JP2013143897A - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP2013143897A
JP2013143897A JP2012004207A JP2012004207A JP2013143897A JP 2013143897 A JP2013143897 A JP 2013143897A JP 2012004207 A JP2012004207 A JP 2012004207A JP 2012004207 A JP2012004207 A JP 2012004207A JP 2013143897 A JP2013143897 A JP 2013143897A
Authority
JP
Japan
Prior art keywords
magnetostrictive
magnetostrictive member
yoke
center
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012004207A
Other languages
Japanese (ja)
Other versions
JP5867097B2 (en
Inventor
Osamu Toyoda
治 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012004207A priority Critical patent/JP5867097B2/en
Publication of JP2013143897A publication Critical patent/JP2013143897A/en
Application granted granted Critical
Publication of JP5867097B2 publication Critical patent/JP5867097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generator using reverse magnetostriction phenomenon and having a novel structure.SOLUTION: The power generator comprises: a magnetic field application member formed while including a magnet and having one end on one magnetic pole side and a second end on the other magnetic pole side; a first magnetostriction member disposed between the first and second ends so as to be fixed to the first end but not fixed to the second end; a second magnetostriction member disposed side by side with the first magnetostriction member between the first and second ends so as to be fixed to the first end but not fixed to the second end; a connection member connecting the first and second magnetostriction members and interlinking the vibration thereof; a first coil wound around the first magnetostriction member; and a second coil wound around the second magnetostriction member.

Description

本発明は、発電装置に関する。   The present invention relates to a power generator.

磁歪現象とは、磁性体が外部から印加された磁場により変形する現象である。磁歪現象を示す磁歪材料に、外部磁場を印加した状態で外部から力を加えて変形させることにより、磁歪材料内部の磁化が変化する。この現象を、逆磁歪現象もしくはビラリ効果という。逆磁歪現象を利用した発電装置が提案されている(例えば、非特許文献1、2参照)。   The magnetostriction phenomenon is a phenomenon in which a magnetic material is deformed by a magnetic field applied from the outside. Magnetization inside the magnetostrictive material is changed by deforming the magnetostrictive material exhibiting a magnetostriction phenomenon by applying an external force while applying an external magnetic field. This phenomenon is called reverse magnetostriction phenomenon or billari effect. A power generation device using an inverse magnetostriction phenomenon has been proposed (see, for example, Non-Patent Documents 1 and 2).

湘南メタルテック株式会社、“SMT開発の逆磁歪式振動発電機のご紹介”、[online]、[平成23年11月8日検索]、インターネット<URL: http://www.shonan-metaltec.com/HPdata/info_gyakujiwai_hatudenki.pdf>Shonan Metaltech Co., Ltd., “Introduction of SMT-developed inverse magnetostrictive vibration generator”, [online], [searched on November 8, 2011], Internet <URL: http: //www.shonan-metaltec. com / HPdata / info_gyakujiwai_hatudenki.pdf> 上野敏幸、“磁歪材料を用いたマイクロ振動発電素子”、[online]、平成22年8月6日、金沢大学新技術説明会、[平成23年11月8日検索]、インターネット<URL: http://jstshingi.jp/abst/p/10/1022/kanazawa1.pdf>Toshiyuki Ueno, “Micro-vibration power generation device using magnetostrictive material”, [online], August 6, 2010, Kanazawa University New Technology Briefing, [November 8, 2011 search], Internet <URL: http : //jstshingi.jp/abst/p/10/1022/kanazawa1.pdf>

本発明の一目的は、逆磁歪現象を用いた発電装置であって、新規な構造を有する発電装置を提供することである。   An object of the present invention is to provide a power generation device using a reverse magnetostriction phenomenon and having a novel structure.

本発明の一観点によれば、磁石を含んで形成され、一方の磁極側である第1端部と他方の磁極側である第2端部とを有する磁場印加部材と、前記第1端部と前記第2端部との間に配置され、前記第1端部に固定され、前記第2端部には固定されていない第1磁歪部材と、前記第1端部と前記第2端部との間に、前記第1磁歪部材と並んで配置され、前記第1端部に固定され、前記第2端部には固定されていない第2磁歪部材と、前記第1磁歪部材と前記第2磁歪部材とを繋ぎ、前記第1磁歪部材の振動と前記第2磁歪部材の振動とを連動させる接続部材と、前記第1磁歪部材の周囲に巻かれた第1コイルと、前記第2磁歪部材の周囲に巻かれた第2コイルとを有する発電装置が提供される。   According to an aspect of the present invention, a magnetic field application member formed including a magnet and having a first end on one magnetic pole side and a second end on the other magnetic pole side, and the first end A first magnetostrictive member disposed between the first end and the second end, and fixed to the first end and not fixed to the second end; and the first end and the second end Between the first magnetostrictive member, the second magnetostrictive member fixed to the first end portion and not fixed to the second end portion, the first magnetostrictive member and the first magnetostrictive member. A connecting member that connects two magnetostrictive members and interlocks the vibration of the first magnetostrictive member and the vibration of the second magnetostrictive member, the first coil wound around the first magnetostrictive member, and the second magnetostrictive member. A power generation device having a second coil wound around the member is provided.

磁場印加部材に磁歪部材の一端側が固定された構造とすることにより、磁歪部材の振動時に、磁歪部材に印加される磁場の強さを変化させることができる。   By adopting a structure in which one end side of the magnetostrictive member is fixed to the magnetic field applying member, the strength of the magnetic field applied to the magnetostrictive member can be changed during vibration of the magnetostrictive member.

図1は、実施例による振動発電装置の概略正面図である。FIG. 1 is a schematic front view of a vibration power generator according to an embodiment. 図2Aは、実施例による振動発電装置の概略正面図であり、図2B及び図2Cは、磁歪部材への印加磁場の概略的な磁束分布を示す。FIG. 2A is a schematic front view of the vibration power generator according to the embodiment, and FIGS. 2B and 2C show a schematic magnetic flux distribution of a magnetic field applied to the magnetostrictive member. 図3A及び図3Bは、それぞれ、実施例の第1変形例及び第2変形例による振動発電装置の概略正面図である。3A and 3B are schematic front views of the vibration power generator according to the first modification and the second modification of the embodiment, respectively. 図4A及び図4Bは、それぞれ、第1の設計例による振動発電装置の概略上面図及び概略正面図である。4A and 4B are a schematic top view and a schematic front view of the vibration power generator according to the first design example, respectively. 図5は、第2の設計例による振動発電装置の概略正面図である。FIG. 5 is a schematic front view of the vibration power generator according to the second design example. 図6は、実施例の第3変形例による振動発電装置の概略正面図である。FIG. 6 is a schematic front view of a vibration power generator according to a third modification of the embodiment. 図7A及び図7Bは、それぞれ、比較例による振動発電装置の概略上面図及び概略正面図である。7A and 7B are a schematic top view and a schematic front view, respectively, of a vibration power generator according to a comparative example.

本発明の実施例による振動発電装置について説明する。   A vibration power generator according to an embodiment of the present invention will be described.

図1及び図2Aは、実施例による振動発電装置の概略正面図である。図2Aは、振動時に磁歪部材6及び7が歪んだ状態を示し、図1は、振動していない状態、あるいは、振動の途中で磁歪部材6及び7が歪んでいない状態を示す。図1に示すような振動していない状態あるいは歪みのない状態を、基準状態と呼び、図2Aに示すような歪んだ状態を、歪状態と呼ぶこととする。   1 and 2A are schematic front views of the vibration power generator according to the embodiment. FIG. 2A shows a state in which the magnetostrictive members 6 and 7 are distorted during vibration, and FIG. 1 shows a state in which the magnetostrictive members 6 and 7 are not distorted. A state that does not vibrate or is not distorted as shown in FIG. 1 is referred to as a reference state, and a distorted state as shown in FIG. 2A is referred to as a distorted state.

図1を参照し、実施例による振動発電装置の構造について説明する。永久磁石1、ヨーク2、永久磁石3、及びヨーク4を含み、磁場印加部材5が形成されている。永久磁石1のN極と永久磁石3のS極とが間隙を隔てて対向配置され、永久磁石3のN極と永久磁石1のS極とが、コの字型(U字型)のヨーク4を介して接続されている。永久磁石3のS極側に、ヨーク2が接続されている。   With reference to FIG. 1, the structure of the vibration electric power generating apparatus by an Example is demonstrated. A magnetic field applying member 5 is formed including the permanent magnet 1, the yoke 2, the permanent magnet 3, and the yoke 4. The N pole of the permanent magnet 1 and the S pole of the permanent magnet 3 are arranged opposite to each other with a gap therebetween, and the N pole of the permanent magnet 3 and the S pole of the permanent magnet 1 are U-shaped (U-shaped) yokes. 4 is connected. The yoke 2 is connected to the S pole side of the permanent magnet 3.

永久磁石1とヨーク2との間に、つまり、磁場印加部材5のN極側端部とS極側端部との間に、磁歪材料で形成された磁歪部材6及び7が配置されている。磁歪材料として、例えば、鉄ガリウム合金(Galfenol)を用いることができる。磁歪部材6及び7は、同一形状であり、一方向に長い板状である。   Magnetostrictive members 6 and 7 made of a magnetostrictive material are disposed between the permanent magnet 1 and the yoke 2, that is, between the N pole side end and the S pole side end of the magnetic field applying member 5. . As the magnetostrictive material, for example, an iron gallium alloy (Galfenol) can be used. The magnetostrictive members 6 and 7 have the same shape and are long and plate-shaped in one direction.

磁歪部材6及び7の長さ方向は、外部磁界に対して磁歪材料が変形する(この場合は伸びる)方向に選ぶことが望ましい。図1は、紙面上下方向が磁歪部材6及び7の厚さ方向であり、紙面左右方向が磁歪部材6及び7の長さ方向である。   The length direction of the magnetostrictive members 6 and 7 is preferably selected in the direction in which the magnetostrictive material is deformed (extends in this case) with respect to the external magnetic field. In FIG. 1, the vertical direction of the drawing is the thickness direction of the magnetostrictive members 6 and 7, and the horizontal direction of the drawing is the length direction of the magnetostrictive members 6 and 7.

磁歪部材6及び7は、上下方向に並んで平行に配置され、それぞれ、一端が永久磁石1に固定されている。また、磁歪部材6及び7の他端は、いずれもヨーク2に固定されていない。磁歪部材6及び7の、磁場印加部材5に固定された一端側端部、及び、他端側端部を、それぞれを根元部、先端部と呼ぶこととする。   The magnetostrictive members 6 and 7 are arranged in parallel in the vertical direction, and one end of each is fixed to the permanent magnet 1. Further, the other ends of the magnetostrictive members 6 and 7 are not fixed to the yoke 2. The one end side end part and the other end side end part of the magnetostrictive members 6 and 7 fixed to the magnetic field applying member 5 are referred to as a root part and a tip part, respectively.

磁歪部材6及び7の先端部同士は、接続部材8により接続されており、磁歪部材6及び7が一体となった構造体9が形成されている。磁歪部材6及び7は(構造体9は)、根元側が磁場印加部材5に固定された固定端、先端側が磁場印加部材5に固定されていない可動端である片持ち梁構造となる。接続部材8が、ヨーク2と、磁歪部材6及び7との間に介在し、ヨーク2と接続部材8との間に、間隙が配置されている。   The tip portions of the magnetostrictive members 6 and 7 are connected to each other by a connecting member 8, and a structure 9 in which the magnetostrictive members 6 and 7 are integrated is formed. The magnetostrictive members 6 and 7 (structure 9) have a cantilever structure in which the base side is a fixed end fixed to the magnetic field applying member 5 and the tip side is a movable end not fixed to the magnetic field applying member 5. A connecting member 8 is interposed between the yoke 2 and the magnetostrictive members 6 and 7, and a gap is disposed between the yoke 2 and the connecting member 8.

ヨーク2は、上側磁歪部材6に対向する部分2aと、下側磁歪部材7に対向する部分2bとに分割されている。本実施例では、ヨーク2aの上面高さと上側磁歪部材6の上面高さとが揃い、またヨーク2bの下面高さと下側磁歪部材7の下面高さとが揃っていることが望ましい。上側磁歪部材6の厚さよりも、ヨーク2aの厚さ(上下方向の幅)が厚く、下側磁歪部材7の厚さよりも、ヨーク2bの厚さ(上下方向の幅)が厚いことが望ましい。   The yoke 2 is divided into a portion 2 a that faces the upper magnetostrictive member 6 and a portion 2 b that faces the lower magnetostrictive member 7. In this embodiment, it is desirable that the upper surface height of the yoke 2a and the upper surface height of the upper magnetostrictive member 6 are aligned, and the lower surface height of the yoke 2b and the lower surface height of the lower magnetostrictive member 7 are aligned. It is desirable that the thickness of the yoke 2a (vertical width) is greater than the thickness of the upper magnetostrictive member 6, and that the thickness of the yoke 2b (vertical width) is greater than the thickness of the lower magnetostrictive member 7.

磁歪部材6の上下方向(厚さ方向)の中心位置C6よりも、ヨーク2aの上下方向の中心位置C2aが、内側(構造体9の上下方向中心側あるいは磁歪部材7側)に配置されていることが望ましい。また、磁歪部材7の上下方向(厚さ方向)の中心位置C7よりも、ヨーク2bの上下方向の中心位置C2bが、内側(構造体9の上下方向中心側あるいは磁歪部材6側)に配置されていることが望ましい。   The central position C2a in the vertical direction of the yoke 2a is arranged on the inner side (the vertical center or the magnetostrictive member 7 side) of the yoke 2a than the central position C6 in the vertical direction (thickness direction) of the magnetostrictive member 6. It is desirable. Further, the center position C2b in the vertical direction of the yoke 2b is arranged on the inner side (the vertical center side of the structure 9 or the magnetostrictive member 6 side) than the center position C7 in the vertical direction (thickness direction) of the magnetostrictive member 7. It is desirable that

永久磁石1及び3により、磁歪部材6及び7の長さ方向に、磁場が印加される。磁場印加による磁歪に伴い、磁歪部材6及び7の長さ方向に、それぞれ磁束密度B6及びB7が生じる。例えばGalfenolは正の磁歪材料であり、磁場印加により、印加磁場方向に伸びる磁歪が生じる。印加磁場は、磁歪部材6及び7の磁束密度が飽和しない程度の大きさとする。   The permanent magnets 1 and 3 apply a magnetic field in the length direction of the magnetostrictive members 6 and 7. Along with the magnetostriction due to the application of the magnetic field, magnetic flux densities B6 and B7 are generated in the longitudinal direction of the magnetostrictive members 6 and 7, respectively. For example, Galfenol is a positive magnetostrictive material, and magnetostriction that extends in the direction of the applied magnetic field occurs when a magnetic field is applied. The applied magnetic field has a magnitude that does not saturate the magnetic flux density of the magnetostrictive members 6 and 7.

磁歪部材6及び7の周囲に、それぞれコイル10及び11が巻かれている。本実施例では、コイル10とコイル11とは逆向きに巻かれている。   Coils 10 and 11 are wound around the magnetostrictive members 6 and 7, respectively. In this embodiment, the coil 10 and the coil 11 are wound in opposite directions.

実施例による振動発電装置は、磁場印加部材5が振動源に取り付けられ、振動源の振動により、磁歪部材6及び7が上下方向に振動する。   In the vibration power generator according to the embodiment, the magnetic field applying member 5 is attached to the vibration source, and the magnetostrictive members 6 and 7 vibrate in the vertical direction due to the vibration of the vibration source.

図2A、図2B及び図2Cも参照し、さらに、振動発電装置の動作について説明する。図2Aは、上述のように、磁歪部材6及び7が歪んでいる歪状態を示し、磁歪部材6及び7が下方に歪んでいる場合を例示する。図2B及び図2Cは、磁歪部材への印加磁場の概略的な磁束分布を示し、図2Bは、下側磁歪部材7が下方に歪んでいる場合を例示し、図2Cは、下側磁歪部材7が上方に歪んでいる場合を例示する。   2A, 2B and 2C are also described, and the operation of the vibration power generator will be described. FIG. 2A illustrates a strain state in which the magnetostrictive members 6 and 7 are distorted as described above, and illustrates a case where the magnetostrictive members 6 and 7 are distorted downward. 2B and 2C show a schematic magnetic flux distribution of the magnetic field applied to the magnetostrictive member, FIG. 2B illustrates the case where the lower magnetostrictive member 7 is distorted downward, and FIG. 2C shows the lower magnetostrictive member. The case where 7 is distorted upward is illustrated.

磁歪部材6及び7の先端部同士が接続部材8で接続されていることにより、磁歪部材6の振動と磁歪部材7の振動とが連動する。磁歪部材6及び7が一体となった構造体9が上下方向に振動する際の歪みの中立面が、磁歪部材6と磁歪部材7との間に配置される。   Since the tips of the magnetostrictive members 6 and 7 are connected to each other by the connecting member 8, the vibration of the magnetostrictive member 6 and the vibration of the magnetostrictive member 7 are interlocked. A neutral surface of the strain when the structure 9 in which the magnetostrictive members 6 and 7 are integrated vibrates in the vertical direction is disposed between the magnetostrictive member 6 and the magnetostrictive member 7.

従って、構造体9が下側に歪んだときは、上側磁歪部材6に引張歪が生じるとともに、下側磁歪部材7に圧縮歪が生じる。一方、構造体9が上側に歪むときは、上側磁歪部材6に圧縮歪が生じるとともに、下側磁歪部材7に引張歪が生じる。磁歪部材6及び7は、それぞれ、歪の無い基準状態、圧縮歪が生じた歪状態、歪の無い基準状態、及び引張歪が生じた歪状態を繰り返して振動する。磁歪部材6と磁歪部材7とで、歪の方向(圧縮歪であるか引張歪であるか)は逆になる。   Therefore, when the structure 9 is distorted downward, tensile strain is generated in the upper magnetostrictive member 6 and compressive strain is generated in the lower magnetostrictive member 7. On the other hand, when the structure 9 is distorted upward, compressive strain is generated in the upper magnetostrictive member 6 and tensile strain is generated in the lower magnetostrictive member 7. The magnetostrictive members 6 and 7 repeatedly vibrate in a reference state without strain, a strain state in which compressive strain is generated, a reference state without strain, and a strain state in which tensile strain is generated. In the magnetostrictive member 6 and the magnetostrictive member 7, the direction of strain (whether it is compressive strain or tensile strain) is reversed.

一般に、外部から磁場が印加された状態で、磁歪材料に変形が加わることにより、磁歪材料に生じる磁束密度が変化する(逆磁歪現象もしくはビラリ効果)。ここでまず、印加磁場が一定として説明を進める。磁歪材料を、例えばGalfenolのような、正の磁歪材料とし、基準状態において、印加磁場の大きさは磁歪部材の磁束密度を飽和させない程度とする。   In general, when a magnetic field is applied from the outside, deformation of the magnetostrictive material changes the density of magnetic flux generated in the magnetostrictive material (inverse magnetostriction phenomenon or billiary effect). Here, the description will be made assuming that the applied magnetic field is constant. The magnetostrictive material is a positive magnetostrictive material such as, for example, Galfenol. In the reference state, the magnitude of the applied magnetic field is set so as not to saturate the magnetic flux density of the magnetostrictive member.

引張歪が生じる場合、つまり磁歪部材が伸びる場合は、磁歪部材に生じる磁束密度の長さ方向成分(磁化成分)が、基準状態のそれに比べて大きくなる。一方、圧縮歪が生じる場合、つまり磁歪部材が縮む場合は、磁歪部材に生じる磁束密度の長さ方向成分(磁化成分)が、基準状態のそれに比べて小さくなる。従って、振動に伴い、磁歪部材に生じる磁束密度の長さ方向成分が、周期的に増減する。   When tensile strain occurs, that is, when the magnetostrictive member extends, the longitudinal component (magnetization component) of the magnetic flux density generated in the magnetostrictive member becomes larger than that in the reference state. On the other hand, when compressive strain occurs, that is, when the magnetostrictive member contracts, the longitudinal component (magnetization component) of the magnetic flux density generated in the magnetostrictive member is smaller than that in the reference state. Accordingly, the longitudinal component of the magnetic flux density generated in the magnetostrictive member periodically increases and decreases with vibration.

本実施例による振動発電装置では、さらに、振動に伴って、磁歪部材に印加される磁場の強さも変化する。図2Bに示すように、例えば、下側磁歪部材7が下方に歪む場合、磁歪部材7の先端部は、中心C7が、対向するヨーク2bの中心C2bから離れるように移動する。一方、図2Cに示すように、下側磁歪部材7が上方に歪む場合、磁歪部材7の先端部は、中心C7が、対向するヨーク2bの中心C2bに近づくように移動する。なお、図2B及び図2Cでは、図示の煩雑さを避けるため、接続部材8を省略している。   In the vibration power generator according to the present embodiment, the strength of the magnetic field applied to the magnetostrictive member also changes with vibration. As shown in FIG. 2B, for example, when the lower magnetostrictive member 7 is distorted downward, the tip of the magnetostrictive member 7 moves so that the center C7 is away from the center C2b of the opposing yoke 2b. On the other hand, as shown in FIG. 2C, when the lower magnetostrictive member 7 is distorted upward, the tip of the magnetostrictive member 7 moves so that the center C7 approaches the center C2b of the opposing yoke 2b. In FIG. 2B and FIG. 2C, the connecting member 8 is omitted in order to avoid the complexity of illustration.

ヨーク2bの磁歪材料7への対向部分において、中心C2b付近は、周辺付近に比べて、印加磁場の磁場強度が強い(磁力線密度が高い)。従って、磁歪部材7の先端部の中心C7が、ヨーク2bの中心C2bから離れるように移動すれば、磁歪部材7に印加される磁場は弱くなり、ヨーク2bの中心C2bに近づくように移動すれば、磁歪部材7に印加される磁場は強くなる。下側磁歪部材7を例として説明したが、上側磁歪部材6についても、振動に伴い印加磁場が増減することは同様である。   In the portion of the yoke 2b facing the magnetostrictive material 7, the magnetic field strength of the applied magnetic field is higher (the magnetic line density is higher) in the vicinity of the center C2b than in the vicinity. Therefore, if the center C7 of the tip portion of the magnetostrictive member 7 moves away from the center C2b of the yoke 2b, the magnetic field applied to the magnetostrictive member 7 becomes weak and moves so as to approach the center C2b of the yoke 2b. The magnetic field applied to the magnetostrictive member 7 becomes stronger. Although the lower magnetostrictive member 7 has been described as an example, the same applies to the upper magnetostrictive member 6 in that the applied magnetic field increases and decreases with vibration.

従って、上側磁歪部材6、下側磁歪部材7のいずれについても、引張歪が生じるように内側に歪む場合は、(印加磁場一定としても)磁歪部材の伸びに伴い磁束密度の長さ方向成分が大きくなり、さらに、印加磁場自体も強くなることにより、磁束密度の長さ方向成分がより大きくなる。一方、圧縮歪が生じるように外側に歪む場合は、(印加磁場一定としても)磁歪部材の縮みに伴い磁束密度の長さ方向成分が小さくなり、さらに、印加磁場自体も弱くなることにより、磁束密度の長さ方向成分がより小さくなる。   Therefore, when both the upper magnetostrictive member 6 and the lower magnetostrictive member 7 are distorted inward so as to generate tensile strain, the longitudinal component of the magnetic flux density is increased with the elongation of the magnetostrictive member (even if the applied magnetic field is constant). In addition, since the applied magnetic field itself becomes stronger, the longitudinal component of the magnetic flux density becomes larger. On the other hand, when the outer side is distorted so as to cause compressive strain, the longitudinal component of the magnetic flux density decreases with the contraction of the magnetostrictive member (even if the applied magnetic field is constant), and the applied magnetic field itself is weakened. The longitudinal component of the density becomes smaller.

コイル10及び11には、それぞれ、磁歪部材6及び7の振動に伴う磁束密度変化を妨げるような誘導電流が生じる。これにより、発電を行うことができる。例えば図2Aに示す状態において、上側磁歪部材6に巻かれたコイル10では、磁束密度の増加を妨げるように、磁歪部材6の先端側から根元側に向かって電流が流れる(電流の向きを矢印で示す)。つまり、電源としては根元側がプラス極性、先端側がマイナス極性となる。   Inductive currents are generated in the coils 10 and 11 so as to prevent changes in magnetic flux density caused by the vibrations of the magnetostrictive members 6 and 7, respectively. Thereby, electric power generation can be performed. For example, in the state shown in FIG. 2A, in the coil 10 wound around the upper magnetostrictive member 6, a current flows from the tip side to the root side of the magnetostrictive member 6 so as to prevent an increase in magnetic flux density (the direction of the current is indicated by an arrow). ). That is, as a power source, the base side has a positive polarity and the tip side has a negative polarity.

一方、下側磁歪部材7に巻かれたコイル11では、磁束密度の減少を妨げるように、磁歪部材7の先端側から根元側に向かって電流が流れる(電流の向きを矢印で示す)。つまり、電源としては根元側がプラス極性、先端側がマイナス極性となる。   On the other hand, in the coil 11 wound around the lower magnetostrictive member 7, a current flows from the distal end side to the root side of the magnetostrictive member 7 so as to prevent the magnetic flux density from decreasing (the direction of the current is indicated by an arrow). That is, as a power source, the base side has a positive polarity and the tip side has a negative polarity.

本実施例では、コイル10とコイル11とを逆向きに巻いていることにより、磁歪部材6側と磁歪部材7側とで、先端側と根元側の電源極性を揃えることができる。なお、コイル10とコイル11とを同じ向きに巻いた場合は、磁歪部材6側と磁歪部材7側とで電源極性が逆向きになるが、同様の機構で発電することができる。   In the present embodiment, the coil 10 and the coil 11 are wound in opposite directions, so that the power source polarities on the distal end side and the root side can be made uniform on the magnetostrictive member 6 side and the magnetostrictive member 7 side. In addition, when the coil 10 and the coil 11 are wound in the same direction, the power source polarities are opposite on the magnetostrictive member 6 side and the magnetostrictive member 7 side, but power can be generated by the same mechanism.

なお、各磁歪部材6、7の内側への歪みが最大になったときに、磁歪部材6、7の中心位置が、それぞれ、対向するヨーク2a、2bの中心位置と揃うことが、磁束の最大化の観点から好ましいと考えられる、磁歪部材と、対向するヨークとの位置関係は、個々の発電装置の振動状態に応じて、適宜調整することができる。   It should be noted that when the inward strain of each magnetostrictive member 6, 7 is maximized, the center positions of the magnetostrictive members 6, 7 are aligned with the center positions of the opposing yokes 2 a, 2 b, respectively. The positional relationship between the magnetostrictive member and the opposing yoke, which is considered preferable from the viewpoint of achieving the same, can be appropriately adjusted according to the vibration state of each power generation device.

なお、接続部材8は、絶縁材料で形成されていることが好ましく、非磁性材料で形成されていることがさらに好ましい。例えば、絶縁材料かつ非磁性材料として、プラスチック等を用いることができる。また、絶縁材料で磁性材料であるフェライト等を用いることもできる。   The connecting member 8 is preferably made of an insulating material, and more preferably made of a nonmagnetic material. For example, plastic or the like can be used as the insulating material and the nonmagnetic material. In addition, ferrite that is a magnetic material as an insulating material can also be used.

接続部材8の導電性が高いと、磁歪部材の振動に伴い、接続部材8に、発電効率を低下させる渦電流が生じる。接続部材8の導電性を低くすることにより、渦電流による損失を抑制することができる。接続部材8は、少なくとも、コイル10及び11よりも電気抵抗率の高い材料で形成することが好ましい。   When the conductivity of the connecting member 8 is high, an eddy current that reduces power generation efficiency is generated in the connecting member 8 along with the vibration of the magnetostrictive member. By reducing the conductivity of the connecting member 8, loss due to eddy current can be suppressed. The connecting member 8 is preferably formed of at least a material having a higher electrical resistivity than the coils 10 and 11.

本実施例で、接続部材8は、ヨーク2a及び2bと、磁歪部材6及び7との間に介在している。接続部材8が非磁性材料であることは、ヨーク2a及び2bと、磁歪部材6及び7との間の磁束分布の設計を容易にする観点で好ましい。   In this embodiment, the connecting member 8 is interposed between the yokes 2a and 2b and the magnetostrictive members 6 and 7. The connection member 8 is preferably a nonmagnetic material from the viewpoint of facilitating the design of the magnetic flux distribution between the yokes 2a and 2b and the magnetostrictive members 6 and 7.

なお、漏れ磁束を低減する観点からは、接続部材8の厚さは、強度が確保できる範囲で薄いことが好ましく、また、ヨーク2a及び2bと接続部材8との間隙は、接続部材8がヨーク2a及び2bと干渉しない範囲で狭い方が好ましい。なお、磁束漏れに対し、磁石の強さを必要に応じ強めて対応することもできる。   From the viewpoint of reducing the leakage magnetic flux, the thickness of the connecting member 8 is preferably thin as long as the strength can be secured, and the gap between the yokes 2a and 2b and the connecting member 8 is such that the connecting member 8 has the yoke. Narrower one is preferable as long as it does not interfere with 2a and 2b. It is also possible to cope with magnetic flux leakage by increasing the strength of the magnet as necessary.

なお、本実施例では、図1に示すように、接続部材8が磁歪部材6及び7の端面同士を繋ぐ構造としたが、磁歪部材6の振動と磁歪部材7の振動とを連動させる接続構造は、これに限らない。例えば、磁歪部材6及び7を、より根元側で繋ぐ接続構造も可能である。ただし、先端側端面同士を繋ぐ構造は、磁歪部材6及び7を効率的に振動させる観点で好ましい。   In this embodiment, as shown in FIG. 1, the connection member 8 connects the end surfaces of the magnetostrictive members 6 and 7, but the connection structure links the vibration of the magnetostrictive member 6 and the vibration of the magnetostrictive member 7. Is not limited to this. For example, a connection structure in which the magnetostrictive members 6 and 7 are connected at the base side is possible. However, the structure that connects the end-side end faces is preferable from the viewpoint of efficiently vibrating the magnetostrictive members 6 and 7.

なお、各磁歪部材6、7の形状は、板状に限定されず、例えば棒状とすることもできる。ただし、効率的な振動を生じさせる観点からは、上記実施例のように、一方向に振動が生じやすい異方性を有する形状とすることが好ましい。上下の磁歪部材6及び7は、振動が生じやすい方向を揃えて、振動が生じやすい方向に並んで配置されていることが好ましい。   In addition, the shape of each magnetostrictive member 6 and 7 is not limited to plate shape, For example, it can also be set as rod shape. However, from the viewpoint of generating efficient vibration, it is preferable to have a shape having anisotropy that is likely to generate vibration in one direction as in the above embodiment. It is preferable that the upper and lower magnetostrictive members 6 and 7 are arranged side by side in a direction in which vibration is likely to occur with the same direction in which vibration is likely to occur.

図3Aを参照して、上記実施例の第1変形例による振動発電装置について説明する。上記実施例では、磁歪部材6及び7のそれぞれに対向するように、ヨーク2をヨーク2aと2bとに分割した。第1変形例として、ヨーク2を分割しない構造とすることもできる。   With reference to FIG. 3A, the vibration electric power generating apparatus by the 1st modification of the said Example is demonstrated. In the above embodiment, the yoke 2 is divided into the yokes 2a and 2b so as to face the magnetostrictive members 6 and 7, respectively. As a first modification, the yoke 2 can be structured not to be divided.

この場合でも、ヨーク2を分割した実施例と同様に、磁歪部材6または7が、引張歪が生じるように内側に歪む場合は、先端部の中心がヨーク2の中心に近づくように移動して相対的に印加磁場を強めることができ、圧縮歪が生じるように外側に歪む場合は、先端部の中心がヨーク2から離れるように移動して印加磁場を弱めることができる。   Even in this case, as in the embodiment in which the yoke 2 is divided, when the magnetostrictive member 6 or 7 is distorted inward so as to generate tensile strain, the center of the tip portion moves so as to approach the center of the yoke 2. When the applied magnetic field can be relatively strengthened and the outer side is distorted so as to cause compressive strain, the center of the tip can be moved away from the yoke 2 to weaken the applied magnetic field.

上記実施例のように、ヨーク2を各磁歪部材6、7に対向するように分割することは、それぞれの磁歪部材6、7に磁力線を集中させて磁場を印加できる観点から好ましい。   As in the above embodiment, dividing the yoke 2 so as to face the magnetostrictive members 6 and 7 is preferable from the viewpoint of applying a magnetic field by concentrating the magnetic lines of force on the magnetostrictive members 6 and 7.

図3Bを参照して、上記実施例の第2変形例による振動発電装置について説明する。上記実施例では、基準状態で、上側磁歪部材6の上面高さと、対向する上側ヨーク2aの上面高さとを揃え、下側磁歪部材7の下面高さと、対向する下側ヨーク2bの下面高さとを揃えた。   With reference to FIG. 3B, the vibration electric power generating apparatus by the 2nd modification of the said Example is demonstrated. In the above embodiment, in the reference state, the upper surface height of the upper magnetostrictive member 6 and the upper surface height of the opposing upper yoke 2a are aligned, the lower surface height of the lower magnetostrictive member 7, and the lower surface height of the opposing lower yoke 2b. Aligned.

第2変形例では、上側ヨーク2aの上面高さを、上側磁歪部材6の上面高さよりも低くし、下側ヨーク2bの下面高さを、下側磁歪部材7の下面高さよりも高くしている。これにより、圧縮歪が生じるよう磁歪部材が外側に歪んだ状態で、磁歪部材の先端がヨークからより離れるので、印加磁場をより弱めることができると考えられる。   In the second modification, the upper surface height of the upper yoke 2a is made lower than the upper surface height of the upper magnetostrictive member 6, and the lower surface height of the lower yoke 2b is made higher than the lower surface height of the lower magnetostrictive member 7. Yes. Accordingly, it is considered that the applied magnetic field can be further weakened because the tip of the magnetostrictive member is further away from the yoke in a state in which the magnetostrictive member is distorted outward so that compressive strain is generated.

次に、より具体的な設計例について説明する。   Next, a more specific design example will be described.

まず、図4A及び図4Bを参照して、第1の設計例について説明する。図4A及び図4Bは、それぞれ、第1の設計例による振動発電装置の概略上面図及び概略正面図である。歪の無い基準状態の構造が示されている。発電装置の作製には、マシニングセンタ、フライス、旋盤、ワイヤ放電加工、溶接、樹脂接着等の加工技術を適宜用いることができる。   First, a first design example will be described with reference to FIGS. 4A and 4B. 4A and 4B are a schematic top view and a schematic front view of the vibration power generator according to the first design example, respectively. The structure of the reference state without distortion is shown. For the production of the power generation apparatus, machining techniques such as a machining center, a milling machine, a lathe, wire electric discharge machining, welding, and resin bonding can be appropriately used.

永久磁石21、ヨーク22、ヨーク23、永久磁石24、及びヨーク25が、磁場印加部材を形成している。ヨーク23とヨーク25との間に永久磁石24が配置され、ヨーク25を介して永久磁石24と永久磁石21とが接続され、ヨーク25とヨーク22との間に永久磁石21が配置されている。一方の磁極側のヨーク22と、他方の磁極側のヨーク23とが対向している。   The permanent magnet 21, the yoke 22, the yoke 23, the permanent magnet 24, and the yoke 25 form a magnetic field applying member. A permanent magnet 24 is disposed between the yoke 23 and the yoke 25, the permanent magnet 24 and the permanent magnet 21 are connected via the yoke 25, and the permanent magnet 21 is disposed between the yoke 25 and the yoke 22. . One magnetic pole side yoke 22 and the other magnetic pole side yoke 23 face each other.

永久磁石21及び24は、それぞれ、445mTのネオジム磁石で、厚さ10mm、幅15mm、長さ15mmであり、厚さ方向に磁化されている。ヨーク材料はSS400等の軟鉄である。   The permanent magnets 21 and 24 are 445 mT neodymium magnets, each having a thickness of 10 mm, a width of 15 mm, and a length of 15 mm, and are magnetized in the thickness direction. The yoke material is soft iron such as SS400.

ヨーク22とヨーク23との間に、磁歪部材26及び27が配置されている。磁歪部材26及び27は、根元部がヨーク22に固定されている。磁歪部材26及び27は、それぞれ、Galfenol(Fe81.4Ga18.6)で形成され、厚さ5mm、幅10mm、長さ50mmである。磁歪部材26及び27は平行に配置され、中心間距離は15mmである。 Magnetostrictive members 26 and 27 are disposed between the yoke 22 and the yoke 23. The root portions of the magnetostrictive members 26 and 27 are fixed to the yoke 22. The magnetostrictive members 26 and 27 are each formed of Galfenol (Fe 81.4 Ga 18.6 ) and have a thickness of 5 mm, a width of 10 mm, and a length of 50 mm. The magnetostrictive members 26 and 27 are arranged in parallel, and the center-to-center distance is 15 mm.

磁歪部材26及び27の先端部同士が、接続部材28で接続されている。接続部材28は、ベークライトで形成されている。ヨーク23は、上側磁歪部材26に対向する凸部23aと、下側磁歪材料27に対向する凸部23bとを有する。凸部23a及び23bの突出高さは2mmであり、凸部23a及び23bと接続部材28との間隙は1mm〜3mm程度である。   The tip portions of the magnetostrictive members 26 and 27 are connected by a connecting member 28. The connecting member 28 is made of bakelite. The yoke 23 has a convex portion 23 a that faces the upper magnetostrictive member 26 and a convex portion 23 b that faces the lower magnetostrictive material 27. The protruding heights of the convex portions 23a and 23b are 2 mm, and the gap between the convex portions 23a and 23b and the connection member 28 is about 1 mm to 3 mm.

なお、上記実施例では、上側磁歪部材6に対向するヨーク2aと、下側磁歪部材7に対向するヨーク2bとを別体とした。本設計例では、上側磁歪部材26に対向するヨーク部分23aと、下側磁歪材料27に対向するヨーク部分23bとを、一体のヨーク23の一部として形成している。このような構造でも、各磁歪部材に対向するようにヨークが分割されているということができる。   In the above embodiment, the yoke 2a facing the upper magnetostrictive member 6 and the yoke 2b facing the lower magnetostrictive member 7 are separated. In this design example, a yoke portion 23 a facing the upper magnetostrictive member 26 and a yoke portion 23 b facing the lower magnetostrictive material 27 are formed as a part of the integral yoke 23. Even in such a structure, it can be said that the yoke is divided so as to face each magnetostrictive member.

上側ヨーク部分23a及び下側ヨーク部分23bの上下方向の幅(厚さ)は、それぞれ7mmである。上側ヨーク部分23aと下側ヨーク部分23bとの中心間距離は13mmである。上側ヨーク部分23aの上面高さと、上側磁歪部材26の上面高さとが揃えられ、下側ヨーク部分23bの下面高さと、下側磁歪部材27の下面高さとが揃えられている。   The vertical widths (thicknesses) of the upper yoke portion 23a and the lower yoke portion 23b are each 7 mm. The center-to-center distance between the upper yoke portion 23a and the lower yoke portion 23b is 13 mm. The upper surface height of the upper yoke portion 23a and the upper surface height of the upper magnetostrictive member 26 are aligned, and the lower surface height of the lower yoke portion 23b and the lower surface height of the lower magnetostrictive member 27 are aligned.

上側ヨーク部分23aの上下方向中心が、上側磁歪部材26の上下方向中心よりも内側に配置され、下側ヨーク部分23bの上下方向中心が、下側磁歪部材27の上下方向中心よりも内側に配置されている。   The vertical center of the upper yoke portion 23 a is arranged inside the vertical center of the upper magnetostrictive member 26, and the vertical center of the lower yoke portion 23 b is arranged inside the vertical center of the lower magnetostrictive member 27. Has been.

磁歪部材26及び27の周囲に、それぞれコイル29及び30が巻かれている(なお、図示の煩雑さを避けるため、コイルは簡略化して示している)。   Coils 29 and 30 are wound around the magnetostrictive members 26 and 27, respectively (the coils are shown in a simplified manner in order to avoid the complexity of illustration).

支持板31に固定されたクランプ柱32に、クランプ接続部材33(材料は例えばアルミニウムや銅)を介して、磁場印加部材が、磁歪部材根元側の側面部(永久磁石21、ヨーク22、及びヨーク25)で取り付けられている。   A magnetic field applying member is connected to a clamp column 32 fixed to the support plate 31 via a clamp connection member 33 (material is, for example, aluminum or copper), and a side surface portion (permanent magnet 21, yoke 22, and yoke) on the magnetostrictive member base side. 25).

次に、図5を参照して、第2の設計例について説明する。図5は、第2の設計例による振動発電装置の概略正面図である。第1の設計例は、磁場印加部材を、磁歪部材根元側の側面でクランプ柱に取り付けた片側クランプ構造とした。第2の設計例は、磁場印加部材を、磁歪部材根元側の側面と、磁歪部材先端側の側面とでクランプ柱に取り付けた両側クランプ構造とする。   Next, a second design example will be described with reference to FIG. FIG. 5 is a schematic front view of the vibration power generator according to the second design example. In the first design example, the one-side clamp structure in which the magnetic field application member is attached to the clamp column on the side surface on the base side of the magnetostrictive member. In the second design example, the magnetic field application member has a double-sided clamp structure in which the magnetostrictive member base side surface and the magnetostrictive member tip side surface are attached to the clamp pillar.

支持板31に固定された一方側のクランプ柱32に、クランプ接続部材33を介して、磁場印加部材が、磁歪部材根元側の側面部(永久磁石21、ヨーク22、及びヨーク25)で取り付けられている。さらに、支持板31に固定された他方側のクランプ柱34に、クランプ接続部材35を介して、磁場印加部材が、磁歪部材先端側の側面部(ヨーク23、永久磁石24、及びヨーク25)で取り付けられている。   A magnetic field applying member is attached to a clamp column 32 on one side fixed to the support plate 31 via a clamp connecting member 33 at a side portion (permanent magnet 21, yoke 22, and yoke 25) on the base side of the magnetostrictive member. ing. Furthermore, the magnetic field application member is connected to the clamp column 34 on the other side fixed to the support plate 31 via the clamp connection member 35 at the side surface portion (the yoke 23, the permanent magnet 24, and the yoke 25) on the tip side of the magnetostrictive member. It is attached.

第1の設計例及び第2の設計例の振動発電装置は、クランプ柱32等を介して加えられた振動により、磁歪部材26及び27を振動させることができ、発電を行うことができる。   The vibration power generators of the first design example and the second design example can vibrate the magnetostrictive members 26 and 27 by vibration applied via the clamp pillar 32 and the like, and can generate power.

なお、これらの設計例は試作の一例であり、磁歪部材等の大きさ・形状等や、取り付け構造等は、必要に応じて変更することができる。実施例による振動発電装置は、どのような態様で使用してもよいが、例えば以下のように使用することができる。   These design examples are examples of trial manufacture, and the size and shape of the magnetostrictive member, the mounting structure, and the like can be changed as necessary. Although the vibration electric power generating apparatus by an Example may be used in what kind of mode, it can be used as follows, for example.

振動が多い機械室の機械に電源として実施例の発電装置を取り付け、温度やガス等の異常を検知するセンサと、モニター室に情報を送信する無線とを組み合わせて、機械室の異常検知システムを形成することができる。あるいは、橋げたに電源として実施例の発電装置を取り付け、疲労を測定する歪センサと、情報を送信する無線とを組み合わせて、橋げたの異常検知システムを形成することができる。   Install the power generator of the example as a power source in a machine room machine with a lot of vibrations, and combine a sensor that detects abnormalities in temperature, gas, etc. with a radio that transmits information to the monitor room, to create a machine room abnormality detection system. Can be formed. Alternatively, the power generation apparatus of the embodiment can be attached to the bridge as a power source, and a bridge abnormality detection system can be formed by combining a strain sensor that measures fatigue and a radio that transmits information.

なお、上記実施例では、磁歪部材に正の磁歪材料を用いる場合を例示したが、以下に説明するように、磁歪部材に負の磁歪材料を用いることも可能である。   In the above embodiment, the case where a positive magnetostrictive material is used for the magnetostrictive member is illustrated, but a negative magnetostrictive material can also be used for the magnetostrictive member as described below.

図6を参照して、磁歪部材に負の磁歪材料を用いた、第3変形例による振動発電装置について説明する。負の磁歪材料は、上述した正の磁歪材料とは逆に、磁場印加により、印加磁場方向とは逆の向きに結晶が変形して縮む。磁歪部材6、7の磁束密度は、磁場印加状態で圧縮歪が加わると増加し、引張歪が加わると減少する。   With reference to FIG. 6, a vibration power generator according to a third modification using a negative magnetostrictive material for the magnetostrictive member will be described. In contrast to the positive magnetostrictive material described above, the negative magnetostrictive material causes the crystal to deform and contract in the direction opposite to the applied magnetic field direction when a magnetic field is applied. The magnetic flux density of the magnetostrictive members 6 and 7 increases when compressive strain is applied in a magnetic field applied state, and decreases when tensile strain is applied.

第3変形例の発電装置において、上側磁歪部材6に対向するヨーク2aは、中心位置C2aが、上側磁歪部材6の中心位置C6よりも上側(外側)に配置されている。そして、下側磁歪部材7に対向するヨーク2bは、中心位置C2bが、下側磁歪部材7の中心位置C7よりも下側(外側)に配置されている。   In the power generator of the third modification, the yoke 2a facing the upper magnetostrictive member 6 has a center position C2a disposed above (outside) the center position C6 of the upper magnetostrictive member 6. The yoke 2b facing the lower magnetostrictive member 7 has a center position C2b disposed below (outside) the center position C7 of the lower magnetostrictive member 7.

これにより、例えば、下側磁歪部材7が、圧縮歪が生じるように外側に(下方に)歪む場合は、圧縮歪により下側磁歪部材7内の磁束密度が増加するとともに、下側磁歪部材7の中心位置C7がヨーク2bの中心位置C2bに近づいて印加磁場が強くなる。一方、下側磁歪部材7が、引張歪が生じるように内側に(上方に)歪む場合は、引張歪により下側磁歪部材7内の磁束密度が減少するとともに、下側磁歪部材7の中心位置C7が、ヨーク2bの中心位置C2bから離れて印加磁場が弱くなる。上側磁歪部材6とヨーク2aとの関係も同様である。   Thereby, for example, when the lower magnetostrictive member 7 is distorted outward (downward) so as to cause compressive strain, the magnetic flux density in the lower magnetostrictive member 7 increases due to the compressive strain, and the lower magnetostrictive member 7 The center position C7 approaches the center position C2b of the yoke 2b, and the applied magnetic field becomes stronger. On the other hand, when the lower magnetostrictive member 7 is distorted inward (upward) so that tensile strain is generated, the magnetic flux density in the lower magnetostrictive member 7 is reduced by the tensile strain, and the center position of the lower magnetostrictive member 7 is reduced. C7 moves away from the center position C2b of the yoke 2b, and the applied magnetic field becomes weak. The relationship between the upper magnetostrictive member 6 and the yoke 2a is the same.

このように、磁歪部材に負の磁歪材料を用いる場合は、分割されたヨークの中心位置と磁歪部材の中心位置との配置関係を、正の磁歪材料を用いる場合と反転させることができる。   Thus, when a negative magnetostrictive material is used for the magnetostrictive member, the arrangement relationship between the center position of the divided yoke and the center position of the magnetostrictive member can be reversed from the case where the positive magnetostrictive material is used.

次に、比較例による振動発電装置について説明する。比較例による振動発電装置は、金沢大学理工研究域電子情報学系の上野敏幸准教授による資料「磁歪材料を用いたマイクロ振動発電素子」(非特許文献2)を参照している。   Next, a vibration power generator according to a comparative example will be described. The vibration power generation apparatus according to the comparative example refers to the material “Micro-vibration power generation element using magnetostrictive material” (Non-patent Document 2) by Associate Professor Toshiyuki Ueno, Department of Electronic Information Science, Kanazawa University.

図7A及び図7Bは、それぞれ、比較例による振動発電装置の概略上面図及び概略正面図である。永久磁石101、ヨーク102、ヨーク103、永久磁石104、及びヨーク105を含み、磁場印加部材が形成されている。磁場印加部材の一方の磁極側のヨーク102と、他方の磁極側のヨーク103との間に、磁歪部材106及び107が平行に配置されている。磁歪部材106及び107は、それぞれ、一端がヨーク102に固定され、他端がヨーク103に固定されている。磁歪部材106及び107に、それぞれ、コイル108及び109が巻かれている。   7A and 7B are a schematic top view and a schematic front view, respectively, of a vibration power generator according to a comparative example. A magnetic field application member is formed including the permanent magnet 101, the yoke 102, the yoke 103, the permanent magnet 104, and the yoke 105. Magnetostrictive members 106 and 107 are arranged in parallel between the yoke 102 on one magnetic pole side of the magnetic field applying member and the yoke 103 on the other magnetic pole side. The magnetostrictive members 106 and 107 each have one end fixed to the yoke 102 and the other end fixed to the yoke 103. Coils 108 and 109 are wound around the magnetostrictive members 106 and 107, respectively.

磁歪部材106及び107に、長さ方向に磁場が印加され、磁歪に伴い磁束が生じる。磁歪部材106及び107の振動に伴い、磁歪部材106及び107が下方に歪むと、上側磁歪部材106に引張歪が生じ磁束が増加するとともに、下側磁歪部材107に圧縮歪が生じ磁束が減少する。磁歪部材106及び107が上方に歪むと、上側磁歪部材106に圧縮歪が生じ磁束が減少するとともに、下側磁歪部材107に引張歪が生じ磁束が増加する。振動に伴う磁束変化により、コイル108及び109に誘導電流が生じ、発電を行うことができる。   A magnetic field is applied to the magnetostrictive members 106 and 107 in the length direction, and a magnetic flux is generated along with the magnetostriction. When the magnetostrictive members 106 and 107 are distorted downward along with the vibration of the magnetostrictive members 106 and 107, tensile strain is generated in the upper magnetostrictive member 106 and magnetic flux is increased, and compressive strain is generated in the lower magnetostrictive member 107 and magnetic flux is reduced. . When the magnetostrictive members 106 and 107 are distorted upward, compressive strain is generated in the upper magnetostrictive member 106 and the magnetic flux is decreased, and tensile strain is generated in the lower magnetostrictive member 107 and the magnetic flux is increased. An induced current is generated in the coils 108 and 109 due to a change in magnetic flux accompanying the vibration, and power generation can be performed.

比較例による発電装置では、磁歪部材106及び107の両端が磁場印加部材に(ヨークに)固定され、磁歪部材106及び107に印加される磁場は一定である。一方、実施例による発電装置では、上述のように、磁歪部材6及び7は磁場印加部材に一端が固定され、他端は磁場印加部材には(ヨークには)固定されていない(図1参照)。   In the power generator according to the comparative example, both ends of the magnetostrictive members 106 and 107 are fixed to the magnetic field applying member (on the yoke), and the magnetic field applied to the magnetostrictive members 106 and 107 is constant. On the other hand, in the power generator according to the embodiment, as described above, one end of the magnetostrictive members 6 and 7 is fixed to the magnetic field applying member, and the other end is not fixed to the magnetic field applying member (see FIG. 1). ).

実施例の発電装置は、このような構造により、磁歪部材の歪に伴う磁束増加時は、印加磁場を増加させ、磁歪部材の歪に伴う磁束減少時は、印加磁場を減少させることができる。これにより、印加磁場一定の比較例よりも、磁束変化の幅を大きくすることが容易となり、発電効率向上を図ることができる。   Due to such a structure, the power generator of the embodiment can increase the applied magnetic field when the magnetic flux increases due to the strain of the magnetostrictive member, and can decrease the applied magnetic field when the magnetic flux decreases due to the strain of the magnetostrictive member. This makes it easier to increase the width of the magnetic flux change than in the comparative example in which the applied magnetic field is constant, and the power generation efficiency can be improved.

また、比較例による発電装置は、磁歪部材が磁場印加部材により(ヨークにより)両端側で支持されており、磁歪部材と磁場印加部材とが(ヨークとが)一体となって振動する。一方、実施例による発電装置は、磁歪部材の他端側が磁場印加部材と離れた片持ち梁構造なので、磁歪部材を効率的に振動させることができる。これにより、発電効率向上を図ることができる。   In the power generation apparatus according to the comparative example, the magnetostrictive member is supported by the magnetic field applying member at both ends (by the yoke), and the magnetostrictive member and the magnetic field applying member vibrate integrally (with the yoke). On the other hand, since the power generator according to the embodiment has a cantilever structure in which the other end of the magnetostrictive member is separated from the magnetic field applying member, the magnetostrictive member can be vibrated efficiently. Thereby, the power generation efficiency can be improved.

以上説明したように、磁場印加部材に一端側を固定した磁歪部材を有する振動発電装置により、発電効率向上を図ることができる。   As described above, the power generation efficiency can be improved by the vibration power generation device having the magnetostrictive member having one end fixed to the magnetic field application member.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

以上説明した実施例を含む実施形態に関し、さらに以下の付記を開示する。
(付記1)
磁石を含んで形成され、一方の磁極側である第1端部と他方の磁極側である第2端部とを有する磁場印加部材と、
前記第1端部と前記第2端部との間に配置され、前記第1端部に固定され、前記第2端部には固定されていない第1磁歪部材と、
前記第1端部と前記第2端部との間に、前記第1磁歪部材と並んで配置され、前記第1端部に固定され、前記第2端部には固定されていない第2磁歪部材と、
前記第1磁歪部材と前記第2磁歪部材とを繋ぎ、前記第1磁歪部材の振動と前記第2磁歪部材の振動とを連動させる接続部材と、
前記第1磁歪部材の周囲に巻かれた第1コイルと、
前記第2磁歪部材の周囲に巻かれた第2コイルと
を有する発電装置。
(付記2)
前記接続部材は、絶縁材料で形成されている付記1に記載の発電装置。
(付記3)
前記第2端部は、前記第1磁歪部材に対向する第1部分と前記第2磁歪部材に対向する第2部分とに分割されている付記1または2に記載の発電装置。
(付記4)
前記第1磁歪部材及び前記第2磁歪部材は、正の磁歪を有する磁歪材料で形成されており、
前記第1磁歪部材と前記第2磁歪部材とが並ぶ方向に関して、前記第1部分の中心は、前記第1磁歪部材の中心よりも前記第2磁歪部材側に配置され、前記第2部分の中心は、前記第2磁歪部材の中心よりも前記第1磁歪部材側に配置されている付記3に記載の発電装置。
(付記5)
前記第1磁歪部材と前記第2磁歪部材とが並ぶ方向に関して、前記第1部分の外側の端は、前記第1磁歪部材の外側の端よりも前記第2磁歪部材側に配置され、前記第2部分の外側の端は、前記第2磁歪部材の外側の端よりも前記第1磁歪部材側に配置されている付記4に記載の発電装置。
(付記6)
前記第1磁歪部材及び前記第2磁歪部材は、負の磁歪を有する磁歪材料で形成されており、
前記第1磁歪部材と前記第2磁歪部材とが並ぶ方向に関して、前記第1部分の中心は、前記第1磁歪部材の中心よりも前記第2磁歪部材と反対側に配置され、前記第2部分の中心は、前記第2磁歪部材の中心よりも前記第1磁歪部材と反対側に配置されている付記3に記載の発電装置。
(付記7)
前記接続部材は、前記第1磁歪部材の前記第2端部側の端と、前記第2磁歪部材の前記第2端部側の端とを繋ぐ付記1〜6のいずれか1つに記載の発電装置。
(付記8)
前記接続部材は、非磁性材料で形成されている付記1〜7のいずれか1つに記載の発電装置。
(付記9)
前記第1コイルの巻かれた方向と、前記第2コイルの巻かれた方向とが逆である付記1〜8のいずれか1つに記載の発電装置。
(付記10)
前記第1磁歪部材の形状及び前記第2磁歪部材の形状は、前記第1磁歪部材と前記第2磁歪部材とが並ぶ方向に振動しやすい異方性を持つ付記1〜9のいずれか1つに記載の発電装置。
The following additional notes are further disclosed with respect to the embodiment including the examples described above.
(Appendix 1)
A magnetic field applying member formed including a magnet and having a first end on one magnetic pole side and a second end on the other magnetic pole side;
A first magnetostrictive member disposed between the first end and the second end, fixed to the first end, and not fixed to the second end;
A second magnetostriction disposed between the first end and the second end along with the first magnetostrictive member, fixed to the first end, and not fixed to the second end. Members,
A connecting member that connects the first magnetostrictive member and the second magnetostrictive member and interlocks the vibration of the first magnetostrictive member and the vibration of the second magnetostrictive member;
A first coil wound around the first magnetostrictive member;
And a second coil wound around the second magnetostrictive member.
(Appendix 2)
The power generator according to appendix 1, wherein the connection member is formed of an insulating material.
(Appendix 3)
The power generator according to appendix 1 or 2, wherein the second end portion is divided into a first portion facing the first magnetostrictive member and a second portion facing the second magnetostrictive member.
(Appendix 4)
The first magnetostrictive member and the second magnetostrictive member are formed of a magnetostrictive material having a positive magnetostriction,
With respect to the direction in which the first magnetostrictive member and the second magnetostrictive member are arranged, the center of the first portion is arranged closer to the second magnetostrictive member than the center of the first magnetostrictive member, and the center of the second portion Is the power generation device according to appendix 3, which is disposed closer to the first magnetostrictive member than the center of the second magnetostrictive member.
(Appendix 5)
With respect to the direction in which the first magnetostrictive member and the second magnetostrictive member are arranged, the outer end of the first portion is disposed closer to the second magnetostrictive member than the outer end of the first magnetostrictive member. The power generating device according to appendix 4, wherein an outer end of the two portions is disposed closer to the first magnetostrictive member than an outer end of the second magnetostrictive member.
(Appendix 6)
The first magnetostrictive member and the second magnetostrictive member are made of a magnetostrictive material having negative magnetostriction,
With respect to the direction in which the first magnetostrictive member and the second magnetostrictive member are arranged, the center of the first portion is disposed on the opposite side of the second magnetostrictive member from the center of the first magnetostrictive member, and the second portion Is the power generation device according to appendix 3, wherein the center of the second magnetostrictive member is disposed on the opposite side of the first magnetostrictive member from the center of the second magnetostrictive member.
(Appendix 7)
The connection member according to any one of appendices 1 to 6, which connects an end on the second end side of the first magnetostrictive member and an end on the second end side of the second magnetostrictive member. Power generation device.
(Appendix 8)
The power generator according to any one of supplementary notes 1 to 7, wherein the connection member is formed of a nonmagnetic material.
(Appendix 9)
The power generation device according to any one of supplementary notes 1 to 8, wherein a direction in which the first coil is wound and a direction in which the second coil is wound are opposite.
(Appendix 10)
The shape of the first magnetostrictive member and the shape of the second magnetostrictive member are any one of appendices 1 to 9 having anisotropy that easily vibrates in a direction in which the first magnetostrictive member and the second magnetostrictive member are arranged. The power generator described in 1.

1、3 永久磁石
2、2a、2b、4 ヨーク
5 磁場印加部材
6、7 磁歪部材
8 接続部材
9 (磁歪部材6及び7が一体となった)構造体
10、11 コイル
C2a、C2b、C6、C7 中心位置
21、24 永久磁石
22、23、23a、23b、25 ヨーク
26、27 磁歪部材
28 接続部材
29、30 コイル
31、支持板
32、34 クランプ柱
33、35 クランプ接続部材
1, 3 Permanent magnets 2, 2a, 2b, 4 Yoke 5 Magnetic field applying members 6, 7 Magnetostrictive member 8 Connecting member 9 (Magnetostrictive members 6 and 7 are integrated) Structures 10, 11 Coils C2a, C2b, C6, C7 Center position 21, 24 Permanent magnet 22, 23, 23a, 23b, 25 Yoke 26, 27 Magnetostrictive member 28 Connection member 29, 30 Coil 31, Support plate 32, 34 Clamp post 33, 35 Clamp connection member

Claims (7)

磁石を含んで形成され、一方の磁極側である第1端部と他方の磁極側である第2端部とを有する磁場印加部材と、
前記第1端部と前記第2端部との間に配置され、前記第1端部に固定され、前記第2端部には固定されていない第1磁歪部材と、
前記第1端部と前記第2端部との間に、前記第1磁歪部材と並んで配置され、前記第1端部に固定され、前記第2端部には固定されていない第2磁歪部材と、
前記第1磁歪部材と前記第2磁歪部材とを繋ぎ、前記第1磁歪部材の振動と前記第2磁歪部材の振動とを連動させる接続部材と、
前記第1磁歪部材の周囲に巻かれた第1コイルと、
前記第2磁歪部材の周囲に巻かれた第2コイルと
を有する発電装置。
A magnetic field applying member formed including a magnet and having a first end on one magnetic pole side and a second end on the other magnetic pole side;
A first magnetostrictive member disposed between the first end and the second end, fixed to the first end, and not fixed to the second end;
A second magnetostriction disposed between the first end and the second end along with the first magnetostrictive member, fixed to the first end, and not fixed to the second end. Members,
A connecting member that connects the first magnetostrictive member and the second magnetostrictive member and interlocks the vibration of the first magnetostrictive member and the vibration of the second magnetostrictive member;
A first coil wound around the first magnetostrictive member;
And a second coil wound around the second magnetostrictive member.
前記接続部材は、絶縁材料で形成されている請求項1に記載の発電装置。   The power generation device according to claim 1, wherein the connection member is formed of an insulating material. 前記第2端部は、前記第1磁歪部材に対向する第1部分と前記第2磁歪部材に対向する第2部分とに分割されている請求項1または2に記載の発電装置。   3. The power generation device according to claim 1, wherein the second end portion is divided into a first portion facing the first magnetostrictive member and a second portion facing the second magnetostrictive member. 前記第1磁歪部材及び前記第2磁歪部材は、正の磁歪を有する磁歪材料で形成されており、
前記第1磁歪部材と前記第2磁歪部材とが並ぶ方向に関して、前記第1部分の中心は、前記第1磁歪部材の中心よりも前記第2磁歪部材側に配置され、前記第2部分の中心は、前記第2磁歪部材の中心よりも前記第1磁歪部材側に配置されている請求項3に記載の発電装置。
The first magnetostrictive member and the second magnetostrictive member are formed of a magnetostrictive material having a positive magnetostriction,
With respect to the direction in which the first magnetostrictive member and the second magnetostrictive member are arranged, the center of the first portion is arranged closer to the second magnetostrictive member than the center of the first magnetostrictive member, and the center of the second portion Is a power generation device according to claim 3, which is disposed closer to the first magnetostrictive member than the center of the second magnetostrictive member.
前記第1磁歪部材及び前記第2磁歪部材は、負の磁歪を有する磁歪材料で形成されており、
前記第1磁歪部材と前記第2磁歪部材とが並ぶ方向に関して、前記第1部分の中心は、前記第1磁歪部材の中心よりも前記第2磁歪部材と反対側に配置され、前記第2部分の中心は、前記第2磁歪部材の中心よりも前記第1磁歪部材と反対側に配置されている請求項3に記載の発電装置。
The first magnetostrictive member and the second magnetostrictive member are made of a magnetostrictive material having negative magnetostriction,
With respect to the direction in which the first magnetostrictive member and the second magnetostrictive member are arranged, the center of the first portion is disposed on the opposite side of the second magnetostrictive member from the center of the first magnetostrictive member, and the second portion The power generation device according to claim 3, wherein a center of the second magnetostrictive member is disposed on a side opposite to the first magnetostrictive member from a center of the second magnetostrictive member.
前記接続部材は、前記第1磁歪部材の前記第2端部側の端と、前記第2磁歪部材の前記第2端部側の端とを繋ぐ請求項1〜5のいずれか1つに記載の発電装置。   6. The connection member according to claim 1, wherein the connection member connects an end on the second end side of the first magnetostrictive member and an end on the second end side of the second magnetostrictive member. Power generator. 前記接続部材は、非磁性材料で形成されている請求項1〜6のいずれか1項に記載の発電装置。   The power generation device according to claim 1, wherein the connection member is made of a nonmagnetic material.
JP2012004207A 2012-01-12 2012-01-12 Power generator Active JP5867097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012004207A JP5867097B2 (en) 2012-01-12 2012-01-12 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012004207A JP5867097B2 (en) 2012-01-12 2012-01-12 Power generator

Publications (2)

Publication Number Publication Date
JP2013143897A true JP2013143897A (en) 2013-07-22
JP5867097B2 JP5867097B2 (en) 2016-02-24

Family

ID=49040160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012004207A Active JP5867097B2 (en) 2012-01-12 2012-01-12 Power generator

Country Status (1)

Country Link
JP (1) JP5867097B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027214A (en) * 2013-07-29 2015-02-05 富士通株式会社 Vibration power generation device
JP2015029377A (en) * 2013-07-30 2015-02-12 住友理工株式会社 Vibration power generator utilizing magnetostrictor
JP2015070741A (en) * 2013-09-30 2015-04-13 住友理工株式会社 Vibration power generation apparatus using magnetostrictor
WO2015162988A1 (en) * 2014-04-23 2015-10-29 ミツミ電機株式会社 Electricity generation device
CN106233610A (en) * 2014-04-23 2016-12-14 三美电机株式会社 Trt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990065A (en) * 1995-09-28 1997-04-04 Seiko Epson Corp Portable equipment with power generating device
WO2010151738A2 (en) * 2009-06-26 2010-12-29 Virginia Tech Intellectual Properties, Inc. Piezomagnetoelastic structure for broadband vibration energy harvesting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990065A (en) * 1995-09-28 1997-04-04 Seiko Epson Corp Portable equipment with power generating device
WO2010151738A2 (en) * 2009-06-26 2010-12-29 Virginia Tech Intellectual Properties, Inc. Piezomagnetoelastic structure for broadband vibration energy harvesting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027214A (en) * 2013-07-29 2015-02-05 富士通株式会社 Vibration power generation device
JP2015029377A (en) * 2013-07-30 2015-02-12 住友理工株式会社 Vibration power generator utilizing magnetostrictor
JP2015070741A (en) * 2013-09-30 2015-04-13 住友理工株式会社 Vibration power generation apparatus using magnetostrictor
WO2015162988A1 (en) * 2014-04-23 2015-10-29 ミツミ電機株式会社 Electricity generation device
CN106233609A (en) * 2014-04-23 2016-12-14 三美电机株式会社 Trt
CN106233610A (en) * 2014-04-23 2016-12-14 三美电机株式会社 Trt
CN106233610B (en) * 2014-04-23 2018-06-05 三美电机株式会社 Power generator

Also Published As

Publication number Publication date
JP5867097B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5954406B2 (en) Power generator
US10944340B2 (en) Power generation element, method for manufacturing power generation element, and actuator
JP5867097B2 (en) Power generator
JP5986773B2 (en) Power generation element
JPWO2013038682A1 (en) Power generation element
TWI835777B (en) Power generation components and actuators
JP2014512792A (en) Magnet carrier of movable magnet actuator
WO2013164892A1 (en) Vibration power generator
JP2011038816A (en) Electromagnetic excitation fatigue testing device utilizing superconducting magnet magnetic field
JP5890721B2 (en) Power generation element
US20220085271A1 (en) Power generation element and power generation apparatus
JP6125366B2 (en) Vibration power generator using magnetostrictive element
JP6155009B2 (en) Power generator
JP6064748B2 (en) Power generator
US20190356246A1 (en) Vibration powered generator
WO2017025998A1 (en) Linear motor and device provided with linear motor
KR101085461B1 (en) Apparatus for small sized actuator using different elastic spring
JP2020078175A (en) Power generation device
JP2020088933A (en) Power generation device
WO2020241573A1 (en) Power generation element and device using power generation element
JP2016029873A (en) Power generating apparatus
JP2021136734A (en) Power generator
JP2020065417A (en) Power generation device
KR20210065808A (en) Energy harvesting apparatus using magnet
JP2024020759A (en) Power generation element and power generation device using power generation element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5867097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150