, the second metal member and the third metal member The second hardness transition region gradually changing in hardness from the second metal member along a direction perpendicular to the mating face toward the third metal member is present, characterized in.

本発明の接合体においては、第1金属部材と第2金属部材との間には、第1の金属材料及び第2の金属材料のいずれよりも縦弾性係数(ヤング率ともいう。)及び硬度が低い第3の金属材料からなる第3金属部材が存在するため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件でこれを使用した場合に、第3金属部材が、第1金属部材と第2金属部材との間に発生する熱応力を分散させる緩衝材として働くようになる。   In the joined body of the present invention, between the first metal member and the second metal member, the longitudinal elastic modulus (also referred to as Young's modulus) and hardness are higher than both of the first metal material and the second metal material. Since there is a third metal member made of a third metal material having a low level, the third metal member is used when this is used under the condition that a large temperature difference occurs between the first metal member and the second metal member. However, it comes to act as a buffer material that disperses the thermal stress generated between the first metal member and the second metal member.

また、本発明の接合体においては、第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間には、上記した第1硬度遷移領域及び第2硬度遷移領域がそれぞれ存在するため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合に、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力もが、第1硬度遷移領域及び第2硬度遷移領域において分散されることとなる。   In the joined body of the present invention, the first hardness transition region and the second hardness transition described above are provided between the first metal member and the third metal member and between the second metal member and the third metal member. Since each region exists, it occurs between the first metal member and the second metal member when the joined body is used under the condition that a large temperature difference occurs between the first metal member and the second metal member. The stress generated between the first metal member and the third metal member and between the second metal member and the third metal member due to the thermal stress is also dispersed in the first hardness transition region and the second hardness transition region. The Rukoto.

その結果、本発明の接合体によれば、第1金属部材と第2金属部材との間に発生する熱応力がこれら第1硬度遷移領域、第3金属部材及び第2硬度遷移領域の応力を分散するという働きにより効果的に分散されるようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で使用した場合においても破損し難くすることが可能となる。   As a result, according to the joined body of the present invention, the thermal stress generated between the first metal member and the second metal member causes the stress in the first hardness transition region, the third metal member, and the second hardness transition region. Since it is effectively dispersed by the function of dispersing, it is possible to make it difficult to break even when used under conditions where a large temperature difference occurs between the first metal member and the second metal member. Become.

また、本発明の接合体によれば、接合する金属部材のうち少なくとも1つの金属部材として、接合予定面に凹部が形成された金属部材を用いることにより、複雑な形状の内部空間を有しても比較的容易に製造することが可能な接合体となる。   In addition, according to the joined body of the present invention, the metal member having a concave portion formed on the surface to be joined is used as at least one of the metal members to be joined, thereby having an internal space with a complicated shape. However, it becomes a joined body that can be manufactured relatively easily.

なお、本発明の接合体は、4層以上の金属部材が接合された構造の接合体にも適用することが可能である。この場合、4層以上の層のうち本発明の条件を満たす3層に着目すれば、本発明の接合体であるということになる。   The joined body of the present invention can also be applied to a joined body having a structure in which four or more metal members are joined. In this case, if attention is paid to three layers satisfying the conditions of the present invention among the four or more layers, the bonded body of the present invention is obtained.

第3の金属材料は、第1金属部材及び第2金属部材の硬度を高くするための熱処理によっては硬度が高くなりにくい金属材料からなることが好ましい。この場合、接合体全体の硬度を高くするための熱処理を施して硬度を高くした場合であっても、第3金属部材が存在する部分についてはそれ程硬度が高くならない(つまり、縦弾性係数が高くなりすぎない)ようにすることが可能となり、その結果、第3金属部材を緩衝材として十分に働かせることが可能となる。   The third metal material is preferably made of a metal material that does not easily increase in hardness by heat treatment for increasing the hardness of the first metal member and the second metal member. In this case, even when heat treatment is performed to increase the hardness of the entire bonded body, the hardness is not so high in the portion where the third metal member is present (that is, the longitudinal elastic modulus is high). As a result, the third metal member can sufficiently function as a cushioning material.

[11]本発明の接合体においては、前記第3の金属材料よりも硬度が高い第4の金属材料からなる第4金属部材をさらに備え、前記第4金属部材が、前記第3金属部材の少なくとも一部を被覆する構造を有し、前記第4金属部材と前記第3金属部材との境界面の近傍に、前記第4金属部材から前記第3金属部材に向かう方向に沿って前記第4金属部材から前記第3金属部材にかけて硬度が徐々に変化する第3硬度遷移領域が存在し、前記第4金属部材と前記第1硬度遷移領域との境界面の近傍に、前記第4金属部材から前記第1硬度遷移領域に向かう方向に沿って前記第4金属部材から前記第1硬度遷移領域にかけて硬度が徐々に変化する第4硬度遷移領域が存在し、前記第4金属部材と前記第2硬度遷移領域との境界面の近傍に、前記第4金属部材から前記第2硬度遷移領域に向かう方向に沿って前記第4金属部材から前記第2硬度遷移領域にかけて硬度が徐々に変化する第5硬度遷移領域が存在することが好ましい。 [11] The joined body of the present invention further includes a fourth metal member made of a fourth metal material having a hardness higher than that of the third metal material, and the fourth metal member is formed of the third metal member. The fourth metal member has a structure that covers at least a part thereof, and is disposed in a vicinity of a boundary surface between the fourth metal member and the third metal member along a direction from the fourth metal member toward the third metal member. There is a third hardness transition region in which the hardness gradually changes from the metal member to the third metal member, and from the fourth metal member in the vicinity of the boundary surface between the fourth metal member and the first hardness transition region. There is a fourth hardness transition region in which the hardness gradually changes from the fourth metal member to the first hardness transition region along a direction toward the first hardness transition region, and the fourth metal member and the second hardness In the vicinity of the boundary surface with the transition region, the first It is preferred that there is a fifth hardness transition region gradually changing in hardness toward said fourth metal member from said second hardness transition region along a direction toward the second hardness transition area from the metal member.

このような構成とすることにより、第4金属部材と第3金属部材との境界面の近傍に第3硬度遷移領域が存在するため、第1金属部材と第2金属部材との間に発生する熱応力により第4金属部材と第3金属部材との間に発生する応力が、第3硬度遷移領域において分散されるようにすることが可能となる。   With such a configuration, the third hardness transition region exists in the vicinity of the boundary surface between the fourth metal member and the third metal member, and thus occurs between the first metal member and the second metal member. The stress generated between the fourth metal member and the third metal member due to the thermal stress can be dispersed in the third hardness transition region.

また、上記[11]の構成によれば、上記したような第4硬度遷移領域及び第5硬度遷移領域が存在するため、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力が、第4硬度遷移領域及び第5硬度遷移領域においても分散されるようにすることが可能となる。   In addition, according to the configuration of [11] above, since the fourth hardness transition region and the fifth hardness transition region as described above exist, due to the thermal stress generated between the first metal member and the second metal member. The stress generated between the first metal member and the third metal member and between the second metal member and the third metal member is distributed also in the fourth hardness transition region and the fifth hardness transition region. It becomes possible.

なお、第1金属部材と第4金属部材とが異なる金属材料からなる場合には、第4金属部材から第1金属部材に向かう方向に沿って第4金属部材から第1金属部材にかけて硬度が徐々に変化する第6硬度遷移領域が存在することが好ましい。また、第2金属部材と第4金属部材とが異なる金属材料からなる場合には、第4金属部材から第2金属部材に向かう方向に沿って第4金属部材から第2金属部材にかけて硬度が徐々に変化する第7硬度遷移領域が存在することが好ましい。   When the first metal member and the fourth metal member are made of different metal materials, the hardness gradually increases from the fourth metal member to the first metal member along the direction from the fourth metal member to the first metal member. It is preferable that there is a sixth hardness transition region that changes to. When the second metal member and the fourth metal member are made of different metal materials, the hardness gradually increases from the fourth metal member to the second metal member along the direction from the fourth metal member to the second metal member. It is preferable that a seventh hardness transition region that changes to

第1金属部材と第4金属部材とが同一の金属材料からなる場合には、第1金属部材と第4金属部材との間に明確な境界面が残らないように接合されていることが好ましい。また、第2金属部材と第4金属部材とが同一の金属材料からなる場合には、第2金属部材と第4金属部材との間に明確な境界面が残らないように接合されていることが好ましい。   When the first metal member and the fourth metal member are made of the same metal material, it is preferable that the first metal member and the fourth metal member are joined so that no clear boundary surface remains between them. . Further, when the second metal member and the fourth metal member are made of the same metal material, the second metal member and the fourth metal member are joined so that no clear boundary surface remains between the second metal member and the fourth metal member. Is preferred.

[12]本発明の金属製品は、上記[10]又は[11]に記載の接合体を用いて製造されたものである。 [12] A metal product of the present invention is manufactured using the joined body according to the above [10] or [11].

本発明の金属製品によれば、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で使用した場合においても破損し難くすることが可能となる本発明の接合体を用いて製造されたため、大きな温度差が発生する条件で使用した場合においても破損し難い金属製品となる。   According to the metal product of the present invention, the joined body of the present invention that can be hardly damaged even when used under conditions where a large temperature difference occurs between the first metal member and the second metal member. Therefore, even when used under conditions where a large temperature difference occurs, the metal product is not easily damaged.

実施形態1に係る接合体の製造方法を説明するために示すフローチャートである。3 is a flowchart for explaining a method for manufacturing a joined body according to the first embodiment. 実施形態1に係る接合体の製造方法を説明するために示す図である。FIG. 5 is a view for explaining the manufacturing method of the joined body according to the first embodiment. 実施形態1に係る接合体の製造方法を説明するために示すグラフである。3 is a graph shown for explaining a method for manufacturing a joined body according to the first embodiment. 実施形態1に係る接合体10を説明するために示す図である。It is a figure shown in order to demonstrate the conjugate | zygote 10 which concerns on Embodiment 1. FIG. 実施形態1に係る接合体10における硬度の分布を説明するために示す図である。It is a figure shown in order to demonstrate distribution of hardness in joined object 10 concerning Embodiment 1. FIG. 実施例に係る接合体10a(全体は図示せず。)を説明するために示す写真である。It is the photograph shown in order to demonstrate the conjugate | zygote 10a (the whole is not shown in figure) which concerns on an Example. 実施例に係る接合体10aを説明するために示すグラフである。It is a graph shown in order to demonstrate the conjugate | zygote 10a which concerns on an Example. 実施形態2に係る接合体の製造方法を説明するために示すフローチャートである。6 is a flowchart for explaining a method for manufacturing a joined body according to the second embodiment. 実施形態2に係る接合体の製造方法を説明するために示す図である。It is a figure shown in order to demonstrate the manufacturing method of the conjugate | zygote which concerns on Embodiment 2. FIG. 従来の接合体の製造方法を説明するために示すフローチャートである。It is a flowchart shown in order to demonstrate the manufacturing method of the conventional conjugate | zygote. 従来の接合体の製造方法を説明するために示す図である。It is a figure shown in order to demonstrate the manufacturing method of the conventional conjugate | zygote.

以下、本発明の接合体の製造方法、接合体及び金属製品について、図に示す実施の形態に基づいて説明する。   Hereinafter, a method for manufacturing a joined body, a joined body, and a metal product of the present invention will be described based on the embodiments shown in the drawings.

[実施形態1]
図1は、実施形態1に係る接合体の製造方法を説明するために示すフローチャートである。
図2は、実施形態1に係る接合体の製造方法を説明するために示す図である。図2(a)は金属部材準備工程S1を説明するために示す図であり、図2(b)及び図2(c)は接合体形成工程S2を説明するために示す図であり、図2(d)は表面切削工程S3を説明するために示す図であり、図2(e)は被覆工程S4を説明するために示す図であり、図2(f)は平滑化工程S6を説明するために示す図である。なお、図2(a)〜図2(f)の各図は、接合体10となる部分の一部(後述する図4の符号B参照。)を示す模式図である。また、図2においては、熱交換流路19の図示を省略している。さらにまた、図2においては、熱処理工程S5についての図示を省略している。
図3は、実施形態1に係る接合体の製造方法を説明するために示すグラフである。図3中、横軸は時間を示し、縦軸は温度を示す。
[Embodiment 1]
FIG. 1 is a flowchart for explaining a method for manufacturing a joined body according to the first embodiment.
FIG. 2 is a view for explaining the method of manufacturing the joined body according to the first embodiment. 2A is a view for explaining the metal member preparation step S1, and FIGS. 2B and 2C are views for explaining the joined body forming step S2. (D) is a figure shown in order to demonstrate surface cutting process S3, FIG.2 (e) is a figure shown in order to demonstrate coating | coating process S4, FIG.2 (f) demonstrates smoothing process S6. FIG. 2A to 2F are schematic views showing a part of the portion that becomes the joined body 10 (see reference numeral B in FIG. 4 to be described later). In FIG. 2, the heat exchange channel 19 is not shown. Furthermore, in FIG. 2, the illustration of the heat treatment step S5 is omitted.
FIG. 3 is a graph shown for explaining the method of manufacturing the joined body according to the first embodiment. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates temperature.

まず、実施形態1に係る接合体の製造方法を説明する。
実施形態1に係る接合体の製造方法は、接合体10(図4参照。)を製造するための方法である。
First, a method for manufacturing a joined body according to Embodiment 1 will be described.
The manufacturing method of the joined body according to Embodiment 1 is a method for producing the joined body 10 (see FIG. 4).

実施形態1に係る接合体の製造方法は、金属部材準備工程S1と、接合体形成工程S2と、表面切削工程S3と、被覆工程S4と、熱処理工程S5と、平滑化工程S6とをこの順序で含む。以下、各工程について説明する。   In the manufacturing method of the joined body according to the first embodiment, the metal member preparation step S1, the joined body forming step S2, the surface cutting step S3, the covering step S4, the heat treatment step S5, and the smoothing step S6 are performed in this order. Including. Hereinafter, each step will be described.

1.金属部材準備工程S1
金属部材準備工程S1は、第1の金属材料からなる第1金属部材12と、第2の金属材料からなる第2金属部材14と、第1の金属材料及び第2の金属材料のいずれよりも縦弾性係数及び硬度が低い第3の金属材料からなる第3金属部材16とを準備する工程である(図2(a)参照。)。
1. Metal member preparation process S1
The metal member preparation step S1 is more than the first metal member 12 made of the first metal material, the second metal member 14 made of the second metal material, and any of the first metal material and the second metal material. This is a step of preparing a third metal member 16 made of a third metal material having a low longitudinal elastic modulus and hardness (see FIG. 2A).

第1の金属材料、第2の金属材料及び第3の金属材料は、それぞれCrを含有する鉄鋼材料からなる。さらにいえば、第1の金属材料及び第2の金属材料は工具鋼からなり、第3の金属材料は、ステンレス鋼からなる。なお、実施形態1においては、第1の金属材料と第2の金属材料とは同一の金属材料からなる。工具鋼としては、例えば、熱間ダイス鋼であるSKD61を用いることができる。ステンレス鋼としては、例えば、オーステナイト系ステンレス鋼であるSUS316Lを用いることができる。SUS316Lは、硬度を高めるための熱処理(例えば、焼入れ処理)によっては硬度が高くなりにくい金属材料である。   Each of the first metal material, the second metal material, and the third metal material is made of a steel material containing Cr. More specifically, the first metal material and the second metal material are made of tool steel, and the third metal material is made of stainless steel. In the first embodiment, the first metal material and the second metal material are made of the same metal material. As the tool steel, for example, SKD61 which is hot die steel can be used. As the stainless steel, for example, SUS316L which is an austenitic stainless steel can be used. SUS316L is a metal material whose hardness is not easily increased by heat treatment (for example, quenching) for increasing hardness.

実施形態1においては、第1の金属材料の熱膨張率と第3の金属材料の熱膨張率との差は、例えば、1×10−6m/K〜5×10−6m/Kの範囲内にあり、第2の金属材料の熱膨張率と第3の金属材料の熱膨張率との差も、例えば、1×10−6m/K〜5×10−6m/Kの範囲内にある。また、第1の金属材料の縦弾性係数と第3の金属材料の縦弾性係数との差は、例えば、10GPa〜20GPaの範囲内にあり、第2の金属材料の縦弾性係数と第3の金属材料の縦弾性係数との差も、例えば、10GPa〜20GPaの範囲内にある。 In the embodiment 1, the difference between the thermal expansion coefficient of the thermal expansion coefficient of the first metal material and the third metallic material, for example, of 1 × 10 -6 m / K~5 × 10 -6 m / K in the range, the difference between the thermal expansion coefficients of the third metal material of the second metallic material is also, for example, a range of 1 × 10 -6 m / K~5 × 10 -6 m / K Is in. Moreover, the difference between the longitudinal elastic modulus of the first metal material and the longitudinal elastic modulus of the third metal material is, for example, in the range of 10 GPa to 20 GPa, and the longitudinal elastic modulus of the second metal material and the third elastic material The difference from the longitudinal elastic modulus of the metal material is also in the range of 10 GPa to 20 GPa, for example.

第1金属部材12、第2金属部材14及び第3金属部材16のそれぞれの接合予定面(第1金属部材12と第3金属部材16とが向かい合う部分と、第2金属部材14と第3金属部材16とが向かい合う部分)における算術平均荒さは、例えば、0.2μm以下である。
第3金属部材16の厚さは、0.3mm〜10.0mmの範囲内にあり、さらにいえば0.5mm〜5.0mmの範囲内にあり、例えば、1.0mmである。なお、実施形態1においては、各接合予定面は平面であり、各金属部材は平板状の形状(円柱を輪切りにしたような形状)を有する。
Planned joining surfaces of the first metal member 12, the second metal member 14, and the third metal member 16 (the portion where the first metal member 12 and the third metal member 16 face each other, the second metal member 14 and the third metal The arithmetic average roughness in the portion facing the member 16 is, for example, 0.2 μm or less.
The thickness of the 3rd metal member 16 exists in the range of 0.3 mm-10.0 mm, Furthermore, it exists in the range of 0.5 mm-5.0 mm, for example, is 1.0 mm. In addition, in Embodiment 1, each joining plan surface is a plane, and each metal member has flat plate shape (shape which rounded the cylinder).

2.接合体形成工程S2
接合体形成工程S2は、第1金属部材12と第2金属部材14との間に第3金属部材16を介在させた状態で第1金属部材12、第2金属部材14及び第3金属部材16を接合して接合体を形成する工程である(図2(b)及び図2(c)参照。)。
2. Bonded body forming step S2
The joined body forming step S2 includes the first metal member 12, the second metal member 14, and the third metal member 16 in a state where the third metal member 16 is interposed between the first metal member 12 and the second metal member 14. Are joined to form a joined body (see FIGS. 2B and 2C).

接合体形成工程S2は、固相接合工程S2aと硬度遷移領域形成工程S2bとをこの順序で含む。
固相接合工程S2aは、図3に示すように、第1金属部材12と第2金属部材14との間に第3金属部材16を介在させた状態で、第1金属部材12、第2金属部材14及び第3金属部材16に所定の圧力をかけ、第1金属部材12、第2金属部材14及び第3金属部材16が溶融しない温度条件下(第1温度T1)で第1金属部材12、第2金属部材14及び第3金属部材16を固相接合する工程である。実施形態1において、固相接合工程S2aは、各金属部材を積層して所定の圧力をかけた上で第1温度T1に加熱し、その後徐冷することにより実施する。
The joined body forming step S2 includes a solid phase joining step S2a and a hardness transition region forming step S2b in this order.
As shown in FIG. 3, the solid-phase bonding step S <b> 2 a includes the first metal member 12 and the second metal with the third metal member 16 interposed between the first metal member 12 and the second metal member 14. A predetermined pressure is applied to the member 14 and the third metal member 16, and the first metal member 12 is subjected to a temperature condition (first temperature T <b> 1) at which the first metal member 12, the second metal member 14, and the third metal member 16 do not melt. In this step, the second metal member 14 and the third metal member 16 are solid-phase bonded. In the first embodiment, the solid-phase bonding step S2a is performed by laminating each metal member, applying a predetermined pressure, heating to the first temperature T1, and then gradually cooling.

硬度遷移領域形成工程S2bは、第1金属部材12と第3金属部材16との接合面の近傍に第1金属部材12と第3金属部材16との接合面に垂直な方向に沿って第1金属部材12から第3金属部材16にかけて硬度が徐々に変化する第1硬度遷移領域13が形成され、かつ、第2金属部材14と第3金属部材16との接合面の近傍に第2金属部材14と第3金属部材16との接合面に垂直な方向に沿って第2金属部材14から第3金属部材16にかけて硬度が徐々に変化する第2硬度遷移領域15が形成される温度条件下で熱処理を施す工程である。   The hardness transition region forming step S <b> 2 b is a first step along a direction perpendicular to the joint surface between the first metal member 12 and the third metal member 16 in the vicinity of the joint surface between the first metal member 12 and the third metal member 16. A first hardness transition region 13 whose hardness gradually changes from the metal member 12 to the third metal member 16 is formed, and the second metal member is formed in the vicinity of the joint surface between the second metal member 14 and the third metal member 16. Under a temperature condition in which a second hardness transition region 15 in which the hardness gradually changes from the second metal member 14 to the third metal member 16 along a direction perpendicular to the joint surface between the first metal member 14 and the third metal member 16 is formed. This is a step of performing a heat treatment.

実施形態1においては、硬度遷移領域形成工程S2bは、まず、固相接合工程S2a後に残留している応力を開放して金属組織を均一化するために、接合体を一度第4温度T4まで加熱した後に急冷し、その後に徐冷する。その後、接合体を第2温度T2に加熱した後、接合体を第3温度T3まで徐冷することにより実施される。第1温度T1、第2温度T2、第3温度T3及び第4温度T4は、固相接合する金属部材を構成する金属材料の種類によって適宜選択することが可能であるが、第1温度T1は、例えば、850℃〜1150℃の範囲内にあり、第4温度T4は、例えば、1000℃〜1150℃の範囲内にあり、第2温度T2は、例えば、800℃〜1150℃の範囲内にあり、第3温度T3は、例えば、600℃以下である。   In the first embodiment, in the hardness transition region forming step S2b, first, the bonded body is once heated to the fourth temperature T4 in order to release the stress remaining after the solid phase bonding step S2a and make the metal structure uniform. After that, cool rapidly and then slowly cool. Thereafter, the joined body is heated to the second temperature T2, and then the joined body is gradually cooled to the third temperature T3. The first temperature T1, the second temperature T2, the third temperature T3, and the fourth temperature T4 can be appropriately selected depending on the type of metal material constituting the metal member to be solid-phase bonded. For example, it is in the range of 850 ° C. to 1150 ° C., the fourth temperature T4 is in the range of 1000 ° C. to 1150 ° C., for example, and the second temperature T2 is in the range of 800 ° C. to 1150 ° C., for example. The third temperature T3 is, for example, 600 ° C. or lower.

第1硬度遷移領域13は、第1金属部材12と第3金属部材16との接合面に垂直な方向に沿って50μm以上の厚さを有し、一層好ましくは100μm以上の厚さを有し、より一層好ましくは200μm以上の厚さを有する。第2硬度遷移領域15は、第2金属部材14と第3金属部材16との接合面に垂直な方向に沿って50μm以上の厚さを有し、一層好ましくは100μm以上の厚さを有し、より一層好ましくは200μm以上の厚さを有する。また、第1硬度遷移領域13は、第1金属部材12と第3金属部材16との接合面に垂直な方向に沿って5mm以下の厚さを有することが好ましく、第2硬度遷移領域15は、第2金属部材14と第3金属部材16との接合面に垂直な方向に沿って5mm以下の厚さを有することが好ましい。   The first hardness transition region 13 has a thickness of 50 μm or more along the direction perpendicular to the joint surface between the first metal member 12 and the third metal member 16, and more preferably has a thickness of 100 μm or more. More preferably, it has a thickness of 200 μm or more. The second hardness transition region 15 has a thickness of 50 μm or more along the direction perpendicular to the joint surface between the second metal member 14 and the third metal member 16, and more preferably has a thickness of 100 μm or more. More preferably, it has a thickness of 200 μm or more. The first hardness transition region 13 preferably has a thickness of 5 mm or less along a direction perpendicular to the joint surface between the first metal member 12 and the third metal member 16, and the second hardness transition region 15 The thickness of the second metal member 14 and the third metal member 16 is preferably 5 mm or less along the direction perpendicular to the joining surface.

硬度遷移領域形成工程S2bにおいては、第3金属部材16内であって、第1硬度遷移領域13と第2硬度遷移領域15との間に、第1硬度遷移領域13から第2硬度遷移領域15に向かう方向に沿って硬度が定常状態となる硬度定常領域(つまり、第3金属部材16のうち、第1硬度遷移領域13と第2硬度遷移領域15との間の部分)が残る条件で熱処理を施す。
硬度定常領域は、第1硬度遷移領域13から第2硬度遷移領域15に向かう方向に沿って30μm以上の厚さを有し、一層好ましくは60μm以上の厚さを有し、より一層好ましくは100μm以上の厚さを有する。また、硬度定常領域は、第1硬度遷移領域13から第2硬度遷移領域15に向かう方向に沿って3mm以下の厚さを有することが好ましい。
In the hardness transition region forming step S <b> 2 b, the first hardness transition region 13 to the second hardness transition region 15 are in the third metal member 16 and between the first hardness transition region 13 and the second hardness transition region 15. Heat treatment is performed under a condition that a hardness steady region in which the hardness is in a steady state along the direction toward (ie, a portion of the third metal member 16 between the first hardness transition region 13 and the second hardness transition region 15) remains. Apply.
The hardness steady region has a thickness of 30 μm or more along the direction from the first hardness transition region 13 to the second hardness transition region 15, more preferably 60 μm or more, and even more preferably 100 μm. It has the above thickness. The steady hardness region preferably has a thickness of 3 mm or less along the direction from the first hardness transition region 13 to the second hardness transition region 15.

なお、実施形態1における硬度遷移領域形成工程S2bにおいては、固相接合工程S2a後に残留している応力を開放して金属組織を均一化するために、接合体を一度第4温度T4まで加熱した後に急冷し、その後に徐冷したが、本発明はこれに限定されるものではない。固相接合工程後に残留している応力が十分に小さい場合には、「接合体を一度第4温度T4まで加熱した後に急冷し、その後に徐冷する」という工程を行わなくてもよい。   In the hardness transition region forming step S2b in the first embodiment, the bonded body is once heated to the fourth temperature T4 in order to release the stress remaining after the solid phase bonding step S2a and to make the metal structure uniform. Although it cooled rapidly after that and annealed after that, this invention is not limited to this. When the stress remaining after the solid-phase bonding step is sufficiently small, the step of “cooling the bonded body once to the fourth temperature T4 and then rapidly cooling and then gradually cooling” may not be performed.

3.表面切削工程S3
表面切削工程S3は、第3金属部材16が接合体の表面に露出している部分(以下、露出部分という。)のうち少なくとも一部を含むように、接合体の表面を部分的に削り取る工程である(図2(d)参照。)。
3. Surface cutting process S3
The surface cutting step S3 is a step of partially scraping the surface of the joined body so as to include at least a part of a portion where the third metal member 16 is exposed on the surface of the joined body (hereinafter referred to as an exposed portion). (See FIG. 2 (d)).

実施形態1においては、断面形状が半円形となる溝状の凹部ができるように切削工程を行う。表面切削工程S3において表面を削り取る深さの寸法は、第3金属部材16の厚さの寸法よりも深く、第3金属部材16の厚さの寸法の2倍〜6倍である。   In the first embodiment, the cutting process is performed so that a groove-shaped recess having a semicircular cross-sectional shape is formed. The dimension of the depth at which the surface is scraped in the surface cutting step S3 is deeper than the dimension of the thickness of the third metal member 16, and is twice to six times the dimension of the thickness of the third metal member 16.

4.被覆工程S4
被覆工程S4は、露出部分のうち少なくとも一部に対して、第1金属部材12、第2金属部材14及び第3金属部材16が接合体の表面に露出している部分を溶融させた状態で、第4金属部材20を溶融させながら被覆する工程である(図2(e)参照。)。つまり、被覆工程S4は液相接合を行う工程であるともいえる。
第4金属部材20は、第3の金属材料よりも硬度が高い第4の金属材料からなる。第4の金属材料は、工具鋼からなり、例えば、熱間ダイス鋼であるSKD61を用いることができる。なお、実施形態1においては、第4の金属材料と、第1の金属材料及び第2の金属材料とは同一の金属材料からなる。
4). Coating step S4
In the covering step S4, the first metal member 12, the second metal member 14, and the third metal member 16 are melted at least on a part of the exposed portion. In this step, the fourth metal member 20 is coated while being melted (see FIG. 2E). That is, it can be said that the coating step S4 is a step of performing liquid phase bonding.
The fourth metal member 20 is made of a fourth metal material having a hardness higher than that of the third metal material. A 4th metal material consists of tool steel, for example, SKD61 which is hot die steel can be used. In the first embodiment, the fourth metal material, the first metal material, and the second metal material are made of the same metal material.

被覆工程S4においては、第4金属部材20と第3金属部材16との境界面の近傍に、第4金属部材20から第3金属部材16に向かう方向に沿って第4金属部材20から第3金属部材16にかけて硬度が徐々に変化する第3硬度遷移領域21が形成され、第4金属部材20と第1硬度遷移領域13との境界面の近傍に、第4金属部材20から第1硬度遷移領域13に向かう方向に沿って第4金属部材20から第1硬度遷移領域13にかけて硬度が徐々に変化する第4硬度遷移領域23が形成され、第4金属部材20と第2硬度遷移領域15との境界面の近傍に、第4金属部材20から第2硬度遷移領域15に向かう方向に沿って第4金属部材20から第2硬度遷移領域15にかけて硬度が徐々に変化する第5硬度遷移領域25が形成される条件で第4金属部材20を被覆する。   In the covering step S4, the third metal member 20 to the third metal member 20 are arranged in the vicinity of the boundary surface between the fourth metal member 20 and the third metal member 16 along the direction from the fourth metal member 20 to the third metal member 16. A third hardness transition region 21 whose hardness gradually changes over the metal member 16 is formed, and the first hardness transition from the fourth metal member 20 to the vicinity of the boundary surface between the fourth metal member 20 and the first hardness transition region 13 is formed. A fourth hardness transition region 23 whose hardness gradually changes from the fourth metal member 20 to the first hardness transition region 13 along the direction toward the region 13 is formed, and the fourth metal member 20, the second hardness transition region 15, The fifth hardness transition region 25 in which the hardness gradually changes from the fourth metal member 20 to the second hardness transition region 15 along the direction from the fourth metal member 20 to the second hardness transition region 15 in the vicinity of the boundary surface. Formed Covering the fourth metal member 20 in matter.

実施形態1においては、第1金属部材12と第4金属部材20との間に明確な境界面が残らないような条件で第4金属部材20を被覆する。また、第2金属部材14と第4金属部材20との間に明確な境界面が残らないような条件で第4金属部材20を被覆する。
被覆工程S4においては、表面切削工程S3で削り取った部分を第4金属部材20で埋めるように第4金属部材20を被覆する。
In the first embodiment, the fourth metal member 20 is covered under a condition that no clear boundary surface remains between the first metal member 12 and the fourth metal member 20. Further, the fourth metal member 20 is covered under a condition such that a clear boundary surface does not remain between the second metal member 14 and the fourth metal member 20.
In the coating step S <b> 4, the fourth metal member 20 is covered so that the portion cut out in the surface cutting step S <b> 3 is filled with the fourth metal member 20.

5.熱処理工程S5
熱処理工程S5は、接合体に蓄積されている応力を緩和するために接合体に熱処理を施す工程である。接合体に蓄積されている応力を緩和するための熱処理としては、周知の方法である焼きなましを含む熱処理を用いることができる。なお、製造する接合体全体として高い硬度を得たいときには、焼きなましの後に焼入れ等を行ってもよい。
5. Heat treatment step S5
The heat treatment step S5 is a step of performing a heat treatment on the joined body in order to relieve stress accumulated in the joined body. As a heat treatment for relieving the stress accumulated in the joined body, a heat treatment including annealing, which is a well-known method, can be used. In addition, when it is desired to obtain high hardness as a whole joined body to be manufactured, quenching or the like may be performed after annealing.

6.平滑化工程S6
平滑化工程S6は、被覆工程S4で第4金属部材20を被覆した部分を平滑化する工程である(図2(f)参照。)。平滑化は、研磨や切削等、種々の方法で行うことができる。以上の工程により、接合体10を製造することができる。
6). Smoothing step S6
The smoothing step S6 is a step of smoothing the portion covered with the fourth metal member 20 in the covering step S4 (see FIG. 2 (f)). Smoothing can be performed by various methods such as polishing and cutting. The bonded body 10 can be manufactured through the above steps.

次に、接合体10について説明する。
図4は、実施形態1に係る接合体10を説明するために示す図である。図4(a)は接合体10の斜視図であり、図4(b)は接合体10の上面図であり、図4(c)は図4(b)のA−A断面図である。なお、図4(b)及び図4(c)においては、視点位置からは直接見えない熱交換流路19について点線で表示している。
図5は、実施形態1に係る接合体10における硬度の分布を説明するために示す図である。図5においては、硬度が高い部分を濃い色で図示し、硬度が低い部分を薄い色で図示している。なお、図5における破線は、固相接合又は被覆の時点における金属部材同士の接合面又は境界面を大まかに表すものであり、硬度の分布を表すものではない。
Next, the joined body 10 will be described.
FIG. 4 is a view for explaining the joined body 10 according to the first embodiment. 4A is a perspective view of the joined body 10, FIG. 4B is a top view of the joined body 10, and FIG. 4C is a cross-sectional view taken along line AA of FIG. 4B. In FIG. 4B and FIG. 4C, the heat exchange channel 19 that is not directly visible from the viewpoint position is indicated by a dotted line.
FIG. 5 is a view for explaining the distribution of hardness in the joined body 10 according to the first embodiment. In FIG. 5, a portion having a high hardness is illustrated in a dark color, and a portion having a low hardness is illustrated in a light color. Note that the broken line in FIG. 5 roughly represents the bonding surface or boundary surface between the metal members at the time of solid phase bonding or coating, and does not represent the distribution of hardness.

接合体10は、成形金型の一部として用いる金属製品であり、接合体10は実施形態1に係る金属製品であるともいえる。接合体10は、内部に熱交換媒体を流して熱交換をおこなうための熱交換流路19を有する。当該熱交換流路19のうち、第1金属部材12と第2金属部材14とにまたがる部分については、あらかじめ第1金属部材12、第2金属部材14及び第3金属部材16を削り取り、その後固相接合することにより形成したものである。熱交換流路19のうち、それ以外の部分(例えば、金属部材14の中を通る部分)については、広く用いられている穿孔手段(例えば、ドリル)を用いた穿孔により形成することができる。   The joined body 10 is a metal product used as a part of a molding die, and it can be said that the joined body 10 is a metal product according to the first embodiment. The joined body 10 has a heat exchange channel 19 for performing heat exchange by flowing a heat exchange medium therein. Regarding the portion of the heat exchange channel 19 that spans the first metal member 12 and the second metal member 14, the first metal member 12, the second metal member 14, and the third metal member 16 are shaved in advance, and then solidified. It is formed by phase joining. Other portions of the heat exchange channel 19 (for example, a portion passing through the metal member 14) can be formed by drilling using a widely used drilling means (for example, a drill).

接合体10は、第1の金属材料からなる第1金属部材12と、第2の金属材料からなる第2金属部材14と、第1金属部材12と第2金属部材14との間に位置し、第1の金属材料及び第2の金属材料よりも縦弾性係数及び硬度が低い第3の金属材料からなる第3金属部材16とを備え、第1金属部材12、第3金属部材16及び第2金属部材14が接合された構造を有する接合体である(全体図は図4を、詳細は図5をそれぞれ参照。)。   The joined body 10 is located between the first metal member 12 made of the first metal material, the second metal member 14 made of the second metal material, and the first metal member 12 and the second metal member 14. And a third metal member 16 made of a third metal material having a lower modulus of elasticity and hardness than the first metal material and the second metal material, and the first metal member 12, the third metal member 16, and the third metal member 16. This is a joined body having a structure in which two metal members 14 are joined (see FIG. 4 for the whole view and FIG. 5 for the details).

接合体10は、第1金属部材12と第3金属部材16との接合面の近傍に第1金属部材12と第3金属部材16との接合面に垂直な方向に沿って第1金属部材12から第3金属部材16にかけて硬度が徐々に変化する第1硬度遷移領域13が存在し、かつ、第2金属部材14と第3金属部材16との接合面の近傍に第2金属部材14と第3金属部材16との接合面に垂直な方向に沿って第2金属部材14から第3金属部材16にかけて硬度が徐々に変化する第2硬度遷移領域15が存在する(図5参照。)。   The joined body 10 is in the vicinity of the joint surface between the first metal member 12 and the third metal member 16 and along the direction perpendicular to the joint surface between the first metal member 12 and the third metal member 16. The first hardness transition region 13 where the hardness gradually changes from the third metal member 16 to the third metal member 16, and the second metal member 14 and the second metal member 14 are in the vicinity of the joint surface between the second metal member 14 and the third metal member 16. There is a second hardness transition region 15 where the hardness gradually changes from the second metal member 14 to the third metal member 16 along the direction perpendicular to the joint surface with the three metal members 16 (see FIG. 5).

接合体10は、第3の金属材料よりも硬度が高い第4の金属材料からなる第4金属部材20をさらに備え、第4金属部材20が第3金属部材16の少なくとも一部を被覆する構造を有し、第4金属部材20と第3金属部材16との境界面の近傍に、第4金属部材20から第3金属部材16に向かう方向に沿って第4金属部材20から第3金属部材16にかけて硬度が徐々に変化する第3硬度遷移領域21が存在し、第4金属部材20と第1硬度遷移領域13との境界面の近傍に、第4金属部材20から第1硬度遷移領域13に向かう方向に沿って第4金属部材20から第1硬度遷移領域13にかけて硬度が徐々に変化する第4硬度遷移領域23が存在し、第4金属部材20と第2硬度遷移領域15との境界面の近傍に、第4金属部材20から第2硬度遷移領域15に向かう方向に沿って第4金属部材20から第2硬度遷移領域15にかけて硬度が徐々に変化する第5硬度遷移領域25が存在する。   The joined body 10 further includes a fourth metal member 20 made of a fourth metal material having a hardness higher than that of the third metal material, and the fourth metal member 20 covers at least a part of the third metal member 16. And the fourth metal member 20 to the third metal member in the vicinity of the boundary surface between the fourth metal member 20 and the third metal member 16 along the direction from the fourth metal member 20 to the third metal member 16. 16, there is a third hardness transition region 21 in which the hardness gradually changes, and from the fourth metal member 20 to the first hardness transition region 13 in the vicinity of the boundary surface between the fourth metal member 20 and the first hardness transition region 13. There is a fourth hardness transition region 23 in which the hardness gradually changes from the fourth metal member 20 to the first hardness transition region 13 along the direction toward the boundary, and the boundary between the fourth metal member 20 and the second hardness transition region 15 In the vicinity of the surface, from the fourth metal member 20 Fifth hardness transition region 25 the hardness from the fourth metal member 20 toward the second hardness transition region 15 along a direction toward the 2 hardness transition region 15 changes gradually is present.

また、接合体10においては、第1金属部材12と第4金属部材20との間に明確な境界面が残らないように接合されており、また、第2金属部材14と第4金属部材20との間に明確な境界面が残らないように接合されている。   In the joined body 10, the first metal member 12 and the fourth metal member 20 are joined so as not to leave a clear boundary surface, and the second metal member 14 and the fourth metal member 20 are joined. It is joined so that there is no clear interface between the two.

以下、実施形態1に係る接合体の製造方法、接合体及び金属製品の効果を記載する。   Hereinafter, the manufacturing method of the joined body according to Embodiment 1, the effect of the joined body, and the metal product will be described.

実施形態1に係る接合体の製造方法により製造される接合体10においては、第1金属部材12と第2金属部材14との間には、第1の金属材料及び第2の金属材料のいずれよりも縦弾性係数及び硬度が低い第3の金属材料からなる第3金属部材16が存在するようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件でこれを使用した場合に、第3金属部材が、第1金属部材と第2金属部材との間に発生する熱応力を分散させる緩衝材として働くようになる。   In the bonded body 10 manufactured by the bonded body manufacturing method according to the first embodiment, between the first metal member 12 and the second metal member 14, either the first metal material or the second metal material is used. Since the third metal member 16 made of the third metal material having a lower longitudinal elastic modulus and hardness than that of the first metal member exists, a large temperature difference is generated between the first metal member and the second metal member. When this is used, the third metal member functions as a cushioning material that disperses the thermal stress generated between the first metal member and the second metal member.

また、実施形態1に係る接合体の製造方法により製造される接合体10においては、第1金属部材12と第3金属部材16との間及び第2金属部材14と第3金属部材16との間には、上記した第1硬度遷移領域13及び第2硬度遷移領域15がそれぞれ存在するようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合に、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力もが、第1硬度遷移領域及び第2硬度遷移領域において分散されることとなる。   Moreover, in the joined body 10 manufactured by the manufacturing method of the joined body according to the first embodiment, between the first metal member 12 and the third metal member 16 and between the second metal member 14 and the third metal member 16. Since the first hardness transition region 13 and the second hardness transition region 15 described above are present between the first metal member and the second metal member, the joining is performed under a condition in which a large temperature difference occurs between the first metal member and the second metal member. Between the first metal member and the third metal member and between the second metal member and the third metal member due to the thermal stress generated between the first metal member and the second metal member when the body is used. The stress generated in is also dispersed in the first hardness transition region and the second hardness transition region.

その結果、実施形態1に係る接合体の製造方法によれば、第1金属部材12と第2金属部材14との間に発生する熱応力が、これら第1硬度遷移領域13、第3金属部材16及び第2硬度遷移領域15の応力を分散するという働きにより効果的に分散されるようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合においても破損し難い接合体を製造することが可能となる。   As a result, according to the method for manufacturing the joined body according to the first embodiment, the thermal stress generated between the first metal member 12 and the second metal member 14 is caused by the first hardness transition region 13 and the third metal member. 16 and the second hardness transition region 15 are effectively dispersed by the action of dispersing the stress, so that the joined body is subjected to a condition in which a large temperature difference occurs between the first metal member and the second metal member. It becomes possible to manufacture a joined body that is difficult to break even when using the above.

また、実施形態1に係る接合体の製造方法によれば、接合体形成工程S2中に硬度遷移領域形成工程S2bを実施する中で金属部材の接合面に存在する空隙や不動態層を消散させることが可能となるため、従来の接合体の製造方法の場合と同様に、接合力が高い接合体を製造することが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, the space | gap and passive layer which exist in the joint surface of a metal member are dissipated in implementing hardness transition area | region formation process S2b in joined body formation process S2. Therefore, as in the case of the conventional method for manufacturing a joined body, it becomes possible to produce a joined body having a high joining force.

また、実施形態1に係る接合体の製造方法によれば、接合する金属部材のうち少なくとも1つの金属部材として、接合予定面に凹部が形成された金属部材を用いることにより、従来の接合体の製造方法の場合と同様に、複雑な形状の内部空間を有する接合体を比較的容易に製造することが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, by using the metal member by which the recessed part was formed in the joining plan surface as at least 1 metal member among the metal members to join, the conventional joined body is used. As in the case of the manufacturing method, it is possible to relatively easily manufacture a joined body having an internal space with a complicated shape.

また、実施形態1に係る接合体の製造方法によれば、第3の金属材料は、第1金属部材12及び第2金属部材14の硬度を高くするための熱処理によっては硬度が高くなりにくい金属材料からなるため、接合体全体の硬度を高くするための熱処理を施して硬度を高くした場合であっても、第3金属部材が存在する部分についてはそれ程硬度が高くならない(つまり、縦弾性係数が高くなりすぎない)ようにすることが可能となり、その結果、第3金属部材を緩衝材として十分に働かせることが可能となる。   In addition, according to the method for manufacturing a joined body according to the first embodiment, the third metal material is a metal whose hardness is not easily increased by heat treatment for increasing the hardness of the first metal member 12 and the second metal member 14. Since it is made of a material, even when heat treatment is performed to increase the hardness of the entire bonded body, the hardness of the portion where the third metal member exists is not so high (that is, the longitudinal elastic modulus). The third metal member can sufficiently function as a cushioning material.

また、実施形態1に係る接合体の製造方法によれば、第1硬度遷移領域13が第1金属部材15と第3金属部材16との接合面に垂直な方向に沿って50μm以上の厚さを有し、第2硬度遷移領域15が第2金属部材14と第3金属部材16との接合面に垂直な方向に沿って50μm以上の厚さを有するため、第1硬度遷移領域及び第2硬度遷移領域の厚さを十分に確保し、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力を、第1硬度遷移領域及び第2硬度遷移領域において十分に分散することが可能となる。   Further, according to the method for manufacturing the joined body according to the first embodiment, the first hardness transition region 13 has a thickness of 50 μm or more along the direction perpendicular to the joining surface between the first metal member 15 and the third metal member 16. And the second hardness transition region 15 has a thickness of 50 μm or more along the direction perpendicular to the joint surface between the second metal member 14 and the third metal member 16, so that the first hardness transition region and the second hardness transition region 15 The thickness of the hardness transition region is sufficiently ensured, and between the first metal member and the third metal member and between the second metal member and the third metal member due to the thermal stress generated between the first metal member and the second metal member. The stress generated between the metal member and the metal member can be sufficiently dispersed in the first hardness transition region and the second hardness transition region.

また、実施形態1に係る接合体の製造方法によれば、硬度遷移領域形成工程S2bにおいて硬度定常領域が残る条件で熱処理を施すため、縦弾性係数が比較的低い領域(第3金属部材そのままの領域)が残り、第3金属部材に緩衝材としての働きを十分に発揮させることが可能となる。   Moreover, according to the manufacturing method of the joined body according to Embodiment 1, since the heat treatment is performed under the condition that the hardness steady region remains in the hardness transition region forming step S2b, the region having a relatively low longitudinal elastic modulus (the third metal member as it is). The region) remains, and the third metal member can sufficiently function as a cushioning material.

また、実施形態1に係る接合体の製造方法によれば、硬度定常領域が第1硬度遷移領域13から第2硬度遷移領域15に向かう方向に沿って30μm以上の厚さを有するため、縦弾性係数が比較的低い領域(第3金属部材そのままの領域)が十分に残り、第3金属部材に緩衝材としての働きを一層十分に発揮させることが可能となる。   In addition, according to the method for manufacturing a joined body according to the first embodiment, since the hardness steady region has a thickness of 30 μm or more along the direction from the first hardness transition region 13 to the second hardness transition region 15, the longitudinal elasticity A sufficiently low region (region where the third metal member is left as it is) remains sufficiently, and the third metal member can be more sufficiently exerted as a buffer material.

また、実施形態1に係る接合体の製造方法によれば、第3金属部材16の厚さが0.3mm〜10.0mmの範囲内にあるため、第3金属部材の厚みを緩衝材として十分なものとすることが可能となり、かつ、全体としての形態安定性が十分に高い接合体を製造することが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, since the thickness of the 3rd metal member 16 exists in the range of 0.3 mm-10.0 mm, the thickness of a 3rd metal member is enough as a buffering material. Therefore, it is possible to manufacture a joined body having a sufficiently high form stability as a whole.

また、実施形態1に係る接合体の製造方法によれば、第4金属部材20と第3金属部材16との境界面の近傍に第3硬度遷移領域21が形成される条件で第4金属部材20を被覆するため、第1金属部材と第2金属部材との間に発生する熱応力により第4金属部材と第3金属部材との間に発生する応力が、第3硬度遷移領域において分散されるようにすることが可能となる。   Moreover, according to the manufacturing method of the joined body according to the first embodiment, the fourth metal member is formed under the condition that the third hardness transition region 21 is formed in the vicinity of the boundary surface between the fourth metal member 20 and the third metal member 16. 20, the stress generated between the fourth metal member and the third metal member due to the thermal stress generated between the first metal member and the second metal member is dispersed in the third hardness transition region. It becomes possible to make it.

また、実施形態1に係る接合体の製造方法によれば、被覆工程S4においては第4硬度遷移領域23及び第5硬度遷移領域25が形成される条件で第4金属部材20を被覆するため、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力が、第4硬度遷移領域及び第5硬度遷移領域においても分散されるようにすることが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, in order to coat | cover the 4th metal member 20 on the conditions in which the 4th hardness transition area | region 23 and the 5th hardness transition area | region 25 are formed in coating | covering process S4, The stress generated between the first metal member and the third metal member and between the second metal member and the third metal member due to the thermal stress generated between the first metal member and the second metal member is It is possible to disperse also in the 4 hardness transition region and the fifth hardness transition region.

また、実施形態1に係る接合体の製造方法によれば、被覆工程S4で第4金属部材20を被覆した部分を平滑化する平滑化工程S6をさらに含むため、表面が平滑な接合体を製造することが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, since the smoothing process S6 which smoothes the part which coat | covered the 4th metal member 20 by covering process S4 is further included, a joined body with a smooth surface is manufactured. It becomes possible to do.

また、実施形態1に係る接合体の製造方法によれば、第4金属部材20は、第3の金属材料よりも硬度が高い第4の金属材料からなるため、第3の金属材料よりも硬度が高い第4の金属材料からなる第4金属部材で第3金属部材を覆うことになり、第3金属部材の部分が第1金属部材の部分及び第2金属部材の部分よりも早く損耗してしまうのを防ぐことが可能な接合体を製造することが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, since the 4th metal member 20 consists of a 4th metal material whose hardness is higher than a 3rd metal material, hardness is higher than a 3rd metal material. The third metal member is covered with a fourth metal member made of a high fourth metal material, and the portion of the third metal member is worn earlier than the portion of the first metal member and the portion of the second metal member. Thus, it is possible to manufacture a joined body that can be prevented.

また、実施形態1に係る接合体の製造方法によれば、露出部分のうち少なくとも一部を含むように接合体の表面を部分的に削り取る表面切削工程S3を含むため、第3金属部材を含む表面が周りの面よりも低くなり、被覆工程において第4金属部材を容易に被覆することが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, since the surface cutting process S3 which scrapes off the surface of a joined body partially so that at least one part may be included among exposed parts is included, a 3rd metal member is included. The surface becomes lower than the surrounding surfaces, and the fourth metal member can be easily coated in the coating process.

また、実施形態1に係る接合体の製造方法によれば、内部の接合面よりも接合の強度が低い可能性がある表面の接合面を削り取り、製造する接合体全体としての機械的強度を向上させることが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, the mechanical strength as the whole joined body manufactured by shaving off the joint surface of the surface which may have a joint strength lower than an internal joining surface is improved. It becomes possible to make it.

また、実施形態1に係る接合体の製造方法によれば、被覆工程S4より後に、接合体に蓄積されている応力を緩和するために接合体に熱処理を施す熱処理工程S5を含むため、接合体に蓄積されている応力を緩和し、接合体全体としての接合力を高めることが可能となる。   In addition, according to the method for manufacturing a joined body according to the first embodiment, after the covering step S4, the joined body includes the heat treatment step S5 in which heat treatment is performed on the joined body in order to relieve stress accumulated in the joined body. It is possible to relieve the stress accumulated in the joint and increase the joining force of the whole joined body.

また、実施形態1に係る接合体の製造方法によれば、熱処理により各硬度遷移領域の範囲を大きくし、各金属部材間に発生する応力がより一層分散されるようにすることが可能となる。   Moreover, according to the manufacturing method of the joined body which concerns on Embodiment 1, it becomes possible to enlarge the range of each hardness transition area | region by heat processing, and to further distribute the stress which generate | occur | produces between each metal member. .

実施形態1に係る接合体10においては、第1金属部材12と第2金属部材14との間には、第1の金属材料及び第2の金属材料のいずれよりも縦弾性係数及び硬度が低い第3の金属材料からなる第3金属部材16が存在するため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件でこれを使用した場合に、第3金属部材が、第1金属部材と第2金属部材との間に発生する熱応力を分散させる緩衝材として働くようになる。   In the joined body 10 according to Embodiment 1, the longitudinal elastic modulus and hardness are lower between the first metal member 12 and the second metal member 14 than both the first metal material and the second metal material. Since the third metal member 16 made of the third metal material exists, when the third metal member 16 is used under the condition that a large temperature difference occurs between the first metal member and the second metal member, Then, the first metal member and the second metal member function as a buffer material that disperses the thermal stress generated between the first metal member and the second metal member.

また、実施形態1に係る接合体10においては、第1金属部材12と第3金属部材16との間及び第2金属部材14と第3金属部材16との間には、上記した第1硬度遷移領域13及び第2硬度遷移領域15がそれぞれ存在するため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合に、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力もが、第1硬度遷移領域及び第2硬度遷移領域において分散されることとなる。   In the joined body 10 according to the first embodiment, the first hardness described above is provided between the first metal member 12 and the third metal member 16 and between the second metal member 14 and the third metal member 16. Since the transition region 13 and the second hardness transition region 15 are present, when the joined body is used under the condition that a large temperature difference is generated between the first metal member and the second metal member, The stress generated between the first metal member and the third metal member and between the second metal member and the third metal member due to the thermal stress generated between the second metal member and the second metal member is also the first hardness transition region. And dispersed in the second hardness transition region.

その結果、実施形態1に係る接合体10によれば、第1金属部材12と第2金属部材14との間に発生する熱応力がこれら第1硬度遷移領域13、第3金属部材16及び第2硬度遷移領域15の働きにより効果的に分散されるようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で使用した場合においても破損し難くすることが可能となる。   As a result, according to the joined body 10 according to the first embodiment, the thermal stress generated between the first metal member 12 and the second metal member 14 is caused by the first hardness transition region 13, the third metal member 16, and the first metal member 12. Since it is effectively dispersed by the action of the 2 hardness transition region 15, it is difficult to break even when used under conditions where a large temperature difference occurs between the first metal member and the second metal member. Is possible.

また、実施形態1に係る接合体10によれば、接合する金属部材のうち少なくとも1つの金属部材として、接合予定面に凹部が形成された金属部材を用いることにより、複雑な形状の内部空間を有しても比較的容易に製造することが可能な接合体となる。   Moreover, according to the joined body 10 which concerns on Embodiment 1, as a metal member to which it joins, as a at least 1 metal member among the metal members to join, the internal space of a complicated shape is used by using the metal member by which the recessed part was formed. Even if it has, it becomes a joined body which can be manufactured comparatively easily.

また、実施形態1に係る接合体10によれば、第3の金属材料は、第1金属部材12及び第2金属部材14の硬度を高くするための熱処理によっては硬度が高くなりにくい金属材料からなるため、接合体全体の硬度を高くするための熱処理を施して硬度を高くした場合であっても、第3金属部材が存在する部分についてはそれ程硬度が高くならない(つまり、縦弾性係数が高くなりすぎない)ようにすることが可能となり、その結果、第3金属部材を緩衝材として十分に働かせることが可能となる。   Further, according to the joined body 10 according to the first embodiment, the third metal material is made of a metal material that does not easily increase in hardness by heat treatment for increasing the hardness of the first metal member 12 and the second metal member 14. Therefore, even when heat treatment for increasing the hardness of the entire bonded body is performed to increase the hardness, the hardness of the portion where the third metal member is present is not so high (that is, the longitudinal elastic modulus is high). As a result, the third metal member can sufficiently function as a cushioning material.

また、実施形態1に係る接合体10によれば、第4金属部材20と第3金属部材16との境界面の近傍に第3硬度遷移領域21が存在するため、第1金属部材と第2金属部材との間に発生する熱応力により第4金属部材と第3金属部材との間に発生する応力が、第3硬度遷移領域において分散されるようにすることが可能となる。   Further, according to the joined body 10 according to the first embodiment, since the third hardness transition region 21 exists in the vicinity of the boundary surface between the fourth metal member 20 and the third metal member 16, the first metal member and the second metal member 20 The stress generated between the fourth metal member and the third metal member due to the thermal stress generated between the metal member and the metal member can be dispersed in the third hardness transition region.

また、実施形態1に係る接合体10によれば、第4硬度遷移領域23及び第5硬度遷移領域25が存在するため、第1金属部材と第2金属部材との間に発生する熱応力により第1金属部材と第3金属部材との間及び第2金属部材と第3金属部材との間に発生する応力が、第4硬度遷移領域及び第5硬度遷移領域においても分散されるようにすることが可能となる。   Further, according to the joined body 10 according to the first embodiment, since the fourth hardness transition region 23 and the fifth hardness transition region 25 exist, the thermal stress generated between the first metal member and the second metal member is caused. The stress generated between the first metal member and the third metal member and between the second metal member and the third metal member is distributed also in the fourth hardness transition region and the fifth hardness transition region. It becomes possible.

実施形態1に係る金属製品は、第1金属部材12と第2金属部材14との間に大きな温度差が発生する条件で使用した場合においても破損し難くすることが可能となる実施形態1に係る接合体10を用いて製造されたため、大きな温度差が発生する条件で使用した場合においても破損し難い金属製品となる。   The metal product according to Embodiment 1 can be made difficult to be damaged even when used under conditions where a large temperature difference occurs between the first metal member 12 and the second metal member 14. Since the joined body 10 is manufactured, the metal product is hardly damaged even when used under conditions where a large temperature difference occurs.

[実施例]
図6は、実施例に係る接合体10a(全体は図示せず。)を説明するために示す写真である。図6(a)は接合体10aの断面の拡大光学写真であり、図6(b)は接合体10aの断面の電子顕微鏡写真である。なお、図6において示した硬度遷移領域(第1硬度遷移領域13a、第2硬度遷移領域15a、第3硬度遷移領域21a、第4硬度遷移領域23a及び第5硬度遷移領域25a)の範囲は概略であり、必ずしも実際の範囲を正確に写し取ったものではない。
[Example]
FIG. 6 is a photograph shown for explaining the joined body 10a (the whole is not shown) according to the embodiment. 6A is an enlarged optical photograph of the cross section of the joined body 10a, and FIG. 6B is an electron micrograph of the cross section of the joined body 10a. The ranges of the hardness transition regions (first hardness transition region 13a, second hardness transition region 15a, third hardness transition region 21a, fourth hardness transition region 23a, and fifth hardness transition region 25a) shown in FIG. It is not necessarily an exact copy of the actual range.

図7は、実施例に係る接合体10aを説明するために示すグラフである。図7のグラフにおいては、縦軸は硬度を表し、横軸は測定ポイントの数を表している。なお、硬度の測定は第1金属部材12a−第3金属部材16a−第2金属部材14a間で、接合面に対する角度を60°としてマイクロビッカース法で測定した。測定ポイントの間隔は約24μmである。なお、図7においては、硬度が定常状態となるはずの部分や硬度が徐々に変化するはずの部分において、硬度の値が乱高下して見えるが、これはマイクロビッカース法による測定誤差がそのまま出ているためである。図7において符号12aで示すのは第1金属部材12aのみからなる部分の硬度であり、符号13aで示すのは第1硬度遷移領域13aの部分の硬度であり、符号16aで示すのは第3金属部材16aのみからなる部分(つまり、硬度定常領域)の硬度であり、符号15aで示すのは第2硬度遷移領域15aの部分の硬度であり、符号14aで示すのは第2金属部材14aのみからなる部分の硬度である。   FIG. 7 is a graph shown for explaining the joined body 10a according to the example. In the graph of FIG. 7, the vertical axis represents hardness and the horizontal axis represents the number of measurement points. The hardness was measured by the micro Vickers method between the first metal member 12a, the third metal member 16a, and the second metal member 14a at an angle of 60 ° with respect to the joint surface. The interval between measurement points is about 24 μm. In FIG. 7, the hardness value appears to fluctuate in a portion where the hardness should be in a steady state or a portion where the hardness should gradually change. This is because the measurement error by the micro Vickers method appears as it is. Because it is. In FIG. 7, the reference numeral 12a indicates the hardness of the portion made only of the first metal member 12a, the reference numeral 13a indicates the hardness of the first hardness transition region 13a, and the reference numeral 16a indicates the third hardness. The hardness of the portion consisting only of the metal member 16a (that is, the hardness steady region), the reference numeral 15a indicates the hardness of the second hardness transition region 15a, and the reference symbol 14a indicates only the second metal member 14a. It is the hardness of the part which consists of.

実施例においては、実施形態1に係る接合体の製造方法と同様の方法を用いて接合体10aを製造し、写真による観察と硬度の測定とを行った。なお、実施例においては、第1金属部材12a(SKD61からなる。)、第2金属部材14a(SKD61からなる。)、第3金属部材16a(SUS316Lからなる。)、第4金属部材20a(SKD61からなる。)を用いた。なお、第3金属部材16aの元々の厚さ寸法は約0.7mmであったが、固相接合工程のときにおける圧力と熱により第3金属部材16aがやや潰れたため、最終的な第3金属部材16aの厚さ寸法は0.6mmほどになっている。   In the examples, the bonded body 10a was manufactured using the same method as the bonded body manufacturing method according to Embodiment 1, and observation with photographs and measurement of hardness were performed. In the embodiment, the first metal member 12a (made of SKD61), the second metal member 14a (made of SKD61), the third metal member 16a (made of SUS316L), and the fourth metal member 20a (SKD61). Was used. Although the original thickness dimension of the third metal member 16a was about 0.7 mm, the third metal member 16a was slightly crushed by the pressure and heat in the solid phase bonding process, so that the final third metal The thickness of the member 16a is about 0.6 mm.

実施例においては、硬度の測定は第1金属部材12a−第3金属部材16a−第2金属部材14a間で行ったが、第4金属部材20a−第3金属部材16a間、第4金属部材20a−第1金属部材12a間及び第4金属部材20a−第2金属部材14a間においても、図7に示す第1硬度遷移領域13a及び第2硬度遷移領域15aにおける硬度変化の様子と類似した各硬度遷移領域(第3硬度遷移領域、第4硬度遷移領域及び第5硬度遷移領域)の硬度変化の様子がそれぞれ観測されると考えられる。   In the example, the hardness was measured between the first metal member 12a, the third metal member 16a, and the second metal member 14a, but between the fourth metal member 20a and the third metal member 16a, the fourth metal member 20a. Each hardness similar to the state of hardness change in the first hardness transition region 13a and the second hardness transition region 15a shown in FIG. 7 also between the first metal member 12a and between the fourth metal member 20a and the second metal member 14a. It is considered that the state of the hardness change in the transition regions (the third hardness transition region, the fourth hardness transition region, and the fifth hardness transition region) is observed.

実施例での観察と観測の結果、本発明に係る接合体10aが製造できていることが確認できた。   As a result of observation and observation in the examples, it was confirmed that the joined body 10a according to the present invention was manufactured.

なお、現在様々な条件により実験中であるが、本発明に係る接合体の製造方法を用いて製造した接合体から、成形金型を製造し、アルミニウムダイカスト鋳造を実際に行って耐久性をテストしたところ、10万ショットを超えても成形金型の破損は見られなかった。   Although the experiment is currently under various conditions, a mold is manufactured from the bonded body manufactured using the bonded body manufacturing method according to the present invention, and the durability is tested by actually performing aluminum die casting. As a result, even if the shot exceeded 100,000 shots, the molding die was not damaged.

[実施形態2]
図8は、実施形態2に係る接合体の製造方法を説明するために示すフローチャートである。
図9は、実施形態2に係る接合体の製造方法を説明するために示す図である。図9(a)は金属部材準備工程S11を説明するために示す図であり、図9(b)及び図9(c)は接合体形成工程S12を説明するために示す図である。なお、図9(a)〜図9(c)の各図は、接合体30(全体は図示せず。)となる部分の一部を示す模式図である。
[Embodiment 2]
FIG. 8 is a flowchart shown for explaining the manufacturing method of the joined body according to the second embodiment.
FIG. 9 is a view for explaining the method of manufacturing the joined body according to the second embodiment. FIG. 9A is a view for explaining the metal member preparation step S11, and FIGS. 9B and 9C are views for explaining the joined body forming step S12. In addition, each figure of Fig.9 (a)-FIG.9 (c) is a schematic diagram which shows a part of part used as the conjugate | zygote 30 (the whole is not shown).

実施形態2に係る接合体の製造方法は、基本的には実施形態1に係る接合体の製造方法と同様の方法であるが、表面切削工程以降の工程を含まない点で実施形態1に係る接合体の製造方法の場合とは異なる。すなわち、実施形態2に係る接合体の製造方法は、図8及び図9に示すように、金属部材準備工程S11と接合体形成工程S12とをこの順序で含む。金属部材準備工程S11は実施形態1における金属部材準備工程S1と、接合体形成工程S12は実施形態1における接合体形成工程S2と基本的に同様の工程であるため、詳細な説明は省略する。   The manufacturing method of the joined body according to the second embodiment is basically the same method as the manufacturing method of the joined body according to the first embodiment, but according to the first embodiment in that the process after the surface cutting process is not included. This is different from the method of manufacturing the joined body. That is, the method for manufacturing a joined body according to the second embodiment includes the metal member preparation step S11 and the joined body forming step S12 in this order, as shown in FIGS. The metal member preparation step S11 is basically the same as the metal member preparation step S1 and the joined body forming step S12 in the first embodiment, and the detailed description thereof is omitted.

なお、実施形態2に係る接合体の製造方法により製造される接合体30は、第4金属部材を備えず、第3金属部材36からなる部分が露出している。接合体30を用いる金属製品が、表面の硬度の差があまり問題にならない用途(例えば、内部構造に用いられる構造部材)に用いられるものである場合には、実施形態2に係る接合体30のような構成でも十分である。   In addition, the joined body 30 manufactured by the manufacturing method of the joined body according to the second embodiment does not include the fourth metal member, and the portion made of the third metal member 36 is exposed. When the metal product using the joined body 30 is used for an application (for example, a structural member used for an internal structure) in which the difference in surface hardness is not a problem, the joined product 30 according to the second embodiment is used. Such a configuration is sufficient.

実施形態2に係る接合体の製造方法は、表面切削工程以降の工程を含まない点が実施形態1に係る接合体の製造方法とは異なるが、実施形態1に係る接合体の製造方法と同様に、第1金属部材32と第2金属部材34との間に発生する熱応力が第1硬度遷移領域33、第3金属部材36及び第2硬度遷移領域35の応力を分散するという働きにより効果的に分散されるようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で接合体を使用した場合においても破損し難い接合体を製造することが可能となる。   The method for manufacturing a joined body according to the second embodiment is different from the method for producing a joined body according to the first embodiment in that the process after the surface cutting step is not included, but is similar to the method for producing the joined body according to the first embodiment. Furthermore, the thermal stress generated between the first metal member 32 and the second metal member 34 is effective due to the action of dispersing the stress in the first hardness transition region 33, the third metal member 36, and the second hardness transition region 35. Therefore, even when the joined body is used under the condition that a large temperature difference occurs between the first metal member and the second metal member, it is possible to manufacture a joined body that is not easily damaged. It becomes.

なお、実施形態2に係る接合体の製造方法は、表面切削工程以降の工程を含まない点以外は実施形態1に係る接合体の製造方法と同様の方法であるため、実施形態1に係る接合体の製造方法が有する効果のうち該当する効果をそのまま有する。   In addition, since the manufacturing method of the joined body which concerns on Embodiment 2 is the method similar to the manufacturing method of the joined body which concerns on Embodiment 1 except the point after the surface cutting process is not included, it is the joining method which concerns on Embodiment 1. It has the corresponding effect as it is among the effects of the body manufacturing method.

実施形態2に係る接合体30は、第4金属部材を備えない点が実施形態1に係る接合体10とは異なるが、実施形態1に係る接合体10と同様に、第1金属部材32と第2金属部材34との間に発生する熱応力が第1硬度遷移領域33、第3金属部材36及び第2硬度遷移領域35の応力を分散するという働きにより効果的に分散されるようになるため、第1金属部材と第2金属部材との間に大きな温度差が発生する条件で使用した場合においても破損し難くすることが可能となる。   Although the joined body 30 according to the second embodiment is different from the joined body 10 according to the first embodiment in that the fourth metal member is not provided, the first metal member 32 is similar to the joined body 10 according to the first embodiment. The thermal stress generated between the second metal member 34 and the second hardness transition region 33 is effectively dispersed by the action of dispersing the stress in the first hardness transition region 33, the third metal member 36, and the second hardness transition region 35. Therefore, even when used under conditions where a large temperature difference occurs between the first metal member and the second metal member, it is possible to make it difficult to break.

なお、実施形態2に係る接合体30は、第4金属部材を備えない点以外は実施形態1に係る接合体10と同様の構成を有するため、実施形態1に係る接合体10が有する効果のうち該当する効果をそのまま有する。   In addition, since the joined body 30 according to the second embodiment has the same configuration as the joined body 10 according to the first embodiment except that the fourth metal member is not provided, the effect of the joined body 10 according to the first embodiment is obtained. Of which, it has the relevant effect.

以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の様態において実施することが可能であり、例えば、次のような変形も可能である。   As mentioned above, although this invention was demonstrated based on said embodiment, this invention is not limited to said embodiment. The present invention can be carried out in various modes without departing from the spirit thereof, and for example, the following modifications are possible.

(1)上記各実施形態においては、第1金属部材及び第2金属部材として、熱間ダイス鋼であるSKD61からなる第1金属部材及び第2金属部材を用いたが、本発明はこれに限定されるものではない。第1金属部材及び第2金属部材としては、製造する金属製品の用途に適合する限り種々の金属材料からなる第1金属部材及び第2金属部材を用いてよく、例えば、SKD61以外の熱間ダイス鋼、熱間ダイス鋼以外の工具鋼、工具鋼以外の鉄鋼、鉄鋼以外の金属等を用いることができる。なお、実施形態1における第4金属部材も同様である。 (1) In the above embodiments, the first metal member and the second metal member made of SKD61, which is hot die steel, are used as the first metal member and the second metal member. However, the present invention is limited to this. Is not to be done. As a 1st metal member and a 2nd metal member, as long as it suits the use of the metal product to manufacture, you may use the 1st metal member and 2nd metal member which consist of various metal materials, for example, hot dies other than SKD61 Steel, tool steel other than hot die steel, steel other than tool steel, metal other than steel, and the like can be used. The same applies to the fourth metal member in the first embodiment.

(2)上記各実施形態においては、第3金属部材として、オーステナイト系ステンレス鋼であるSUS316Lからなる第3金属部材を用いたが、本発明はこれに限定されるものではない。第3金属部材としては、製造する金属製品の用途に適合する限り種々の金属材料からなる第3金属部材を用いてよく、例えば、SUS316L以外のステンレス鋼、ステンレス鋼以外の鉄鋼、鉄鋼以外の金属等を用いることができる。 (2) In the above embodiments, the third metal member made of SUS316L, which is austenitic stainless steel, is used as the third metal member. However, the present invention is not limited to this. As the third metal member, a third metal member made of various metal materials may be used as long as it matches the use of the metal product to be manufactured. For example, stainless steel other than SUS316L, steel other than stainless steel, metal other than steel Etc. can be used.

(3)上記各実施形態においては、接合予定面が平面である場合について説明したが、本発明はこれに限定されるものではない。接合予定面が互いに密着可能であれば、接合予定面が平面でなくてもよい(例えば、曲面形状、段差形状など。)。 (3) In each of the above embodiments, the case where the planned joining surface is a plane has been described, but the present invention is not limited to this. As long as the surfaces to be joined can be in close contact with each other, the surfaces to be joined may not be flat (for example, a curved surface shape, a step shape, etc.).

(4)上記各実施形態においては、第1金属部材及び第2金属部材として、同一の金属材料からなる第1金属部材及び第2金属部材を用いたが、本発明はこれに限定されるものではない。第1金属部材及び第2金属部材としては、異なる金属材料からなる第1金属部材及び第2金属部材を用いてもよい。 (4) In each said embodiment, although the 1st metal member and 2nd metal member which consist of the same metal material were used as a 1st metal member and a 2nd metal member, this invention is limited to this. is not. As the first metal member and the second metal member, a first metal member and a second metal member made of different metal materials may be used.

(5)上記実施形態1においては、第4金属部材として、第1金属部材及び第2金属部材と同一の金属材料からなる第4金属部材を用いたが、本発明はこれに限定されるものではない。第4金属部材としては、第1金属部材又は第2金属部材とは異なる金属材料からなる第4金属部材を用いてもよい。 (5) In Embodiment 1 described above, the fourth metal member made of the same metal material as the first metal member and the second metal member is used as the fourth metal member, but the present invention is limited to this. is not. As the fourth metal member, a fourth metal member made of a metal material different from the first metal member or the second metal member may be used.

(6)上記実施形態1においては、第4金属部材として、第3の金属材料よりも硬度が高い第4の金属材料からなる第4金属部材を用いたが、本発明はこれに限定されるものではない。第4金属部材としては、第3の金属材料と硬度が同じ又は第3の金属材料よりも硬度が低い金属材料からなる第4金属部材を用いてもよい。 (6) In the first embodiment, the fourth metal member made of the fourth metal material having higher hardness than the third metal material is used as the fourth metal member. However, the present invention is limited to this. It is not a thing. As the fourth metal member, a fourth metal member made of a metal material having the same hardness as the third metal material or lower hardness than the third metal material may be used.

10,30,90…接合体、12,12a,32,92…第1金属部材、13,13a,23…第1硬度遷移領域、14,14a,34,94…第2金属部材、15,15a,35…第2硬度遷移領域、16,16a,36…第3金属部材、20,20a…第4金属部材、21,21a…第3硬度遷移領域、23,23a…第4硬度遷移領域、25,25a…第5硬度遷移領域 10, 30, 90 ... joined body, 12, 12a, 32, 92 ... first metal member, 13, 13a, 23 ... first hardness transition region, 14, 14a, 34, 94 ... second metal member, 15, 15a , 35 ... second hardness transition region, 16, 16a, 36 ... third metal member, 20, 20a ... fourth metal member, 21, 21a ... third hardness transition region, 23, 23a ... fourth hardness transition region, 25 , 25a ... fifth hardness transition region

Claims (7)

第1の金属材料からなる第1金属部材と、第2の金属材料からなる第2金属部材と、前記第1の金属材料及び前記第2の金属材料のいずれよりも縦弾性係数及び硬度が低い第3の金属材料からなる第3金属部材とを準備する金属部材準備工程と、
前記第1金属部材と前記第2金属部材との間に前記第3金属部材を介在させた状態で前記第1金属部材、前記第2金属部材及び前記第3金属部材を接合して接合体を形成する接合体形成工程とをこの順序で含み、
前記接合体形成工程は、
前記第1金属部材と前記第2金属部材との間に前記第3金属部材を介在させた状態で前記第1金属部材、前記第2金属部材及び前記第3金属部材が溶融しない温度条件下で前記第1金属部材、前記第2金属部材及び前記第3金属部材を固相接合する固相接合工程と、
前記第1金属部材と前記第3金属部材との接合面の近傍に前記第1金属部材と前記第3金属部材との接合面に垂直な方向に沿って前記第1金属部材から前記第3金属部材にかけて硬度が徐々に変化する第1硬度遷移領域が形成され、かつ、前記第2金属部材と前記第3金属部材との接合面の近傍に前記第2金属部材と前記第3金属部材との接合面に垂直な方向に沿って前記第2金属部材から前記第3金属部材にかけて硬度が徐々に変化する第2硬度遷移領域が形成される温度条件下で熱処理を施す硬度遷移領域形成工程とをこの順序で含むことを特徴とする接合体の製造方法。
The first metal member made of the first metal material, the second metal member made of the second metal material, and the longitudinal elastic modulus and the hardness are lower than any of the first metal material and the second metal material. A metal member preparation step of preparing a third metal member made of a third metal material;
The joined body is formed by joining the first metal member, the second metal member, and the third metal member with the third metal member interposed between the first metal member and the second metal member. A joined body forming step to be formed in this order,
The joined body forming step includes:
Under a temperature condition in which the first metal member, the second metal member, and the third metal member are not melted with the third metal member interposed between the first metal member and the second metal member. A solid phase bonding step of solid phase bonding the first metal member, the second metal member, and the third metal member;
The third metal from the first metal member along the direction perpendicular to the joint surface between the first metal member and the third metal member in the vicinity of the joint surface between the first metal member and the third metal member. A first hardness transition region in which the hardness gradually changes over the member is formed, and the second metal member and the third metal member are disposed in the vicinity of a joint surface between the second metal member and the third metal member. A hardness transition region forming step of performing heat treatment under a temperature condition in which a second hardness transition region in which the hardness gradually changes from the second metal member to the third metal member along a direction perpendicular to the joining surface is formed. A method for manufacturing a joined body comprising the steps in this order.
請求項1に記載の接合体の製造方法において、
前記第1硬度遷移領域は、前記第1金属部材と前記第3金属部材との接合面に垂直な方向に沿って50μm以上の厚さを有し、
前記第2硬度遷移領域は、前記第2金属部材と前記第3金属部材との接合面に垂直な方向に沿って50μm以上の厚さを有することを特徴とする接合体の製造方法。
In the manufacturing method of the joined object according to claim 1,
The first hardness transition region has a thickness of 50 μm or more along a direction perpendicular to a joint surface between the first metal member and the third metal member;
The method for producing a joined body, wherein the second hardness transition region has a thickness of 50 μm or more along a direction perpendicular to a joining surface between the second metal member and the third metal member.
請求項2に記載の接合体の製造方法において、
前記硬度遷移領域形成工程においては、前記第3金属部材内であって前記第1硬度遷移領域と前記第2硬度遷移領域との間に、前記第1硬度遷移領域から前記第2硬度遷移領域に向かう方向に沿って硬度が定常状態となる硬度定常領域が残る条件で熱処理を施すことを特徴とする接合体の製造方法。
In the manufacturing method of the joined object according to claim 2,
In the hardness transition region forming step, the first hardness transition region is changed to the second hardness transition region in the third metal member between the first hardness transition region and the second hardness transition region. A method of manufacturing a joined body, characterized in that a heat treatment is performed under a condition that a hardness steady region in which the hardness is in a steady state remains in a direction toward the left.
請求項3に記載の接合体の製造方法において、
前記硬度定常領域は、前記第1硬度遷移領域から前記第2硬度遷移領域に向かう方向に沿って30μm以上の厚さを有することを特徴とする接合体の製造方法。
In the manufacturing method of the joined object according to claim 3,
The method of manufacturing a joined body, wherein the hardness steady region has a thickness of 30 μm or more along a direction from the first hardness transition region to the second hardness transition region.
請求項4に記載の接合体の製造方法において、
前記第3金属部材の厚さは、0.3mm〜10.0mmの範囲内にあることを特徴とする接合体の製造方法。
In the manufacturing method of the joined object according to claim 4,
The thickness of the third metal member is in the range of 0.3 mm to 10.0 mm.
第1の金属材料からなる第1金属部材と、
第2の金属材料からなる第2金属部材と、
前記第1金属部材と前記第2金属部材との間に位置し、前記第1の金属材料及び前記第2の金属材料よりも縦弾性係数及び硬度が低い第3の金属材料からなる第3金属部材とを備え、
前記第3金属部材が前記第1金属部材と前記第2金属部材とに固相接合された構造を有する接合体であって、
前記第1金属部材と前記第3金属部材との接合面の近傍に前記第1金属部材と前記第3金属部材との接合面に垂直な方向に沿って前記第1金属部材から前記第3金属部材にかけて硬度が徐々に変化する第1硬度遷移領域が存在し、かつ、前記第2金属部材と前記第3金属部材との接合面の近傍に前記第2金属部材と前記第3金属部材との接合面に垂直な方向に沿って前記第2金属部材から前記第3金属部材にかけて硬度が徐々に変化する第2硬度遷移領域が存在することを特徴とする接合体。
A first metal member made of a first metal material;
A second metal member made of a second metal material;
A third metal, which is located between the first metal member and the second metal member and is made of a third metal material having a longitudinal elastic modulus and hardness lower than those of the first metal material and the second metal material. With members,
A joined body having a structure in which the third metal member is solid-phase joined to the first metal member and the second metal member;
The third metal from the first metal member along the direction perpendicular to the joint surface between the first metal member and the third metal member in the vicinity of the joint surface between the first metal member and the third metal member. There is a first hardness transition region in which the hardness gradually changes over the member, and the second metal member and the third metal member are in the vicinity of the joint surface between the second metal member and the third metal member. A joined body having a second hardness transition region in which the hardness gradually changes from the second metal member to the third metal member along a direction perpendicular to the joining surface.
請求項6に記載の接合体を用いて製造された金属製品。   A metal product manufactured using the joined body according to claim 6.
JP2013044525A 2013-03-06 2013-03-06 Manufacturing method of joined body Active JP6283864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044525A JP6283864B2 (en) 2013-03-06 2013-03-06 Manufacturing method of joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044525A JP6283864B2 (en) 2013-03-06 2013-03-06 Manufacturing method of joined body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011225341A Division JP5214790B2 (en) 2011-10-12 2011-10-12 Manufacturing method of joined body, joined body and metal product

Publications (3)

Publication Number Publication Date
JP2013144315A true JP2013144315A (en) 2013-07-25
JP2013144315A5 JP2013144315A5 (en) 2014-12-04
JP6283864B2 JP6283864B2 (en) 2018-02-28

Family

ID=49040441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044525A Active JP6283864B2 (en) 2013-03-06 2013-03-06 Manufacturing method of joined body

Country Status (1)

Country Link
JP (1) JP6283864B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178609A (en) * 1998-12-14 2000-06-27 Mitsubishi Materials Corp Diffusely joined composite member
WO2008129622A1 (en) * 2007-04-09 2008-10-30 Toshiaki Kitazawa Method of bonding steel members, method of enhancing bond strength of bonded object comprising steel members, and steel product
JP2009000712A (en) * 2007-06-21 2009-01-08 Mazda Motor Corp Method and apparatus for joining metallic member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178609A (en) * 1998-12-14 2000-06-27 Mitsubishi Materials Corp Diffusely joined composite member
WO2008129622A1 (en) * 2007-04-09 2008-10-30 Toshiaki Kitazawa Method of bonding steel members, method of enhancing bond strength of bonded object comprising steel members, and steel product
JP2009000712A (en) * 2007-06-21 2009-01-08 Mazda Motor Corp Method and apparatus for joining metallic member

Also Published As

Publication number Publication date
JP6283864B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
JP6859435B2 (en) Methods and thermal structures for additive manufacturing
US8247062B2 (en) Methodology and tooling arrangements for increasing interlaminar shear strength in a ceramic matrix composite structure
JP5941617B2 (en) Metal composite and method for producing metal composite
JP5214790B2 (en) Manufacturing method of joined body, joined body and metal product
JP2012184763A5 (en)
JP6220459B1 (en) Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
JP5340338B2 (en) Pipe connection method for heat exchanger
JP6283864B2 (en) Manufacturing method of joined body
US9062883B2 (en) Turbomachine fuel-air mixer component including an additively manufactured portion joined to a non-additively manufactured portion and method
JP2007061867A (en) Die for die-casting and method for producing die for die-casting
JP5839225B2 (en) Mold and mold manufacturing method
TWI458635B (en) Optical element forming metal mold and method of manufacturing optical element forming metal mold
JP5839242B2 (en) Method for producing composite metal material, method for producing mold and method for producing metal product
JP5473711B2 (en) Laminated mold for resin molding and method for producing the same
JP7171221B2 (en) impingement insert
JP2011218401A (en) Method for repairing mold for continuous casting, and repaired mold for continuous casting
JP2014046591A (en) Method for manufacturing a heat-insulating mold
KR20140106109A (en) Technology for the Manufacture of hot forming dies with high wear resistance using selective deposition of the superalloy
JP6953045B1 (en) Metal-organic frameworks and composite members, and methods for manufacturing composite members
TWI393796B (en) Hollow target assembly
JP6376812B2 (en) Cooling structure and mold cooling device
WO2023248391A1 (en) Method for manufacturing metal joined body, and method for joining die-cast member
JP5919508B2 (en) Plate-like casing member and injection molding method thereof
JP7037694B1 (en) Composite member
KR101812991B1 (en) Manufacturing method for member having layer of composite material and manufacturing method for heat sink using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180111

R150 Certificate of patent or registration of utility model

Ref document number: 6283864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250