JP2013140676A - Manufacturing method of high performance lithium secondary battery - Google Patents

Manufacturing method of high performance lithium secondary battery Download PDF

Info

Publication number
JP2013140676A
JP2013140676A JP2011289485A JP2011289485A JP2013140676A JP 2013140676 A JP2013140676 A JP 2013140676A JP 2011289485 A JP2011289485 A JP 2011289485A JP 2011289485 A JP2011289485 A JP 2011289485A JP 2013140676 A JP2013140676 A JP 2013140676A
Authority
JP
Japan
Prior art keywords
exterior body
lithium secondary
polymer electrolyte
secondary battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011289485A
Other languages
Japanese (ja)
Other versions
JP5595372B2 (en
Inventor
Kimikazu Tojo
公数 東条
Hideyuki Kanechika
秀行 兼近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoi Electronics Co Ltd
Original Assignee
Aoi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoi Electronics Co Ltd filed Critical Aoi Electronics Co Ltd
Priority to JP2011289485A priority Critical patent/JP5595372B2/en
Publication of JP2013140676A publication Critical patent/JP2013140676A/en
Application granted granted Critical
Publication of JP5595372B2 publication Critical patent/JP5595372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of lithium secondary battery suitable for enlargement and enhancement of manufacturing efficiency.SOLUTION: The manufacturing method of lithium secondary battery consists of injecting a polymer electrolyte into an exterior body housing a laminate consisting of positive and negative electrodes, formed by providing a layer containing an active material capable of occluding and releasing lithium ion on a collector, and a separator, and includes following steps (1) through (8). (1) The exterior body is installed so that the positive and negative electrodes and the separator interposed therebetween are arranged vertically, and a polymer electrolyte is injected into the exterior body from an aperture. (2) The aperture of the exterior body is sealed after injection. (3) The laminate in the exterior body is held at a low temperature in the state of vertical arrangement. (4) The exterior body is rotated to an arbitrary angle and held at a low temperature. (5) A part of the exterior body is opened, and extra polymer electrolyte in the exterior body is removed. (6) The aperture is sealed under vacuum. (7) The polymer electrolyte in the exterior body is polymerized by heating while applying pressure uniformly to the surface thereof. (8) The polymer electrolyte is compressed after being cooled under a normal temperature, and the shape is stabilized.

Description

本発明は、今後重要が増大すると予想される大型で大容量リチウムポリマー電池の製造技術分野において有用な低コストで高品質なリチウムポリマー電池の製造方法を構築し提供するものであり、真空による含浸やポリマー電解液の脱泡作業、初期充放電時の電池加圧を必要としないことを特徴とするリチウム二次電池の製造方法である。   The present invention builds and provides a low-cost and high-quality lithium polymer battery manufacturing method useful in the technical field of large-sized and large-capacity lithium polymer batteries, which is expected to increase in importance in the future. And a method for producing a lithium secondary battery, which does not require defoaming work of the polymer electrolyte and battery pressurization during initial charge / discharge.

近年、電子機器のコードレス化、大型化、電気自動車などに対応できる電池として、高エネルギー密度、高起電力および自己放電の少なさからリチウム電池が注目を集めている。このリチウム電池の正極材および負極材は、通常、電極材本体としての金属箔の表面に活物質を担持さて構成している。例えば、リチウム電池の正極材としては、アルミニウム箔などに、例えば、フッ化黒鉛粒子、LiCoO2 、LiNiO2 、LiMn24などの金属酸化物粒子、TiS2 、CuSなどの硫化物粒子が活物質として知られている。
負極材としては、銅箔などに金属リチウムの単体粒子や、リチウムとアルミニウムなどの金属との合金粒子や、カーボンやグラファイトなどのリチウムイオンを吸蔵または吸着する能力を有する材料の粒子や、リチウムイオンをドーピングした導電性高分子材料の粒子を活物質として付着させたものが知られている。
また、電解液としては、エチレンカーボネート、プロピレンカーボネート、アセトニトリル、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの有機溶媒に、LiClO4 、LiPF6 、LiAsF6 などの電解質を溶解した有機系電解液が使用される。
In recent years, lithium batteries have attracted attention as a battery that can be used for cordless and large electronic devices, electric vehicles, and the like because of high energy density, high electromotive force, and low self-discharge. The positive electrode material and the negative electrode material of this lithium battery are usually configured by supporting an active material on the surface of a metal foil as an electrode material body. For example, as a positive electrode material of a lithium battery, for example, fluorinated graphite particles, metal oxide particles such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4, and sulfide particles such as TiS 2 and CuS are active on an aluminum foil. Known as a substance.
As the negative electrode material, single particles of metallic lithium on copper foil, alloy particles of metals such as lithium and aluminum, particles of materials having the ability to occlude or adsorb lithium ions such as carbon and graphite, lithium ions, etc. A material in which particles of a conductive polymer material doped with is attached as an active material is known.
In addition, as an electrolytic solution, an organic solvent such as ethylene carbonate, propylene carbonate, acetonitrile, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, LiClO 4 , LiPF 6 , LiAsF An organic electrolyte in which an electrolyte such as 6 is dissolved is used.

ポリマー電解液としては、ポリマー材料を含む固体またはゲル状の電解液であってUV照射や加熱によって架橋するポリマー材料のマトリックスに、液状の非水電解質を保持させたものが用いられる。例えば、アルキレンオキシドユニットを有するアルキレンオキシド系高分子や、ポリフッ化ビニリデンやフッ化ビニリデン−ヘキサフルオロプロピレン共重合体のようなフッ素系高分子など各種のポリマーを挙げることができる。ポリフッ化ビニリデンからなるポリマー電解液は電気化学的に安定であり、フッ素原子を含むのでポリマーが燃えにくい特徴がある   As the polymer electrolyte, a solid or gel electrolyte containing a polymer material, in which a liquid nonaqueous electrolyte is held in a matrix of a polymer material that is crosslinked by UV irradiation or heating, is used. Examples thereof include various polymers such as an alkylene oxide polymer having an alkylene oxide unit, and a fluorine polymer such as polyvinylidene fluoride and a vinylidene fluoride-hexafluoropropylene copolymer. Polymer electrolytes made of polyvinylidene fluoride are electrochemically stable and contain fluorine atoms, making the polymer difficult to burn

リチウム積層型二次電池は、シート状の正極電極と負極電極とをセパレータを介して積層した電池要素をラミネート外装材に収納し封止した構造を有している。
一般的なゲル状電解液を用いた積層型リチウム二次電池では、活物質、重合性モノマー、電解液を電極板状に塗布し、次いでモノマーを重合することによって電解液をゲル状電解液となして正極、負極を形成した後に、正極、セパレータおよび負極を順次重ね合わせて積層構造とする方法があるが、積層体がずれ易いという欠点を持つ。
また、他の方法としては、正極電極、負極電極、セパレータから構成される積層体を、正極端子および負極端子が露出した状態で、アルミ箔に樹脂コーティングしたラミネートなどからなる外装体に収納し、これに電解液を注入し密閉してリチウム積層型二次電池が製造される。電解液の注液は、ラミネート外装材の積層体の周囲を注液口以外の部分を封止した後、注液口から電解液を注入し、次いで積層体を真空条件下に一定時間放置し、電解液を積層体に含浸させ、その後、注液口を真空状態にて封止することにより製造されている。
The lithium laminated secondary battery has a structure in which a battery element in which a sheet-like positive electrode and a negative electrode are laminated via a separator is housed and sealed in a laminate exterior material.
In a laminated lithium secondary battery using a general gel electrolyte, an active material, a polymerizable monomer, and an electrolyte are applied in the form of an electrode plate, and then the monomer is polymerized to convert the electrolyte into a gel electrolyte. Then, after forming the positive electrode and the negative electrode, there is a method in which the positive electrode, the separator, and the negative electrode are sequentially stacked to form a laminated structure.
In addition, as another method, a laminate composed of a positive electrode, a negative electrode, and a separator is housed in an outer package made of a laminate coated with resin on an aluminum foil with the positive electrode terminal and the negative electrode terminal exposed, An electrolytic solution is injected and sealed in this, and a lithium laminated type secondary battery is manufactured. For electrolyte injection, after sealing the part other than the injection port around the laminate of the laminate outer packaging material, inject the electrolyte from the injection port, and then leave the laminate under vacuum conditions for a certain period of time. The laminate is impregnated with the electrolytic solution, and then the liquid injection port is sealed in a vacuum state.

後者の電解液を注入する製造方法においては、正極電極、負極電極、セパレータから構成される積層体に、粘性のある電解液を全面に均一に含浸させることは困難な作業であることから、電解液の注入工程において電解液の吸液時間を短縮する方法や、電解液の吸液速度に対応する流量に調整できる注液方法などが提案されている(特許文献1、特許文献2)。また、電解液を注入する過程において、セパレータの形状を適切に保持することは容易ではないため、電解液が浸透することによる膨張異方性を有するシート状セパレータを用いることにより、厚みのバラツキがなく、品質安定性に優れ、モジュール化に好適な、放熱性に優れた大容量の薄型二次電池セルを提供する方法(特許文献3)や、電極およびセパレータにしわが発生せず、電気的特性がよく歩留まりのよい積層型二次電池の製造方法として、
正極端子が接続された正極電極と、負極端子が接続された負極電極をセパレータを介して積層した電池要素となし、正極端子および負極端子を露出させてラミネート外装材に収納し、注液口を除いて封止する工程と、電池要素を収納したラミネート外装材を押え板で挟持し、注液口より電解液を注入する工程と、注液口を封止する工程からなる製造方法(特許文献4)が提案されている。
In the latter method of injecting the electrolytic solution, it is difficult to uniformly impregnate the entire surface of the laminate composed of the positive electrode, the negative electrode, and the separator with the viscous electrolytic solution. There have been proposed a method for shortening the liquid absorption time in the liquid injection step, a liquid injection method capable of adjusting the flow rate corresponding to the liquid absorption speed of the electrolytic solution, and the like (Patent Document 1 and Patent Document 2). In addition, in the process of injecting the electrolytic solution, it is not easy to appropriately maintain the shape of the separator. Therefore, by using a sheet-like separator having expansion anisotropy due to permeation of the electrolytic solution, there is a variation in thickness. In addition, a method for providing a large-capacity thin secondary battery cell excellent in quality stability, suitable for modularization and excellent in heat dissipation (Patent Document 3), and without causing wrinkles in electrodes and separators, electrical characteristics As a manufacturing method of a laminated type secondary battery with good and good yield,
A battery element in which a positive electrode connected to a positive electrode terminal and a negative electrode connected to a negative electrode terminal are stacked via a separator is formed, and the positive electrode terminal and the negative electrode terminal are exposed and stored in a laminate exterior material. A manufacturing method comprising a step of sealing and removing, a step of sandwiching a laminate sheathing material containing battery elements with a pressing plate, injecting an electrolyte from a liquid inlet, and a step of sealing the liquid inlet (Patent Document) 4) has been proposed.

また、電解液の注入から封口に至る製造工程を安定化させ、サイクル特性にばらつきのない二次電池の製造方法として、
正極、負極およびセパレータからなる電極群を電池缶に挿入し、非水電解液を注入した後に電池缶を封口するリチウム二次電池の製造方法において、非水電解液の注入開始から封口後の12時間までの電池缶の外壁温度を3℃以上50℃以下に制御するリチウム二次電池の製造方法が提案されている(特許文献5)。
以上例示したようにリチウム積層型二次電池の製造においては電解液の注入効率、注入後のセパレータなど形状構造、電解液の含浸状態の均一化など多くの解決すべき問題が残されている。
In addition, as a secondary battery manufacturing method that stabilizes the manufacturing process from injection of electrolyte to sealing and has no variation in cycle characteristics,
In the method of manufacturing a lithium secondary battery in which an electrode group consisting of a positive electrode, a negative electrode, and a separator is inserted into a battery can and the nonaqueous electrolyte is injected and then the battery can is sealed. A method for manufacturing a lithium secondary battery in which the temperature of the outer wall of the battery can until 3 hours is controlled to 3 ° C. or more and 50 ° C. or less has been proposed (Patent Document 5).
As illustrated above, many problems to be solved remain, such as the efficiency of electrolyte injection, the shape structure of the separator after injection, and the uniform state of impregnation of the electrolyte, in the manufacture of lithium stacked secondary batteries.

特開2008−235134号公報JP 2008-235134 A 特開2008−91065号公報JP 2008-91065 A 特開2005−222787号公報JP 2005-222787 A 特開2009−146602号公報JP 2009-146602 A 特開平10−208776号公報JP-A-10-208776

これからのリチウムポリマー電池は大型化、高容量化、高機能化が必須となると予想されるが、従来の製造方法ではこれに対応できていない問題がある。特にネックとなるのが高粘度のポリマー電解液の取り扱いである。ポリマー電解液はドライ環境であっても変質して品質や電池性能に影響が出ることがある、また、ポリマー電解液の電極への塗布ムラによって品質が安定しないという問題が引き起こされることがある。さらに、生産性の悪さから、製造コストの引き上げ要因ともなっている。
電池の組み立て工程においては、ポリマー電解液を正極、負極間に均一に充填させることが必要であるが、高分子を入れたポリマー電解液では粘度が大きくなり、均一な厚さで充填することが難しい。また、変質しやすいポリマー電解液の取り扱いの難しさが生産性向上を阻む要因であった。従って、大型のリチウムポリマー電池を製造する場合には、電極を組み立てる前に、ポリマー電解液を電極面に均一に塗る方法を取っていることが多かった。
本発明はこうした従来技術の問題点を解決するものであり、正極、負極、セパレータの積層体を収納した外装体に電解液を注入する方式のリチウム二次電池の製造における課題を解決するものであり、詳しくは、大型化、高容量化、高機能化したリチウムポリマー電池の製造における品質問題点を解決し、生産性の向上と電池性能の高機能化を実現する製造方法を開発することを目的とするものである。
Future lithium polymer batteries are expected to be large in size, high in capacity, and high in functionality, but there is a problem that conventional manufacturing methods cannot cope with this. In particular, the handling of a high viscosity polymer electrolyte is a bottleneck. Even in a dry environment, the polymer electrolyte may change in quality and affect the quality and battery performance, and there may be a problem that the quality is not stable due to uneven application of the polymer electrolyte to the electrode. In addition, the low productivity leads to an increase in manufacturing costs.
In the battery assembly process, it is necessary to uniformly fill the polymer electrolyte solution between the positive electrode and the negative electrode. However, the polymer electrolyte solution containing a polymer has a high viscosity and can be filled with a uniform thickness. difficult. In addition, the difficulty in handling polymer electrolytes that are prone to change was a factor that hindered productivity improvement. Therefore, when manufacturing a large-sized lithium polymer battery, a method of applying a polymer electrolyte solution uniformly on the electrode surface is often used before assembling the electrode.
The present invention solves such problems of the prior art, and solves the problems in the production of a lithium secondary battery of a type in which an electrolyte is injected into an outer package containing a laminate of a positive electrode, a negative electrode, and a separator. Yes, in detail, to solve the quality problems in the production of large-sized, high-capacity, high-functionality lithium polymer batteries, and to develop a manufacturing method that realizes improved productivity and high-performance battery performance It is the purpose.

(1)リチウムイオンを吸蔵放出可能な活物質を含有する層を集電体上に設けた正極、負極およびセパレータからなる積層体が収納されている外装体内にポリマー電解液を注入することからなるリチウム二次電池の製造方法において、次の(a)から(h)の工程を具備することを特徴とするリチウム二次電池の製造方法。
(a)正極、負極および電極間に入れたセパレータが縦置きになるように外装体を設置する。
(b)外装体内に開口部からポリマー電解液を注入する。
(c)注入後、外装体の開口部分を封止する。
(d)外装体内の積層体を縦置きの状態で低温に保持する。
(e)外装体の上下が逆さまになるように任意の角度に回転させて低温に保持する。
(f)外装体の一部を開口し、外装体中の余分なポリマー電解液を除去する。
(g)開口部を真空下で封止する。
(h)外装体の表面を均一に加圧しながら熱をかけて外装体内のポリマー電解液をキュアしてポリマー化する。
(2)(d)および(e)における低温での保持工程が、10℃以下の温度下で実施される請求項1に記載のリチウム二次電池の製造方法。
(3)(f)における外装体中の余分なポリマー電解液を除去する工程が、0.1〜2.0kgf/cmの圧力下で行われる請求項1または2に記載のリチウム二次電池の製造方法。
(4)(g)の開口部を真空下に封止後に外装体を加圧し平滑化する請求項1から3のいずれかに記載のリチウム二次電池の製造方法。
(5)(h)のポリマー電解液のキュア工程が、0.01〜0.5kgf/cmの圧力下で行われる請求項1から4のいずれかに記載のリチウム二次電池の製造方法。
(6)ポリマー電解液をキュアした後に外装体の表面を均一に加圧する請求項1から5のいずれかに記載のリチウム二次電池の製造方法。
(7)ポリマー電解液をキュアした後の外装体の表面の加圧が、2.0〜4.0kgf/cmで行われる請求項6に記載のリチウム二次電池の製造方法。
(8)ポリマー電解液をキュアした外装体の表面を均一に加圧した後、電池充放電検査工程へ搬送される請求項6または7に記載のリチウム二次電池の製造方法。
(1) It consists of injecting a polymer electrolyte into an exterior body in which a laminated body composed of a positive electrode, a negative electrode and a separator provided with an active material capable of occluding and releasing lithium ions is provided on a current collector. In the manufacturing method of a lithium secondary battery, the process of the following (a) to (h) is comprised, The manufacturing method of the lithium secondary battery characterized by the above-mentioned.
(A) The exterior body is installed so that the positive electrode, the negative electrode, and the separator placed between the electrodes are vertically placed.
(B) A polymer electrolyte is injected into the exterior body from the opening.
(C) After the injection, the opening of the exterior body is sealed.
(D) The laminated body in the exterior body is kept at a low temperature in a vertically placed state.
(E) The exterior body is rotated at an arbitrary angle so that the top and bottom are upside down and kept at a low temperature.
(F) A part of the exterior body is opened, and the excess polymer electrolyte in the exterior body is removed.
(G) The opening is sealed under vacuum.
(H) Applying heat while uniformly pressing the surface of the exterior body to cure the polymer electrolyte in the exterior body to polymerize.
(2) The method for producing a lithium secondary battery according to claim 1, wherein the holding step at a low temperature in (d) and (e) is performed at a temperature of 10 ° C. or lower.
(3) The lithium secondary battery according to claim 1 or 2, wherein the step of removing excess polymer electrolyte in the outer package in (f) is performed under a pressure of 0.1 to 2.0 kgf / cm 2. Manufacturing method.
(4) The method for producing a lithium secondary battery according to any one of claims 1 to 3, wherein the exterior body is pressurized and smoothed after the opening of (g) is sealed under vacuum.
(5) The method for producing a lithium secondary battery according to any one of claims 1 to 4, wherein the curing step of the polymer electrolyte solution of (h) is performed under a pressure of 0.01 to 0.5 kgf / cm 2 .
(6) The method for producing a lithium secondary battery according to any one of claims 1 to 5, wherein the surface of the outer package is uniformly pressurized after the polymer electrolyte is cured.
(7) The method for producing a lithium secondary battery according to claim 6, wherein the pressure on the surface of the outer package after curing the polymer electrolyte is performed at 2.0 to 4.0 kgf / cm 2 .
(8) The method for producing a lithium secondary battery according to claim 6 or 7, wherein the surface of the exterior body cured with the polymer electrolyte is uniformly pressurized and then conveyed to the battery charge / discharge inspection step.

本発明は、以下に記載のごとくリチウム二次電池の製造における問題点を解決し、従来品に比較して、高性能で高容量のリチウムポリマー電池の製造を可能とする効果を奏するものである。
(1)高分子モノマーを入れた電解液では粘度が高くなり(5cP以上のポリマー電解液)電池電極表面への電解液の均一な厚さを作り出すことが容易ではなかったが本発明により解決される。
(2)ポリマー電解液は環境に敏感であり性能劣化が起こる問題が解決される。すなわち、従来の製造方法は、電池組み立ての前に、個々の電極(正負極)にポリマー電解液を先に塗布し、塗布厚さの均一化を図っている。その後、各電極間にセパレータを入れながら積層し、電池を構築している。しかしながら、この方法では生産性が悪く、しかも、電極に電解液を塗布する段階から積層し外装体に収納されて封止されるまでの間は、長時間にわたり解放状態となることが多いために品質的な問題を引き起こすことがあったが、本発明においてはポリマー電解液の品質が安定して保持される。
(3)本発明は、電池電極とセパレータの積層、アルミラミネート封止までの工程を先に終了し、その後ポリマー電解液を入れる方式であり、いわゆる後注液・含浸方式による電池製造方法を提供するものである。このため、本発明は従来の生産方式に比べて5倍以上の生産性を実現でき、しかも高粘度なポリマー電解液にも対応できる製造方法を確立した。
(4)従来品と対比して、電気的特性が勝るとも劣らないリチウム二次電地を製造し提供することができる。
The present invention solves the problems in the production of lithium secondary batteries as described below, and has the effect of enabling the production of high-performance and high-capacity lithium polymer batteries compared to conventional products. .
(1) The electrolyte solution containing the polymer monomer has a high viscosity (polymer electrolyte solution of 5 cP or more), but it was not easy to create a uniform thickness of the electrolyte solution on the surface of the battery electrode. The
(2) The polymer electrolyte is sensitive to the environment and solves the problem of performance degradation. That is, in the conventional manufacturing method, the polymer electrolyte is first applied to the individual electrodes (positive and negative electrodes) before assembling the battery so as to make the coating thickness uniform. Then, it laminates | stacks, putting a separator between each electrode, and the battery is constructed | assembled. However, this method has poor productivity, and since it is often in a released state for a long time from the stage of applying an electrolytic solution to the electrode until it is stacked and housed in an exterior body and sealed. Although this may cause quality problems, the quality of the polymer electrolyte is stably maintained in the present invention.
(3) The present invention is a system in which the steps up to the lamination of the battery electrode and the separator and the sealing of the aluminum laminate are finished first, and then the polymer electrolyte is put in. To do. For this reason, the present invention has established a production method that can realize productivity five times or more as compared with the conventional production method, and can also cope with a high viscosity polymer electrolyte.
(4) Compared with the conventional product, it is possible to manufacture and provide a lithium secondary electric ground that is not inferior in electrical characteristics.

先含浸法によるリチウム二次電池の製造ラインの一例を示す。An example of the production line of the lithium secondary battery by a pre-impregnation method is shown. 先含浸法と本発明によるリチウム二次電池の概要工程を示す。 (1)先含浸方式による製造の一例 (2)本発明による製造工程の一例The outline | summary process of the pre-impregnation method and the lithium secondary battery by this invention is shown. (1) An example of manufacturing by pre-impregnation method (2) An example of manufacturing process according to the present invention 従来の後含浸法により電解液を注入して加減圧を繰り返した場合の含浸状態を示す。The impregnation state when the electrolyte solution is injected by the conventional post-impregnation method and the pressurization and pressure reduction is repeated is shown. 従来の後含浸法により電解液を注入して十分な電解液を注入して加減圧を繰り返した場合の含浸状態を示す。The impregnation state is shown in the case where an electrolytic solution is injected by a conventional post-impregnation method, a sufficient electrolytic solution is injected, and pressurization is repeated. 従来の後含浸法により電解液を注入して24時間放置した場合の含浸状態を示す。An impregnation state when an electrolytic solution is injected by a conventional post-impregnation method and allowed to stand for 24 hours is shown. 本発明のリチウム二次電池の製造工程のフローを具体的に示す。The flow of the manufacturing process of the lithium secondary battery of this invention is shown concretely.

本発明は、リチウムイオンを吸蔵放出可能な活物質を含有する層を集電体上に設けた正極、負極およびセパレータからなる積層体が収納されている外装体内にポリマー電解液を注入することからなる、いわゆる後注液含浸方式によるリチウム二次電池の製造方法に係るものであって、次の(1)から(8)の工程を具備することを特徴とするリチウム二次電池の製造方法である。
(1)
正負極および電極間に入れたセパレータが縦置きになるように外装体を設置する。
(2)
外装体内に開口部からポリマー電解液を注入する。
(3)
注入後、外装体の開口部分を封止する。
(4)
外装体内の積層体を縦置きの状態で低温に保持する。
(5)
外装体を任意の角度に回転、停止して低温に保持する。
(6)
外装体の一部を開口し、外装体中の余分なポリマー電解液を除去する。
(7)
開口部の真空下での封止を行う。
(8)
外装体の表面を均一に加圧しながら熱をかけて外装体内のポリマー電解液をキュアしてポリマー化する。
The present invention injects a polymer electrolyte solution into an exterior body in which a laminate including a positive electrode, a negative electrode, and a separator provided with a layer containing an active material capable of occluding and releasing lithium ions is provided. A method for manufacturing a lithium secondary battery comprising the following steps (1) to (8): is there.
(1)
The exterior body is installed so that the separator placed between the positive and negative electrodes and the electrodes is placed vertically.
(2)
A polymer electrolyte is injected into the exterior body from the opening.
(3)
After the injection, the opening of the exterior body is sealed.
(4)
The laminated body in the exterior body is kept at a low temperature in a vertically placed state.
(5)
The exterior body is rotated and stopped at an arbitrary angle to keep it at a low temperature.
(6)
A part of the outer package is opened, and excess polymer electrolyte in the outer package is removed.
(7)
The opening is sealed under vacuum.
(8)
Heat is applied while uniformly pressing the surface of the exterior body to cure the polymer electrolyte in the exterior body to polymerize.

本発明により、従来の先含浸方式に比べて5倍以上の生産性を実現でき、しかも高粘度なポリマー電解液にも柔軟に対応できる製造方法が確立された。
従来の大型のリチウム二次電池の製造では先含浸方式が採用されていることが多い。これは、電解液がモノマー成分を含み粘性が高いため電極やセパレータに浸透し難い問題を回避するために、電解液を電極表面やセパレータに塗布しながら積層を行っているため、生産性は悪く、品質的にも安定しなかった。そこで、一旦電極およびセパレータを積層構造とした後にアルミラミネート体などからなる外装体に収納し、これに電解液を注入する方式が提案されてはいたが、粘性のある電解液を電極間に均等に含浸させる製造方法は確立されてはいなかった。
そこで、本発明は、こうした後含浸方式の問題点を解消した新しいリチウム二次電池の製造方法を提供するものである。
According to the present invention, a production method has been established that can realize productivity more than five times that of the conventional pre-impregnation method and can flexibly cope with a high viscosity polymer electrolyte.
In the manufacture of conventional large lithium secondary batteries, the pre-impregnation method is often employed. This is because the electrolyte solution contains monomer components and has a high viscosity, so that it is difficult to permeate the electrodes and separators. The quality was not stable. Therefore, there has been proposed a method in which an electrode and a separator are made into a laminated structure and then housed in an exterior body made of an aluminum laminate and the like, and an electrolytic solution is injected into this. However, a viscous electrolytic solution is evenly distributed between the electrodes. No manufacturing method has been established for impregnation.
Therefore, the present invention provides a new method for manufacturing a lithium secondary battery that eliminates the problems of the post-impregnation method.

[従来法によるリチウム二次電池の製造]
従来の先含浸方式によるリチウム二次電池の製造方法は、例えば、図1に示されている連続工程によった。まず、正極集電体が所定寸法に切断し、その上に電解液を塗布する工程(1)。次いで、セパレータを所定寸法に切断し電解液を塗布すると共に、正極上に重ねる工程(2)。次に、負極集電体を所定寸法に切断し、電解液を塗布すると共にセパレータ上に重ねる工程(3)。その後、5〜10分間放置することにより電解液を各電極、セパレータに浸透させる工程(5)、不溶な電解液を押し出す工程(7)、電解液を重合させる熱キュア工程(8)からなる。次いで、積層工程(9)に移送し、所定の個数のシングルセルを積層し、タブリードを溶着した後にアルミのラミネートなどからなる外装体に収納してリチウム二次電池とする。次の工程で初期充電放電検査が行われることにより完成する。
この方式によれば、例えば、17枚のシングルセルを必要とする電池を製造するには、各集電体およびセパレータの切断、電解液の塗布からなる一連の工程が17回繰り返されることとなる。
[Manufacture of lithium secondary batteries by conventional methods]
A conventional method of manufacturing a lithium secondary battery by a pre-impregnation method is based on, for example, a continuous process shown in FIG. First, a step (1) in which the positive electrode current collector is cut to a predetermined size and an electrolytic solution is applied thereon. Next, a step of cutting the separator into a predetermined size and applying the electrolytic solution, and overlapping the positive electrode (2). Next, a step (3) of cutting the negative electrode current collector into a predetermined size, applying the electrolytic solution, and overlapping the separator. Then, it is composed of a step (5) for allowing the electrolytic solution to permeate each electrode and separator by leaving it for 5 to 10 minutes, a step (7) for extruding an insoluble electrolytic solution, and a thermal curing step (8) for polymerizing the electrolytic solution. Subsequently, it transfers to a lamination process (9), a predetermined number of single cells are laminated | stacked, a tab lead is welded, Then, it accommodates in the exterior body which consists of an aluminum laminate etc., and is set as a lithium secondary battery. In the next step, the initial charge / discharge test is performed to complete the process.
According to this method, for example, in order to manufacture a battery that requires 17 single cells, a series of steps including cutting of each current collector and separator and application of an electrolytic solution is repeated 17 times. .

これに対し、後含浸方式によると、一般的には、各電極集電体およびセパレータを所定の寸法に切断し、活性物質を塗布して所定の数だけ積層した後に各電極にタブリードを溶着して外装体内に収納する。次いで、外装体の開口部から電解液を注入して真空下に放置する、あるいは加減圧を繰り返すことにより電解液を含浸させた後、真空下で開口部を封止した後、電解液を加熱しキュアさせる工程により製造されている。   On the other hand, according to the post-impregnation method, generally, each electrode current collector and separator are cut to a predetermined size, an active substance is applied, a predetermined number of layers are laminated, and then tab leads are welded to the respective electrodes. And store in the exterior. Next, after injecting the electrolytic solution from the opening of the outer package and leaving it under vacuum, or by impregnating the electrolytic solution by repeating pressure and pressure reduction, sealing the opening under vacuum and then heating the electrolytic solution Manufactured by a curing process.

[従来提案されている後含浸法による電解液の含浸状態]
従来の後含浸により電解液を注入して加減圧を繰り返した後の電解液の含浸状態を検討した結果を図3から図5に示す。図3は、電解液を注入して加減圧を繰り返した場合の電解液の浸透状態を示すものであり、上方には広い未含浸箇所が残っている。次の図4は、電解液を含浸量よりも過剰に注入して加減圧を繰り返した後の含浸状態を示すものであり、未含浸箇所21や電極液枯れ箇所22が存在し、特に中心部には未含浸箇所が見受けられる様になる。図5は、電解液を注入後24時間放置した場合の含浸状態を示すものであり、上方部に未含浸箇所21が広く残る。電解液の非含浸部分の存在は電池性能を低下させる大きな要因である。
従来の後含浸方式では、こうした未含浸部分が残存している問題と共に、真空下に長時間の処理を行うことが必要であることや、常温で放置することにより電解液の変性が起こり、粘性が増加して電解液の電極への浸透がさらに困難となるなどの問題が生じている。
[Solution state of electrolyte solution by the post-impregnation method proposed in the past]
The results of examining the state of impregnation of the electrolytic solution after injecting the electrolytic solution by conventional post-impregnation and repeating the pressurization and decompression are shown in FIGS. FIG. 3 shows the permeation state of the electrolytic solution when the electrolytic solution is injected and the pressure increase / decrease is repeated, and a wide unimpregnated portion remains above. FIG. 4 shows an impregnated state after the electrolyte solution is injected in excess of the impregnated amount and the pressurization and depressurization are repeated. The unimpregnated part can be seen in. FIG. 5 shows the impregnation state when the electrolyte is left for 24 hours after injection, and the unimpregnated portion 21 remains widely in the upper part. The presence of the non-impregnated portion of the electrolyte is a major factor that degrades battery performance.
In the conventional post-impregnation method, in addition to the problem that these non-impregnated parts remain, it is necessary to perform a long-time treatment under vacuum, or the electrolyte solution is denatured by leaving it at room temperature, resulting in a viscosity. As a result, the problem that the penetration of the electrolyte into the electrode becomes more difficult has occurred.

[本発明のリチウム二次電池の製造方法の概要]
本発明のリチウム二次電池の製造方法は後含浸方式に分類されるものであり、特に、アルミパックなどの外装材中に収納した電池積層体に電解液を注入する工程から注入した電解液を加熱キュアする工程に特徴をしている。すなわち、図2(2)において本発明の製造工程を示しているが、電極・セパレータのカット工程、電極セパレータの積層工程、タブリードの溶着工程およびアルミパック内挿入工程は従来法が利用できる。
本発明のリチウム二次電池の製造において、各電極およびセパレータが所定の数で積層された積層体であって、電解液がいまだ含浸されていないものを以後単に「積層体」ということがある。
[Outline of Manufacturing Method of Lithium Secondary Battery of the Present Invention]
The method for producing a lithium secondary battery of the present invention is classified as a post-impregnation method, and in particular, an electrolyte injected from the step of injecting an electrolyte into a battery laminate housed in an exterior material such as an aluminum pack is used. It is characterized by a heat curing process. That is, although the manufacturing process of the present invention is shown in FIG. 2B, conventional methods can be used for the electrode / separator cutting process, the electrode separator laminating process, the tab lead welding process, and the aluminum pack insertion process.
In the production of the lithium secondary battery of the present invention, a laminate in which a predetermined number of electrodes and separators are laminated and the electrolyte is not yet impregnated may be simply referred to as a “laminate” hereinafter.

[電解液注入工程]
本発明における電解液注入工程において注入される電解液は、ポリマー電解液であって従来リチウム二次電池を製造するにあたり使用されているものであればいずれのものであっても使用されるが、特に粘性が5cP以上の高粘性のポリマー電解液であっても用いることができる。積層体を収納した外装体には、電解液を注入する開口部が設けられている。この開口部から電解液を注入する際に、外装体は、各電極およびセパレータが縦置きとなるように設置される。すなわち、外装体は収納した積層体の各電極およびセパレータの積層端面を上方に、平面部を横方向になるように設置する。こうすることにより、電解液は主に積層体の上面を除く三方の端面から浸透する。このとき、積層体が縦置きとなっているということは、積層体の平面が鉛直になっていることを含めて、鉛直から約10度程度の角度のブレの範囲内であることが好ましい。電解液は、静置時には重力や毛細管現象により浸透するが、積層体を縦置きにすることにより均一な浸透が達成される。
[Electrolyte injection process]
The electrolytic solution injected in the electrolytic solution injecting step of the present invention is a polymer electrolytic solution that can be used as long as it has been conventionally used in manufacturing a lithium secondary battery, In particular, even a highly viscous polymer electrolyte having a viscosity of 5 cP or more can be used. An opening for injecting an electrolytic solution is provided in the exterior body that houses the laminate. When injecting the electrolytic solution from this opening, the exterior body is installed such that each electrode and separator are placed vertically. In other words, the exterior body is installed so that each electrode of the accommodated laminated body and the laminated end face of the separator are directed upward, and the planar portion is in the lateral direction. By doing so, the electrolytic solution penetrates mainly from the three end surfaces except the upper surface of the laminate. At this time, the fact that the laminated body is placed vertically is preferably within a range of blurring of an angle of about 10 degrees from the vertical, including that the plane of the laminated body is vertical. The electrolytic solution permeates due to gravity or capillary action when left standing, but uniform permeation is achieved by placing the laminate vertically.

[注入口または開口の封止]
注入口から電解液の注入が完了したならば、真空引きをすることなく常温常圧の下で注入口を封止することにより、積層体と電解液は外装体中に密閉される。封止工程において、真空条件で行う必要がない。このことは工程を実施するにあたり大きな利点である。また、この工程では開口部は封止しているため以後の工程において外気などによる影響を受けることがない。
[Sealing the inlet or opening]
When the injection of the electrolytic solution from the injection port is completed, the laminate and the electrolytic solution are sealed in the exterior body by sealing the injection port under normal temperature and normal pressure without evacuation. In the sealing step, it is not necessary to carry out under vacuum conditions. This is a great advantage in carrying out the process. Further, since the opening is sealed in this step, it is not affected by outside air or the like in the subsequent steps.

[積層体の低温での保管]
電解液を注入し開口を封止した後は、積層体が縦置きとなるように外装体を設置した状態で、低温に比較的長時間保管することにより、電解液の変性を避けるために行われ、電解液の構成成分などに応じて保管温度は適宜変更される。低温保管は、通常、10℃以下の温度で行われ、好ましくは0〜8℃の温度範囲、さらに好ましくは2〜5℃で保管される。低温での保管の目的は、積層体に電解液を変質することなく均一に浸透させることである。しかしながら、保管温度が低くなりすぎると粘性が高くなり均一な浸透を困難とすることがある。
均一に浸透するための時間は、電解液の構成成分や粘性、保管温度などに応じて最適な時間が選択されるが、通常、12〜30時間保管され、好ましくは24〜26時間保管される。低温での保管中に、電解液は重力により積層体の下方に移動することにより電解液の分布が下方に偏ることがあるため、保管の途中で外装体を任意の角度に回転、停止して再度低温に保持する。このとき上下反転して再度低温で保管することが好ましい。再度の冷蔵保管は、前記冷蔵保管とほぼ同一の条件で行われることが好ましく、通常、10℃以下の温度で行われ、好ましくは0〜8℃の温度範囲で、12〜30時間、好ましくは24〜26時間保管される。
[Storage of laminate at low temperature]
After injecting the electrolyte and sealing the opening, it is necessary to avoid denaturation of the electrolyte by storing it at a low temperature for a relatively long time with the exterior body installed so that the laminate is placed vertically. The storage temperature is appropriately changed according to the constituent components of the electrolytic solution. The low temperature storage is usually performed at a temperature of 10 ° C. or lower, preferably 0 to 8 ° C., more preferably 2 to 5 ° C. The purpose of storage at a low temperature is to uniformly infiltrate the laminate without altering the electrolyte. However, if the storage temperature is too low, the viscosity becomes high and uniform penetration may be difficult.
The time for uniform penetration is selected in accordance with the constituent components, viscosity, storage temperature, etc. of the electrolyte, but is usually stored for 12 to 30 hours, preferably stored for 24 to 26 hours. . During storage at low temperatures, the electrolyte may move downwards due to gravity, causing the distribution of the electrolyte to be biased downward.Rotate and stop the exterior body at an arbitrary angle during storage. Keep it cool again. At this time, it is preferable to turn it upside down and store it again at a low temperature. The refrigerated storage is preferably performed under substantially the same conditions as the refrigerated storage, and is usually performed at a temperature of 10 ° C. or less, preferably in a temperature range of 0 to 8 ° C., preferably for 12 to 30 hours, preferably Stored for 24-26 hours.

[余剰電解液の除去]
低温で保管された積層体から余剰の電解液が除去される。外装体の封止した開口を開けるとともに外部より加圧することにより、外装体内に注入した電解液のうち余剰のものを外装体外に排出する。余剰の電解液の除去には加圧ローラにより両側から加圧して内部の電解液を絞り出すようにすることが好ましいが、過剰な圧力で行なうと必要な電解液も除去してしまう為、加圧ローラによる余剰電解液の除去には、0.1〜2.0kgf/cmの圧力で行うことが好ましい。
[Removal of excess electrolyte]
Excess electrolyte solution is removed from the laminated body stored at low temperature. By opening the sealed opening of the exterior body and applying pressure from the outside, surplus electrolyte out of the electrolyte injected into the exterior body is discharged out of the exterior body. To remove the excess electrolyte, it is preferable to press from both sides with a pressure roller to squeeze out the internal electrolyte, but if excessive pressure is used, the necessary electrolyte will also be removed. The excess electrolyte solution is preferably removed by a roller at a pressure of 0.1 to 2.0 kgf / cm 2 .

[真空下における開口の封止]
外装体の余剰電解液を除去するために開放した開口は再度封止される。この封止工程は以前常圧にて行った封止工程とは異なり真空下で行うことが好ましい。これは、気体に含まれる水分を除去し、また、電極間の密着性を高める為である。真空下で封止した後、ローラなどにより外装体の外部から加圧してしごくことにより外装体を平滑化するとよい。この加圧により、外装体は形が平滑状で均一な厚みとなり電池としての規格を有する外観を有することになると同時に、内部の電解液はさらに均一化される。
[Sealing of openings under vacuum]
The opening opened to remove the excess electrolyte solution of the outer package is sealed again. This sealing step is preferably performed under vacuum, unlike the sealing step previously performed at normal pressure. This is for removing moisture contained in the gas and improving the adhesion between the electrodes. After sealing under vacuum, the exterior body may be smoothed by pressing and squeezing from outside the exterior body with a roller or the like. By this pressurization, the exterior body has a smooth and uniform thickness and has an appearance having a standard as a battery, and at the same time, the internal electrolyte is further made uniform.

[加熱によるキュア]
積層体に電解液が浸透されたところで、電解液中に含まれる高分子モノマーを熱により重合化(キュア)させてリチウム二次電池は完成する。キュア工程は、モノマーの性質に応じて従来採用されている条件で行うことができるが、電極間の密着とポリマー化を確実に行なう為、例えば、0.01〜0.5kgf/cmで約20〜30分間行われる。
[Cure by heating]
When the electrolytic solution penetrates into the laminate, the polymer monomer contained in the electrolytic solution is polymerized (cured) by heat to complete the lithium secondary battery. The curing step can be performed under the conditions conventionally employed depending on the properties of the monomer, but in order to ensure adhesion between the electrodes and polymerization, for example, about 0.01 to 0.5 kgf / cm 2 For 20-30 minutes.

[加熱キュア後の処理工程]
電解液を加熱キュアした後は、常温までに冷却して、2.0〜4.0kgf/cmの圧力で加圧処理することが好ましい。この工程は、電極間の密着性を更に高める事を目的として行われる。次いで、初期充電放電検査工程に付されてリチウム二次電池が完成する。
[Processing after heat curing]
After the electrolyte is heated and cured, it is preferably cooled to room temperature and subjected to pressure treatment at a pressure of 2.0 to 4.0 kgf / cm 2 . This step is performed for the purpose of further improving the adhesion between the electrodes. Next, the lithium secondary battery is completed by being subjected to an initial charge / discharge inspection process.

[具体的な製造工程]
本発明の上記の工程については、図6に具体的にわかり易く図解して示してある。
(1)
電池の積層体32を乾燥状態で収納した外装体には、電解液31を注入するための開口のあるハウジング34で設けられ、シリンジ33から電解液31が注入される。注入は常圧下で行い、電解液の注入量は34層からなる製品で約80gである。積層体32を収納した外装体は保持板35によって挟持されて、積層体の平面が直立するよう支えられている。
(2)
ハウジング33の開口部は常圧下にシール部材36により加熱、封着される。
(3)
電解液31を注入された外装体は、例えば、10℃以下に冷蔵保存され12時間程度縦置きで保持される。
(4)
外装体を任意の角度に回転して、同じ温度でさらに12時間程度保管される。
(5)
外装体を開口して0.1〜2.0kgf/cm程度の加圧ローラ37によりしごいて余剰の電解液を除去する。
(6)
外装体の開口部を真空シールしてさらにローラでしごき平坦化する。
(7)
外装体を外部から0.01〜0.5kgf/cm程度の圧力を、加圧板38から加えながら120℃で40分間加熱して電解液31を重合(キュア)させる。
(8)
常温まで冷却した後2.0〜4.0kgf/cm程度の圧力で約2分間加圧して最終形状となる。
(9)
最後に、初期充電放電検査等が終了することにより製品としてのリチウム二次電池が完成する。
[Specific manufacturing process]
The above steps of the present invention are illustrated and illustrated in FIG.
(1)
An outer package housing the battery stack 32 in a dry state is provided with a housing 34 having an opening for injecting the electrolytic solution 31, and the electrolytic solution 31 is injected from the syringe 33. The injection is performed under normal pressure, and the injection amount of the electrolyte is about 80 g for a product composed of 34 layers. The outer package housing the laminated body 32 is sandwiched by the holding plate 35 and supported so that the plane of the laminated body stands upright.
(2)
The opening of the housing 33 is heated and sealed by the seal member 36 under normal pressure.
(3)
The exterior body into which the electrolytic solution 31 has been injected is refrigerated and stored at, for example, 10 ° C. or lower and is held vertically for about 12 hours.
(4)
The outer package is rotated at an arbitrary angle and stored at the same temperature for about 12 hours.
(5)
The exterior body is opened and the excess electrolyte solution is removed by squeezing with a pressure roller 37 of about 0.1 to 2.0 kgf / cm 2 .
(6)
The opening of the outer package is vacuum-sealed and further squeezed and flattened with a roller.
(7)
The exterior body is heated from 120 ° C. for 40 minutes while applying a pressure of about 0.01 to 0.5 kgf / cm 2 from the outside through the pressure plate 38 to polymerize (cure) the electrolytic solution 31.
(8)
After cooling to room temperature, it is pressed for about 2 minutes at a pressure of about 2.0 to 4.0 kgf / cm 2 to form a final shape.
(9)
Finally, when the initial charge / discharge inspection and the like are completed, a lithium secondary battery as a product is completed.

[従来法と本発明との充電した電極表面の相違]
従来法では、電極全体に十分な電解液を含浸させることができず、また、電解液層の厚みの不均一性によるむらが生じてしまい、充電も不均一にされてしまうが、本発明により製造された電池の電極面は、未含浸箇所もなく電解液の厚みも均一で、充電も全体に均一にされる。
[Difference in charged electrode surface between conventional method and present invention]
In the conventional method, the entire electrode cannot be impregnated with a sufficient amount of electrolyte, and unevenness due to the non-uniformity of the thickness of the electrolyte layer occurs, resulting in non-uniform charging. The electrode surface of the manufactured battery has no unimpregnated portion, the thickness of the electrolyte is uniform, and the charging is uniform throughout.

[リチウム二次電池の製造]
本発明の製造工程にしたがってリチウム二次電池を製造した。正極電極は、コバルト酸リチウムからなる正極活物質に、PVDF(ポリフッ化ビニリデン)からなる結着剤とアセチレンブラックからなる導電剤を添加してスラリーを厚さ20μmの帯状のアルミニウム箔からなる正極集電体上の両面に塗布し、乾燥し、ロールプレス機により圧延することで形成した。負極電極は、グラファイト粉末からなる負極活物質をPVDFからなる結着剤とともにスラリー状となし厚さ10μmの銅箔からなる集電体上の両面に塗布し、乾燥し、ロールプレス機により圧延することで形成した。
正極電極および負極電極を200×100mmに切断し、ポリエチレン不織布からなるセパレータを介して正極電極と負極電極を対向させて16層となるように重ね合わせて積層体を作製した。次に、正極および負極にタブリードを溶着した後、ナイロン/アルミ/ポリプロピレンの3層構造をもつアルミラミネートフィルムからなるラミネート外装体に収納した。ラミネート外装材の周囲は注液口を残して熱融着した。この外装体を平板状の保持板で挟持することによりほぼ垂直の縦置きとなし、注液口より、シリンジを用いて、電解液を注入した。
[Manufacture of lithium secondary batteries]
A lithium secondary battery was manufactured according to the manufacturing process of the present invention. The positive electrode is composed of a positive electrode active material made of lithium cobaltate, a binder made of PVDF (polyvinylidene fluoride) and a conductive agent made of acetylene black, and a slurry made of a positive electrode made of a strip-shaped aluminum foil having a thickness of 20 μm. It was formed by coating on both sides of the electric body, drying, and rolling with a roll press. In the negative electrode, a negative electrode active material made of graphite powder is applied in a slurry form together with a binder made of PVDF on both sides of a current collector made of copper foil having a thickness of 10 μm, dried, and rolled by a roll press. That was formed.
The positive electrode and the negative electrode were cut into 200 × 100 mm, and the positive electrode and the negative electrode were opposed to each other through a separator made of a polyethylene nonwoven fabric so as to form 16 layers to produce a laminate. Next, tab leads were welded to the positive electrode and the negative electrode, and then housed in a laminate outer package made of an aluminum laminate film having a three-layer structure of nylon / aluminum / polypropylene. The periphery of the laminate exterior material was heat-sealed leaving a liquid injection port. The exterior body was sandwiched between flat plate-like holding plates so that it was placed almost vertically, and an electrolyte solution was injected from a liquid injection port using a syringe.

電解液は、PC/ECベース電解液に対してモノマー3〜11wt%であり、その他の添加剤はベース電解液に対して計3〜11wt%であった。この電解液約80gを外装体に注入した後、常圧下にて開口部を封止した。縦置き、すなわち積層体の積層端面が上向きとなるように設置した状態で7℃に12時間保持した。
次いで、積層体の上下を反転してさらに7℃に12時間保持した。外装体の封口を開口して0.8kgf/cmの加圧ローラによりしごき余剰の電解液を除去した。真空下で開口を封止し、さらにローラによりしごいて外装体を平滑化した。0.05kgf/cmの加圧下に120℃で40分間加熱することにより電解液をキュアし、外装体を常温まで冷却した後2.5kgf/cmで2分間加圧した。次いで、初期充電の工程に移送した。
The electrolytic solution was 3 to 11 wt% of monomer with respect to the PC / EC base electrolytic solution, and the total amount of other additives was 3 to 11 wt% with respect to the base electrolytic solution. After injecting about 80 g of this electrolytic solution into the exterior body, the opening was sealed under normal pressure. It was kept at 7 ° C. for 12 hours in a vertically placed state, that is, in a state where the laminated end face of the laminated body was directed upward.
Next, the laminate was turned upside down and held at 7 ° C. for 12 hours. The sealing of the outer package was opened, and excess electrolyte solution was removed by ironing with a 0.8 kgf / cm 2 pressure roller. The opening was sealed under vacuum, and the outer package was smoothed by squeezing with a roller. The electrolyte solution was cured by heating at 120 ° C. for 40 minutes under a pressure of 0.05 kgf / cm 2 , and the exterior body was cooled to room temperature and then pressurized at 2.5 kgf / cm 2 for 2 minutes. Subsequently, it transferred to the process of initial charge.

[サイクル数−容量維持率の測定]
上記[リチウム二次電池の製造]記載の製法により2個のリチウム二次電池を作製してサイクル数−容量維持率を測定しその結果を表1に示す。サイクル−容量維持率は1C充電−2C放電、24℃雰囲気で行なった。
表1に示した従来品は、上記[リチウム二次電池の製造]記載の製法で製造した製品と同一の構成材料を使用しているが、本発明の製造法ではなく、従来法により製造したものであり、SampleI−1とSampleI−2は、上記[リチウム二次電池の製造]記載の製法で製造した製品である。
このように、本発明によるリチウム二次電池は従来品と比較して優れたサイクル特性を示していることがこの試験結果から明らかとなった。
[Measurement of cycle number-capacity maintenance ratio]
Two lithium secondary batteries were produced by the production method described in [Manufacture of lithium secondary battery] and the cycle number-capacity maintenance ratio was measured. The results are shown in Table 1. The cycle-capacity maintenance rate was 1C charge-2C discharge, performed in a 24 ° C. atmosphere.
The conventional products shown in Table 1 use the same constituent materials as the products manufactured by the manufacturing method described in [Manufacture of lithium secondary battery], but were manufactured by the conventional method, not the manufacturing method of the present invention. Sample I-1 and Sample I-2 are products manufactured by the manufacturing method described in [Manufacture of Lithium Secondary Batteries] above.
Thus, it became clear from this test result that the lithium secondary battery according to the present invention showed excellent cycle characteristics as compared with the conventional product.

実施例1と同様にしてリチウム二次電池SampleIIを作製してサイクル数−容量維持率を測定しその結果を表2に示す。サイクル−容量維持率は1C充電−2C放電、24℃雰囲気で行なった。実施例1と同様に優れたサイクル特性を示していることがこの試験結果から明らかとなった。   A lithium secondary battery Sample II was prepared in the same manner as in Example 1, and the cycle number-capacity maintenance ratio was measured. The results are shown in Table 2. The cycle-capacity maintenance rate was 1C charge-2C discharge, performed in a 24 ° C. atmosphere. It became clear from this test result that excellent cycle characteristics were exhibited as in Example 1.

本発明は、今後需要が増大する大型で大容量のリチウムポリマー電池の製造技術分野において有用な低コストで高品質なリチウム二次電池の生産方法を構築し提供するものである。
本発明の生産方法は、電極を一括して組み上げてアルミラミネート製の外装体に収納した後に、ポリマー電解液を注液するものである。高粘度のポリマー電解液を用いた大型電池の製造では先含浸方式が唯一の生産方式であると思われていたが、本発明により、低価格で高機能を有したポリマー電池の実用的な後含浸方式の製造を可能としたばかりか、本発明のポリマー電解液の注液・含浸・保管(静的な含浸)を一体化させた技術により、電極積層間(セパレータの中央部)に発生する未含浸部分の発生をなくし、安定した品質で高機能な電池製造ができるようになり、初期充電時の電池の加圧が必要なくなり、電池特性も安定した電池を製造できる技術を提供するものである。さらに、本発明は、従来の生産方式と比較して5倍以上の生産性が実現でき、さらに高粘性のポリマー電解液の利用が可能となりリチウムポリマー電池の適用分野の拡大が期待される。
The present invention constructs and provides a production method of a low-cost and high-quality lithium secondary battery that is useful in the technical field of manufacturing large-sized and large-capacity lithium polymer batteries, for which demand will increase.
The production method of the present invention is to inject a polymer electrolyte after assembling electrodes together and storing them in an aluminum laminate exterior body. The pre-impregnation method was considered to be the only production method for the production of large batteries using polymer electrolytes with high viscosity. Not only made it possible to manufacture the impregnation method, but it is generated between the electrode stacks (in the center of the separator) by the technology that integrates the injection, impregnation, and storage (static impregnation) of the polymer electrolyte of the present invention. It provides technology that eliminates the occurrence of unimpregnated parts, makes it possible to manufacture high-performance batteries with stable quality, eliminates the need to pressurize the battery during initial charging, and makes it possible to manufacture batteries with stable battery characteristics. is there. Further, the present invention can realize productivity more than 5 times compared with the conventional production method, and can use a highly viscous polymer electrolyte solution, which is expected to expand the application field of lithium polymer batteries.

1:正極カット、電解液塗布工程
2:セパレータカット、電解液塗布工程
3:負極カット、電解液塗布工程
4:正極カット工程
5:積層工程
6:放置して電解液を浸透させる工程
7:余剰電解液の除去工程
8:電解液の加熱重合(キュア)工程
9:積層工程
21:未含浸箇所
22:電極液枯れ箇所
31:電解液
32:電池(積層体、乾燥状態)
33:電解液注入シリンジ
34:ハウジング
35:保持版
36:加熱封口装置
37:加圧ローラ
38:加圧板
39:冷蔵雰囲気
40:真空雰囲気
41:加熱雰囲気
1: Positive electrode cut, electrolytic solution application step 2: Separator cut, electrolytic solution application step 3: Negative electrode cut, electrolytic solution application step 4: Positive electrode cut step 5: Laminating step 6: Standing and allowing electrolyte to penetrate 7: Surplus Electrolyte removal process 8: Heat polymerization (curing) process of electrolyte 9: Lamination process 21: Unimpregnated part 22: Electrode solution withered part 31: Electrolytic solution 32: Battery (laminated body, dry state)
33: Electrolyte injection syringe 34: Housing 35: Holding plate 36: Heat sealing device 37: Pressure roller 38: Pressure plate 39: Refrigerated atmosphere 40: Vacuum atmosphere 41: Heated atmosphere

Claims (8)

リチウムイオンを吸蔵放出可能な活物質を含有する層を集電体上に設けた正極、負極およびセパレータからなる積層体が収納されている外装体内にポリマー電解液を注入することからなるリチウム二次電池の製造方法において、次の(1)から(8)の工程を具備することを特徴とするリチウム二次電池の製造方法。
(1)
正極、負極および電極間に入れたセパレータが縦置きになるように外装体を設置する。
(2)
外装体内に開口部からポリマー電解液を注入する。
(3)
注入後、外装体の開口部分を封止する。
(4)
外装体内の積層体を縦置きの状態で低温に保持する。
(5)
外装体を任意の角度に回転、停止して低温に保持する。
(6)
外装体の一部を開口し、外装体中の余分なポリマー電解液を除去する。
(7)
開口部を真空下で封止する。
(8)
外装体の表面を均一に加圧しながら熱をかけて外装体内のポリマー電解液をキュアしてポリマー化する。
Lithium secondary consisting of injecting a polymer electrolyte into an exterior body containing a laminate comprising a positive electrode, a negative electrode, and a separator provided with a layer containing an active material capable of occluding and releasing lithium ions on a current collector In the manufacturing method of a battery, the process of the following (1) to (8) is comprised, The manufacturing method of the lithium secondary battery characterized by the above-mentioned.
(1)
The exterior body is installed so that the separator placed between the positive electrode, the negative electrode, and the electrode is placed vertically.
(2)
A polymer electrolyte is injected into the exterior body from the opening.
(3)
After the injection, the opening of the exterior body is sealed.
(4)
The laminated body in the exterior body is kept at a low temperature in a vertically placed state.
(5)
The exterior body is rotated and stopped at an arbitrary angle to keep it at a low temperature.
(6)
A part of the outer package is opened, and excess polymer electrolyte in the outer package is removed.
(7)
The opening is sealed under vacuum.
(8)
Heat is applied while uniformly pressing the surface of the exterior body to cure the polymer electrolyte in the exterior body to polymerize.
(4)および(5)における低温での保持工程が、10℃以下の温度下で実施される請求項1に記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 1, wherein the holding step at a low temperature in (4) and (5) is performed at a temperature of 10 ° C or lower. (6)における外装体中の余分なポリマー電解液を除去する工程が、0.1〜2.0kgf/cmの圧力下で行われる請求項1または2に記載のリチウム二次電池の製造方法。 The method for producing a lithium secondary battery according to claim 1 or 2, wherein the step of removing excess polymer electrolyte in the outer package in (6) is performed under a pressure of 0.1 to 2.0 kgf / cm 2. . (7)の開口部を真空下に封止した後に外装体を加圧し平滑化する請求項1から3のいずれかに記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to any one of claims 1 to 3, wherein the exterior body is pressurized and smoothed after the opening of (7) is sealed under vacuum. (8)のポリマー電解液のキュア工程が、0.01〜0.5kgf/cmの圧力下で行われる請求項1から4のいずれかに記載のリチウム二次電池の製造方法。 The method for producing a lithium secondary battery according to claim 1, wherein the curing step of the polymer electrolyte solution according to (8) is performed under a pressure of 0.01 to 0.5 kgf / cm 2 . ポリマー電解液をキュアした後に外装体の表面を均一に加圧する請求項1から5のいずれかに記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to any one of claims 1 to 5, wherein the surface of the outer package is uniformly pressurized after the polymer electrolyte is cured. ポリマー電解液をキュアした後の外装体の表面の加圧が、2.0〜4.0kgf/cmで行われる請求項6に記載のリチウム二次電池の製造方法。 The method for producing a lithium secondary battery according to claim 6, wherein the pressurization of the surface of the exterior body after curing the polymer electrolyte is performed at 2.0 to 4.0 kgf / cm 2 . ポリマー電解液をキュアした外装体の表面を均一に加圧した後、電池充放電検査工程へ搬送される請求項6または7に記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 6 or 7, wherein the surface of the exterior body cured with the polymer electrolyte is uniformly pressurized and then conveyed to the battery charge / discharge inspection step.
JP2011289485A 2011-12-28 2011-12-28 Method for producing high-performance lithium secondary battery Expired - Fee Related JP5595372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011289485A JP5595372B2 (en) 2011-12-28 2011-12-28 Method for producing high-performance lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011289485A JP5595372B2 (en) 2011-12-28 2011-12-28 Method for producing high-performance lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2013140676A true JP2013140676A (en) 2013-07-18
JP5595372B2 JP5595372B2 (en) 2014-09-24

Family

ID=49037960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011289485A Expired - Fee Related JP5595372B2 (en) 2011-12-28 2011-12-28 Method for producing high-performance lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5595372B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186367A1 (en) * 2014-06-05 2015-12-10 ユースエンジニアリング株式会社 Method for producing lithium ion cell and dry box for lithium ion cell production
JP2016162708A (en) * 2015-03-05 2016-09-05 株式会社フジクラ Method os manufacturing power storage element
CN111466050A (en) * 2018-05-31 2020-07-28 株式会社Lg化学 Method for manufacturing lithium secondary battery
JP7442660B2 (en) 2020-09-14 2024-03-04 エルジー エナジー ソリューション リミテッド Method for producing a gel polymer electrolyte secondary battery, and a gel polymer electrolyte secondary battery produced thereby

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223926A (en) * 2002-01-29 2003-08-08 Mitsubishi Chemicals Corp Manufacturing method of lithium polymer secondary battery
JP2005093261A (en) * 2003-09-18 2005-04-07 Nec Lamilion Energy Ltd Method for manufacturing battery wrapped with laminated film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223926A (en) * 2002-01-29 2003-08-08 Mitsubishi Chemicals Corp Manufacturing method of lithium polymer secondary battery
JP2005093261A (en) * 2003-09-18 2005-04-07 Nec Lamilion Energy Ltd Method for manufacturing battery wrapped with laminated film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186367A1 (en) * 2014-06-05 2015-12-10 ユースエンジニアリング株式会社 Method for producing lithium ion cell and dry box for lithium ion cell production
JP2016162708A (en) * 2015-03-05 2016-09-05 株式会社フジクラ Method os manufacturing power storage element
CN111466050A (en) * 2018-05-31 2020-07-28 株式会社Lg化学 Method for manufacturing lithium secondary battery
EP3709429A4 (en) * 2018-05-31 2021-01-27 Lg Chem, Ltd. Method for manufacturing lithium secondary battery
US11600863B2 (en) 2018-05-31 2023-03-07 Lg Energy Solution, Ltd. Method of manufacturing lithium secondary battery with gel polymer electrolyte
JP7442660B2 (en) 2020-09-14 2024-03-04 エルジー エナジー ソリューション リミテッド Method for producing a gel polymer electrolyte secondary battery, and a gel polymer electrolyte secondary battery produced thereby

Also Published As

Publication number Publication date
JP5595372B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP6193236B2 (en) Battery pack manufacturing method
US20070117008A1 (en) Stack-type lithium-ion polymer battery
US20040053122A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
US8382861B2 (en) Method of producing a gel polymer Li-ion battery
JP2022542201A (en) Separator for electrochemical device, electrochemical device and electronic device
CN108550835B (en) Lithium iron phosphate/gel electrolyte composite positive electrode material and preparation method thereof, and solid-state lithium battery and preparation method thereof
TWI667829B (en) All-solid-state battery, hybrid structure solid electrolyte membrane and their manufacturing methods thereof
EP3324461A1 (en) Separator for lithium-ion battery, manufacturing method therefor, and lithium-ion battery
JP3904935B2 (en) Method for producing lithium polymer secondary battery
JP2009146602A (en) Method for manufacturing lamination type secondary battery
JP5595372B2 (en) Method for producing high-performance lithium secondary battery
KR20040005664A (en) Method of making porous polymeric separator and lithium ion polymer battery
JP4132647B2 (en) Thin secondary battery
JPH11283672A (en) Polymer solid electrolyte cell and its manufacture
JP7001430B2 (en) Pressurization method and manufacturing method of film exterior battery
KR102265847B1 (en) Device for Eliminating Gas from Activated Battery Cell
JP4507345B2 (en) Method for producing lithium polymer secondary battery
JP2000268813A (en) Battery, electrode structure of capacitor, and manufacture of electrode
CN103354296A (en) Ultralight polymer lithium ion battery and manufacturing method thereof
JP4188668B2 (en) Lithium polymer secondary battery, manufacturing method thereof and manufacturing apparatus thereof
WO2001089023A1 (en) A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
KR100364965B1 (en) Method for manufacturing electrode of lithium polymer battery and lithium polymer battery using the electrode made by the method
EP4131539A1 (en) Electrochemical device
JP2013235826A (en) Nonaqueous electrolyte secondary battery manufacturing method
JP2006338993A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R150 Certificate of patent or registration of utility model

Ref document number: 5595372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees