JP2013142478A - Combustion control device for gas burner - Google Patents

Combustion control device for gas burner Download PDF

Info

Publication number
JP2013142478A
JP2013142478A JP2012001613A JP2012001613A JP2013142478A JP 2013142478 A JP2013142478 A JP 2013142478A JP 2012001613 A JP2012001613 A JP 2012001613A JP 2012001613 A JP2012001613 A JP 2012001613A JP 2013142478 A JP2013142478 A JP 2013142478A
Authority
JP
Japan
Prior art keywords
flow rate
air
gas
flow meter
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012001613A
Other languages
Japanese (ja)
Other versions
JP5844645B2 (en
Inventor
Yusuke Kawagoe
雄介 川越
Kazuki Kuwahara
万亀 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Toho Gas Co Ltd
Original Assignee
Azbil Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp, Toho Gas Co Ltd filed Critical Azbil Corp
Priority to JP2012001613A priority Critical patent/JP5844645B2/en
Publication of JP2013142478A publication Critical patent/JP2013142478A/en
Application granted granted Critical
Publication of JP5844645B2 publication Critical patent/JP5844645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion control device for a gas burner that can keep a less generated amount of noxious gas in a low flow rate region of fuel gas and combustion air in the gas burner.SOLUTION: The combustion control device 5 for the gas burner 1 includes a fuel control section 51, an air control section 52, a threshold detecting section 53, and a measured flow rate correcting section 54. The fuel control section 51 determines the opening of a gas flow rate control valve 31 to achieve a target combustion amount Qgr demanded of the gas burner 1. The air control section 52 determines the opening of an air flow rate control valve 32 so that a measured air ratio αm based on a measured flow rate Qgm of a gas flowmeter 41 and the measured flow rate Qam of an air flowmeter 42 is a predetermined target air ratio αr. The measured flow rate correcting section 54 makes a measured gas flow rate correction Hg for correcting the measured flow rate Qgm indicated by the gas flowmeter 41 to a larger value by a predetermined amount, and a measured air flow rate correction Ha for correcting the measured flow rate Qam indicated by the air flowmeter 42 to a smaller value by a predetermined amount when a low flow rate state X is detected by the threshold detecting section 53.

Description

本発明は、ガスバーナにおいて、燃料ガスと燃焼用空気との燃焼状態を制御する燃焼制御装置に関する。   The present invention relates to a combustion control device that controls a combustion state of fuel gas and combustion air in a gas burner.

ガス配管を流れる燃料ガスと空気配管を流れる燃焼用空気とを燃焼させるガスバーナにおいては、燃焼制御装置を用いて、空気比(又は空燃比、空気過剰率)を所定値に維持している。また、空気比を所定値に維持するために、ガス配管及び空気配管には、それぞれ流量調節弁及び差圧センサー(差圧流量計)を設けている。これにより、ガスバーナへ供給される燃料ガス及び燃焼用空気の流量を監視し、空気過剰による失火を防止するとともに、燃料過剰による一酸化炭素等の有毒ガスの発生を防止している。   In a gas burner that burns fuel gas flowing through a gas pipe and combustion air flowing through an air pipe, the air ratio (or air-fuel ratio, excess air ratio) is maintained at a predetermined value using a combustion control device. In order to maintain the air ratio at a predetermined value, the gas pipe and the air pipe are provided with a flow rate control valve and a differential pressure sensor (differential pressure flow meter), respectively. Accordingly, the flow rates of the fuel gas and combustion air supplied to the gas burner are monitored to prevent misfire due to excess air and to prevent generation of toxic gases such as carbon monoxide due to excess fuel.

例えば、特許文献1のバーナの空燃比を調整する方法及び装置においては、ガス配管に燃料差圧センサー及び制御バルブを設け、空気配管に空気差圧センサー及びファンを設けて、バーナの空燃比を調整することが開示されている。これによれば、大気圧又は温度の変化により、ファンに流入する空気の密度が変化したときでも、空気差圧センサーによってこれを検出し、ファンの出力を調整できることが開示されている。   For example, in the method and apparatus for adjusting the air-fuel ratio of the burner disclosed in Patent Document 1, a fuel differential pressure sensor and a control valve are provided in the gas pipe, an air differential pressure sensor and a fan are provided in the air pipe, and the air-fuel ratio of the burner is increased. Adjusting is disclosed. According to this, it is disclosed that even when the density of air flowing into the fan changes due to a change in atmospheric pressure or temperature, this can be detected by the air differential pressure sensor and the output of the fan can be adjusted.

特表2003−514212号公報Special table 2003-514212 gazette

ところで、燃料ガス及び燃焼用空気の測定に用いる流量計においては、測定可能流量範囲における低流量域においては、これらの測定に生じる誤差が大きくなる。つまり、流量計は、一般的にフルスケール(測定可能最大流量)に対して±0.1〜2%程度の誤差を有している。そのため、流量が少なくなればなるほど、流量の測定値に対する誤差の割合が大きくなり、低流量域の誤差が大きくなる。   By the way, in a flow meter used for measurement of fuel gas and combustion air, errors occurring in these measurements become large in a low flow rate range in the measurable flow rate range. That is, the flowmeter generally has an error of about ± 0.1 to 2% with respect to full scale (maximum measurable flow rate). Therefore, the smaller the flow rate, the larger the ratio of error to the flow rate measurement value, and the greater the error in the low flow rate region.

そして、ガスバーナに要求される負荷が小さく、燃料ガス及び燃焼用空気の流量を少なくしてガスバーナ運転を行うときには、流量計に生じる誤差によって、ガスバーナにおける空気比を適切に制御できないおそれがある。この場合、特に、ガスバーナにおける実際の空気比が小さくなってしまったときには、一酸化炭素等の有毒ガスの発生量が多くなるおそれがある。   When the gas burner is operated with a small load required for the gas burner and the flow rates of the fuel gas and the combustion air are reduced, there is a possibility that the air ratio in the gas burner cannot be controlled appropriately due to an error generated in the flow meter. In this case, particularly when the actual air ratio in the gas burner has become small, there is a risk that the amount of toxic gas such as carbon monoxide generated will increase.

本発明は、かかる従来の問題点に鑑みてなされたもので、ガスバーナにおける燃料ガス及び燃焼用空気の低流量域において、一酸化炭素等の有毒ガスの発生量を少なく維持することができるガスバーナの燃焼制御装置を提供しようとするものである。   The present invention has been made in view of such conventional problems, and is a gas burner capable of maintaining a small amount of toxic gas such as carbon monoxide in a low flow rate range of fuel gas and combustion air in a gas burner. A combustion control device is to be provided.

第1の発明は、ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記ガス流量計と上記空気流量計とのうちの少なくとも一方の測定流量が、それらの測定可能最大流量に対する所定割合以下となった低流量状態を検出する閾値検出部と、
該閾値検出部が上記低流量状態を検出しているとき、上記ガス流量計の測定流量を所定量大きな値に補正する測定ガス流量補正、及び上記空気流量計の測定流量を所定量小さな値に補正する測定空気流量補正の少なくとも一方を行う測定流量補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置にある(請求項1)。
1st invention connects the gas piping which provided the gas flow control valve and the gas flow meter, and the air piping which provided the air flow control valve and the air flow meter, the fuel gas which passes the said gas piping, and the said air A combustion control device equipped with a gas burner for burning combustion air passing through a pipe,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A threshold detection unit for detecting a low flow rate state in which the measured flow rate of at least one of the gas flow meter and the air flow meter is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate;
When the threshold detection unit detects the low flow rate state, the measurement gas flow rate correction for correcting the measurement flow rate of the gas flow meter to a large value by a predetermined amount, and the measurement flow rate of the air flow meter to a small value by a predetermined amount A combustion control device for a gas burner, comprising: a measurement flow rate correction unit that performs at least one of correction of the measurement air flow rate to be corrected.

第2の発明は、ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記ガス流量計と上記空気流量計とのうちの少なくとも一方の測定流量が、それらの測定可能最大流量に対する所定割合以下となった低流量状態を検出する閾値検出部と、
該閾値検出部が上記低流量状態を検出しているとき、上記測定空気比を所定量小さな値に補正する測定空気比補正、又は上記所定の目標空気比を所定量大きな値に調整する目標空気比調整のいずれかを行う空気比補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置にある(請求項2)。
According to a second aspect of the present invention, a gas pipe provided with a gas flow control valve and a gas flow meter and an air pipe provided with an air flow control valve and an air flow meter are connected, and the fuel gas and the air passing through the gas pipe are connected. A combustion control device equipped with a gas burner for burning combustion air passing through a pipe,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A threshold detection unit for detecting a low flow rate state in which the measured flow rate of at least one of the gas flow meter and the air flow meter is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate;
When the threshold detection unit detects the low flow rate state, the measurement air ratio correction for correcting the measurement air ratio to a small value by a predetermined amount, or the target air for adjusting the predetermined target air ratio to a large value by a predetermined amount An air ratio correction unit that performs any one of the ratio adjustments is provided. A combustion control apparatus for a gas burner (claim 2).

第3の発明は、ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記ガス流量計と上記空気流量計とのうちの少なくとも一方の測定流量が、それらの測定可能最大流量に対する所定割合以下となった低流量状態を検出する閾値検出部と、
該閾値検出部が上記低流量状態を検出しているとき、上記ガス流量調節弁の開度を所定量小さな開度に補正するガス開度補正、及び上記空気流量調節弁の開度を所定量大きな開度に補正する空気開度補正の少なくとも一方を行う開度補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置にある(請求項3)。
According to a third aspect of the present invention, a gas pipe provided with a gas flow control valve and a gas flow meter and an air pipe provided with an air flow control valve and an air flow meter are connected, and the fuel gas and the air passing through the gas pipe are connected. A combustion control device equipped with a gas burner for burning combustion air passing through a pipe,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A threshold detection unit for detecting a low flow rate state in which the measured flow rate of at least one of the gas flow meter and the air flow meter is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate;
When the threshold detection unit detects the low flow rate state, a gas opening degree correction for correcting the opening degree of the gas flow rate control valve to a small opening degree by a predetermined amount, and the opening degree of the air flow rate control valve by a predetermined amount A combustion control device for a gas burner, comprising: an opening correction unit that performs at least one of air opening correction for correcting to a large opening.

第4の発明は、ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記目標燃焼量が所定の燃焼量以下となる状態と、上記ガス流量調節弁の開度が所定の開度以下となる状態と、上記空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出する閾値検出部と、
該閾値検出部が上記3つの状態のいずれか1つ又は複数を検出しているとき、上記ガス流量計の測定流量を所定量大きな値に補正する測定ガス流量補正、及び上記空気流量計の測定流量を所定量小さな値に補正する測定空気流量補正の少なくとも一方を行う測定流量補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置にある(請求項4)。
According to a fourth aspect of the present invention, a gas pipe provided with a gas flow control valve and a gas flow meter and an air pipe provided with an air flow control valve and an air flow meter are connected, and the fuel gas and the air passing through the gas pipe are connected. A combustion control device equipped with a gas burner for burning combustion air passing through a pipe,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A state where the target combustion amount is less than or equal to a predetermined combustion amount, a state where the opening degree of the gas flow rate adjustment valve is less than or equal to a predetermined opening degree, and an opening degree of the air flow rate adjustment valve is less than or equal to a predetermined opening degree. A threshold detection unit that detects any one or more of the states;
When the threshold detection unit detects one or more of the three states, a measurement gas flow correction for correcting the measurement flow rate of the gas flow meter to a large value by a predetermined amount, and a measurement of the air flow meter A combustion control apparatus for a gas burner, comprising: a measurement flow rate correction unit that performs at least one of measurement air flow rate corrections that correct a flow rate to a small value by a predetermined amount (Claim 4).

第5の発明は、ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記目標燃焼量が所定の燃焼量以下となる状態と、上記ガス流量調節弁の開度が所定の開度以下となる状態と、上記空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出する閾値検出部と、
該閾値検出部が上記3つの状態のいずれか1つ又は複数を検出しているとき、上記測定空気比を所定量小さな値に補正する測定空気比補正、又は上記所定の目標空気比を所定量大きな値に調整する目標空気比調整のいずれかを行う空気比補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置にある(請求項5)。
According to a fifth aspect of the present invention, a gas pipe provided with a gas flow control valve and a gas flow meter and an air pipe provided with an air flow control valve and an air flow meter are connected, and the fuel gas and the air passing through the gas pipe are connected. A combustion control device equipped with a gas burner for burning combustion air passing through a pipe,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A state where the target combustion amount is less than or equal to a predetermined combustion amount, a state where the opening degree of the gas flow rate adjustment valve is less than or equal to a predetermined opening degree, and an opening degree of the air flow rate adjustment valve is less than or equal to a predetermined opening degree. A threshold detection unit that detects any one or more of the states;
When the threshold detection unit detects any one or more of the three states, the measurement air ratio correction for correcting the measurement air ratio to a value smaller by a predetermined amount, or the predetermined target air ratio by a predetermined amount The gas burner combustion control apparatus includes an air ratio correction unit that performs any one of the target air ratio adjustments adjusted to a large value.

第6の発明は、ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記目標燃焼量が所定の燃焼量以下となる状態と、上記ガス流量調節弁の開度が所定の開度以下となる状態と、上記空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出する閾値検出部と、
該閾値検出部が上記3つの状態のいずれか1つ又は複数を検出しているとき、上記ガス流量調節弁の開度を所定量小さな開度に補正するガス開度補正、及び上記空気流量調節弁の開度を所定量大きな開度に補正する空気開度補正の少なくとも一方を行う開度補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置にある(請求項6)。
According to a sixth aspect of the present invention, a gas pipe provided with a gas flow control valve and a gas flow meter and an air pipe provided with an air flow control valve and an air flow meter are connected, and the fuel gas and the air passing through the gas pipe are connected. A combustion control device equipped with a gas burner for burning combustion air passing through a pipe,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A state where the target combustion amount is less than or equal to a predetermined combustion amount, a state where the opening degree of the gas flow rate adjustment valve is less than or equal to a predetermined opening degree, and an opening degree of the air flow rate adjustment valve is less than or equal to a predetermined opening degree. A threshold detection unit that detects any one or more of the states;
When the threshold detection unit detects one or more of the three states, a gas opening correction for correcting the opening of the gas flow control valve to a small opening by a predetermined amount, and the air flow control A gas burner combustion control device comprising: an opening correction unit that performs at least one of air opening correction that corrects the opening of the valve to a large opening by a predetermined amount (Claim 6).

第1の発明のガスバーナの燃焼制御装置においては、ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続したガスバーナにおける燃焼制御を行う際に、燃料ガス又は燃焼用空気の流量が少なくなったときに、ガスバーナにおける実際の空気比が小さくなってしまうことを防止する工夫を行っている。
具体的には、本発明の燃焼制御装置は、閾値検出部及び測定流量補正部を備えた構成により、次の燃焼制御を行うことができる。
ガスバーナにおいて燃焼を行う際に、ガスバーナへの要求負荷が小さくなったときには、ガスバーナに要求される目標燃焼量が小さくなり、燃料制御部によってガス流量調節弁の開度が小さく調節される。このとき、ガスバーナにおける空気比が所定の目標空気比になるように、空気制御部によって空気流量調節弁の開度も小さく調節される。そして、ガス流量計及び空気流量計による各測定流量が小さくなる。
In the combustion control device for a gas burner according to the first aspect of the present invention, combustion control is performed in a gas burner in which a gas pipe provided with a gas flow rate control valve and a gas flow meter and an air pipe provided with an air flow rate control valve and an air flow meter are connected. When performing, the device which prevents that the actual air ratio in a gas burner will become small when the flow volume of fuel gas or combustion air decreases is performed.
Specifically, the combustion control device of the present invention can perform the following combustion control by a configuration including a threshold value detection unit and a measured flow rate correction unit.
When combustion is performed in the gas burner, when the required load on the gas burner becomes small, the target combustion amount required for the gas burner becomes small, and the opening degree of the gas flow rate control valve is adjusted to be small by the fuel control unit. At this time, the opening degree of the air flow rate adjustment valve is also adjusted to be small by the air control unit so that the air ratio in the gas burner becomes a predetermined target air ratio. And each measurement flow rate by a gas flow meter and an air flow meter becomes small.

このような状態において、本発明においては、閾値検出部によって、ガス流量計と空気流量計とのうちの少なくとも一方の測定流量が、流量計の測定可能最大流量に対する所定割合以下となったことを、低流量状態として検出する。そして、閾値検出部が低流量状態を検出しているときには、測定流量補正部によって、ガス流量計の測定流量を所定量大きな値に補正する測定ガス流量補正、及び空気流量計の測定流量を所定量小さな値に補正する測定空気流量補正の少なくとも一方を行う。   In such a state, in the present invention, the threshold detector detects that the measured flow rate of at least one of the gas flow meter and the air flow meter is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate of the flow meter. Detect as a low flow rate state. When the threshold detection unit detects a low flow rate state, the measurement flow rate correction unit corrects the measurement flow rate of the gas flow meter to a predetermined large value and the measurement flow rate of the air flow meter. At least one of the measurement air flow rate corrections for correcting the fixed amount to a small value is performed.

つまり、本発明においては、ガスバーナの低燃焼域(燃料ガス及び燃焼用空気の低流量域)において、ガス流量計及び空気流量計が示す測定流量に生じ得る誤差が大きくなったときには、意図的に、ガス流量計及び空気流量計の少なくとも一方の測定流量を補正する。これにより、各流量計に生じる誤差によって、ガスバーナにおける実際の空気比が所定の目標空気比よりも小さくなることを緩和することができる。
それ故、第1の発明のガスバーナの燃焼制御装置によれば、ガスバーナの低燃焼域において、一酸化炭素等の有毒ガスの発生量を少なく維持することができる。
In other words, in the present invention, when an error that may occur in the measured flow rate indicated by the gas flow meter and the air flow meter becomes large in the low combustion region of the gas burner (low flow region of fuel gas and combustion air), The measurement flow rate of at least one of the gas flow meter and the air flow meter is corrected. As a result, it is possible to mitigate the fact that the actual air ratio in the gas burner becomes smaller than the predetermined target air ratio due to an error occurring in each flow meter.
Therefore, according to the combustion control device for the gas burner of the first invention, the generation amount of toxic gas such as carbon monoxide can be kept small in the low combustion region of the gas burner.

第2の発明のガスバーナの燃焼制御装置は、閾値検出部が低流量状態を検出しているときに、空気比補正部が、測定空気比を所定量小さな値に補正する測定空気比補正、又は所定の目標空気比を所定量大きな値に調整する目標空気比調整のいずれかを行う点が、第1の発明と異なる。つまり、本発明においては、ガス流量計及び空気流量計の測定流量を補正する代わりに、測定空気比を補正するか、目標空気比を調整する。これにより、ガスバーナの低燃焼域において、各流量計に生じる誤差によって、バーナにおける実際の空気比が意図する空気比よりも小さくなることを緩和することができる。
それ故、第2の発明のガスバーナの燃焼制御装置によっても、ガスバーナの低燃焼域において、一酸化炭素等の有毒ガスの発生量を少なく維持することができる。
In the gas burner combustion control apparatus according to the second aspect of the invention, the air ratio correction unit corrects the measurement air ratio to a small value by a predetermined amount when the threshold detection unit detects a low flow rate state, or It differs from the first invention in that any one of the target air ratio adjustments for adjusting the predetermined target air ratio to a large value by a predetermined amount is performed. That is, in the present invention, instead of correcting the measured flow rates of the gas flow meter and the air flow meter, the measured air ratio is corrected or the target air ratio is adjusted. Thereby, in the low combustion area of the gas burner, it is possible to mitigate the fact that the actual air ratio in the burner becomes smaller than the intended air ratio due to an error occurring in each flow meter.
Therefore, the gas burner combustion control apparatus according to the second aspect of the invention can also maintain a small amount of toxic gas such as carbon monoxide in the low combustion region of the gas burner.

第3の発明のガスバーナの燃焼制御装置は、閾値検出部が上記低流量状態を検出しているときに、開度補正部が、ガス流量調節弁の開度を所定量小さな開度に補正するガス開度補正、及び空気流量調節弁の開度を所定量大きな開度に補正する空気開度補正の少なくとも一方を行う点が、第1の発明と異なる。つまり、本発明においては、ガス流量計及び空気流量計の測定流量を補正する代わりに、ガス流量調節弁及び空気調整弁の少なくとも一方の開度を補正する。これにより、ガスバーナの低燃焼域において、各流量計に生じる誤差によって、バーナにおける実際の空気比が所定の目標空気比よりも小さくなることを緩和することができる。
それ故、第3の発明のガスバーナの燃焼制御装置によっても、ガスバーナの低燃焼域において、一酸化炭素等の有毒ガスの発生量を少なく維持することができる。
In the combustion control device for a gas burner according to a third aspect of the invention, when the threshold detection unit detects the low flow rate state, the opening correction unit corrects the opening of the gas flow control valve to a small opening by a predetermined amount. It differs from the first invention in that at least one of gas opening correction and air opening correction for correcting the opening of the air flow rate control valve to a predetermined large opening is performed. That is, in the present invention, instead of correcting the measured flow rates of the gas flow meter and the air flow meter, the opening degree of at least one of the gas flow rate control valve and the air control valve is corrected. As a result, in the low combustion region of the gas burner, it is possible to mitigate the fact that the actual air ratio in the burner becomes smaller than the predetermined target air ratio due to an error occurring in each flow meter.
Therefore, the gas burner combustion control apparatus according to the third aspect of the invention can also maintain a small amount of toxic gas such as carbon monoxide in the low combustion region of the gas burner.

第4の発明のガスバーナの燃焼制御装置は、閾値検出部が、目標燃焼量が所定の燃焼量以下となる状態と、ガス流量調節弁の開度が所定の開度以下となる状態と、空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出し、この検出を行っているときに測定流量補正部が補正を行う点が、第1の発明と異なる。本発明においても、その他の構成は、第1の発明と同様であり、第1の発明と同様の作用効果を得ることができる。   In a combustion control device for a gas burner according to a fourth aspect of the present invention, the threshold detector has a state in which the target combustion amount is not more than a predetermined combustion amount, a state in which the opening of the gas flow rate control valve is not more than a predetermined opening, The first aspect of the invention is that the measurement flow rate correction unit performs correction when detecting any one or more of the state in which the opening degree of the flow rate control valve is equal to or less than the predetermined opening degree. And different. Also in the present invention, other configurations are the same as those of the first invention, and the same effects as those of the first invention can be obtained.

第5の発明のガスバーナの燃焼制御装置は、閾値検出部が、目標燃焼量が所定の燃焼量以下となる状態と、ガス流量調節弁の開度が所定の開度以下となる状態と、空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出し、この検出を行っているときに空気比補正部が補正を行う点が、第2の発明と異なる。本発明においても、その他の構成は、第2の発明と同様であり、第2の発明と同様の作用効果を得ることができる。   In a combustion control device for a gas burner according to a fifth aspect of the present invention, the threshold detector has a state in which the target combustion amount is not more than a predetermined combustion amount, a state in which the opening of the gas flow rate control valve is not more than a predetermined opening, The second aspect of the invention is that the air ratio correction unit performs correction when detecting any one or more of the state in which the opening degree of the flow rate control valve is equal to or less than the predetermined opening degree. And different. Also in the present invention, other configurations are the same as those of the second invention, and the same effects as those of the second invention can be obtained.

第6の発明のガスバーナの燃焼制御装置は、閾値検出部が、目標燃焼量が所定の燃焼量以下となる状態と、ガス流量調節弁の開度が所定の開度以下となる状態と、空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出し、この検出を行っているときに開度補正部が補正を行う点が、第3の発明と異なる。本発明においても、その他の構成は、第3の発明と同様であり、第3の発明と同様の作用効果を得ることができる。   In a combustion control device for a gas burner according to a sixth aspect of the present invention, the threshold detector has a state in which the target combustion amount is less than or equal to a predetermined combustion amount, a state in which the opening of the gas flow control valve is less than or equal to a predetermined opening, The third aspect of the invention is that the opening degree correction unit corrects when detecting any one or more of the state where the opening degree of the flow control valve is equal to or less than the predetermined opening degree. And different. Also in the present invention, other configurations are the same as those of the third invention, and the same effects as those of the third invention can be obtained.

実施例1にかかる、ガスバーナ及び燃焼制御装置の構成を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows the structure of the gas burner and combustion control apparatus concerning Example 1. FIG. 実施例1にかかる、燃焼制御装置の構成を示すブロック線図。1 is a block diagram showing a configuration of a combustion control device according to Embodiment 1. FIG. 実施例1にかかる、差圧流量計について、横軸に、測定可能最大流量に対する測定流量の割合である流量割合をとり、縦軸に、リード誤差をとって、最大リード誤差の変化を示すグラフ。About the differential pressure flowmeter according to Example 1, the horizontal axis represents the flow rate ratio, which is the ratio of the measured flow rate to the maximum measurable flow rate, and the vertical axis represents the lead error, showing the change in the maximum read error. . 実施例1にかかる、横軸に、ガスバーナの最大燃焼量に対する燃焼量の割合である燃焼割合をとり、縦軸に、リード誤差をとって、測定空気比の最大リード誤差の変化を示すグラフ。The graph which shows the change of the maximum read error of measurement air ratio which takes the combustion ratio which is a ratio of the combustion amount with respect to the maximum combustion amount of a gas burner on a horizontal axis, and takes a read error on a vertical axis | shaft concerning Example 1. FIG. 実施例1にかかる、横軸に、ガスバーナの最大燃焼量に対する燃焼量の割合である燃焼割合をとり、縦軸に、空気比のリード誤差をとって、実際の空気比がとり得る誤差範囲等を示すグラフ。According to the first embodiment, the horizontal axis represents the combustion ratio that is the ratio of the combustion amount to the maximum combustion amount of the gas burner, and the vertical axis represents the air ratio lead error, and the error range that the actual air ratio can take. Graph showing. 実施例1にかかる、横軸にガス流量計の測定流量をとり、縦軸に測定ガス流量補正を行った後の補正測定流量をとって、これらの関係を示すグラフ。FIG. 3 is a graph showing the relationship between the first embodiment, with the measured flow rate of the gas flow meter on the horizontal axis and the corrected measured flow rate after correcting the measured gas flow rate on the vertical axis. 実施例1にかかる、横軸にガス流量計の測定流量をとり、縦軸に実際のガス流量をとって、実際のガス流量がとり得る流量範囲を示すグラフ。The graph which shows the flow volume range which can take the actual gas flow rate by taking the measurement flow volume of a gas flowmeter on the horizontal axis and taking the actual gas flow volume on the vertical axis according to the first embodiment. 実施例1にかかる、横軸に空気流量計の測定流量をとり、縦軸に測定空気流量補正を行った後の補正測定流量をとって、これらの関係を示すグラフ。The graph which shows these relationship, taking the measurement flow volume of an air flowmeter concerning Example 1, and taking the correction | amendment measurement flow volume after performing measurement air flow rate correction | amendment to a vertical axis | shaft. 実施例1にかかる、横軸に空気流量計の測定流量をとり、縦軸に実際の空気流量をとって、実際の空気流量がとり得る流量範囲を示すグラフ。The graph which shows the flow range which can take the actual air flow rate which takes the measurement flow volume of an air flowmeter on a horizontal axis | shaft and takes an actual air flow rate on a vertical axis | shaft concerning Example 1. FIG. 実施例2にかかる、燃焼制御装置の構成を示すブロック線図。FIG. 3 is a block diagram showing a configuration of a combustion control device according to a second embodiment. 実施例3にかかる、燃焼制御装置の構成を示すブロック線図。FIG. 6 is a block diagram showing a configuration of a combustion control device according to a third embodiment.

上述した第1〜第6の発明のガスバーナの燃焼制御装置における好ましい実施の形態につき説明する。
第1〜第6の発明において、上記流路絞り部とは、配管の絞り部のことをいい、配管の流路断面積を他の一般部に比べて小さくする種々の構造とすることができる。流路絞り部は、例えば、オリフィス、ベンチュリ、Vコーン等とすることができる。
A preferred embodiment of the combustion control apparatus for a gas burner according to the first to sixth inventions described above will be described.
In the first to sixth aspects of the invention, the flow passage restricting portion refers to a restricting portion of a pipe, and can have various structures that make the flow passage cross-sectional area of the pipe smaller than other general parts. . The channel restricting portion can be, for example, an orifice, a venturi, a V cone, or the like.

第1、第3の発明において、上記測定ガス流量補正は、上記ガス流量計のフルスケール誤差FS(%)を、該ガス流量計の測定可能最大流量に対する該ガス流量計の測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、上記ガス流量計の測定流量が少なくなるほど補正量を大きくして行い、上記測定空気流量補正は、上記空気流量計のフルスケール誤差FS(%)を、該空気流量計の測定可能最大流量に対する該空気流量計の測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、上記空気流量計の測定流量が少なくなるほど補正量を大きくして行うことが好ましい(請求項7)。
この場合には、測定ガス流量補正及び測定空気流量補正をより適切に行うことができる。
In the first and third aspects of the invention, the measurement gas flow rate correction is performed by setting the full-scale error FS (%) of the gas flow meter to the ratio TD of the measured flow rate of the gas flow meter to the maximum measurable flow rate of the gas flow meter. Corresponding to the increase in read error RD (%) (= FS / TD) obtained by dividing by (−), the correction amount is increased as the measured flow rate of the gas flow meter decreases, and the measured air flow rate is increased. The correction is performed by dividing the full-scale error FS (%) of the air flow meter by a ratio TD (−) of the measured flow rate of the air flow meter to the maximum measurable flow rate of the air flow meter RD (−). %) (= FS / TD), the correction amount is preferably increased as the measured flow rate of the air flow meter decreases.
In this case, the measurement gas flow rate correction and the measurement air flow rate correction can be performed more appropriately.

第2、第4の発明において、上記測定空気比補正及び上記目標空気比調整は、上記ガス流量計のフルスケール誤差FS(%)を、該ガス流量計の測定可能最大流量に対する該ガス流量計の測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、上記ガス流量計の測定流量が小さくなるほど補正量又は調整量を大きくして行うことが好ましい(請求項8)。
この場合には、測定空気比補正及び目標空気比調整をより適切に行うことができる。
In the second and fourth inventions, the correction of the measured air ratio and the adjustment of the target air ratio are performed by using the gas flow meter with respect to the maximum measurable flow rate of the gas flow meter. Corresponding to the increase in the read error RD (%) (= FS / TD) obtained by dividing by the measured flow rate ratio TD (−), the correction amount or adjustment amount becomes smaller as the measured flow rate of the gas flow meter becomes smaller. It is preferable to carry out by enlarging (Claim 8).
In this case, the measurement air ratio correction and the target air ratio adjustment can be performed more appropriately.

第3、第6の発明において、上記ガス開度補正及び上記空気開度補正は、上記ガス流量計のフルスケール誤差FS(%)を、該ガス流量計の測定可能最大流量に対する該ガス流量計の測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、上記ガス流量計の測定流量が小さくなるほど開度の補正量を大きくして行うことが好ましい(請求項9)。
この場合には、ガス開度補正及び空気開度補正をより適切に行うことができる。
In the third and sixth aspects of the invention, the gas opening correction and the air opening correction may be performed by setting the full-scale error FS (%) of the gas flow meter to the maximum measurable flow rate of the gas flow meter. Corresponding to the increase in the read error RD (%) (= FS / TD) obtained by dividing by the measured flow rate ratio TD (−), the correction amount of the opening becomes smaller as the measured flow rate of the gas flow meter becomes smaller. It is preferable to carry out by enlarging (Claim 9).
In this case, the gas opening correction and the air opening correction can be performed more appropriately.

また、第1〜第6の発明において、上記ガス流量計と上記空気流量計とは、流路絞り部の上流側の圧力と下流側の圧力との差圧から流量を測定する差圧流量計とすることができる(請求項10)。
この場合には、差圧流量計を用いる際に生じる誤差を補正して、ガスバーナの低燃焼域において、一酸化炭素等の有毒ガスの発生量を少なく維持することができる。
In the first to sixth inventions, the gas flow meter and the air flow meter are differential pressure flow meters that measure a flow rate from a differential pressure between an upstream pressure and a downstream pressure of the flow restrictor. (Claim 10).
In this case, an error generated when the differential pressure flow meter is used can be corrected, and the generation amount of toxic gas such as carbon monoxide can be kept small in the low combustion region of the gas burner.

以下に、本発明のガスバーナの燃焼制御装置にかかる実施例につき、図面を参照して説明する。
(実施例1)
図1は、ガスバーナ1及び燃焼制御装置5の構成を示す。
本例のガスバーナ1の燃焼制御装置5は、図1に示すごとく、ガス流量調節弁31及びガス流量計41を設けたガス配管21と、空気流量調節弁32及び空気流量計42を設けた空気配管22とが接続され、ガス配管21を通過する燃料ガスGと空気配管22を通過する燃焼用空気Aとを燃焼させるガスバーナ1に対して装備する。
燃焼制御装置5は、以下の燃料制御部51、空気制御部52、閾値検出部53及び測定流量補正部54を備えている。
Embodiments of a combustion control apparatus for a gas burner according to the present invention will be described below with reference to the drawings.
Example 1
FIG. 1 shows the configuration of the gas burner 1 and the combustion control device 5.
As shown in FIG. 1, the combustion control device 5 of the gas burner 1 of this example includes a gas pipe 21 provided with a gas flow rate control valve 31 and a gas flow meter 41, and an air provided with an air flow rate control valve 32 and an air flow meter 42. A pipe 22 is connected to the gas burner 1 for burning the fuel gas G passing through the gas pipe 21 and the combustion air A passing through the air pipe 22.
The combustion control device 5 includes the following fuel control unit 51, air control unit 52, threshold detection unit 53, and measured flow rate correction unit 54.

図2は、燃焼制御装置5の制御ブロック線図を示す。
同図に示すごとく、燃料制御部51は、ガスバーナ1に要求される目標燃焼量(目標ガス流量)Qgrを達成するようガス流量調節弁31の開度を決定するよう構成されている。空気制御部52は、ガス流量計41の測定流量Qgmと空気流量計42の測定流量Qamとに基づく測定空気比αmが、所定の目標空気比αrになるよう空気流量調節弁32の開度を決定する。閾値検出部53は、ガス流量計41の測定流量Qgmが、このガス流量計41の測定可能最大流量に対する所定割合以下となった低流量状態Xを検出する。
測定流量補正部54は、閾値検出部53が低流量状態Xを検出しているとき、ガス流量計41が示す測定流量Qgmを所定量大きな値に補正する測定ガス流量補正Hgと、空気流量計42が示す測定流量Qamを所定量小さな値に補正する測定空気流量補正Haとを行う。
FIG. 2 shows a control block diagram of the combustion control device 5.
As shown in the figure, the fuel control unit 51 is configured to determine the opening of the gas flow rate control valve 31 so as to achieve a target combustion amount (target gas flow rate) Qgr required for the gas burner 1. The air control unit 52 adjusts the opening of the air flow control valve 32 so that the measured air ratio αm based on the measured flow rate Qgm of the gas flow meter 41 and the measured flow rate Qam of the air flow meter 42 becomes a predetermined target air ratio αr. decide. The threshold detector 53 detects a low flow rate state X in which the measured flow rate Qgm of the gas flow meter 41 is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate of the gas flow meter 41.
The measurement flow rate correction unit 54 includes a measurement gas flow rate correction Hg for correcting the measurement flow rate Qgm indicated by the gas flow meter 41 to a large value by a predetermined amount when the threshold detection unit 53 detects the low flow rate state X, and an air flow meter. A measurement air flow rate correction Ha for correcting the measurement flow rate Qam indicated by 42 to a value smaller by a predetermined amount is performed.

以下に、本例のガスバーナ1の燃焼制御装置5につき、図1〜図9を参照して詳説する。
図1、図2に示すごとく、本例のガスバーナ1は、加熱炉、熱処理炉等の燃焼炉11に配設して用いるものであり、燃焼炉11内の温度Tを所定の目標温度Trに維持するために用いる。燃焼炉11には、温度計12が設けてあり、燃焼制御装置5は、温度計12によって測定する燃焼炉11内の温度Tが、所定の目標温度Trになるよう制御する。この制御は、いわゆるPID制御等によって行うことができる。
空気配管22の入口には、大気から空気を吸い込んで空気配管22へ送り出すブロア221が配設してある。空気配管22には、空気流量調節弁32及び空気流量計42の他に、空気温度計222が設けてある。空気温度計222は、測定空気比αmの算出において燃焼用空気Aの温度によるばらつきを補正するために用いる。
Hereinafter, the combustion control device 5 of the gas burner 1 of this example will be described in detail with reference to FIGS.
As shown in FIGS. 1 and 2, the gas burner 1 of this example is used by being disposed in a combustion furnace 11 such as a heating furnace or a heat treatment furnace, and the temperature T in the combustion furnace 11 is set to a predetermined target temperature Tr. Used to maintain. The combustion furnace 11 is provided with a thermometer 12, and the combustion control device 5 controls the temperature T in the combustion furnace 11 measured by the thermometer 12 to be a predetermined target temperature Tr. This control can be performed by so-called PID control or the like.
A blower 221 that sucks air from the atmosphere and sends it out to the air pipe 22 is disposed at the inlet of the air pipe 22. In addition to the air flow rate adjustment valve 32 and the air flow meter 42, the air pipe 22 is provided with an air thermometer 222. The air thermometer 222 is used to correct variations due to the temperature of the combustion air A in calculating the measurement air ratio αm.

図1に示すごとく、ガス配管21は、都市ガス(13A等)の供給源211に接続してある。ガス配管21には、ガス流量調節弁31及びガス流量計41の他に、ガス温度計213が設けてある。ガス温度計213は、測定空気比αmの算出において燃料ガスGの温度によるばらつきを補正するために用いる。また、ガス配管21には、安全遮断弁212を設けることができる。
本例の燃焼制御装置5は、制御コンピュータによって構成されており、燃料制御部51、空気制御部52、閾値検出部53及び測定流量補正部54は、制御コンピュータのプログラムとして構成されている。
As shown in FIG. 1, the gas pipe 21 is connected to a supply source 211 for city gas (such as 13A). In addition to the gas flow control valve 31 and the gas flow meter 41, the gas pipe 21 is provided with a gas thermometer 213. The gas thermometer 213 is used to correct variations due to the temperature of the fuel gas G in calculating the measurement air ratio αm. The gas pipe 21 can be provided with a safety shut-off valve 212.
The combustion control device 5 of this example is configured by a control computer, and the fuel control unit 51, the air control unit 52, the threshold value detection unit 53, and the measured flow rate correction unit 54 are configured as a program of the control computer.

図2に示すごとく、ガスバーナ1に要求される目標燃焼量Qgrは、コントローラKにおいて、燃焼炉11内の温度Tを目標温度Trに維持するときの燃焼量として決定される。ガス流量調節弁31の開度は、温度計12による燃焼炉11内の温度変化に応じて決定される目標燃焼量Qgrに従って変更される。
温度のコントローラKは、目標温度Trと温度計12によって測定した燃焼炉11内の温度Tとの偏差がゼロになるように、目標燃焼量Qgrを決定する。また、ガス制御部51は、コントローラKgによってガス流量調節弁31を操作し、目標燃焼量(目標ガス流量)Qgrとガス流量計41によって測定したガス流量Qgmとの偏差がゼロになるように制御する。
As shown in FIG. 2, the target combustion amount Qgr required for the gas burner 1 is determined by the controller K as a combustion amount when the temperature T in the combustion furnace 11 is maintained at the target temperature Tr. The opening degree of the gas flow rate control valve 31 is changed according to a target combustion amount Qgr determined according to a temperature change in the combustion furnace 11 by the thermometer 12.
The temperature controller K determines the target combustion amount Qgr so that the deviation between the target temperature Tr and the temperature T in the combustion furnace 11 measured by the thermometer 12 becomes zero. Further, the gas control unit 51 operates the gas flow rate control valve 31 with the controller Kg so that the deviation between the target combustion amount (target gas flow rate) Qgr and the gas flow rate Qgm measured with the gas flow meter 41 becomes zero. To do.

空気制御部52は、ガス流量計41の測定流量Qgmと空気流量計42の測定流量Qamとから、測定空気比αmを求めることができる。この測定空気比αmは、空気流量計42によって測定した測定流量Qamの燃焼用空気Aの量が、ガス流量計41によって測定した測定流量Qgmの燃料ガスGの量を完全燃焼させるときの理論空気量に対して何倍になっているかを示す。
本例においては、図2に示すごとく、空気流量算出部Iにおいて、ガス流量計41の測定流量Qgmに基づいて、目標空気比αrを達成するときの目標空気流量Qarを求めている。そして、空気制御部52は、コントローラKaによって空気流量調節弁32を操作し、目標空気流量Qarと空気流量計42によって測定した空気流量Qamとの偏差がゼロになるように制御する。
The air control unit 52 can obtain the measured air ratio αm from the measured flow rate Qgm of the gas flow meter 41 and the measured flow rate Qam of the air flow meter 42. This measured air ratio αm is the theoretical air when the amount of combustion air A at the measured flow rate Qam measured by the air flow meter 42 completely burns the amount of the fuel gas G at the measured flow rate Qgm measured by the gas flow meter 41. Shows how many times the amount.
In this example, as shown in FIG. 2, the air flow rate calculation unit I obtains the target air flow rate Qar when the target air ratio αr is achieved based on the measured flow rate Qgm of the gas flow meter 41. Then, the air control unit 52 operates the air flow rate adjustment valve 32 with the controller Ka so that the deviation between the target air flow rate Qar and the air flow rate Qam measured with the air flow meter 42 becomes zero.

所定の目標空気比αrは、失火を防止して、一酸化炭素等の有毒ガスの発生を防止することができる空気比として所定の値(一定値)に設定してある。そして、本例の空気制御部52は、ガスバーナ1へ供給する燃料ガスG及び燃焼用空気Aによる空気比が一定になるよう空気流量調節弁32の開度を調節する。
本例の空気制御部52は、目標空気比αrが一定値になるよう制御するため、空気流量計42による測定流量Qamは、ガス流量計41による測定流量Qgmに比例して増減する。
The predetermined target air ratio αr is set to a predetermined value (constant value) as an air ratio that can prevent misfire and prevent generation of toxic gases such as carbon monoxide. And the air control part 52 of this example adjusts the opening degree of the air flow control valve 32 so that the air ratio by the fuel gas G supplied to the gas burner 1 and the combustion air A becomes constant.
Since the air control unit 52 of this example controls the target air ratio αr to be a constant value, the measured flow rate Qam by the air flow meter 42 increases or decreases in proportion to the measured flow rate Qgm by the gas flow meter 41.

図1に示すごとく、本例のガス流量計41は、ガス配管21に設けた流路絞り部210の上流側の圧力と下流側の圧力との差圧から流量を測定する差圧流量計である。また、空気流量計42も、空気配管22に設けた流路絞り部220の上流側の圧力と下流側の圧力との差圧から流量を測定する差圧流量計である。
各差圧流量計は、測定可能最大流量に対する誤差の割合であるフルスケール誤差を有している。このフルスケール誤差は、例えば、±0.1〜2%として表される。本例の各差圧流量計には、フルスケール誤差が±0.2%のものを用いた。
一方、差圧流量計によって実際に流量を測定するときには、流量の測定値が小さくなるほど、流量に対するフルスケール誤差の割合が増加する。そのため、実際の流量測定時に生じ得る誤差は、リード誤差(読取誤差)として、流量の測定値が小さくなるほど大きくなる誤差として表される。
As shown in FIG. 1, the gas flow meter 41 of this example is a differential pressure flow meter that measures the flow rate from the differential pressure between the upstream side pressure and the downstream side pressure of the flow restrictor 210 provided in the gas pipe 21. is there. The air flow meter 42 is also a differential pressure flow meter that measures the flow rate from the differential pressure between the pressure on the upstream side and the pressure on the downstream side of the flow restrictor 220 provided in the air pipe 22.
Each differential pressure flow meter has a full scale error which is the ratio of the error to the maximum measurable flow rate. This full-scale error is expressed as ± 0.1 to 2%, for example. Each differential pressure flowmeter of this example was used with a full-scale error of ± 0.2%.
On the other hand, when the flow rate is actually measured by the differential pressure flow meter, the ratio of the full-scale error to the flow rate increases as the flow rate measurement value decreases. For this reason, an error that may occur during actual flow rate measurement is expressed as a read error (reading error) that increases as the flow rate measurement value decreases.

図3は、差圧流量計について、横軸に、測定可能最大流量に対する測定流量の割合である流量割合(%)をとり、縦軸に、リード誤差をとって、最大リード誤差(ラインL1で示す。)の変化を示す。差圧流量計のリード誤差は、プラス側とマイナス側のラインL1の間において任意に変化することになる。同図においては、フルスケール誤差が、±0.1%、±0.2%、±0.5%の場合を示す。リード誤差は、プラス側とマイナス側とへ、流量割合が小さくなるほど指数関数的に増大することがわかる。また、フルスケール誤差が大きいほど、リード誤差がより大きくなり易いことがわかる。   FIG. 3 shows the flow rate ratio (%), which is the ratio of the measured flow rate to the maximum measurable flow rate, on the horizontal axis, and the read error on the vertical axis. Change). The lead error of the differential pressure flow meter is arbitrarily changed between the plus side and the minus side line L1. In the figure, the case where the full scale error is ± 0.1%, ± 0.2%, ± 0.5% is shown. It can be seen that the read error increases exponentially as the flow rate ratio decreases from the plus side to the minus side. It can also be seen that the read error tends to increase as the full-scale error increases.

図4は、差圧流量計から構成したガス流量計41及び空気流量計42によって測定した測定空気比αmについて、各流量計41,42のフルスケール誤差が±0.2%としたときの測定空気比αmの最大リード誤差(ラインL2によって示す。)の変化を示す。測定空気比αmのリード誤差は、プラス側とマイナス側のラインL2の間において任意に変化することになる。   FIG. 4 shows the measured air ratio αm measured by the gas flow meter 41 and the air flow meter 42 constituted by a differential pressure flow meter when the full-scale error of each flow meter 41, 42 is ± 0.2%. The change in the maximum read error (indicated by line L2) of the air ratio αm is shown. The lead error of the measurement air ratio αm is arbitrarily changed between the plus side and the minus side line L2.

同図においては、横軸に、ガスバーナ1の最大燃焼量(ガス流量計41の測定可能最大流量)に対する燃焼量(ガス流量計41の測定流量)の割合である燃焼割合(流量割合)(%)をとり、縦軸に、リード誤差をとって、測定空気比αmの最大リード誤差の変化を示す。同図においては、ガス流量計41がその測定可能最大流量において、ガス配管21に供給される燃料ガスGの最大流量(100%)を測定し、かつ、空気流量計42がその測定可能最大流量において、空気配管22に供給される燃焼用空気Aの最大流量(100%)を測定すると仮定する。
同図に示すごとく、測定空気比αmのリード誤差は、ガス流量計41のリード誤差と空気流量計42のリード誤差とが、プラス側とマイナス側とへそれぞれ重畳した値となる。
In the figure, the horizontal axis indicates the combustion ratio (flow rate ratio) (%) that is the ratio of the combustion amount (measured flow rate of the gas flow meter 41) to the maximum combustion amount of the gas burner 1 (maximum measurable flow rate of the gas flow meter 41). ) And the vertical axis represents the lead error, and shows the change in the maximum lead error of the measured air ratio αm. In the figure, the gas flow meter 41 measures the maximum flow rate (100%) of the fuel gas G supplied to the gas pipe 21 at the maximum measurable flow rate, and the air flow meter 42 measures the maximum measurable flow rate. , It is assumed that the maximum flow rate (100%) of the combustion air A supplied to the air pipe 22 is measured.
As shown in the figure, the lead error of the measured air ratio αm is a value obtained by superimposing the lead error of the gas flow meter 41 and the lead error of the air flow meter 42 on the plus side and the minus side, respectively.

リード誤差RD(%)は、フルスケール誤差FS(%)、及び測定可能最大流量(最大燃焼量)に対する測定流量(燃焼量)の割合TD(−)(TD(%)とも表す。)を用いて、RD(%)=FS(%)/TD(−)によって求められる。
また、ガス流量計41の測定可能最大流量に対する測定流量の割合TD(%)は、閾値検出部53において用いるガス流量計41の測定可能最大流量に対する所定割合を意味する。
For the lead error RD (%), a full-scale error FS (%) and a ratio TD (−) (also referred to as TD (%)) of the measured flow rate (combustion amount) to the maximum measurable flow rate (maximum combustion amount) are used. RD (%) = FS (%) / TD (−).
Further, the ratio TD (%) of the measured flow rate with respect to the maximum measurable flow rate of the gas flow meter 41 means a predetermined ratio with respect to the maximum measurable flow rate of the gas flow meter 41 used in the threshold detection unit 53.

本例においては、一酸化炭素等の有毒ガスの発生を抑制するため、各差圧流量計41,42に生じる誤差によって、ガスバーナ1における実際の空気比αが小さい方向に振れてしまうことを防止する。実際の空気比αが小さい方向に振れてしまう要因は、各差圧流量計41,42に基づいて求めた測定空気比αmが実際よりも大きい値を示してしまい、空気流量調節弁32の開度調節によるガスバーナ1への燃焼用空気Aの供給量が少なくなってしまうことにある。
本例の制御ブロック(図2)について言い換えれば、ガス流量計41による測定流量Qgmに実際の流量よりも小さいマイナス誤差が生じ、空気流量算出部Iにおいて、このマイナス誤差が生じた測定流量Qgmに基づいて、目標空気比αrを達成するときの目標空気流量Qarが求められ、さらに、空気流量計42による測定流量Qamに実際の流量よりも大きいプラス誤差が生じる場合である。
In this example, in order to suppress the generation of toxic gas such as carbon monoxide, it is prevented that the actual air ratio α in the gas burner 1 is swung in a small direction due to an error generated in each differential pressure flow meter 41, 42. To do. The factor that the actual air ratio α is swung in the smaller direction is that the measured air ratio αm obtained based on the differential pressure flow meters 41 and 42 is larger than the actual value, and the air flow control valve 32 is opened. The supply amount of the combustion air A to the gas burner 1 by adjusting the degree is reduced.
In other words, in the control block of this example (FIG. 2), a negative error smaller than the actual flow rate occurs in the measured flow rate Qgm by the gas flow meter 41, and the air flow rate calculation unit I sets the measured flow rate Qgm in which this negative error has occurred. Based on this, the target air flow rate Qar when the target air ratio αr is achieved is obtained, and further, a positive error larger than the actual flow rate occurs in the measured flow rate Qam by the air flow meter 42.

また、ガスバーナ1における実際の空気比αが最も小さい方向に振れてしまう場合は、測定空気比αmが最も大きく算出される場合である。この場合は、ガス流量計41においては、その測定流量Qgmが実際の流量よりも小さい値を示すマイナス誤差が生じ、空気流量計42においては、その測定流量Qamが実際の流量よりも大きい値を示すプラス誤差が生じる場合である。   Further, the case where the actual air ratio α in the gas burner 1 is swung in the smallest direction is the case where the measured air ratio αm is calculated to be the largest. In this case, the gas flow meter 41 has a negative error indicating that the measured flow rate Qgm is smaller than the actual flow rate. In the air flow meter 42, the measured flow rate Qam has a larger value than the actual flow rate. This is a case where a plus error shown occurs.

そこで、本例の燃焼制御装置5においては、ガス流量計41によって測定する燃料ガスGの流量が、所定の低流量以下にあるときには、測定空気比αmを目標空気比αrに近づける通常の制御から、ガスバーナ1における実際の空気比αが大きくなる方向にシフトさせる低流量時制御に切り替える。
この切替を行うときの燃料ガスGの流量は、実際の空気比αが小さい方向に振れた場合に、一酸化炭素等の有毒ガスの発生量として許容される許容下限空気比αzを基準として決定する。この許容下限空気比αzは、目標空気比αrに対する許容最大誤差−E(%)として表す。
Therefore, in the combustion control device 5 of this example, when the flow rate of the fuel gas G measured by the gas flow meter 41 is equal to or lower than a predetermined low flow rate, normal control for bringing the measured air ratio αm closer to the target air ratio αr is performed. Then, the control is switched to the low flow rate control in which the actual air ratio α in the gas burner 1 is shifted in the increasing direction.
The flow rate of the fuel gas G at the time of this switching is determined based on the allowable lower limit air ratio αz that is allowed as the generation amount of toxic gases such as carbon monoxide when the actual air ratio α fluctuates in a small direction. To do. This allowable lower limit air ratio αz is expressed as an allowable maximum error −E (%) with respect to the target air ratio αr.

実際の空気比αのマイナス側の最大リード誤差−F(%)は、ガス流量計41に生じるリード誤差RDg(%)と空気流量計42に生じるリード誤差RDa(%)とを用いて、−F(%)={(100−RDg)/(100+RDa)−1}×100によって表される。
また、実際の空気比αのプラス側の最大リード誤差+F(%)は、ガス流量計41に生じるリード誤差RDg(%)と空気流量計42に生じるリード誤差RDa(%)とを用いて、+F(%)={(100+RDg)/(100−RDa)−1}×100によって表される。
本例においては、ガス流量計41と空気流量計42とに同じ差圧流量計を用いており、ガス流量計41と空気流量計42とのフルスケール誤差は同じである。そのため、各流量計41,42の所定の測定流量におけるRDg(%)とRDa(%)とは同じ値になる。
The maximum negative lead error −F (%) of the actual air ratio α is obtained by using the lead error RDg (%) generated in the gas flow meter 41 and the lead error RDa (%) generated in the air flow meter 42 − F (%) = {(100−RDg) / (100 + RDa) −1} × 100.
Further, the maximum lead error + F (%) on the positive side of the actual air ratio α is obtained by using the lead error RDg (%) generated in the gas flow meter 41 and the lead error RDa (%) generated in the air flow meter 42. + F (%) = {(100 + RDg) / (100−RDa) −1} × 100.
In this example, the same differential pressure flow meter is used for the gas flow meter 41 and the air flow meter 42, and the full-scale error between the gas flow meter 41 and the air flow meter 42 is the same. Therefore, RDg (%) and RDa (%) at a predetermined measurement flow rate of each flow meter 41, 42 have the same value.

本例の閾値検出部53は、実際の空気比αのマイナス側の最大リード誤差(実際の空気比αがマイナス側にずれる可能性のある最大リード誤差)−F(%)が、目標空気比αrに対する許容下限空気比αzの許容最大誤差−E(%)と同じになるときの流量割合TD(%)(ガス流量計41の測定可能最大流量に対する所定割合)を、低流量状態Xを検出するときの流量割合閾値TDx(%)とする。また、このときの最大リード誤差−F(%)をリード誤差閾値−Fx(%)とする。   The threshold value detection unit 53 of the present example is such that the negative maximum read error of the actual air ratio α (the maximum read error that may cause the actual air ratio α to shift to the negative side) −F (%) is the target air ratio. The low flow rate state X is detected from the flow rate ratio TD (%) (predetermined rate with respect to the maximum measurable flow rate of the gas flow meter 41) when the allowable lower limit air ratio αz with respect to αr is equal to the allowable maximum error −E (%). The flow rate ratio threshold TDx (%) is set. Further, the maximum read error -F (%) at this time is defined as a read error threshold -Fx (%).

そして、ガス流量計41によって測定する流量割合閾値TDx(%)が20%を超える範囲X0においては、測定流量補正部54による測定ガス流量補正Hg及び測定空気流量補正Haを行わず、ガス流量計41によって測定する流量割合閾値TDx(%)が20%以下の範囲Xにおいて、測定流量補正部54による測定ガス流量補正Hg及び測定空気流量補正Haを行う。
本例のガス流量計41及び空気流量計42に用いる差圧流量計のフルスケール誤差FSは、±0.2%であり、各流量計41,42は、プラス側に最大で0.2%の誤差を生じ、マイナス側に最大で0.2%の誤差を生じる。
In the range X0 in which the flow rate ratio threshold TDx (%) measured by the gas flow meter 41 exceeds 20%, the gas flow meter does not perform the measurement gas flow rate correction Hg and the measurement air flow rate correction Ha by the measurement flow rate correction unit 54. In the range X where the flow rate ratio threshold value TDx (%) measured by 41 is 20% or less, the measurement gas flow rate correction Hg and the measurement air flow rate correction Ha are performed by the measurement flow rate correction unit 54.
The full-scale error FS of the differential pressure flow meter used for the gas flow meter 41 and the air flow meter 42 of this example is ± 0.2%, and each flow meter 41, 42 has a maximum of 0.2% on the plus side. And an error of 0.2% at the maximum on the minus side.

空気制御部52における空気流量調節弁32の操作は、ガス流量計41及び空気流量計42による測定流量Qgm,Qamから求まる測定空気比αmが目標空気比αrになるように行われる。そのため、測定空気比αmがプラス側の最大リード誤差を持つときは、実際の空気比αは、マイナス側の最大リード誤差を有することになる。   The operation of the air flow control valve 32 in the air control unit 52 is performed so that the measured air ratio αm obtained from the measured flow rates Qgm and Qam by the gas flow meter 41 and the air flow meter 42 becomes the target air ratio αr. Therefore, when the measured air ratio αm has a positive maximum read error, the actual air ratio α has a negative maximum read error.

図5は、横軸に、ガスバーナ1の最大燃焼量(ガス流量計41の測定可能最大流量)に対する燃焼量(ガス流量計41の測定流量)の割合である燃焼割合(流量割合)TD(%)をとり、縦軸に、空気比のリード誤差(%)をとって、実際の空気比αのプラス側及びマイナス側の最大リード誤差F(%)、許容下限空気比αzの許容最大誤差−E(%)、及び補正後に実際の空気比αがとり得る誤差範囲αeを示す。
本例においては、目標空気比αrに対する許容下限空気比αzの許容最大誤差−E(%)を−5%とした。
そして、ガス流量計41にフルスケール誤差における最大のマイナス誤差(−0.2%)が生じ、空気流量計42にフルスケール誤差における最大のプラス誤差(+0.2%)が生じたときに、リード誤差閾値−Fx(%)が−5%になるときの流量割合閾値TDx(%)は、約20%であるとして読み取った。
In FIG. 5, the horizontal axis shows the combustion ratio (flow rate ratio) TD (%) which is the ratio of the combustion amount (measured flow rate of the gas flow meter 41) to the maximum combustion amount of the gas burner 1 (maximum measurable flow rate of the gas flow meter 41). ), And the vertical axis represents the air ratio lead error (%), and the actual air ratio α plus and minus maximum lead error F (%) and the allowable lower limit air ratio αz allowable maximum error − E (%) and the error range αe that the actual air ratio α can take after correction are shown.
In this example, the allowable maximum error −E (%) of the allowable lower limit air ratio αz with respect to the target air ratio αr is set to −5%.
When the maximum negative error (−0.2%) in the full scale error occurs in the gas flow meter 41 and the maximum positive error (+ 0.2%) in the full scale error occurs in the air flow meter 42, Reading was performed assuming that the flow rate ratio threshold value TDx (%) when the read error threshold value -Fx (%) is -5% is about 20%.

同図に示すごとく、測定流量補正部54による測定ガス流量補正Hg及び測定空気流量補正Ha(図2参照)は、流量割合閾値TDx(%)が20%以下の範囲Xにおいて、実際の空気比αのマイナス側の最大リード誤差−F(%)が常に−5%よりも小さくならないように補正を行う。流量割合閾値TDx(%)が20%以下の範囲Xにおいては、補正後の目標空気比αrを、各流量割合TD(%)においてリード誤差閾値−Fx(%)よりもマイナス側に生じ得る誤差分−Fe(TD)(%)が、目標空気比αrよりも高くなるようにして設定する。補正後の目標空気比αr’(%)は、目標空気比αr(%)と、流量割合TD(%)によって変化する誤差分−Fe(TD)(%)とを用いて、αr’=(100+Fe(TD))/100×αrとして求められる。
また、流量割合閾値TDx(%)が20%を超える範囲X0においては、ガスバーナ1における実際の空気比αが目標空気比αrになるよう制御される。この範囲X0においては、目標空気比αrの補正は±0%として行われない。
As shown in the figure, the measured gas flow rate correction Hg and the measured air flow rate correction Ha (see FIG. 2) by the measured flow rate correction unit 54 are the actual air ratio in the range X where the flow rate ratio threshold value TDx (%) is 20% or less. Correction is performed so that the maximum read error −F (%) on the minus side of α is not always smaller than −5%. In the range X in which the flow rate ratio threshold value TDx (%) is 20% or less, the corrected target air ratio αr may occur on the negative side of the read error threshold value −Fx (%) at each flow rate ratio TD (%). The minute-Fe (TD) (%) is set to be higher than the target air ratio αr. The corrected target air ratio αr ′ (%) is calculated using αr ′ = (%) using the target air ratio αr (%) and the error amount −Fe (TD) (%) that varies depending on the flow rate ratio TD (%). 100 + Fe (TD)) / 100 × αr.
Further, in the range X0 where the flow rate ratio threshold value TDx (%) exceeds 20%, the actual air ratio α in the gas burner 1 is controlled to become the target air ratio αr. In this range X0, the target air ratio αr is not corrected as ± 0%.

図6は、横軸にガス流量計41の測定流量Qgmをとり、縦軸に測定ガス流量補正Hgを行った後の補正測定流量Qghをとって、これらの関係を示す。図7は、横軸にガス流量計41の測定流量Qgmをとり、縦軸に実際のガス流量Qgをとって、補正後に実際のガス流量Qgがとり得る流量範囲Qgeを示す。ガス流量計41の測定流量Qgmは、測定可能最大流量を100%として、この測定可能最大流量に対する流量割合(%)によって示す。   FIG. 6 shows the relationship between the measured flow rate Qgm of the gas flow meter 41 on the horizontal axis and the corrected measured flow rate Qgh after performing the measured gas flow rate correction Hg on the vertical axis. FIG. 7 shows a flow rate range Qge that the actual gas flow rate Qg can take after correction, with the measured flow rate Qgm of the gas flow meter 41 on the horizontal axis and the actual gas flow rate Qg on the vertical axis. The measured flow rate Qgm of the gas flow meter 41 is represented by a flow rate ratio (%) with respect to the maximum measurable flow rate, where the maximum measurable flow rate is 100%.

本例においては、図6に示すごとく、流量割合閾値TDx(%)が20%以下である低流量状態Xにおいては、測定ガス流量補正Hgとして、ガス流量計41が示す測定流量Qgmが少なくなるほどプラス側にずらして補正する。これにより、図7に示すごとく、流量割合閾値TDx(%)が20%以下である低流量状態Xにおいては、補正後に実際のガス流量Qgがとり得る流量範囲Qgeは、測定流量Qgmが少なくなるほどガス流量調節弁31の開度が小さくなる方向であるマイナス側にずれて調整される。   In this example, as shown in FIG. 6, in the low flow rate state X where the flow rate ratio threshold TDx (%) is 20% or less, the measured flow rate Qgm indicated by the gas flow meter 41 decreases as the measured gas flow rate correction Hg. Shift to the plus side to correct. Accordingly, as shown in FIG. 7, in the low flow rate state X where the flow rate ratio threshold value TDx (%) is 20% or less, the flow rate range Qge that the actual gas flow rate Qg can take after the correction becomes smaller as the measured flow rate Qgm decreases. The gas flow rate adjustment valve 31 is adjusted by shifting to the minus side, which is the direction in which the opening degree is reduced.

また、本例の測定ガス流量補正Hgは、ガス流量計41のフルスケール誤差FS(%)を、ガス流量計41の測定可能最大流量に対する測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、ガス流量計41の測定流量が少なくなるほど補正量を大きくして行われる。そして、流量割合閾値TDx(%)が20%以下である低流量状態Xにおいては、流量割合閾値TDx(%)が20%のときのマイナス側のリード誤差閾値よりもマイナス側の誤差を有さないようにプラス側に補正される。   The measured gas flow rate correction Hg of this example is obtained by dividing the full-scale error FS (%) of the gas flow meter 41 by the ratio TD (−) of the measured flow rate to the maximum measurable flow rate of the gas flow meter 41. Corresponding to the increase in the read error RD (%) (= FS / TD), the correction amount is increased as the measured flow rate of the gas flow meter 41 decreases. In the low flow rate state X in which the flow rate ratio threshold value TDx (%) is 20% or less, there is an error on the negative side than the negative read error threshold value when the flow rate ratio threshold value TDx (%) is 20%. It is corrected to the plus side so that there is no.

図8は、横軸に空気流量計42の測定流量Qamをとり、縦軸に測定空気流量補正Haを行った後の補正測定流量Qahをとって、これらの関係を示す。図9は、横軸に空気流量計42の測定流量Qamをとり、縦軸に、実際の空気流量Qaをとって、補正後に実際の空気流量Qaがとり得る流量範囲Qaeを示す。空気流量計42の測定流量Qamは、測定可能最大流量を100%として、この測定可能最大流量に対する流量割合(%)によって示す。   FIG. 8 shows the relationship between the measured flow rate Qam of the air flow meter 42 on the horizontal axis and the corrected measured flow rate Qah after performing the measured air flow rate correction Ha on the vertical axis. FIG. 9 shows the flow rate range Qae that the actual air flow rate Qa can take after correction, with the measured flow rate Qam of the air flow meter 42 on the horizontal axis and the actual air flow rate Qa on the vertical axis. The measured flow rate Qam of the air flow meter 42 is represented by a flow rate ratio (%) with respect to the maximum measurable flow rate, where the maximum measurable flow rate is 100%.

本例においては、図8に示すごとく、流量割合閾値TDx(%)が20%以下である低流量状態Xにおいては、測定空気流量補正Haとして、空気流量計42が示す測定流量Qamが少なくなるほどマイナス側にずらして補正する。これにより、図9に示すごとく、流量割合閾値TDx(%)が20%以下である低流量状態Xにおいては、補正後に実際の空気流量Qaがとり得る流量範囲Qaeは、測定流量Qamが少なくなるほど空気流量調節弁32の開度が大きくなる方向であるプラス側にずれて調整される。   In this example, as shown in FIG. 8, in the low flow rate state X in which the flow rate ratio threshold value TDx (%) is 20% or less, the measured flow rate Qam indicated by the air flow meter 42 decreases as the measured air flow rate correction Ha. Shift to the minus side to correct. Accordingly, as shown in FIG. 9, in the low flow rate state X in which the flow rate ratio threshold value TDx (%) is 20% or less, the flow rate range Qae that can be taken by the actual air flow rate Qa after correction is such that the measured flow rate Qam decreases. Adjustment is made by shifting to the plus side, which is the direction in which the opening of the air flow control valve 32 increases.

本例の測定空気流量補正Haは、空気流量計42のフルスケール誤差FS(%)を、空気流量計42の測定可能最大流量に対する測定流量Qamの割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、空気流量計42の測定流量Qamが少なくなるほど補正量を大きくして行われる。そして、流量割合閾値TDx(%)が20%以下であるである低流量状態Xにおいては、流量割合閾値TDx(%)が20%のときのプラス側のリード誤差閾値よりもプラス側の誤差を有しないようにプラス側に補正される。   The measured air flow rate correction Ha in this example is obtained by dividing the full-scale error FS (%) of the air flow meter 42 by the ratio TD (−) of the measured flow rate Qam to the maximum measurable flow rate of the air flow meter 42. Corresponding to the increase in the error RD (%) (= FS / TD), the correction amount is increased as the measured flow rate Qam of the air flow meter 42 decreases. In the low flow rate state X in which the flow rate ratio threshold value TDx (%) is 20% or less, an error on the plus side is larger than the read error threshold value on the plus side when the flow rate ratio threshold value TDx (%) is 20%. It is corrected to the plus side so that it does not have.

上記閾値検出部53における低流量状態Xは、ガス流量計41の測定流量がその測定可能最大流量に対する所定割合以下となるときに検出する以外にも、空気流量計42の測定流量がその測定可能最大流量に対する所定割合以下となるときに検出することもできる。また、ガス流量計41の測定流量及び空気流量計42の測定流量の両者が所定割合以下となるときに検出することもできる。
本例の空気制御部52は、低流量状態Xにおける低流量時制御を行うとき以外は、ガスバーナ1へ供給する空気比が一定になるよう制御するため、燃料ガスGの流量と空気の流量とは比例関係にある。そのため、燃焼制御装置5は、ガス流量計41の測定流量Qgmと空気流量計42の測定流量Qamとのいずれを用いても、空気比の制御の切替を同様に行うことができる。
The low flow rate state X in the threshold detection unit 53 is not only detected when the measured flow rate of the gas flow meter 41 falls below a predetermined ratio with respect to the maximum measurable flow rate, but the measured flow rate of the air flow meter 42 can be measured. It is also possible to detect when the ratio is equal to or less than a predetermined ratio with respect to the maximum flow rate. It can also be detected when both the measured flow rate of the gas flow meter 41 and the measured flow rate of the air flow meter 42 are equal to or less than a predetermined ratio.
Since the air control unit 52 of this example controls the air ratio supplied to the gas burner 1 to be constant except when performing the low flow rate control in the low flow rate state X, the flow rate of the fuel gas G and the flow rate of the air Are proportional. Therefore, the combustion control device 5 can similarly switch the control of the air ratio regardless of whether the measured flow rate Qgm of the gas flow meter 41 or the measured flow rate Qam of the air flow meter 42 is used.

また、閾値検出部53は、ガス流量計41の測定流量Qgmがその測定可能最大流量に対する所定割合以下となるときに低流量状態Xを検出する代わりに、目標燃焼量が所定の燃焼量以下となる状態と、ガス流量調節弁31の開度が所定の開度以下となる状態と、空気流量調節弁32の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出することができる。そして、測定流量補正部54は、閾値検出部53が上記3つの状態のいずれか1つ又は複数を検出しているときに、測定ガス流量補正Hg及び測定空気流量補正Haの少なくとも一方を行うことができる。
燃焼制御装置5における空気比の制御において、ガス流量計41の測定流量Qgm、空気流量計42の測定流量Qam、目標燃焼量、ガス流量調節弁31の開度、及び空気流量調節弁32の開度は、いずれも密接な関係を有する。そのため、これらのいずれを用いても、制御の切替を行うリード誤差閾値−Fx(%)を同様に決定することができる。
Further, instead of detecting the low flow rate state X when the measured flow rate Qgm of the gas flow meter 41 is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate, the threshold detection unit 53 sets the target combustion amount to be equal to or less than the predetermined combustion amount. Or one of a state in which the opening degree of the gas flow rate adjustment valve 31 is equal to or less than a predetermined opening degree and a state in which the opening degree of the air flow rate adjustment valve 32 is equal to or less than the predetermined opening degree. can do. The measurement flow rate correction unit 54 performs at least one of the measurement gas flow rate correction Hg and the measurement air flow rate correction Ha when the threshold detection unit 53 detects any one or more of the three states. Can do.
In the control of the air ratio in the combustion control device 5, the measured flow rate Qgm of the gas flow meter 41, the measured flow rate Qam of the air flow meter 42, the target combustion amount, the opening of the gas flow rate control valve 31, and the opening of the air flow rate control valve 32 All degrees are closely related. Therefore, the read error threshold value −Fx (%) for switching control can be determined in the same manner using any of these.

次に、本例の燃焼制御装置5の作用効果を説明する。
本例の燃焼制御装置5においては、ガスバーナ1における燃焼制御を行う際に、燃料ガスG又は燃焼用空気Aの流量が少なくなったときに、ガスバーナ1における実際の空気比αが小さくなってしまうことを防止する工夫を行っている。
具体的には、本例の燃焼制御装置5は、閾値検出部53及び測定流量補正部54を備えた構成により、次の燃焼制御を行うことができる。
ガスバーナ1において燃焼を行う際に、ガスバーナ1への要求負荷が小さくなったときには、ガスバーナ1に要求される目標燃焼量が小さくなり、燃料制御部51によってガス流量調節弁31の開度が小さく調節される。このとき、ガスバーナ1における空気比αが所定の目標空気比αrになるように、空気制御部52によって空気流量調節弁32の開度も小さく調節される。そして、ガス流量計41及び空気流量計42による各測定流量Qgm,Qamが小さくなる。
Next, the effect of the combustion control apparatus 5 of this example is demonstrated.
In the combustion control device 5 of this example, when the combustion control in the gas burner 1 is performed, when the flow rate of the fuel gas G or the combustion air A decreases, the actual air ratio α in the gas burner 1 becomes small. We are trying to prevent this.
Specifically, the combustion control device 5 of the present example can perform the next combustion control by the configuration including the threshold detection unit 53 and the measured flow rate correction unit 54.
When combustion is performed in the gas burner 1, if the required load on the gas burner 1 becomes small, the target combustion amount required for the gas burner 1 becomes small, and the opening degree of the gas flow control valve 31 is adjusted to be small by the fuel control unit 51. Is done. At this time, the opening degree of the air flow rate adjustment valve 32 is also adjusted to be small by the air control unit 52 so that the air ratio α in the gas burner 1 becomes a predetermined target air ratio αr. And each measurement flow volume Qgm and Qam by the gas flow meter 41 and the air flow meter 42 becomes small.

このような状態において、本例においては、閾値検出部53によって、ガス流量計41の測定流量Qgmが、流量計の測定可能最大流量に対する所定割合以下となったことを、低流量状態Xとして検出する。そして、閾値検出部53が低流量状態Xを検出しているときには、測定流量補正部54によって、ガス流量計41の測定流量Qgmを所定量大きな値に補正する測定ガス流量補正Hgと、空気流量計42の測定流量Qamを所定量小さな値に補正する測定空気流量補正Haとを行う。   In this state, in this example, the threshold detection unit 53 detects that the measured flow rate Qgm of the gas flow meter 41 is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate of the flow meter as the low flow rate state X. To do. When the threshold detection unit 53 detects the low flow rate state X, the measurement flow rate correction unit 54 corrects the measurement flow rate Qgm of the gas flow meter 41 to a large value by a predetermined amount, and the air flow rate. A measurement air flow rate correction Ha for correcting the measurement flow rate Qam of the total 42 to a value smaller by a predetermined amount is performed.

つまり、本例においては、ガスバーナ1の低燃焼域(燃料ガスG及び燃焼用空気Aの低流量域)において、ガス流量計41及び空気流量計42が示す測定流量Qgm,Qamに生じ得るリード誤差が大きくなったときには、意図的に、ガス流量計41及び空気流量計42の測定流量Qgm,Qamを補正する。これにより、各流量計41,42に生じるリード誤差によって、ガスバーナ1における実際の空気比αが所定の目標空気比αrよりも小さくなることを緩和することができる。
それ故、本例のガスバーナ1の燃焼制御装置5によれば、ガスバーナ1の低燃焼域において、一酸化炭素等の有毒ガスの発生量を少なく維持することができる。
That is, in this example, in the low combustion region of the gas burner 1 (low flow region of the fuel gas G and combustion air A), a lead error that may occur in the measured flow rates Qgm and Qam indicated by the gas flow meter 41 and the air flow meter 42. Is intentionally corrected, the measured flow rates Qgm and Qam of the gas flow meter 41 and the air flow meter 42 are corrected. As a result, it is possible to mitigate the fact that the actual air ratio α in the gas burner 1 becomes smaller than the predetermined target air ratio αr due to the lead error generated in the flow meters 41 and 42.
Therefore, according to the combustion control device 5 of the gas burner 1 of this example, the generation amount of toxic gases such as carbon monoxide can be kept small in the low combustion region of the gas burner 1.

(実施例2)
本例は、図10に示すごとく、上記実施例1に示した閾値検出部53が上記低流量状態Xを検出しているとき、測定流量補正部54による補正を行う代わりに、空気比補正部55が測定空気比αmを所定量小さな値に補正する測定空気比補正Hαを行う例である。
本例においては、ガス流量計41及び空気流量計42の各測定流量Qgm,Qamを補正する代わりに、測定空気比αmを直接補正する。測定空気比αmは、ガス流量計41及び空気流量計42の各測定流量Qgm,Qamから求めるものであり、測定空気比αmを直接補正することによっても、上記実施例1と実質的に同様の補正を行うことができる。
(Example 2)
In this example, as shown in FIG. 10, when the threshold detection unit 53 shown in the first embodiment detects the low flow rate state X, instead of performing the correction by the measured flow rate correction unit 54, the air ratio correction unit 55 is an example of performing the measurement air ratio correction Hα for correcting the measurement air ratio αm to a value smaller by a predetermined amount.
In this example, instead of correcting the measured flow rates Qgm and Qam of the gas flow meter 41 and the air flow meter 42, the measured air ratio αm is directly corrected. The measured air ratio αm is obtained from the measured flow rates Qgm and Qam of the gas flow meter 41 and the air flow meter 42, and is substantially the same as that of the first embodiment by directly correcting the measured air ratio αm. Correction can be performed.

同図に示すごとく、本例においては、空気比算出部Jにおいて、各測定流量Qgm,Qamから測定空気比αmを求め、ガス流量計41の測定流量Qgmが低流量状態Xにあるときには、測定空気比αmを上記実施例1の図5と同様の方法によって補正を行う。そして、空気流量算出部Iにおいては、補正を行った測定空気比αm’から目標空気流量Qarを求める。   As shown in the figure, in this example, the air ratio calculation unit J obtains the measurement air ratio αm from each measurement flow rate Qgm, Qam, and the measurement is performed when the measurement flow rate Qgm of the gas flow meter 41 is in the low flow rate state X. The air ratio αm is corrected by the same method as in FIG. The air flow rate calculation unit I then obtains the target air flow rate Qar from the corrected measured air ratio αm ′.

本例の燃焼制御装置5において、測定空気比補正Hαは、ガス流量計41のフルスケール誤差FS(%)を、ガス流量計41の測定可能最大流量に対する測定流量Qgmの割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、ガス流量計41の測定流量Qgmが小さくなるほど補正量を大きくして行うことができる。
また、空気比補正部55は、測定空気比補正Hαを行う代わりに、所定の目標空気比αrを所定量大きな値に調整する目標空気比調整を行うこともできる。この場合、補正後の目標空気比αr’は、上記実施例1の図5と同様にして求めることができる。この場合にも、上記実施例1と実質的に同様の補正を行うことができる。
本例においても、その他の構成は上記実施例1と同様であり、上記実施例1と同様の作用効果を得ることができる。
In the combustion control device 5 of this example, the measured air ratio correction Hα is the ratio TD (−) of the measured flow rate Qgm to the maximum measurable flow rate of the gas flow meter 41 with the full scale error FS (%) of the gas flow meter 41. Corresponding to the increase in the read error RD (%) (= FS / TD) obtained by division, the correction amount can be increased as the measured flow rate Qgm of the gas flow meter 41 decreases.
The air ratio correction unit 55 can also perform target air ratio adjustment that adjusts the predetermined target air ratio αr to a value larger by a predetermined amount instead of performing the measurement air ratio correction Hα. In this case, the corrected target air ratio αr ′ can be obtained in the same manner as in FIG. Also in this case, substantially the same correction as in the first embodiment can be performed.
Also in this example, other configurations are the same as those of the first embodiment, and the same effects as those of the first embodiment can be obtained.

(実施例3)
本例は、図11に示すごとく、上記実施例1に示した閾値検出部53が上記低流量状態Xを検出しているとき、測定流量補正部54による補正を行う代わりに、開度補正部56が、ガス流量調節弁31の開度を所定量小さな開度に補正するガス開度補正Sg、及び空気流量調節弁32の開度を所定量大きな開度に補正する空気開度補正Saを行う。
本例においては、ガス流量計41及び空気流量計42の各測定流量Qgm,Qamを補正する代わりに、ガス流量調節弁31の開度及び空気流量調節弁32の開度を補正する。これらの開度の補正を行う量は、実際の空気比αを上記実施例1と同様に変化させるための量とする。本例においても、上記実施例1と実質的に同様の補正を行うことができる。
同図に示すごとく、本例においては、上記実施例1の図2と同様に、空気流量算出部Iにおいて、ガス流量計41の測定流量Qgmに基づいて、目標空気比αrを達成するときの目標空気流量Qarを求める。
(Example 3)
In this example, as shown in FIG. 11, when the threshold detection unit 53 shown in the first embodiment detects the low flow rate state X, instead of performing correction by the measured flow rate correction unit 54, an opening degree correction unit 56, a gas opening degree correction Sg for correcting the opening degree of the gas flow rate adjusting valve 31 to a small opening amount by a predetermined amount, and an air opening degree correction Sa for correcting the opening degree of the air flow rate adjusting valve 32 to a large opening amount by a predetermined amount. Do.
In this example, instead of correcting the measured flow rates Qgm and Qam of the gas flow meter 41 and the air flow meter 42, the opening degree of the gas flow rate adjustment valve 31 and the opening degree of the air flow rate adjustment valve 32 are corrected. The amount for correcting the opening is an amount for changing the actual air ratio α in the same manner as in the first embodiment. Also in this example, substantially the same correction as in the first embodiment can be performed.
As shown in the figure, in this example, as in FIG. 2 of the first embodiment, in the air flow rate calculation unit I, when the target air ratio αr is achieved based on the measured flow rate Qgm of the gas flow meter 41. A target air flow rate Qar is obtained.

また、本例の燃焼制御装置5において、ガス開度補正Sg及び空気開度補正Saは、ガス流量計41のフルスケール誤差FS(%)を、ガス流量計41の測定可能最大流量に対する測定流量Qgmの割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、ガス流量計41の測定流量Qgmが小さくなるほど開度の補正量を大きくして行うことができる。
本例においても、その他の構成は上記実施例1と同様であり、上記実施例1と同様の作用効果を得ることができる。
Further, in the combustion control device 5 of the present example, the gas opening degree correction Sg and the air opening degree correction Sa are used to measure the full scale error FS (%) of the gas flow meter 41 and the measured flow rate with respect to the maximum measurable flow rate of the gas flow meter 41. Corresponding to the increase in the read error RD (%) (= FS / TD) obtained by dividing by the ratio TD (−) of Qgm, the correction amount of the opening increases as the measured flow rate Qgm of the gas flow meter 41 decreases. Can be done.
Also in this example, other configurations are the same as those of the first embodiment, and the same effects as those of the first embodiment can be obtained.

1 ガスバーナ
11 燃焼炉
21 ガス配管
22 空気配管
31 ガス流量調節弁
32 空気流量調節弁
41 ガス流量計
42 空気流量計
5 燃焼制御装置
51 燃料制御部
52 空気制御部
53 閾値検出部
54 測定流量補正部
A 燃焼用空気
G 燃料ガス
DESCRIPTION OF SYMBOLS 1 Gas burner 11 Combustion furnace 21 Gas piping 22 Air piping 31 Gas flow control valve 32 Air flow control valve 41 Gas flow meter 42 Air flow meter 5 Combustion control device 51 Fuel control unit 52 Air control unit 53 Threshold detection unit 54 Measurement flow rate correction unit A Combustion air G Fuel gas

Claims (10)

ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記ガス流量計と上記空気流量計とのうちの少なくとも一方の測定流量が、それらの測定可能最大流量に対する所定割合以下となった低流量状態を検出する閾値検出部と、
該閾値検出部が上記低流量状態を検出しているとき、上記ガス流量計の測定流量を所定量大きな値に補正する測定ガス流量補正、及び上記空気流量計の測定流量を所定量小さな値に補正する測定空気流量補正の少なくとも一方を行う測定流量補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置。
Combustion gas passing through the gas pipe and the fuel pipe passing through the gas pipe by connecting the gas pipe provided with the gas flow control valve and the gas flow meter and the air pipe provided with the air flow control valve and the air flow meter. A combustion control device equipped for a gas burner that burns air,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A threshold detection unit for detecting a low flow rate state in which the measured flow rate of at least one of the gas flow meter and the air flow meter is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate;
When the threshold detection unit detects the low flow rate state, the measurement gas flow rate correction for correcting the measurement flow rate of the gas flow meter to a large value by a predetermined amount, and the measurement flow rate of the air flow meter to a small value by a predetermined amount A combustion control device for a gas burner, comprising: a measurement flow rate correction unit that performs at least one of measurement air flow rate correction to be corrected.
ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記ガス流量計と上記空気流量計とのうちの少なくとも一方の測定流量が、それらの測定可能最大流量に対する所定割合以下となった低流量状態を検出する閾値検出部と、
該閾値検出部が上記低流量状態を検出しているとき、上記測定空気比を所定量小さな値に補正する測定空気比補正、又は上記所定の目標空気比を所定量大きな値に調整する目標空気比調整のいずれかを行う空気比補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置。
Combustion gas passing through the gas pipe and the fuel pipe passing through the gas pipe by connecting the gas pipe provided with the gas flow control valve and the gas flow meter and the air pipe provided with the air flow control valve and the air flow meter. A combustion control device equipped for a gas burner that burns air,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A threshold detection unit for detecting a low flow rate state in which the measured flow rate of at least one of the gas flow meter and the air flow meter is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate;
When the threshold detection unit detects the low flow rate state, the measurement air ratio correction for correcting the measurement air ratio to a small value by a predetermined amount, or the target air for adjusting the predetermined target air ratio to a large value by a predetermined amount An air ratio correction unit that performs any one of the ratio adjustments.
ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記ガス流量計と上記空気流量計とのうちの少なくとも一方の測定流量が、それらの測定可能最大流量に対する所定割合以下となった低流量状態を検出する閾値検出部と、
該閾値検出部が上記低流量状態を検出しているとき、上記ガス流量調節弁の開度を所定量小さな開度に補正するガス開度補正、及び上記空気流量調節弁の開度を所定量大きな開度に補正する空気開度補正の少なくとも一方を行う開度補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置。
Combustion gas passing through the gas pipe and the fuel pipe passing through the gas pipe by connecting the gas pipe provided with the gas flow control valve and the gas flow meter and the air pipe provided with the air flow control valve and the air flow meter. A combustion control device equipped for a gas burner that burns air,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A threshold detection unit for detecting a low flow rate state in which the measured flow rate of at least one of the gas flow meter and the air flow meter is equal to or less than a predetermined ratio with respect to the maximum measurable flow rate;
When the threshold detection unit detects the low flow rate state, a gas opening degree correction for correcting the opening degree of the gas flow rate control valve to a small opening degree by a predetermined amount, and the opening degree of the air flow rate control valve by a predetermined amount A gas burner combustion control device comprising: an opening correction unit that performs at least one of air opening correction for correcting to a large opening.
ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記目標燃焼量が所定の燃焼量以下となる状態と、上記ガス流量調節弁の開度が所定の開度以下となる状態と、上記空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出する閾値検出部と、
該閾値検出部が上記3つの状態のいずれか1つ又は複数を検出しているとき、上記ガス流量計の測定流量を所定量大きな値に補正する測定ガス流量補正、及び上記空気流量計の測定流量を所定量小さな値に補正する測定空気流量補正の少なくとも一方を行う測定流量補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置。
Combustion gas passing through the gas pipe and the fuel pipe passing through the gas pipe by connecting the gas pipe provided with the gas flow control valve and the gas flow meter and the air pipe provided with the air flow control valve and the air flow meter. A combustion control device equipped for a gas burner that burns air,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A state where the target combustion amount is less than or equal to a predetermined combustion amount, a state where the opening degree of the gas flow rate adjustment valve is less than or equal to a predetermined opening degree, and an opening degree of the air flow rate adjustment valve is less than or equal to a predetermined opening degree. A threshold detection unit that detects any one or more of the states;
When the threshold detection unit detects one or more of the three states, a measurement gas flow correction for correcting the measurement flow rate of the gas flow meter to a large value by a predetermined amount, and a measurement of the air flow meter A combustion control device for a gas burner, comprising: a measurement flow rate correction unit that performs at least one of measurement air flow rate corrections that correct the flow rate to a predetermined small value.
ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記目標燃焼量が所定の燃焼量以下となる状態と、上記ガス流量調節弁の開度が所定の開度以下となる状態と、上記空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出する閾値検出部と、
該閾値検出部が上記3つの状態のいずれか1つ又は複数を検出しているとき、上記測定空気比を所定量小さな値に補正する測定空気比補正、又は上記所定の目標空気比を所定量大きな値に調整する目標空気比調整のいずれかを行う空気比補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置。
Combustion gas passing through the gas pipe and the fuel pipe passing through the gas pipe by connecting the gas pipe provided with the gas flow control valve and the gas flow meter and the air pipe provided with the air flow control valve and the air flow meter. A combustion control device equipped for a gas burner that burns air,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A state where the target combustion amount is less than or equal to a predetermined combustion amount, a state where the opening degree of the gas flow rate adjustment valve is less than or equal to a predetermined opening degree, and an opening degree of the air flow rate adjustment valve is less than or equal to a predetermined opening degree. A threshold detection unit that detects any one or more of the states;
When the threshold detection unit detects any one or more of the three states, the measurement air ratio correction for correcting the measurement air ratio to a value smaller by a predetermined amount, or the predetermined target air ratio by a predetermined amount An air ratio correction unit that performs any one of the target air ratio adjustments adjusted to a large value.
ガス流量調節弁及びガス流量計を設けたガス配管と、空気流量調節弁及び空気流量計を設けた空気配管とを接続し、上記ガス配管を通過する燃料ガスと上記空気配管を通過する燃焼用空気とを燃焼させるガスバーナに対して装備する燃焼制御装置であって、
上記ガスバーナに要求される目標燃焼量を達成するよう上記ガス流量調節弁の開度を決定する燃料制御部と、
上記ガス流量計の測定流量と上記空気流量計の測定流量とに基づく測定空気比が、所定の目標空気比になるよう上記空気流量調節弁の開度を決定する空気制御部と、
上記目標燃焼量が所定の燃焼量以下となる状態と、上記ガス流量調節弁の開度が所定の開度以下となる状態と、上記空気流量調節弁の開度が所定の開度以下となる状態とのいずれか1つ又は複数を検出する閾値検出部と、
該閾値検出部が上記3つの状態のいずれか1つ又は複数を検出しているとき、上記ガス流量調節弁の開度を所定量小さな開度に補正するガス開度補正、及び上記空気流量調節弁の開度を所定量大きな開度に補正する空気開度補正の少なくとも一方を行う開度補正部と、を備えていることを特徴とするガスバーナの燃焼制御装置。
Combustion gas passing through the gas pipe and the fuel pipe passing through the gas pipe by connecting the gas pipe provided with the gas flow control valve and the gas flow meter and the air pipe provided with the air flow control valve and the air flow meter. A combustion control device equipped for a gas burner that burns air,
A fuel control unit for determining an opening of the gas flow rate control valve so as to achieve a target combustion amount required for the gas burner;
An air control unit for determining an opening of the air flow rate control valve so that a measured air ratio based on a measured flow rate of the gas flow meter and a measured flow rate of the air flow meter becomes a predetermined target air ratio;
A state where the target combustion amount is less than or equal to a predetermined combustion amount, a state where the opening degree of the gas flow rate adjustment valve is less than or equal to a predetermined opening degree, and an opening degree of the air flow rate adjustment valve is less than or equal to a predetermined opening degree. A threshold detection unit that detects any one or more of the states;
When the threshold detection unit detects one or more of the three states, a gas opening correction for correcting the opening of the gas flow control valve to a small opening by a predetermined amount, and the air flow control A combustion control apparatus for a gas burner, comprising: an opening correction unit that performs at least one of air opening correction for correcting the opening of the valve to a large opening by a predetermined amount.
請求項1又は4に記載のガスバーナの燃焼制御装置において、上記測定ガス流量補正は、上記ガス流量計のフルスケール誤差FS(%)を、該ガス流量計の測定可能最大流量に対する該ガス流量計の測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、上記ガス流量計の測定流量が少なくなるほど補正量を大きくして行い、
上記測定空気流量補正は、上記空気流量計のフルスケール誤差FS(%)を、該空気流量計の測定可能最大流量に対する該空気流量計の測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、上記空気流量計の測定流量が少なくなるほど補正量を大きくして行うことを特徴とするガスバーナの燃焼制御装置。
5. The combustion control apparatus for a gas burner according to claim 1 or 4, wherein the measurement gas flow rate correction is performed by calculating the full-scale error FS (%) of the gas flow meter with respect to the maximum measurable flow rate of the gas flow meter. Corresponding to the increase in read error RD (%) (= FS / TD) obtained by dividing by the measured flow rate ratio TD (−), the correction amount is increased as the measured flow rate of the gas flow meter decreases. Done
The measured air flow rate correction is obtained by dividing the full-scale error FS (%) of the air flow meter by the ratio TD (-) of the measured flow rate of the air flow meter to the maximum measurable flow rate of the air flow meter. A combustion control apparatus for a gas burner characterized in that the correction amount is increased as the measured flow rate of the air flow meter decreases in response to an increase in the lead error RD (%) (= FS / TD).
請求項2又は5に記載のガスバーナの燃焼制御装置において、上記測定空気比補正及び上記目標空気比調整は、上記ガス流量計のフルスケール誤差FS(%)を、該ガス流量計の測定可能最大流量に対する該ガス流量計の測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、上記ガス流量計の測定流量が小さくなるほど補正量又は調整量を大きくして行うことを特徴とするガスバーナの燃焼制御装置。   6. The combustion control apparatus for a gas burner according to claim 2 or 5, wherein the measurement air ratio correction and the target air ratio adjustment are performed by measuring a full-scale error FS (%) of the gas flow meter as a maximum measurable value of the gas flow meter. Corresponding to the increase in the read error RD (%) (= FS / TD) obtained by dividing by the ratio TD (-) of the measured flow rate of the gas flow meter to the flow rate, the measured flow rate of the gas flow meter decreases. A combustion control device for a gas burner, wherein the correction amount or adjustment amount is increased. 請求項3又は6に記載のガスバーナの燃焼制御装置において、上記ガス開度補正及び上記空気開度補正は、上記ガス流量計のフルスケール誤差FS(%)を、該ガス流量計の測定可能最大流量に対する該ガス流量計の測定流量の割合TD(−)で除算して得られるリード誤差RD(%)(=FS/TD)の増加に対応して、上記ガス流量計の測定流量が小さくなるほど開度の補正量を大きくして行うことを特徴とするガスバーナの燃焼制御装置。   7. The gas burner combustion control apparatus according to claim 3, wherein the gas opening correction and the air opening correction are performed by measuring a full-scale error FS (%) of the gas flow meter as a maximum measurable value of the gas flow meter. Corresponding to the increase in the read error RD (%) (= FS / TD) obtained by dividing by the ratio TD (-) of the measured flow rate of the gas flow meter to the flow rate, the measured flow rate of the gas flow meter decreases. A combustion control device for a gas burner, characterized in that the correction is performed with a large opening correction amount. 請求項1〜9のいずれか一項に記載のガスバーナの燃焼制御装置において、上記ガス流量計と上記空気流量計とは、流路絞り部の上流側の圧力と下流側の圧力との差圧から流量を測定する差圧流量計であることを特徴とするガスバーナの燃焼制御装置。   The combustion control device for a gas burner according to any one of claims 1 to 9, wherein the gas flow meter and the air flow meter are a differential pressure between an upstream pressure and a downstream pressure of the flow restrictor. A combustion control device for a gas burner, characterized by being a differential pressure flow meter for measuring a flow rate from
JP2012001613A 2012-01-06 2012-01-06 Gas burner combustion control device Active JP5844645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012001613A JP5844645B2 (en) 2012-01-06 2012-01-06 Gas burner combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012001613A JP5844645B2 (en) 2012-01-06 2012-01-06 Gas burner combustion control device

Publications (2)

Publication Number Publication Date
JP2013142478A true JP2013142478A (en) 2013-07-22
JP5844645B2 JP5844645B2 (en) 2016-01-20

Family

ID=49039145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012001613A Active JP5844645B2 (en) 2012-01-06 2012-01-06 Gas burner combustion control device

Country Status (1)

Country Link
JP (1) JP5844645B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020789A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016161275A (en) * 2015-03-05 2016-09-05 三浦工業株式会社 Combustion control mechanism of gas boiler
JP2021011954A (en) * 2019-07-03 2021-02-04 大阪瓦斯株式会社 Oxygen ratio control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202317A (en) * 1983-04-28 1984-11-16 Matsushita Electric Ind Co Ltd Gas combustion controller
JPS6026219A (en) * 1983-07-20 1985-02-09 Matsushita Electric Ind Co Ltd Gas combustion controller
JPH03195813A (en) * 1989-12-25 1991-08-27 Tokyo Gas Co Ltd Method and mechanism for controlling air-fuel ratio in combustion equipment
JPH0510505A (en) * 1991-07-01 1993-01-19 Babcock Hitachi Kk Air ratio controller of burner at start-up time of boiler
JPH0726861B2 (en) * 1989-10-23 1995-03-29 中外炉工業株式会社 Flow rate measuring device
US5685707A (en) * 1996-01-16 1997-11-11 North American Manufacturing Company Integrated burner assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202317A (en) * 1983-04-28 1984-11-16 Matsushita Electric Ind Co Ltd Gas combustion controller
JPS6026219A (en) * 1983-07-20 1985-02-09 Matsushita Electric Ind Co Ltd Gas combustion controller
JPH0726861B2 (en) * 1989-10-23 1995-03-29 中外炉工業株式会社 Flow rate measuring device
JPH03195813A (en) * 1989-12-25 1991-08-27 Tokyo Gas Co Ltd Method and mechanism for controlling air-fuel ratio in combustion equipment
JPH0510505A (en) * 1991-07-01 1993-01-19 Babcock Hitachi Kk Air ratio controller of burner at start-up time of boiler
US5685707A (en) * 1996-01-16 1997-11-11 North American Manufacturing Company Integrated burner assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020789A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system
JP2016161275A (en) * 2015-03-05 2016-09-05 三浦工業株式会社 Combustion control mechanism of gas boiler
JP2021011954A (en) * 2019-07-03 2021-02-04 大阪瓦斯株式会社 Oxygen ratio control system
JP7257898B2 (en) 2019-07-03 2023-04-14 大阪瓦斯株式会社 Oxygen ratio control system

Also Published As

Publication number Publication date
JP5844645B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6356948B2 (en) Method and apparatus for controlling a combustion process system
JP5844645B2 (en) Gas burner combustion control device
EP2241811B1 (en) Fuel supply device
EP2241810B1 (en) Flow rate control device
US20080057451A1 (en) Boiler and combustion control method
JP6005252B2 (en) Gas turbine system, control device, and operation method of gas turbine
JP4292126B2 (en) Combustion information monitoring and control system for stoker-type waste incinerator
JP5961962B2 (en) Boiler steam amount measuring method, boiler load analyzing method, boiler steam amount measuring device, and boiler load analyzing device
KR102493037B1 (en) Gas control system and film formation apparatus equipped with the gas control system
JP2008101842A (en) Abnormality detecting method of combustion device
JP2020139698A (en) Air amount control method of heating furnace
JP2016020791A (en) Boiler system
JP5314946B2 (en) Heating furnace controller
JP2014020681A (en) Air-fuel ratio control method and device for boiler
JP4551265B2 (en) Thermal equipment that adjusts the air supply for combustion
US20190346206A1 (en) Apparatus and method for controlling concentration of oxygen in heating furnace
WO2017149967A1 (en) Gas boiler combustion control mechanism
JP7257898B2 (en) Oxygen ratio control system
JP7379981B2 (en) combustion device
JP2022181347A (en) Composition estimation device and fluid mixture system
JP3289515B2 (en) How to determine the combustion state of a water heater
JP7380331B2 (en) Boiler fuel gas supply mechanism and boiler
JP2024042811A (en) boiler
JP6413416B2 (en) Boiler equipment
JP6490949B2 (en) CO detection combustion equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151119

R150 Certificate of patent or registration of utility model

Ref document number: 5844645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250