JP2013143791A - Magnet-inclusion type synchronous machine and rotor thereof - Google Patents

Magnet-inclusion type synchronous machine and rotor thereof Download PDF

Info

Publication number
JP2013143791A
JP2013143791A JP2012001647A JP2012001647A JP2013143791A JP 2013143791 A JP2013143791 A JP 2013143791A JP 2012001647 A JP2012001647 A JP 2012001647A JP 2012001647 A JP2012001647 A JP 2012001647A JP 2013143791 A JP2013143791 A JP 2013143791A
Authority
JP
Japan
Prior art keywords
rotor
magnet
outer peripheral
synchronous machine
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012001647A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Hiroshige Mitarai
浩成 御手洗
Hiroshi Matsuoka
浩 松岡
Youni Hashimoto
擁二 橋本
Masayuki Kato
誠之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2012001647A priority Critical patent/JP2013143791A/en
Priority to PCT/JP2012/083732 priority patent/WO2013103118A1/en
Publication of JP2013143791A publication Critical patent/JP2013143791A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor of a magnet-inclusion type synchronous machine which includes a rare earth anisotropic bond magnet of a high orientation.SOLUTION: A rotor (1) of a magnet-inclusion type synchronous machine includes: main bodies (11) which consist of a soft magnetic material and include inclusion parts (12) evenly arranged in the periphery of a rotation center axis and consisting of gaps; and permanent magnets (M1) disposed in the inclusion parts. An outer peripheral side region from an outer peripheral side end of the permanent magnet to an outer peripheral end of the main body is a low magnetic part having magnetic permeability lower than that of the soft magnetic material. The permanent magnet is composed of a rare earth anisotropic bond magnet formed by injection molding in the inclusion part in which an orientation magnetic field is effectively formed. The low magnetic part is constituted, for example, by reforming a structure of a part of a laminated electromagnetic steel plate into an austenitic structure. By providing the low magnetic part, the orientation magnetic field at the time of injection molding is effectively distributed to the inclusion part, and the rare earth anisotropic bond magnet of the high orientation can be efficiently formed in the inclusion part.

Description

本発明は、希土類異方性ボンド磁石を内包した内包磁石型同期機およびその回転子に関する。   The present invention relates to an internal magnet type synchronous machine including a rare earth anisotropic bonded magnet and a rotor thereof.

電動機(発電機を含めて単に「モータ」という。)には種々のタイプがある。最近ではインバータ制御の発達と高磁気特性の希土類磁石の普及に伴い、省電力で高効率であり高トルクまたは高出力が望める同期機が着目されている。   There are various types of electric motors (simply called “motors” including generators). Recently, with the development of inverter control and the widespread use of rare earth magnets with high magnetic properties, attention has been focused on synchronous machines that can save power, have high efficiency, and expect high torque or high output.

同期機は、界磁用の永久磁石を回転子(ロータ)に有し、電機子巻線(コイル)を固定子(ステータ)に有するモータであって、その電機子巻線に多相交流(AC)を供給することにより固定子に回転磁界が生じて回転するACモータである。同期機は、永久磁石を回転子の表面に配設した表面磁石型モータ(SPM)と、永久磁石を回転子の内部に埋め込んだ埋込磁石型モータ(IPM)とに大別されるが、磁石の飛散防止を図れ信頼性が高いIPMが現在の主流となりつつある。   The synchronous machine is a motor having a permanent magnet for a field in a rotor (rotor) and an armature winding (coil) in a stator (stator), and a multiphase alternating current ( The AC motor rotates by generating a rotating magnetic field in the stator by supplying (AC). Synchronous machines are roughly classified into a surface magnet type motor (SPM) in which permanent magnets are arranged on the surface of the rotor and an embedded magnet type motor (IPM) in which permanent magnets are embedded in the rotor. Highly reliable IPM that can prevent scattering of magnets is becoming the mainstream.

従来のIPMは、所定の寸法に切削、研磨等された焼結磁石をロータに設けたスロットへ挿入して構成していた。ところが、着磁した強力な希土類焼結磁石をスロットに挿入する際に、その磁石に欠損等が生じ易い。そこで下記の特許文献1では、希土類磁石粉末と樹脂からなる溶融ストランドをロータのスロットへ磁場中で射出充填し、冷却固化させて、後着磁した希土類ボンド磁石を、従来の焼結磁石に置換することを提案している。   A conventional IPM is configured by inserting a sintered magnet cut or polished to a predetermined size into a slot provided in a rotor. However, when a magnetized strong rare earth sintered magnet is inserted into the slot, the magnet is easily damaged. Therefore, in Patent Document 1 below, a melted strand made of rare earth magnet powder and resin is injected and filled into a slot of a rotor in a magnetic field, cooled and solidified, and a rare-earth bonded magnet after replacement is replaced with a conventional sintered magnet. Propose to do.

特開平11−206075号公報Japanese Patent Application Laid-Open No. 11-206075 特許4626683号公報Japanese Patent No. 4626683

もっとも特許文献1は、単に、IPMの希土類焼結磁石を希土類ボンド磁石に置換することを提案しているに留まり、希土類ボンド磁石の磁場中射出成形に適したロータやスロットの構成等に関して何ら触れていない。   However, Patent Document 1 merely suggests replacing the rare earth sintered magnet of IPM with a rare earth bonded magnet, and does not mention anything about the configuration of a rotor or a slot suitable for injection molding of a rare earth bonded magnet in a magnetic field. Not.

また特許文献2では、鉄心であるロータの一部に非磁性部を設けることが従来から提案されている。これにより、漏れ磁束が低減され、モータ出力に寄与する有効磁束(鎖交磁束)が増加し得る。もっとも、このような低磁性部は、モータ運転時のロータとステータの間に形成される磁気回路に着目して配設されているに過ぎず、後述するような希土類異方性ボンド磁石の射出成形時の配向磁場とは直接関係ない。   Further, in Patent Document 2, it has been conventionally proposed to provide a nonmagnetic portion in a part of a rotor that is an iron core. Thereby, the leakage magnetic flux is reduced, and the effective magnetic flux (linkage magnetic flux) contributing to the motor output can be increased. Of course, such a low magnetic part is provided only by paying attention to a magnetic circuit formed between the rotor and the stator during motor operation, and injection of a rare earth anisotropic bonded magnet as described later. It is not directly related to the orientation magnetic field during molding.

ちなみに、希土類異方性ボンド磁石を構成する希土類異方性磁石粒子は、組成によらず、一般的に多用されているフェラト磁石粒子と比較して、磁束密度のみならず保磁力が遥かに高いため、射出成形時の配向にフェライト磁石粒子より高い配向磁場が必要である。従って高性能なIPMを効率的に生産するためには、希土類異方性ボンド磁石の射出成形時に印加する配向磁場を、そのボンド磁石が収まるロータコアのスロットへ如何に有効に作用させるかが重要となる。   By the way, rare earth anisotropic magnet particles constituting rare earth anisotropic bonded magnets have much higher coercive force as well as magnetic flux density than commonly used ferrite magnet particles regardless of composition. For this reason, an orientation magnetic field higher than that of the ferrite magnet particles is required for orientation during injection molding. Therefore, in order to efficiently produce a high-performance IPM, it is important how to effectively apply an orientation magnetic field applied during injection molding of a rare earth anisotropic bonded magnet to a slot of a rotor core in which the bonded magnet is accommodated. Become.

本発明はこのような事情に鑑みて為されたものであり、効率的に配向させた希土類異方性ボンド磁石を回転子内に内包する内包磁石型同期機およびその回転子を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an encapsulated magnet type synchronous machine that encloses an efficiently oriented rare earth anisotropic bonded magnet in a rotor and the rotor. Objective.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、ロータコアの特定域を非磁性とすることにより、射出成形時の配向磁場により生じるロータコア内の磁束密度分布を制御することを思いついた。そして、ロータコアのスロット内の磁束密度を効率的に高め、従来よりも高配向な希土類異方性ボンド磁石を内包したロータを得ることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of extensive research and trial and error, the present inventor has made non-magnetic a specific region of the rotor core to control the magnetic flux density distribution in the rotor core caused by the orientation magnetic field during injection molding. I came up with that. Then, the magnetic flux density in the slot of the rotor core was efficiently increased, and a rotor including a rare-earth anisotropic bonded magnet having a higher orientation than before was successfully obtained. By developing this result, the present invention described below has been completed.

《内包磁石型同期機の回転子》
(1)本発明の内包磁石型同期機の回転子は、軟磁性材からなり回転中心軸の周囲に(均等に)配置された空隙からなる内包部を有する本体と、該内包部に設けられた永久磁石と、を備える内包磁石型同期機の回転子であって、少なくとも前記永久磁石の外周側端から前記本体の外周端まで延在する外周側領域に、前記軟磁性材よりも透磁率が低い低磁性部を有し、該永久磁石は、配向磁場が印加された該内包部内で射出成形された希土類異方性ボンド磁石からなることを特徴とする。
《Rotator of internal magnet type synchronous machine》
(1) The rotor of the internal magnet type synchronous machine of the present invention is provided with a main body having an internal part made of a soft magnetic material and having an air gap part (equally) arranged around the rotation center axis, and the internal part. A permanent magnet, and a magnetic permeability higher than that of the soft magnetic material in an outer peripheral region extending from an outer peripheral end of the permanent magnet to an outer peripheral end of the main body. The permanent magnet is made of a rare earth anisotropic bonded magnet injection-molded in the inner part to which an orientation magnetic field is applied.

(2)本発明の回転子は、効率的に配向させた永久磁石(希土類異方性ボンド磁石)を有し、内包磁石型同期機の高性能化に寄与する。この理由は次のように考えられる。先ず本発明の回転子では、内包部に収納される永久磁石の外周側端から延在して本体(ロータコア)の外周端に至る外周側領域が、軟磁性材よりも透磁率の低い低磁性部となっている。このような外周側領域を伴う内包部(スロット)へ射出成形時に配向磁場が印加されると、配向磁場は透磁率の低い外周側領域に集中することがなくなり、希土類異方性磁石粉末の配向に寄与しない漏れ磁束が大幅に低減される。 (2) The rotor of the present invention has an efficiently oriented permanent magnet (rare earth anisotropic bonded magnet), and contributes to high performance of the internal magnet type synchronous machine. The reason is considered as follows. First, in the rotor of the present invention, the outer peripheral side region extending from the outer peripheral side end of the permanent magnet housed in the inner packet part and reaching the outer peripheral end of the main body (rotor core) has a low magnetic permeability lower than that of the soft magnetic material. Has become a department. When an orientation magnetic field is applied to the inner part (slot) with the outer peripheral side region at the time of injection molding, the orientation magnetic field does not concentrate in the outer peripheral side region having a low magnetic permeability, and the orientation of the rare earth anisotropic magnet powder Leakage magnetic flux that does not contribute to is greatly reduced.

逆にいうと、射出成形時に外部から回転子へ印加した配向磁場は、回転子の内包部内に高密度に分布するようになり、希土類異方性磁石粉末の配向に寄与する有効磁束が大幅に増加する。従って本発明に係る希土類異方性ボンド磁石は、効率的に配向磁場が作用した状態で射出成形されたものとなり高配向となる。また、印加する配向磁場の大きさにも依るが、その希土類異方性ボンド磁石は外部から高い磁場が印加された状態で成形されたものとなるため、射出成形の終了後から高い磁束密度を発揮し、射出成形後の着磁(後着磁)も不要となり得る。これは、難配向性磁石粉末である希土類異方性磁石粉末(例えばNd−Fe−B系磁石粉末等)からなる希土類異方性ボンド磁石の場合に有効である。   Conversely, the orientation magnetic field applied from the outside to the rotor during injection molding is distributed with high density in the inner part of the rotor, and the effective magnetic flux contributing to the orientation of the rare earth anisotropic magnet powder is greatly increased. To increase. Therefore, the rare earth anisotropic bonded magnet according to the present invention is injection-molded in a state in which an orientation magnetic field acts efficiently and becomes highly oriented. Although it depends on the magnitude of the applied orientation magnetic field, the rare earth anisotropic bonded magnet is molded with a high magnetic field applied from the outside. It is possible to eliminate the need for magnetization after injection molding (post-magnetization). This is effective in the case of a rare earth anisotropic bonded magnet made of rare earth anisotropic magnet powder (for example, Nd-Fe-B magnet powder or the like) which is a hardly oriented magnet powder.

なお当然ながら、本発明では、回転子に内包される永久磁石がボンド磁石であるため、焼結磁石を埋込む場合と比較して、多くの利点を有する。例えば、希少で高価な希土類の使用量を抑制できる。また焼結磁石を用いる場合、スロットに収納するために切削や研磨等の加工が必要となるが、ボンド磁石を用いる場合、そのような加工は不要である。加えて加工屑も生じないので、希少で高価な希土類を無駄にすることもない。   Of course, in the present invention, since the permanent magnet included in the rotor is a bonded magnet, there are many advantages compared to the case where a sintered magnet is embedded. For example, the amount of rare and expensive rare earth used can be suppressed. In addition, when using a sintered magnet, processing such as cutting and polishing is required to be housed in the slot, but when using a bonded magnet, such processing is not necessary. In addition, since no processing waste is generated, rare and expensive rare earths are not wasted.

さらに焼結磁石を用いる場合、スロットへ挿入する際に欠損等を生じたり、スロットとの間に隙間を生じたり、スロット内に固定する接着剤が必要になったりする。しかし、スロット内に一体成形されるボンド磁石なら、自ずとスロット内に強固に密着固定されるため、焼結磁石のような欠点がない。   Furthermore, when using a sintered magnet, a chip | tip etc. will be produced when inserting in a slot, a clearance gap will be produced between slots, or the adhesive agent fixed in a slot will be needed. However, a bonded magnet integrally formed in the slot does not have the disadvantages of a sintered magnet because it is naturally firmly fixed in the slot.

さらに、同期機の運転時、焼結磁石には大きな鉄損(渦電流損とヒステリシス損)が生じ得るが、ボンド磁石は各磁石粒子が絶縁体であるバインダ樹脂で絶縁された状態となっているため、生じる鉄損は非常に小さい。従ってボンド磁石を内包した回転子からなる同期機は効率的である。またボンド磁石は、各磁石粒子がバインダ樹脂で被覆された状態となっているため、表面処理等を行うまでもなく高い耐酸化性を有する。   Furthermore, during operation of the synchronous machine, a large iron loss (eddy current loss and hysteresis loss) can occur in the sintered magnet, but the bonded magnet is in a state where each magnet particle is insulated by a binder resin which is an insulator. Therefore, the resulting iron loss is very small. Therefore, a synchronous machine including a rotor including a bond magnet is efficient. Moreover, since the bonded magnet is in a state where each magnet particle is coated with a binder resin, the bonded magnet has high oxidation resistance without performing surface treatment or the like.

《内包磁石型同期機》
(1)本発明は上述した回転子としてのみならず、その回転子を用いた内包磁石型同期機としても把握できる。すなわち本発明は、上述した回転子と、該回転子の外周囲に(均等に)配設されたコイルと該コイルの外周側で磁気回路を構成するヨークとを有する固定子と、を備えることを特徴とする内包磁石型同期機でもよい。なお、適宜、ヨークはコイル内にあるティースを含む。
<Internal magnet type synchronous machine>
(1) The present invention can be grasped not only as the rotor described above but also as an internal magnet type synchronous machine using the rotor. That is, the present invention includes the above-described rotor, and a stator having a coil (equally) disposed on the outer periphery of the rotor and a yoke that forms a magnetic circuit on the outer peripheral side of the coil. An internal magnet type synchronous machine characterized by the above may be used. As appropriate, the yoke includes a tooth in the coil.

(2)同期機は、基本的に、回転子に設けた永久磁石により形成される磁極と固定子により回転子の外周囲に形成される回転磁界とで生じる吸引力および反発力に基づいて回転力(マグネットトルク)を生じる。もっとも、表面磁石型同期機と異なり埋込磁石型(内包磁石型)同期機の場合、磁極に生じるインダクタンス(Ld)と磁極間に生じるインダクタンス(Lq)との間に差を生じ易いため、吸引力に基づくリラクタンストルクも回転子に生じることが多い。特にLd<Lqとなる場合、リラクタンストルクとマグネットトルクは同方向となり、出力トルクが増大し得る。 (2) The synchronous machine basically rotates based on an attractive force and a repulsive force generated by a magnetic pole formed by a permanent magnet provided on the rotor and a rotating magnetic field formed by the stator on the outer periphery of the rotor. Force (magnet torque) is generated. However, unlike a surface magnet type synchronous machine, in the case of an embedded magnet type (internal magnet type) synchronous machine, a difference is easily generated between the inductance (Ld) generated in the magnetic pole and the inductance (Lq) generated between the magnetic poles. Reluctance torque based on force is also often generated in the rotor. In particular, when Ld <Lq, the reluctance torque and the magnet torque are in the same direction, and the output torque can be increased.

そこで本発明に係る回転子も、回転子中における永久磁石(内包部)の形状や配置等を調整して、例えば、永久磁石により形成される隣接する磁極間に、この磁極により生じるマグネットトルクと同一方向に作用するリラクタンストルクを生じさせる突極を有するものであると好適である。   Therefore, the rotor according to the present invention also adjusts the shape and arrangement of the permanent magnet (inner part) in the rotor, for example, between the adjacent magnetic poles formed by the permanent magnet and the magnet torque generated by this magnetic pole. It is preferable to have salient poles that generate reluctance torque acting in the same direction.

《内包磁石型同期機の回転子の製造方法》
さらに本発明は、上述した内包磁石型同期機やその回転子としてのみならず、その回転子の製造方法としても把握できる。すなわち本発明は、軟磁性材からなり回転中心軸の周囲に(均等に)配置された空隙からなる内包部を有する本体と該内包部に設けられた永久磁石とを備える内包磁石型同期機の回転子の製造方法であって、外周側端から前記本体の外周端まで延在する外周側領域に前記軟磁性材よりも透磁率の低い低磁性部を有する前記内包部へ、溶融したバインダ樹脂中に希土類異方性磁石粉末を分散させた溶融混合物を配向磁場中で射出充填して、前記永久磁石となる希土類異方性ボンド磁石を成形する射出成形工程を備えることを特徴とする内包磁石型同期機の回転子の製造方法としても把握できる。
<< Method for manufacturing rotor of internal magnet type synchronous machine >>
Further, the present invention can be grasped not only as the above-described inner magnet type synchronous machine and its rotor, but also as a method of manufacturing the rotor. That is, the present invention relates to an internal magnet-type synchronous machine including a main body having an internal part made of a soft magnetic material and having a gap that is (equally) arranged around a rotation center axis, and a permanent magnet provided in the internal part. A method for manufacturing a rotor, wherein the binder resin is melted into the inner envelope portion having a low magnetic portion having a lower magnetic permeability than the soft magnetic material in an outer peripheral side region extending from an outer peripheral end to the outer peripheral end of the main body. An encapsulated magnet comprising an injection molding step of molding a rare earth anisotropic bonded magnet to be a permanent magnet by injection filling a molten mixture in which rare earth anisotropic magnet powder is dispersed in an oriented magnetic field It can also be grasped as a method of manufacturing a rotor of a synchronous machine.

《その他》
(1)本発明の内包磁石型同期機には電動機のみならず発電機も含まれ、本明細書でいう電動機(モータ)も特に断らない限り、発電機(ジェネレータ)を含む。また本発明の内包磁石型同期機には、固定子に設けたコイル(電機子巻線)へ供給する交流電流の周波数に同期して回転数が変化する本来的な同期機の他、ホール素子、ロータリエンコーダ、レゾルバ等の検出手段により検出された回転子の位置に基づいて固定子側に回転磁界を生じさせるブラシレス直流(DC)モータも含まれる。ちなみに、ブラシレスDCモータは、インバータに供給する直流電圧を変化させて回転数を変化させ得るので、通常の直流モータと同様に制御性に優れる。
<Others>
(1) The internal magnet type synchronous machine of the present invention includes not only an electric motor but also a generator, and the electric motor (motor) in this specification includes a generator (generator) unless otherwise specified. The internal magnet type synchronous machine of the present invention includes a Hall element in addition to the original synchronous machine in which the rotation speed changes in synchronization with the frequency of the alternating current supplied to the coil (armature winding) provided in the stator Also included is a brushless direct current (DC) motor that generates a rotating magnetic field on the stator side based on the position of the rotor detected by a detecting means such as a rotary encoder or resolver. Incidentally, since the brushless DC motor can change the rotation speed by changing the DC voltage supplied to the inverter, it is excellent in controllability like a normal DC motor.

(2)本明細書では、対象物または対象部を相対的に観て、本体の回転中心に近い側を「内周側」といい、逆にその回転中心から遠い側を「外周側」という。また、対象物または対象部のうちで、その回転中心に最も近い部位を「内周端」といい、逆にある方向に関してその回転中心に最も遠い部位を「外周端」という。例えば、本体(対象物)の場合、その外周形状が完全な円形状ならば、いずれの方向から観てもその円弧部分が「外周端」となる。しかし、その外周形状が凹凸形状をしていれば、「外周端」は観る方向により異なり、凸部の頂部の外周側が「外周端」となることもあれば凹部の底部の外周側が「外周端」となることもある。なお、このような「外周端」のうちで、回転中心から最も遠い位置にあるものを「最外周端」という。 (2) In this specification, the side close to the rotation center of the main body is referred to as “inner side” while the object or target part is viewed relatively, and the side far from the center of rotation is referred to as “outer side”. . Further, in the object or the target portion, a portion closest to the rotation center is referred to as an “inner peripheral end”, and a portion farthest from the rotation center with respect to a certain direction is referred to as an “outer peripheral end”. For example, in the case of the main body (object), if the outer peripheral shape is a complete circular shape, the arc portion becomes the “outer peripheral end” when viewed from any direction. However, if the outer peripheral shape is uneven, the “outer peripheral edge” varies depending on the viewing direction, and the outer peripheral side of the top of the convex portion may be the “outer peripheral end”, or the outer peripheral side of the bottom of the concave portion may be the “outer peripheral end”. ". Of these “outer peripheral ends”, the one farthest from the center of rotation is referred to as the “outermost end”.

さらに「内周端側」とは、上記の「内周端」の内周側を意味する。「外周端側」とは、上記の「外周端」の外周側を意味する。なお、本明細書でいう「端」の形状は線状でも面状でもよく、「端部」はその「端」の近傍という意味である。   Further, the “inner peripheral end side” means the inner peripheral side of the above “inner peripheral end”. “Outer peripheral side” means the outer peripheral side of the above “outer peripheral end”. In addition, the shape of the “end” in this specification may be linear or planar, and “end” means the vicinity of the “end”.

(3)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (3) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. Any numerical value included in various numerical values or numerical ranges described in the present specification can be newly established as a range such as “ab” as a new lower limit value or upper limit value.

本発明の第一実施例である同期モータの要部断面図である。It is principal part sectional drawing of the synchronous motor which is 1st Example of this invention. そのロータコアを構成する電磁鋼板の平面図である。It is a top view of the electromagnetic steel plate which comprises the rotor core. そのロータへ印加される配向磁場の様子を示す磁束密度分布図である。It is a magnetic flux density distribution figure which shows the mode of the orientation magnetic field applied to the rotor. その磁束密度分布図の要部拡大図である。It is a principal part enlarged view of the magnetic flux density distribution figure. 改質部のないロータへ印加される配向磁場の様子を示す磁束密度分布図である。It is a magnetic flux density distribution figure which shows the mode of the orientation magnetic field applied to a rotor without a modification part. その磁束密度分布図の要部拡大図である。It is a principal part enlarged view of the magnetic flux density distribution figure. 本発明の第二実施例に係るロータの平面図である。It is a top view of the rotor which concerns on the 2nd Example of this invention. 本発明の第三実施例に係るロータの平面図である。It is a top view of the rotor which concerns on the 3rd Example of this invention. 本発明の第四実施例に係るロータの平面図である。It is a top view of the rotor which concerns on 4th Example of this invention. 本発明の第五実施例に係るロータの平面図である。It is a top view of the rotor which concerns on 5th Example of this invention. ロータコアの架橋部の変形例とその架橋部に設けた改質部を示す部分拡大図である。It is the elements on larger scale which show the modification of the bridge | crosslinking part of a rotor core, and the modification part provided in the bridge | crosslinking part. その改質部の変形例を示す部分拡大図である。It is the elements on larger scale which show the modification of the modification part. その改質部の他の変形例を示す部分拡大図である。It is the elements on larger scale which show the other modification of the modification part. その改質部のさらに別の変形例を示す部分拡大図である。It is the elements on larger scale which show another modification of the modification part.

本明細書で説明する内容は、本発明の内包磁石型同期機(以下単に「同期機」ともいう。)のみならず、それに用いられる回転子等にも該当し得る。製造方法に関する事項も、プロダクトバイプロセスとして理解すれば物に関する構成要素となり得る。そして本明細書中に記載した事項から任意に選択した一つまたは二つ以上を上述した本発明の構成要素に付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can be applied not only to the internal magnet type synchronous machine (hereinafter also simply referred to as “synchronous machine”) of the present invention but also to a rotor or the like used therefor. Matters related to the manufacturing method can also be components related to products if understood as product-by-process. And one or two or more arbitrarily selected from the matters described in the present specification can be added to the above-described components of the present invention. Which embodiment is the best depends on the target, required performance, and the like.

《内包磁石型同期機の回転子》
(1)本体
回転子の本体は、軟磁性材からなり、通常、両面を絶縁被覆した電磁鋼板の積層体や絶縁被覆された金属粒子を加圧成形した圧粉磁心等からなる。軟磁性材は、その材質を問わないが、例えば、純鉄、ケイ素鋼、合金鋼等の鉄系材であると好ましい。
《Rotator of internal magnet type synchronous machine》
(1) Main body The main body of the rotor is made of a soft magnetic material, and is usually made of a laminated body of electromagnetic steel sheets with insulation coating on both sides, a dust core formed by press-molding insulation-coated metal particles, or the like. The soft magnetic material may be any material, but is preferably an iron-based material such as pure iron, silicon steel, or alloy steel.

(2)内包部
回転子の内包部は、上記本体中に設けられ、永久磁石を配設するための空隙からなる。内包部は、磁極となる永久磁石を内包するため、少なくとも2以上あり、通常、これらは本体の回転中心軸周りに均等に配置される。
(2) Inner part The inner part of the rotor is provided in the main body and includes a gap for disposing a permanent magnet. There are at least two inner inclusions for containing the permanent magnets serving as magnetic poles, and these are usually arranged evenly around the rotation center axis of the main body.

内包部の形状は問わず、同期機の仕様等に応じて適宜調整される。例えば、内包部は、中心から半径方向へ直線状に延在する放射型内包部でも良いし、内周側に凸な形状をした凸型内包部でも良い。凸型内包部は、滑らかな曲線形状からなると、内包部全体に高い配向磁場を均一的に作用させることができて好ましい。例えば、内周側へ緩やかに湾曲した湾曲内包部(U字型内包部、V字型内包部、J字型内包部等を含む)が好ましい。また同様な観点から、内包部は均一的な溝幅からなると好ましい。逆にいうと、印加した配向磁場が局所的に集中し易い急激な形状変化や寸法変化がないほど好ましい。   Regardless of the shape of the inner packet part, it is appropriately adjusted according to the specifications of the synchronous machine. For example, the inner packet part may be a radial inner packet part that extends linearly from the center in the radial direction, or may be a convex inner packet part that is convex toward the inner periphery. It is preferable that the convex inclusion portion has a smooth curved shape because a high orientation magnetic field can be uniformly applied to the entire inclusion portion. For example, a curved inner part (including a U-shaped inner part, a V-shaped inner part, a J-shaped inner part, etc.) that is gently curved toward the inner peripheral side is preferable. From the same viewpoint, it is preferable that the inner packet part has a uniform groove width. In other words, it is preferable that there is no sudden shape change or dimensional change in which the applied orientation magnetic field tends to concentrate locally.

さらに内包部は、半径方向に複数ある多層型内包部でもよい。多層型内包部にすると、リラクタンストルクの増大を図れる。多層型内包部の層数は問わないが、2層または3層が同期機の特性と生産性の両立を図る上で好ましい。   Furthermore, the inner packet part may be a multi-layered inner packet part in the radial direction. When the multi-layered inner part is used, the reluctance torque can be increased. The number of layers of the multilayer-type inclusion is not limited, but two or three layers are preferable for achieving both the characteristics of the synchronous machine and the productivity.

本発明では、永久磁石が射出成形された希土類異方性ボンド磁石(単に「ボンド磁石」ともいう。)からなるため、内包部がどのような形状であっても、永久磁石は内包部の形状に基本的に沿ったものとなる。但し、内包部にスペーサー等を介在させて射出成形することも可能なため、内包部の形状と永久磁石の形状が一致しないこともある。また後述するように、内包部の長手方向両端部を空隙からなる低磁性部(特に補完部)とする場合、永久磁石と内包部の形状が合致しないこともある。   In the present invention, since the permanent magnet is made of an injection-molded rare earth anisotropic bonded magnet (also simply referred to as “bonded magnet”), the permanent magnet has the shape of the inner envelope portion regardless of the shape of the inner envelope portion. Is basically in line with However, since it is possible to perform injection molding by interposing a spacer or the like in the inner packet part, the shape of the inner packet part may not match the shape of the permanent magnet. In addition, as will be described later, when both end portions in the longitudinal direction of the inner packet part are low magnetic parts (particularly, complementary parts) made of gaps, the shapes of the permanent magnet and the inner packet part may not match.

(3)低磁性部
低磁性部は、本体を構成する軟磁性材よりも透磁率が低い限り、その具体的な透磁率を問わない。例えば、空隙部(空気等を含む部分)、その空隙部に低透磁率(適宜「非磁性」という。)な樹脂等を充填した充填部、回転子本体を構成する軟磁性材を部分的に改質した改質部、その軟磁性材を部分的に非磁性材で置換した置換部等により低磁性部は構成される。
(3) Low magnetic part The low magnetic part does not ask | require the specific magnetic permeability, as long as the magnetic permeability is lower than the soft magnetic material which comprises a main body. For example, a void portion (a portion including air), a filling portion in which the void portion is filled with a resin having a low magnetic permeability (appropriately referred to as “non-magnetic”), and a soft magnetic material constituting the rotor body are partially The low magnetic part is constituted by the modified part, the replacement part obtained by partially replacing the soft magnetic material with a nonmagnetic material, and the like.

ここで軟磁性材の改質は、例えば、強磁性を有するフェライト組織やマルテンサイト組織を、非磁性なオーステナイト組織に変化させることにより行える。このような改質は、例えば、NiやCr等を含む改質材(オーステナイト安定化元素)を、鉄系軟磁性材へ部分的に溶解、固溶、拡散等させることにより行える。   Here, the soft magnetic material can be modified, for example, by changing a ferrite structure or a martensite structure having ferromagnetism into a nonmagnetic austenite structure. Such a modification can be performed, for example, by partially dissolving, dissolving, or diffusing a modifying material (austenite stabilizing element) containing Ni, Cr, or the like into an iron-based soft magnetic material.

また強磁性なマルテンサイト系ステンレス鋼や冷間加工した準安定オーステナイト系ステンレス鋼等を、局部的に加熱して非磁性なオーステナイト組織へ変態させることにより改質してもよい。なお、局部的な加熱は、レーザや電子ビーム等の照射や高周波誘導加熱等により行うことができる。   Further, ferromagnetic martensitic stainless steel, cold-worked metastable austenitic stainless steel, or the like may be modified by locally heating to transform it into a nonmagnetic austenitic structure. Note that local heating can be performed by irradiation with a laser or an electron beam, high-frequency induction heating, or the like.

ところで本発明に係る低磁性部は、ボンド磁石が射出成形される部分(内包部の全部または一部)へ、高い配向磁場が均一的に誘導されるように、外周側領域に設けられていれば足る。従って外周側領域の全体が低磁性部である必要はなく、その一部だけが低磁性部でもよい。   By the way, the low magnetic part according to the present invention is provided in the outer peripheral region so that a high orientation magnetic field is uniformly induced to the part (all or part of the inner part) where the bonded magnet is injection-molded. It's enough. Therefore, the entire outer peripheral region need not be the low magnetic part, and only a part thereof may be the low magnetic part.

もっとも低磁性部は、永久磁石(ボンド磁石)の外周側端から本体の外周端まで連続していると好ましい。これにより本体の外部から印加された配向磁場が、ボンド磁石の配向に寄与せず、外周側領域の特定部分(例えば後述の架橋部)に集中して短絡的に通過することが抑止される。   However, the low magnetic part is preferably continuous from the outer peripheral side end of the permanent magnet (bonded magnet) to the outer peripheral end of the main body. Thereby, the orientation magnetic field applied from the outside of the main body does not contribute to the orientation of the bonded magnet, but is concentrated on a specific portion (for example, a bridge portion described later) in the outer peripheral side region and is prevented from passing through in a short circuit.

また低磁性部は、全体が同質的または均質的である必要はなく、前述した空隙部、充填部、改質部等を適宜組み合わせたものでもよい。例えば、本体が外周側領域内に周方向へ延在する軟磁性材からなる架橋部(本体の一部)とその架橋部の内周側に空隙部を有する場合を考える。この架橋部の少なくとも一部に改質部を設けることにより、本発明に係る低磁性部は、その改質部と架橋部の内周側に形成された空隙部とにより構成されることになる。   Moreover, the low magnetic part does not need to be homogeneous or homogeneous as a whole, and may be a combination of the above-described void part, filling part, reforming part and the like as appropriate. For example, consider a case where the main body has a bridging portion (a part of the main body) made of a soft magnetic material extending in the circumferential direction in the outer peripheral region and a void portion on the inner peripheral side of the bridging portion. By providing the reforming part at least in part of the bridging part, the low magnetic part according to the present invention is constituted by the reforming part and a void formed on the inner peripheral side of the bridging part. .

なお、本明細書では、上述したような架橋部の内周側に形成される空隙部やその空隙部に非磁性材等が充填されてなる充填部を補完部という。上述したように補完部も本発明に係る低磁性部の一部を構成し得る。この補完部により、架橋部の内周端側に生じる配向磁場のゆがみが吸収され、補完部の内周側(すなわち前述した溶融混合物が射出充填される部位)に目標方向へ整列した配向磁場を形成させることができる。これによりボンド磁石の外周端部の配向度の低下を抑制できる。また補完部により、射出成形時の配向磁場がボンド磁石の外周端部で短絡的に集中することなどが抑止される。
また補完部は、同期機の作動時の有効磁束(鎖交磁束)も増加させ得る。
In the present specification, the above-described gap formed on the inner peripheral side of the bridging portion and the filling portion formed by filling the gap with a nonmagnetic material or the like are referred to as a complement portion. As described above, the complementary portion can also constitute a part of the low magnetic portion according to the present invention. By this complementary portion, the distortion of the alignment magnetic field generated on the inner peripheral end side of the bridging portion is absorbed, and the alignment magnetic field aligned in the target direction on the inner peripheral side of the complementary portion (that is, the portion where the molten mixture is injected and filled) is generated. Can be formed. Thereby, the fall of the orientation degree of the outer peripheral edge part of a bond magnet can be suppressed. In addition, the complementary portion prevents the orientation magnetic field during injection molding from being concentrated in a short-circuit manner at the outer peripheral end of the bonded magnet.
Further, the complementing unit can increase the effective magnetic flux (linkage magnetic flux) when the synchronous machine is operated.

さらに架橋部に設ける改質部は、架橋部を半径方向(内包部が外周側へ延在する方向)へ貫くように設けられるか、配向磁場の磁束が集中しない程度に架橋部が高磁気抵抗となるように設けられると好ましい。この架橋部は本体の最外周端部に設けられても、それより内周側に設けられてもよい。いずれの場合でも、架橋部を半径方向に貫く改質部を設けることにより、前述したようにボンド磁石の外周側端から本体の外周端まで連続した低磁性部が容易に形成され得る。   Furthermore, the modified part provided in the bridging part is provided so as to penetrate the bridging part in the radial direction (the direction in which the inner packet part extends to the outer peripheral side) or the bridging part has a high magnetic resistance so that the magnetic flux of the orientation magnetic field does not concentrate It is preferable to be provided as follows. This bridging portion may be provided at the outermost peripheral end portion of the main body, or may be provided at the inner peripheral side thereof. In any case, by providing the reforming portion that penetrates the bridging portion in the radial direction, a low magnetic portion that is continuous from the outer peripheral end of the bonded magnet to the outer peripheral end of the main body can be easily formed as described above.

なお、架橋部を本体の最外周端よりも内周側に設けた場合、架橋部の最外周端は本体の想定最外径に対して少し凹んだ底位置となる。このように架橋部を配置すると、架橋部を改質した際にその外周端面に膨らみや歪み等が生じても、回転子の最外径に影響が及ばず、好都合である。   In addition, when a bridge | crosslinking part is provided in the inner peripheral side rather than the outermost periphery end of a main body, the outermost periphery end of a bridge | crosslinking part becomes a bottom position slightly dented with respect to the assumed outermost diameter of a main body. Arranging the bridging portion in this way is advantageous because even when the outer circumferential end surface is bulged or distorted when the bridging portion is modified, the outermost diameter of the rotor is not affected.

低磁性部は、外周側領域に限らず、ボンド磁石の射出成形部分へ配向磁場を効果的に誘導できる他の領域に併設してもよい。例えば、本体の強度等を確保するために、前述した湾曲内包部の外周側と内周側を連結する連結部を設ける場合、その連結部を軟磁性材よりも透磁率が低い低磁性部(低磁性連結部)としてもよい。   The low magnetic part is not limited to the outer peripheral region, and may be provided in another region where the orientation magnetic field can be effectively induced to the injection molding portion of the bonded magnet. For example, in order to secure the strength of the main body and the like, when providing a connecting portion that connects the outer peripheral side and the inner peripheral side of the curved inner envelope portion described above, the connecting portion is a low magnetic portion having a lower magnetic permeability than a soft magnetic material ( Low magnetic coupling part).

《希土類異方性ボンド磁石》
(1)原料
希土類異方性ボンド磁石は、基本的に希土類異方性磁石粉末とバインダ樹脂からなる。希土類異方性磁石粉末は、その種類等が特に限定されず、例えば、Nd−Fe−B系磁石粉末、Sm−Fe−N系磁石粉末、Sm−Co系磁石粉末等である。これら希土類異方性磁石粉末は、一種のみならず複数種からなってもよい。ちなみに複数種の磁石粉末は、成分組成が異なるものに限らず、粒径分布が異なるものでもよい。例えば、Nd−Fe−B系磁石粉末の粗粉と微粉を組み合わせたものでも、Nd−Fe−B系磁石粉末の粗粉とSm−Fe−N系磁石粉末の微粉を組み合わせたものでもよい。このような希土類異方性磁石粉末を用いることにより、ボンド磁石内の磁石粉末の充填率を向上させることができ、高磁束密度を発揮するボンド磁石が得られる。さらに、各種の等方性磁石粉末やフェライト磁石粉末等を希土類異方性磁石粉末中に混在させてもよい。
<Rare earth anisotropic bonded magnet>
(1) Raw material A rare earth anisotropic bonded magnet basically comprises a rare earth anisotropic magnet powder and a binder resin. The kind of rare earth anisotropic magnet powder is not particularly limited, and examples thereof include Nd—Fe—B magnet powder, Sm—Fe—N magnet powder, and Sm—Co magnet powder. These rare earth anisotropic magnet powders may be composed of not only one type but also a plurality of types. Incidentally, the plurality of types of magnet powders are not limited to those having different component compositions but may have different particle size distributions. For example, a combination of coarse powder and fine powder of Nd-Fe-B magnet powder or a combination of coarse powder of Nd-Fe-B magnet powder and fine powder of Sm-Fe-N magnet powder may be used. By using such rare earth anisotropic magnet powder, the filling rate of the magnet powder in the bonded magnet can be improved, and a bonded magnet exhibiting a high magnetic flux density can be obtained. Furthermore, various isotropic magnet powders, ferrite magnet powders, and the like may be mixed in the rare earth anisotropic magnet powder.

バインダ樹脂には、ゴムを含む公知の材料を用いることができる。例えば、ポリエチレン、ポリプロピレン、ポリスチレン、アクリロニトリル/スチレン樹脂、アクリロニトリル/ブタジエン/スチレン樹脂、メタクリル樹脂、塩化ビニル、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、超高分子量ポリエチレン、ポリブチレンテレフタレート、メチルペンテン、ポリカーボネイト、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、ポリテトラフロロエチレン、ポリエーテルイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリアミドイミド等の熱可塑性樹脂を用いると好ましい。またエポキシ樹脂、不飽和ポリエステル樹脂、アミノ樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、尿素樹脂、メラミン樹脂、ユリア樹脂、ジリアルフタレート樹脂、ポリウレタン等の熱硬化性樹脂も適宜用いることができる。   As the binder resin, known materials including rubber can be used. For example, polyethylene, polypropylene, polystyrene, acrylonitrile / styrene resin, acrylonitrile / butadiene / styrene resin, methacrylic resin, vinyl chloride, polyamide, polyacetal, polyethylene terephthalate, ultrahigh molecular weight polyethylene, polybutylene terephthalate, methylpentene, polycarbonate, polyphenylene sulfide, It is preferable to use a thermoplastic resin such as polyetheretherketone, liquid crystal polymer, polytetrafluoroethylene, polyetherimide, polyarylate, polysulfone, polyethersulfone, and polyamideimide. Also, thermosetting resins such as epoxy resin, unsaturated polyester resin, amino resin, phenol resin, polyamide resin, polyimide resin, polyamideimide resin, urea resin, melamine resin, urea resin, direal phthalate resin, polyurethane, etc. should be used as appropriate. Can do.

(2)射出成形
本発明に係る希土類異方性ボンド磁石は、上記原料からなるペレット等を加熱溶融させた溶融混合物を、配向磁場を印加した内包部へ射出充填した後、冷却固化して成形される。射出成形の各条件は、原料の特性、充填量、内包部の冷却性等を考慮して適宜調整される。例えば、射出成形時の加熱温度(溶融混合物の温度)は、希土類異方性磁石粉末のキュリー点未満が好ましい。
(2) Injection molding The rare earth anisotropic bonded magnet according to the present invention is formed by injection-filling a molten mixture obtained by heating and melting the pellets made of the above-described raw material into an inner part to which an orientation magnetic field is applied, and then solidifying by cooling. Is done. Each condition of the injection molding is appropriately adjusted in consideration of the characteristics of the raw material, the filling amount, the cooling property of the inner packet part, and the like. For example, the heating temperature (temperature of the molten mixture) during injection molding is preferably less than the Curie point of the rare earth anisotropic magnet powder.

また配向磁場は、溶融混合物の固化前に印加されている必要があるが、その開始は射出成形の当初からでも、射出成形の途中からでもよい。例えば、配向磁場源に永久磁石を用いる場合は射出成形の当初からとし、電磁石を用いる場合は射出成形の途中からとしてもよい。配向磁場の印加形態(回転子内に形成させる磁束密度の分布)は、内包部の形状ひいては同期機の仕様に応じて適宜調整される。   In addition, the orientation magnetic field needs to be applied before the molten mixture is solidified, but may start from the beginning of injection molding or from the middle of injection molding. For example, when a permanent magnet is used for the orientation magnetic field source, it may be from the beginning of injection molding, and when an electromagnet is used, it may be from the middle of injection molding. The application mode of the orientation magnetic field (distribution of magnetic flux density formed in the rotor) is appropriately adjusted according to the shape of the inner packet part and the specifications of the synchronous machine.

《内包磁石型同期機の用途》
本発明の内包磁石型同期機は、その用途を問わないが、例えば、電気自動車、ハイブリッド車若しくは鉄道車両等に用いられる車両駆動用モータ、エアコン、冷蔵庫若しくは洗濯機等に用いられる家電製品用モータなどに好適である。
《Use of internal magnet type synchronous machine》
The internal magnet type synchronous machine of the present invention may be used for any purpose. For example, a motor for a vehicle driving motor used in an electric vehicle, a hybrid vehicle, a railway vehicle or the like, a motor for home appliances used in an air conditioner, a refrigerator, a washing machine, or the like. It is suitable for such as.

実施例を挙げて本発明をより具体的に説明する。
《内包磁石型同期機:第一実施例》
本発明の内包磁石型同期機に係る一実施例である同期モータSM1のステータSおよびロータ1の断面図を図1Aに示した。図1Aに示した同期モータSM1は、6極18スロットタイプである。この同期モータSM1は自動車駆動用モータや家電製品用モータ等として用いられる。以下、ステータSおよびロータ1について詳しく説明する。
The present invention will be described more specifically with reference to examples.
<< Internal magnet type synchronous machine: First embodiment >>
FIG. 1A shows a cross-sectional view of the stator S and the rotor 1 of the synchronous motor SM1, which is an embodiment of the internal magnet type synchronous machine of the present invention. The synchronous motor SM1 shown in FIG. 1A is a 6-pole 18-slot type. The synchronous motor SM1 is used as a motor for driving a car, a motor for home appliances, or the like. Hereinafter, the stator S and the rotor 1 will be described in detail.

(1)ステータ
ステータSは、積層電磁鋼板からなり、環状のヨークSaと、ヨークSaから中心方向に向けて均等に突出したティースSbと、隣接するティースSb間に形成されたスロットScからなる。各スロットScには、ティースSbの周囲に分布巻きされた電磁コイル(図略)が収納される。各電磁コイルへインバータ制御された三相交流が供給されることにより、その周波数と極数に応じた同期速度の回転磁界がステータSに発生する。
(1) Stator The stator S is composed of laminated electromagnetic steel plates, and includes an annular yoke Sa, teeth Sb that protrude evenly from the yoke Sa toward the center, and slots Sc formed between adjacent teeth Sb. Each slot Sc accommodates an electromagnetic coil (not shown) distributed around the teeth Sb. By supplying inverter-controlled three-phase alternating current to each electromagnetic coil, a rotating magnetic field having a synchronous speed corresponding to the frequency and the number of poles is generated in the stator S.

(2)ロータ
ロータ1は、図1Bに示すように、中心穴191とその中心まわりに6つ均等に配置され内周側に湾曲した形状(凸な形状)で貫通した等幅な長溝121とを有する円板状の電磁鋼板111(軟磁性材)が積層されてなる。この電磁鋼板111が積層されることにより、回転中心軸方向(図1Aの紙面に垂直な方向)へ延びる略円筒状のロータコア11(本体)が形成され、長溝121は後述する永久磁石M1が射出成形される同方向へ延びる貫通したスロット12(内包部)となり、中心穴191は同期モータSM1のシャフト(図略)が嵌入される同方向へ延びるシャフト穴19となる。
(2) Rotor As shown in FIG. 1B, the rotor 1 includes a center hole 191 and six equal-width long grooves 121 that are uniformly arranged around the center and penetrated in a curved shape (convex shape) on the inner peripheral side. A disk-shaped electromagnetic steel plate 111 (soft magnetic material) having By laminating the electromagnetic steel plates 111, a substantially cylindrical rotor core 11 (main body) extending in the rotation center axis direction (direction perpendicular to the paper surface of FIG. 1A) is formed, and a permanent magnet M1 described later is injected into the long groove 121. A slot 12 (inner part) extending in the same direction is formed, and the center hole 191 becomes a shaft hole 19 extending in the same direction in which a shaft (not shown) of the synchronous motor SM1 is inserted.

スロット12の外周側端部は、軟磁性材(積層電磁鋼板)からなるロータコア11の外周端部(架橋部)を、非磁性なオーステナイト組織へ改質した改質部141(低磁性部)となっている。この改質処理は、処理対象部分であるロータコア11の外周端部にNi−Crワイヤーを配置し、そこへ炭酸ガスレーザーを照射して、部分的な溶融を生じさせることにより行った(日本公開特許公報:特開平6−79483参照)。   The outer peripheral side end of the slot 12 is a modified part 141 (low magnetic part) obtained by modifying the outer peripheral end (bridged part) of the rotor core 11 made of a soft magnetic material (laminated magnetic steel sheet) into a nonmagnetic austenite structure. It has become. This reforming process was performed by arranging a Ni—Cr wire at the outer peripheral end of the rotor core 11 which is a processing target part, and irradiating it with a carbon dioxide gas laser to cause partial melting (Japanese publication). (Patent publication: JP-A-6-79483).

この改質部141を両端の外周側に有するスロット12内に、磁場中射出成形により希土類異方性ボンド磁石からなる永久磁石M1を形成した。具体的には、先ず、ロータコア11を磁場中射出充填装置(図略)にセットし、隣接するスロット12間で極性が交互に異なる配向磁場(図2Aおよび図2B参照)を、各スロット12へ向けて印加する。   A permanent magnet M1 made of a rare earth anisotropic bonded magnet was formed by injection molding in a magnetic field in the slot 12 having the modified portions 141 on the outer peripheral sides at both ends. Specifically, first, the rotor core 11 is set in a magnetic field injection filling device (not shown), and an orientation magnetic field (see FIGS. 2A and 2B) in which polarities are alternately different between adjacent slots 12 is supplied to each slot 12. Apply toward.

これらスロット12へ、Nd−Fe−B系異方性磁石粉末、Sm−Fe−N系磁石粉末およびポリフェニレンサルファイド樹脂(バインダ樹脂)からなるペレットを、加熱溶融してなる溶融混合物を射出充填する。この後、磁場中射出充填装置の金型内で冷却されることによりスロット12内の溶融混合物が固化し、スロット12内に一体成形された永久磁石M1が形成された。こうして、内周側に湾曲した永久磁石M1を環状均等に内包したロータ1が得られた。   These slots 12 are injected and filled with a molten mixture obtained by heating and melting pellets made of Nd—Fe—B based anisotropic magnetic powder, Sm—Fe—N based magnetic powder and polyphenylene sulfide resin (binder resin). Thereafter, the molten mixture in the slot 12 was solidified by cooling in the mold of the injection filling apparatus in the magnetic field, and the permanent magnet M1 integrally formed in the slot 12 was formed. Thus, the rotor 1 was obtained in which the permanent magnet M1 curved toward the inner peripheral side was annularly included.

なお本実施例では、溶融混合物の充填開始時から充填終了時まで、スロット12へ配向磁場を印加した。この際、配向磁場:0.7T、溶融混合物の温度:300℃、射出圧力:80MPa、射出速度:80mm/secとした。   In this example, an orientation magnetic field was applied to the slot 12 from the start of filling of the molten mixture to the end of filling. At this time, the orientation magnetic field was 0.7 T, the temperature of the molten mixture was 300 ° C., the injection pressure was 80 MPa, and the injection speed was 80 mm / sec.

これにより永久磁石M1中の磁石粒子は、磁場中射出成形時に配向するのみならず、同時に着磁もされ、永久磁石M1は既に高磁束密度を発揮する状態となっていた。このため本実施例では別途、後着磁を行う必要がなかった。   As a result, the magnet particles in the permanent magnet M1 are not only oriented during injection molding in a magnetic field, but are also magnetized at the same time, and the permanent magnet M1 has already exhibited a high magnetic flux density. For this reason, in this embodiment, there was no need to separately perform post-magnetization.

(3)モータ
永久磁石M1を内包したロータ1のシャフト穴19に、シャフト(図略)を嵌入して取り付ける。このロータ1をステータS内に回動自在に配設する。この際、ロータ1の外周端面とティースSbの内端面との間に形成されるギャップが一定となるようにした。こうして同期モータSM1が得られた。この同期モータSM1をインバータ制御された電源に接続し、ステータSに回転磁界を発生させると、それに同期してロータ1が回転するようになる。
(3) Motor A shaft (not shown) is fitted and attached to the shaft hole 19 of the rotor 1 including the permanent magnet M1. The rotor 1 is rotatably disposed in the stator S. At this time, the gap formed between the outer peripheral end face of the rotor 1 and the inner end face of the teeth Sb was made constant. Thus, the synchronous motor SM1 was obtained. When this synchronous motor SM1 is connected to an inverter-controlled power supply and a rotating magnetic field is generated in the stator S, the rotor 1 rotates in synchronization therewith.

なお、同期モータSM1では、永久磁石M1の中央を通るd軸方向のインダクタンスLd1よりも、そのd軸方向からπ/2(電気角)ずれたq軸方向のインダクタンスLq1が大きくなる。このため同期モータSM1には、永久磁石M1によるマグネットトルクTm1のみならず、インダクタンス差(Lq1−Ld1)に基づくリラクタンストルクTr1もマグネットトルクTm1と同方向へ発生する。従って同期モータSM1は、より大きな出力トルクを発揮する。なお、以降の実施例でもd軸およびq軸の定義は同様とする。   In the synchronous motor SM1, the inductance Lq1 in the q-axis direction shifted by π / 2 (electrical angle) from the d-axis direction is larger than the inductance Ld1 in the d-axis direction passing through the center of the permanent magnet M1. For this reason, not only the magnet torque Tm1 by the permanent magnet M1 but also the reluctance torque Tr1 based on the inductance difference (Lq1-Ld1) is generated in the synchronous motor SM1 in the same direction as the magnet torque Tm1. Therefore, the synchronous motor SM1 exhibits a larger output torque. In the following examples, the definitions of the d-axis and the q-axis are the same.

(4)低磁性部
ところで、スロット12へ溶融混合物を射出充填する際、スロット12の両内端側には非磁性材(樹脂等)からなるスペーサーを介在させた。このため、スロット12に形成された永久磁石M1の両端側(永久磁石M1の外周側端M1aと改質部141の内周側端141aの間)には、空隙部からなる補完部142が形成された。
(4) Low Magnetic Part By the way, when the molten mixture was injected and filled into the slot 12, spacers made of a nonmagnetic material (resin or the like) were interposed on both inner end sides of the slot 12. For this reason, complementary portions 142 formed of gaps are formed on both ends of the permanent magnet M1 formed in the slot 12 (between the outer peripheral side end M1a of the permanent magnet M1 and the inner peripheral side end 141a of the reforming portion 141). It was done.

この補完部142は、上述した改質部141と同様に、ロータコア11よりも透磁率が桁違いに小さい部分である。従って、補完部142も改質部141と同様に本発明の低磁性部を構成し得る。そこで改質部141と補完部142を合わせて、適宜、低磁性部14という。   Similar to the above-described reforming unit 141, the complementing unit 142 is a part having a magnetic permeability that is orders of magnitude smaller than that of the rotor core 11. Therefore, the complementing part 142 can also constitute the low magnetic part of the present invention, like the reforming part 141. Therefore, the reforming unit 141 and the complementing unit 142 are collectively referred to as a low magnetic unit 14 as appropriate.

低磁性部14を有するロータコア11中における射出成形時の配向磁場の分布(磁束密度分布)をシミュレーションした。その結果を図2Aに磁力線で示した。そのスロット12(特に低磁性部14)の周辺(図2Aに示した□部分)を、拡大した図を図2Bに示した。この際、配向磁場は、磁場中射出充填装置に設けた永久磁石DaからヨークDbを介して、スロット12に向けて供給されることとした。なお、適宜、永久磁石DaおよびヨークDbを合わせて配向磁場源Dという。   The distribution (magnetic flux density distribution) of the orientation magnetic field at the time of injection molding in the rotor core 11 having the low magnetic part 14 was simulated. The result is shown by magnetic field lines in FIG. 2A. FIG. 2B shows an enlarged view of the periphery (part □ shown in FIG. 2A) of the slot 12 (particularly, the low magnetic portion 14). At this time, the orientation magnetic field is supplied from the permanent magnet Da provided in the injection filling apparatus in the magnetic field toward the slot 12 via the yoke Db. The permanent magnet Da and the yoke Db are appropriately referred to as an orientation magnetic field source D as appropriate.

また、ロータコア11に改質部141を設けなかったロータコア11’についても同様なシミュレーションを行い、その結果を図3Aおよび図3Bに示した。   A similar simulation was performed for the rotor core 11 ′ in which the reforming portion 141 was not provided in the rotor core 11, and the results are shown in FIGS. 3A and 3B.

両シミュレーション結果から明らかなように、改質部141を設けることにより、スロット12を通らずにロータコア11の外周端部(架橋部)を短絡的に通過する漏洩磁束が大きく低減している。逆にいうと、スロット12を通過する配向磁場が全体的に増加した。一例を挙げると、配向磁場源Dからの磁場供給により、スロット12における磁場は、ロータコア11’では0.5Tであったが、ロータコア11では0.7Tとなった。   As is apparent from both simulation results, by providing the reforming portion 141, the leakage magnetic flux passing through the outer peripheral end portion (bridge portion) of the rotor core 11 without passing through the slot 12 is greatly reduced. Conversely, the orientation magnetic field passing through the slot 12 increased overall. For example, due to the magnetic field supplied from the orientation magnetic field source D, the magnetic field in the slot 12 was 0.5 T in the rotor core 11 ′ but 0.7 T in the rotor core 11.

従って、前述したとおり、スロット12の両端部に補完部142を設けるだけでも有効であるが、改質部141も設けることにより、永久磁石M1が射出成形されるスロット12に配向磁場がより効果的に形成されることがわかった。   Accordingly, as described above, it is effective to simply provide the complementary portions 142 at both ends of the slot 12, but by providing the reforming portion 141, the orientation magnetic field is more effective in the slot 12 in which the permanent magnet M1 is injection molded. Was found to be formed.

《第二実施例》
本発明の内包磁石型同期機の回転子に係る他の実施例であるロータ2を図4に示した。ロータ2は、ロータ1のスロット12および永久磁石M1をそれぞれ半径方向の2層に分割した第一スロット22および第二スロット23と、第一永久磁石M21および第二永久磁石M22をロータコア21中に有する。ロータ2でも、Nd−Fe−B系異方性磁石粉末の使用量はロータ1の場合と同様とした。従って、ロータ2に形成される第一スロット22および第二スロット23は、それぞれ半径方向の厚さがロータ1のスロット12の約半分程度となっている。同様に、第一スロット22および第二スロット23へ、磁場中で射出されて一体成形された第一永久磁石M21および第二永久磁石M22も、それぞれ半径方向の厚さがロータ1の永久磁石M1の約半分程度となっている。
<< Second Example >>
FIG. 4 shows a rotor 2 which is another embodiment of the rotor of the internal magnet type synchronous machine of the present invention. The rotor 2 includes a first slot 22 and a second slot 23 obtained by dividing the slot 12 of the rotor 1 and the permanent magnet M1 into two radial layers, and a first permanent magnet M21 and a second permanent magnet M22 in the rotor core 21. Have. Also in the rotor 2, the amount of Nd—Fe—B based anisotropic magnet powder used was the same as that in the rotor 1. Accordingly, each of the first slot 22 and the second slot 23 formed in the rotor 2 has a thickness in the radial direction of about half that of the slot 12 of the rotor 1. Similarly, the first permanent magnet M21 and the second permanent magnet M22 that are injected into the first slot 22 and the second slot 23 in a magnetic field and integrally formed also have a radial thickness of the permanent magnet M1 of the rotor 1, respectively. It is about half of.

第一スロット22および第二スロット23の外周側には、ロータ1の改質部141および補完部142と同様に、改質部241および補完部242(両者を合わせて低磁性部24という。)と、改質部251および補完部252(両者を合わせて低磁性部25という。)を形成した。このため、低磁性部24、25により各スロット22、23に配向磁場が効果的に印加される点はロータ1の場合と同様である。   On the outer peripheral side of the first slot 22 and the second slot 23, similarly to the reforming part 141 and the complementing part 142 of the rotor 1, the reforming part 241 and the complementing part 242 (both are referred to as the low magnetic part 24). Then, the reforming part 251 and the complementing part 252 (both are referred to as the low magnetic part 25) were formed. For this reason, the point that the orientation magnetic field is effectively applied to the slots 22 and 23 by the low magnetic portions 24 and 25 is the same as in the case of the rotor 1.

このロータ2のシャフト穴29に、シャフト(図略)を嵌入して取り付け、ステータS内に回動自在に配設することにより、同期モータSM2(図略)が得られる。この同期モータSM2は、同期モータSM1と異なり、第一スロット22と第二スロット23の間に軟磁性材(積層電磁鋼板)からなる磁路217を有する。このため、本実施例のq軸方向のインダクタンスLq2は、前述したインダクタンスLq1よりも大きくなる。一方、第一永久磁石M21および第二永久磁石M22の磁石量は永久磁石M1とほぼ同じであるため、インダクタンスLd2はインダクタンスLd1と大差ない。この結果、同期モータSM2は同期モータSM1よりも大きなリラクタンストルクを発生し得る。   By inserting a shaft (not shown) into the shaft hole 29 of the rotor 2 and attaching it to the stator S, the synchronous motor SM2 (not shown) can be obtained. Unlike the synchronous motor SM1, the synchronous motor SM2 has a magnetic path 217 made of a soft magnetic material (laminated magnetic steel sheet) between the first slot 22 and the second slot 23. For this reason, the inductance Lq2 in the q-axis direction of the present embodiment is larger than the inductance Lq1 described above. On the other hand, since the magnet amounts of the first permanent magnet M21 and the second permanent magnet M22 are substantially the same as the permanent magnet M1, the inductance Ld2 is not much different from the inductance Ld1. As a result, the synchronous motor SM2 can generate a reluctance torque larger than that of the synchronous motor SM1.

なお、第一永久磁石M21および第二永久磁石M22の合計量を永久磁石M1と同等としたが、その合計量を永久磁石M1よりも多くすれば、同期モータSM2は同期モータSM1よりも大きなマグネットトルクも発生し得る。   The total amount of the first permanent magnet M21 and the second permanent magnet M22 is equal to that of the permanent magnet M1, but if the total amount is larger than that of the permanent magnet M1, the synchronous motor SM2 is larger than the synchronous motor SM1. Torque can also be generated.

《第三実施例》
本発明の内包磁石型同期機の回転子に係る他の実施例であるロータ3を図5に示した。ロータ3は、ロータ1のスロット12および永久磁石M1を、内周側へより大きく突出させた緩やかな略V字状のスロット32および永久磁石M3をロータコア31に有する。スロット32の外周側端部(ロータコア31の外周端部/架橋部)には、改質部114と同様な改質部34のみが形成されている。改質部34(低磁性部)により各スロット32に配向磁場が効率的に印加される点は、ロータ1の場合と同様である。
《Third embodiment》
FIG. 5 shows a rotor 3 that is another embodiment of the rotor of the internal magnet type synchronous machine of the present invention. The rotor 3 has a loose substantially V-shaped slot 32 and a permanent magnet M3 in the rotor core 31 in which the slot 12 and the permanent magnet M1 of the rotor 1 are protruded larger toward the inner peripheral side. Only the reforming portion 34 similar to the reforming portion 114 is formed at the outer peripheral end portion of the slot 32 (the outer peripheral end portion / bridging portion of the rotor core 31). The point that the orientation magnetic field is efficiently applied to each slot 32 by the reforming part 34 (low magnetic part) is the same as in the case of the rotor 1.

このロータ3のシャフト穴39にシャフト(図略)を嵌入して取り付けると、同期モータSM3(図略)が得られ、ステータSに回転磁界を発生させると、それに同期してロータ3が回転するようになる。   When a shaft (not shown) is fitted and attached to the shaft hole 39 of the rotor 3, a synchronous motor SM3 (not shown) is obtained. When a rotating magnetic field is generated in the stator S, the rotor 3 rotates in synchronization therewith. It becomes like this.

本実施例の同期モータSM3では、永久磁石M3が中心方向へ深く入り込んでいるため、q軸方向のインダクタンスLq3は、インダクタンスLq1等よりも小さくなる。一方、永久磁石M3の半径方向の幅は永久磁石M1とほぼ同じなため、インダクタンスLd3はインダクタンスLd1等と大差ない。このため同期モータSM3に生じるリラクタンストルクTr3は、同期モータSM1のリラクタンストルクTr1よりも小さくなる。但し、永久磁石M3の磁石表面積は永久磁石M1よりも大きいため、同期モータSM3のマグネットトルクTm3は同期モータSM1のマグネットトルクTm1よりも大きくなる。   In the synchronous motor SM3 of the present embodiment, since the permanent magnet M3 penetrates deeply in the center direction, the inductance Lq3 in the q-axis direction is smaller than the inductance Lq1 and the like. On the other hand, since the radial width of the permanent magnet M3 is substantially the same as that of the permanent magnet M1, the inductance Ld3 is not much different from the inductance Ld1 and the like. For this reason, the reluctance torque Tr3 generated in the synchronous motor SM3 is smaller than the reluctance torque Tr1 of the synchronous motor SM1. However, since the magnet surface area of the permanent magnet M3 is larger than that of the permanent magnet M1, the magnet torque Tm3 of the synchronous motor SM3 is larger than the magnet torque Tm1 of the synchronous motor SM1.

《第四実施例》
本発明の内包磁石型同期機の回転子に係る他の実施例であるロータ4を図6に示した。ロータ4は、ロータ3のスロット32および永久磁石M3を、それぞれ半径に対して対称な2つに分割した第一スロット42および第二スロット43と、第一永久磁石M41および第二永久磁石M42をロータコア41内に有する。
<< 4th Example >>
FIG. 6 shows a rotor 4 which is another embodiment of the rotor of the internal magnet type synchronous machine of the present invention. The rotor 4 includes a first slot 42 and a second slot 43 obtained by dividing the slot 32 and the permanent magnet M3 of the rotor 3 into two symmetrical with respect to the radius, and a first permanent magnet M41 and a second permanent magnet M42. In the rotor core 41.

第一スロット42および第二スロット43の外周側端部(架橋部)には、それぞれ改質部44および改質部45が形成されている。これら改質部44、45により、スロット42、43に配向磁場が効果的に印加される点はロータ3の場合と同様である。   A reforming portion 44 and a reforming portion 45 are formed at the outer peripheral side end portions (bridge portions) of the first slot 42 and the second slot 43, respectively. The point that the orientation magnetic field is effectively applied to the slots 42 and 43 by these reforming portions 44 and 45 is the same as in the case of the rotor 3.

第一スロット42と第二スロット43の内周側挟間にある連結部47は、スロット42、43により分断されたロータコア47の内周側と外周側を連結する機能を果たす。この連結部47を設けることにより、ロータコア47ひいてはロータ4の強度(特に半径方向の強度)は大幅に向上し得る。   The connecting portion 47 located between the inner peripheral side of the first slot 42 and the second slot 43 functions to connect the inner peripheral side and the outer peripheral side of the rotor core 47 divided by the slots 42 and 43. By providing this connecting portion 47, the strength of the rotor core 47 and thus the rotor 4 (particularly the strength in the radial direction) can be significantly improved.

連結部47が軟磁性材からなると、射出成形時の配向磁場がその連結部47を通じて漏洩し得る。このためスロット42、43の内周端側近傍の磁束密度は低下し得る。しかし、連結部47はロータコア47の内周側深くにあり、その幅も細いため、その配向磁場の低下はさほど大きくはない。その配向磁場の低下が問題になる場合は、その連結部47を改質等して非磁性化すればよい。これにより連結部47における漏洩磁束が著しく低減され、各スロット42、43全体に配向磁場を効果的に印加できる。このように本実施例によれば、スロット42、43に印加される配向磁場の低下を抑えつつ、ロータコア47の強度を大幅に向上させることできる。   When the connecting portion 47 is made of a soft magnetic material, an orientation magnetic field at the time of injection molding can leak through the connecting portion 47. For this reason, the magnetic flux density in the vicinity of the inner peripheral ends of the slots 42 and 43 can be lowered. However, since the connecting portion 47 is deep on the inner peripheral side of the rotor core 47 and has a narrow width, the decrease in the orientation magnetic field is not so great. If a decrease in the orientation magnetic field becomes a problem, the connecting portion 47 may be made non-magnetic by modification or the like. Thereby, the leakage magnetic flux in the connection part 47 is remarkably reduced, and the orientation magnetic field can be effectively applied to the entire slots 42 and 43. Thus, according to the present embodiment, the strength of the rotor core 47 can be significantly improved while suppressing a decrease in the orientation magnetic field applied to the slots 42 and 43.

《第五実施例》
本発明の内包磁石型同期機の回転子に係る他の実施例であるロータ5を図7に示した。ロータ5は、放射状に配置された6つの直線状のスロット52と、それらスロット52に射出成形により一体成形された永久磁石M5をロータコア51内に有する。
<< 5th Example >>
FIG. 7 shows a rotor 5 which is another embodiment of the rotor of the internal magnet type synchronous machine of the present invention. The rotor 5 includes six linear slots 52 arranged radially and permanent magnets M5 integrally formed in the slots 52 by injection molding in the rotor core 51.

ロータコア51の外周端部には改質部54が形成されている。さらに、ロータコア51の内周端部にも、非磁性改質された環状の改質部57が形成されている。この改質部57はシャフト穴59を囲繞するように形成されており、各スロット52の内周側端部が改質部57に接続されている。改質部54、57により、スロット52に配向磁場が効果的に印加される点は他の実施例の場合と同様である。   A reforming portion 54 is formed at the outer peripheral end of the rotor core 51. Further, a non-magnetically modified annular reforming portion 57 is also formed at the inner peripheral end of the rotor core 51. The reforming part 57 is formed so as to surround the shaft hole 59, and the inner peripheral side end of each slot 52 is connected to the reforming part 57. The point that the orientation magnetic field is effectively applied to the slot 52 by the reformers 54 and 57 is the same as in the other embodiments.

なお、改質部57に係る部分は、非磁性なオーステナイト系ステンレス鋼等からなる低磁性部材で置換してもよい。この際、改質部57に相当する部分を、低磁性部材からなる別部材で置換してもよいし、少なくともその該当部分に低磁性部材を有するシャフトをロータコア51へ嵌入してもよい。   The portion related to the reforming portion 57 may be replaced with a low magnetic member made of nonmagnetic austenitic stainless steel or the like. At this time, a portion corresponding to the reforming portion 57 may be replaced with another member made of a low magnetic member, or a shaft having a low magnetic member at least in the corresponding portion may be fitted into the rotor core 51.

シャフト穴59にシャフト(図略)を嵌入して取り付けたロータ5を、ステータS内に回動自在に配設すると、同期モータSM5(図略)が得られる。この同期モータSM5は、d軸方向のインダクタンスLd5とq軸方向のインダクタンスLq5との差が小さいため、同期モータSM5に生じるリラクタンストルクは、他の実施例の場合よりも非常に小さい。   When the rotor 5 fitted with a shaft (not shown) fitted into the shaft hole 59 is rotatably disposed in the stator S, a synchronous motor SM5 (not shown) is obtained. Since this synchronous motor SM5 has a small difference between the inductance Ld5 in the d-axis direction and the inductance Lq5 in the q-axis direction, the reluctance torque generated in the synchronous motor SM5 is much smaller than in the other embodiments.

このようにリラクタンストルクが小さい同期モータSM3、同期モータSM4や同期モータSM5は、比較的低い回転数で使用され、コギングトルクやトルクリップルが小さいことが要求される電動パワーステアリング(EPS)等のモータに好適である。   As described above, the synchronous motor SM3, the synchronous motor SM4, and the synchronous motor SM5 having a small reluctance torque are used at a relatively low rotational speed, and a motor such as an electric power steering (EPS) that requires a small cogging torque and torque ripple. It is suitable for.

《第六実施例》
第1実施例に係るロータコア11および低磁性部14(特に改質部141)を変更した種々の実施例を図8A〜図8Dに示した。各図には永久磁石M1と同形態の永久磁石M6の外周側領域Eおよびその近傍を拡大して示した。なお、各図間で共通する部分には同じ符号を付した。
<Sixth embodiment>
Various examples in which the rotor core 11 and the low magnetic part 14 (particularly the modified part 141) according to the first example are changed are shown in FIGS. 8A to 8D. In each figure, the outer peripheral side region E and the vicinity thereof of a permanent magnet M6 having the same form as the permanent magnet M1 are shown enlarged. In addition, the same code | symbol was attached | subjected to the part which is common between each figure.

(1)図8Aに示したロータコア61は、図1Aに示した改質部141が形成されたロータコア11の最外周端を、少し内周側(ロータコア61の円周方向に延長させた仮想外周端lよりも内周側)へ移動させた架橋部640とその内周側にできた空隙部642を有する。図8Aには架橋部640の一部を周方向に均一的に非磁性改質した改質部641を示した。 (1) The rotor core 61 shown in FIG. 8A has a virtual outer periphery in which the outermost peripheral end of the rotor core 11 formed with the reforming portion 141 shown in FIG. 1A is slightly extended to the inner peripheral side (the circumferential direction of the rotor core 61). It has a bridging portion 640 moved to the inner peripheral side from the end l and a gap portion 642 formed on the inner peripheral side. FIG. 8A shows a modified portion 641 in which a part of the bridging portion 640 is uniformly nonmagnetically modified in the circumferential direction.

架橋部640全体を非磁性改質してもよいが、そうしなくても、図8Aに示すように非磁性改質しなかった残部の幅を狭小にすれば、その部分の磁気抵抗を大きくできる。そうすれば、配向磁場の磁束が架橋部640に集中することを回避でき、永久磁石M6へ高配向磁場を効果的に誘導できる。   The entire bridging portion 640 may be non-magnetically modified. However, if the width of the remaining portion that has not been non-magnetically modified is narrowed as shown in FIG. 8A, the magnetoresistance of that portion is increased. it can. If it does so, it can avoid that the magnetic flux of an orientation magnetic field concentrates on the bridge | crosslinking part 640, and can induce a high orientation magnetic field to the permanent magnet M6 effectively.

(2)図8Bには、ロータコア61の架橋部640の略中央を、半径方向(永久磁石M6が外周側へ延在する方向)へ貫くように非磁性改質した改質部741を示した。この場合、空隙部642および改質部741により、永久磁石M6の外周端M6aから架橋部640の外周端640aに至る範囲(外周側領域D)内に、連続した低磁性部74が形成される。これにより、架橋部640を周方向から挟むロータコア61の両側は、その連続した低磁性部74により実質的に遮断された状態となる。こうして永久磁石M6へ高配向磁場をより効果的に誘導できるようになる。 (2) FIG. 8B shows a modified portion 741 that has been nonmagnetically modified so as to penetrate substantially the center of the bridging portion 640 of the rotor core 61 in the radial direction (the direction in which the permanent magnet M6 extends to the outer peripheral side). . In this case, the continuous low magnetic part 74 is formed in the range (outer peripheral region D) from the outer peripheral end M6a of the permanent magnet M6 to the outer peripheral end 640a of the bridging part 640 by the gap 642 and the modified part 741. . As a result, both sides of the rotor core 61 sandwiching the bridging portion 640 from the circumferential direction are substantially blocked by the continuous low magnetic portion 74. Thus, a highly oriented magnetic field can be more effectively induced to the permanent magnet M6.

(3)図8Cには、ロータコア61の架橋部640の略中央に三角形状の改質部841を設けた場合を示した。この改質部841は、その頂点部分が架橋部640の内周端に到達していない。このため、非磁性改質されていない軟磁性材からなる部分が、架橋部640の内周端側で周方向に連続して残っている。もっともこの場合も図8Aに示した場合と同様に、改質部841の頂点近傍では磁気抵抗が大きくなる。このため、配向磁場の磁束が架橋部640に集中することはなく、高配向磁場が永久磁石M6へ効果的に誘導される。 (3) FIG. 8C shows a case where a triangular reforming portion 841 is provided in the approximate center of the bridging portion 640 of the rotor core 61. The apex portion of the modified portion 841 does not reach the inner peripheral end of the bridging portion 640. For this reason, a portion made of a soft magnetic material that has not been nonmagnetically modified remains continuously in the circumferential direction on the inner peripheral end side of the bridging portion 640. However, in this case as well, as in the case shown in FIG. 8A, the magnetic resistance increases in the vicinity of the apex of the reforming portion 841. For this reason, the magnetic flux of an orientation magnetic field does not concentrate on the bridge | crosslinking part 640, but a high orientation magnetic field is induced | guided | derived to the permanent magnet M6 effectively.

(4)図8Dには、ロータコア61の架橋部640に三角形状の改質部941、942を周方向に並設した場合を示した。改質部941、942の場合も、それらの頂点部分が架橋部640の内周端に到達していないため、非磁性改質されていない軟磁性材からなる部分が、架橋部640の内周端側で周方向に連続して残る。 (4) FIG. 8D shows a case where triangular reforming portions 941 and 942 are juxtaposed in the circumferential direction on the bridging portion 640 of the rotor core 61. Also in the case of the modified portions 941 and 942, since the apex portions thereof do not reach the inner peripheral end of the bridging portion 640, the portion made of the soft magnetic material that is not non-magnetically modified is the inner circumference of the bridging portion 640. It remains continuously in the circumferential direction on the end side.

しかし、この場合、図8Cに示した場合よりも架橋部640の周方向における磁気抵抗がより大きくなる。従って図8Dの場合の方が、図8Cの場合よりも、配向磁場の磁束が架橋部640により集中し難くなり、高配向磁場が永久磁石M6へより効果的に誘導される。   However, in this case, the magnetic resistance in the circumferential direction of the bridging portion 640 becomes larger than in the case shown in FIG. 8C. Therefore, in the case of FIG. 8D, the magnetic flux of the orientation magnetic field is less likely to be concentrated by the bridging portion 640 than in the case of FIG. 8C, and the high orientation magnetic field is more effectively induced to the permanent magnet M6.

ちなみに、架橋部640中の軟磁性材からなる部分の幅(半径方向)を小さくすることにより、架橋部640の周方向の磁気抵抗を大きくでき、そこに配向磁場の磁束が集中しないようにできる。もっとも、ロータコア61の強度を向上させるために、架橋部640には適当な幅を確保する必要がある。そこで、ロータコア61の強度と架橋部640の磁束密度分布を考慮して、架橋部640の幅、改質部641、741、841、941、942の形状や大きさなどは適宜決定されるとよい。   Incidentally, by reducing the width (radial direction) of the portion made of the soft magnetic material in the bridging portion 640, the circumferential magnetic resistance of the bridging portion 640 can be increased, and the magnetic flux of the orientation magnetic field can be prevented from concentrating there. . However, in order to improve the strength of the rotor core 61, it is necessary to ensure an appropriate width for the bridging portion 640. Therefore, in consideration of the strength of the rotor core 61 and the magnetic flux density distribution of the bridging portion 640, the width of the bridging portion 640 and the shapes and sizes of the modified portions 641, 741, 841, 941, 942 may be appropriately determined. .

SM1 同期モータ(内包磁石型同期機)
S ステータ
M1 永久磁石(希土類異方性ボンド磁石)
1 ロータ
11 ロータコア(本体)
12 スロット(内包部)
14 低磁性部
141 改質部
142 補完部
SM1 synchronous motor (internal magnet type synchronous machine)
S Stator M1 Permanent magnet (rare earth anisotropic bonded magnet)
1 Rotor 11 Rotor core (main body)
12 slots (inner part)
14 Low magnetic part 141 Modification part 142 Complement part

Claims (10)

軟磁性材からなり回転中心軸の周囲に配置された空隙からなる内包部を有する本体と、
該内包部に設けられた永久磁石と、
を備える内包磁石型同期機の回転子であって、
少なくとも前記永久磁石の外周側端から前記本体の外周端まで延在する外周側領域に、前記軟磁性材よりも透磁率が低い低磁性部を有し、
該永久磁石は、配向磁場が印加された該内包部内で射出成形された希土類異方性ボンド磁石からなることを特徴とする内包磁石型同期機の回転子。
A main body having an inner packet part made of a soft magnetic material and having a gap disposed around the rotation center axis;
A permanent magnet provided in the inner packet part;
A rotor of an internal magnet type synchronous machine comprising:
At least in the outer peripheral side region extending from the outer peripheral end of the permanent magnet to the outer peripheral end of the main body, has a low magnetic part having a lower magnetic permeability than the soft magnetic material,
The rotor of an internal magnet type synchronous machine, wherein the permanent magnet is a rare earth anisotropic bonded magnet injection-molded in the internal part to which an orientation magnetic field is applied.
前記低磁性部は、前記永久磁石の外周側端から前記本体の外周端まで連続している請求項1に記載の内包磁石型同期機の回転子。   The rotor of the internal magnet type synchronous machine according to claim 1, wherein the low magnetic part is continuous from an outer peripheral side end of the permanent magnet to an outer peripheral end of the main body. 前記低磁性部の少なくとも一部は、前記外周側領域内で前記本体の周方向に延在する架橋部を少なくとも部分的に改質した改質部である請求項1または2に記載の内包磁石型同期機の回転子。   The internal magnet according to claim 1, wherein at least a part of the low magnetic portion is a modified portion obtained by at least partially modifying a bridging portion extending in the circumferential direction of the main body in the outer peripheral region. Type synchronous machine rotor. 前記改質部は、前記本体の最外周端よりも内周側にある請求項3に記載の内包磁石型同期機の回転子。   The rotor of an internal magnet type synchronous machine according to claim 3, wherein the reforming part is located on the inner peripheral side of the outermost peripheral end of the main body. 前記低磁性部の少なくとも一部は、前記外周側領域内で前記架橋部の内周側に形成された空隙部または該空隙部に前記軟磁性材よりも透磁率の低い低磁性材が充填された充填部からなる補完部を有する請求項3または4に記載の内包磁石型同期機の回転子。   At least a part of the low magnetic part is filled with a low magnetic material having a lower magnetic permeability than the soft magnetic material in the gap formed in the outer peripheral side region or on the inner peripheral side of the bridging part. The rotor of the internal magnet-type synchronous machine according to claim 3 or 4, further comprising a complementary portion comprising a filled portion. 前記内包部は、内周側に湾曲した湾曲内包部である請求項1〜5のいずれかに記載の内包磁石型同期機の回転子。   The rotor of the internal magnet type synchronous machine according to any one of claims 1 to 5, wherein the internal packet part is a curved internal packet part that is curved toward an inner peripheral side. 前記本体は、前記湾曲内包部の内周側と外周側を連結する連結部を有する請求項6に記載の内包磁石型同期機の回転子。   The rotor of an internal magnet type synchronous machine according to claim 6, wherein the main body has a connecting portion that connects an inner peripheral side and an outer peripheral side of the curved inner envelope portion. 前記連結部は、前記軟磁性材よりも透磁率が低い低磁性連結部である請求項7に記載の内包磁石型同期機の回転子。   The rotor of an internal magnet type synchronous machine according to claim 7, wherein the connecting portion is a low magnetic connecting portion having a lower magnetic permeability than the soft magnetic material. 請求項1〜8のいずれかに記載の回転子と、
該回転子の外周囲に配設されたコイルと該コイルの外周側で磁気回路を構成するヨークとを有する固定子と、
を備えることを特徴とする内包磁石型同期機。
A rotor according to any one of claims 1 to 8,
A stator having a coil disposed on the outer periphery of the rotor and a yoke constituting a magnetic circuit on the outer peripheral side of the coil;
An internal magnet type synchronous machine comprising:
前記回転子は、前記永久磁石により形成された隣接する磁極間に、該磁極により生じるマグネットトルクと同一方向に作用するリラクタンストルクを生じさせる突極を有する請求項9に記載の内包磁石型同期機。   The internal magnet type synchronous machine according to claim 9, wherein the rotor has a salient pole that generates a reluctance torque that acts in the same direction as a magnet torque generated by the magnetic pole between adjacent magnetic poles formed by the permanent magnet. .
JP2012001647A 2012-01-06 2012-01-06 Magnet-inclusion type synchronous machine and rotor thereof Pending JP2013143791A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012001647A JP2013143791A (en) 2012-01-06 2012-01-06 Magnet-inclusion type synchronous machine and rotor thereof
PCT/JP2012/083732 WO2013103118A1 (en) 2012-01-06 2012-12-26 Internal magnet-type synchronous machine and rotor therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012001647A JP2013143791A (en) 2012-01-06 2012-01-06 Magnet-inclusion type synchronous machine and rotor thereof

Publications (1)

Publication Number Publication Date
JP2013143791A true JP2013143791A (en) 2013-07-22

Family

ID=48745570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012001647A Pending JP2013143791A (en) 2012-01-06 2012-01-06 Magnet-inclusion type synchronous machine and rotor thereof

Country Status (2)

Country Link
JP (1) JP2013143791A (en)
WO (1) WO2013103118A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147142A (en) * 2013-01-25 2014-08-14 Mitsuba Corp Rotor, brushless motor, and method of manufacturing rotor
WO2015137390A1 (en) * 2014-03-12 2015-09-17 ダイキン工業株式会社 Rotor production method
WO2016042720A1 (en) * 2014-09-16 2016-03-24 パナソニックIpマネジメント株式会社 Motor
JP2016127642A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Rotary electric machine
JP2016144369A (en) * 2015-02-04 2016-08-08 愛知製鋼株式会社 Magnet-included synchronous machine and rotor thereof
JP2016178784A (en) * 2015-03-19 2016-10-06 愛知製鋼株式会社 Manufacturing device for magnet member, and manufacturing method thereof
JP2018166399A (en) * 2018-07-10 2018-10-25 日立アプライアンス株式会社 Rotor assembly
US10790713B2 (en) 2014-08-11 2020-09-29 Fuji Electric Co., Ltd. Rotating electrical machine with rotor with plurality of umbrella-shaped portions with demagnetized center bridge portions
WO2023053307A1 (en) * 2021-09-29 2023-04-06 愛知製鋼株式会社 Rotor and electric motor
WO2023176802A1 (en) * 2022-03-16 2023-09-21 愛知製鋼株式会社 Interior permanent magnet motor and rotor thereof
EP4131747A4 (en) * 2020-03-31 2023-10-11 Aichi Steel Corporation Compressed bonded magnet, manufacturing method therefor, and field coil
JP7394427B1 (en) 2023-09-22 2023-12-08 マグネデザイン株式会社 Internal magnet type synchronous machine and its rotor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007593B2 (en) 2012-05-25 2016-10-12 株式会社ジェイテクト Rotor, rotating electric machine provided with the same, and method of manufacturing rotor
CN105723594A (en) * 2013-11-18 2016-06-29 操纵技术Ip控股公司 Low cost permanent magnet motor for an electric power steering system
CN104600938B (en) * 2013-12-25 2016-03-09 珠海格力节能环保制冷技术研究中心有限公司 Magneto
JP2017055493A (en) * 2015-09-07 2017-03-16 株式会社ジェイテクト Embedded magnet type rotor and manufacturing method of the same
JP6661939B2 (en) * 2015-09-29 2020-03-11 ダイキン工業株式会社 Rotor
DE102017105138A1 (en) 2017-03-10 2018-09-13 MS-Schramberg Holding GmbH Electromechanical component
WO2019065112A1 (en) * 2017-09-28 2019-04-04 アイシン・エィ・ダブリュ株式会社 Rotary electric rotor and method for manufacturing rotary electric rotor
EP3595136A1 (en) * 2018-07-13 2020-01-15 Siemens Aktiengesellschaft Robust layers of material
JP7275707B2 (en) * 2019-03-20 2023-05-18 愛知製鋼株式会社 MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
JP2020162329A (en) * 2019-03-27 2020-10-01 ダイキン工業株式会社 Rotor core and method for manufacturing the same
US11637467B2 (en) 2019-09-11 2023-04-25 Ford Global Technologies, Llc Adhesive mixture including hard magnetic material for e-machine rotor
FR3113988B1 (en) 2020-09-07 2023-04-28 Commissariat Energie Atomique DEVICE FOR THE FORMATION OF POLES OF A ROTOR

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331784A (en) * 1995-03-24 1996-12-13 Hitachi Metals Ltd Permanent-magnet type rotary electric machine
JPH11262205A (en) * 1998-03-12 1999-09-24 Fujitsu General Ltd Permanent magnet motor
JP2002010547A (en) * 2000-06-16 2002-01-11 Yamaha Motor Co Ltd Permanent magnet rotor and manufacturing method thereof
JP2005269840A (en) * 2004-03-22 2005-09-29 Denso Corp Rotary electric machine and method for manufacturing its rotor
JP5493405B2 (en) * 2009-03-16 2014-05-14 株式会社安川電機 ROTOR CORE MANUFACTURING METHOD, ROTOR CORE, ROTOR AND INTERNAL MAGNET TYPE ROTARY ELECTRIC

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147142A (en) * 2013-01-25 2014-08-14 Mitsuba Corp Rotor, brushless motor, and method of manufacturing rotor
WO2015137390A1 (en) * 2014-03-12 2015-09-17 ダイキン工業株式会社 Rotor production method
JP2015188305A (en) * 2014-03-12 2015-10-29 ダイキン工業株式会社 Method of manufacturing rotor
US10790713B2 (en) 2014-08-11 2020-09-29 Fuji Electric Co., Ltd. Rotating electrical machine with rotor with plurality of umbrella-shaped portions with demagnetized center bridge portions
JPWO2016042720A1 (en) * 2014-09-16 2017-06-22 パナソニックIpマネジメント株式会社 Electric motor
WO2016042720A1 (en) * 2014-09-16 2016-03-24 パナソニックIpマネジメント株式会社 Motor
JP2016127642A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Rotary electric machine
WO2016125853A1 (en) * 2015-02-04 2016-08-11 愛知製鋼株式会社 Inclusive magnet-type synchronous machine and rotor for same
JP2016144369A (en) * 2015-02-04 2016-08-08 愛知製鋼株式会社 Magnet-included synchronous machine and rotor thereof
JP2016178784A (en) * 2015-03-19 2016-10-06 愛知製鋼株式会社 Manufacturing device for magnet member, and manufacturing method thereof
JP2018166399A (en) * 2018-07-10 2018-10-25 日立アプライアンス株式会社 Rotor assembly
EP4131747A4 (en) * 2020-03-31 2023-10-11 Aichi Steel Corporation Compressed bonded magnet, manufacturing method therefor, and field coil
WO2023053307A1 (en) * 2021-09-29 2023-04-06 愛知製鋼株式会社 Rotor and electric motor
JPWO2023053307A1 (en) * 2021-09-29 2023-04-06
WO2023176802A1 (en) * 2022-03-16 2023-09-21 愛知製鋼株式会社 Interior permanent magnet motor and rotor thereof
JP7394427B1 (en) 2023-09-22 2023-12-08 マグネデザイン株式会社 Internal magnet type synchronous machine and its rotor

Also Published As

Publication number Publication date
WO2013103118A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
WO2013103118A1 (en) Internal magnet-type synchronous machine and rotor therefor
US7556082B2 (en) Interior permanent magnet rotors with multiple properties and methods of making same
EP2299558B1 (en) Permanent magnet type rotating electric machine
JP5900528B2 (en) Internal magnet type inner rotor manufacturing equipment
JP6007593B2 (en) Rotor, rotating electric machine provided with the same, and method of manufacturing rotor
WO2010058576A1 (en) Permanent magnet type rotating electric machine
WO2008023413A1 (en) Permanent magnetic type electric motor
JP2012165614A (en) Rotary electric machine
JP2011130598A (en) Axial gap permanent-magnet motor, rotor used in the same, and manufacturing method for the rotor
US20170250594A1 (en) Electric motor
CN106716781B (en) Electric machine with low slot leakage
US20230253843A1 (en) Adhesive mixture including hard magnetic material for e-machine rotor
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP5708745B2 (en) Apparatus for manufacturing rotor for internal magnet type motor and method for manufacturing the same
JP2012029563A (en) Permanent magnet type rotary electric machine
CN111509883A (en) Rotor assembly and axial magnetic field motor
JP6107299B2 (en) Method for manufacturing outer rotor of internal magnet type synchronous machine
JP2012249347A (en) Rotor of axial gap rotary electric machine
JP2016144322A (en) Rotor for rotary electric machine and manufacturing method for the same
JP7394427B1 (en) Internal magnet type synchronous machine and its rotor
JP7275707B2 (en) MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
JP2016178784A (en) Manufacturing device for magnet member, and manufacturing method thereof
JP7471580B1 (en) A rotor, a stator, an embedded magnet type synchronous machine including the rotor and the stator, and a manufacturing method of the rotor core and the stator core
JP5740250B2 (en) Permanent magnet rotating electric machine
Piscini et al. Comparison of different Surface Mounted Permanent Magnet patterns