JP2013140122A - Air-coupled ultrasonic test equipment - Google Patents

Air-coupled ultrasonic test equipment Download PDF

Info

Publication number
JP2013140122A
JP2013140122A JP2012001154A JP2012001154A JP2013140122A JP 2013140122 A JP2013140122 A JP 2013140122A JP 2012001154 A JP2012001154 A JP 2012001154A JP 2012001154 A JP2012001154 A JP 2012001154A JP 2013140122 A JP2013140122 A JP 2013140122A
Authority
JP
Japan
Prior art keywords
longitudinal
longitudinal wave
ultrasonic
inspected
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012001154A
Other languages
Japanese (ja)
Other versions
JP5915182B2 (en
Inventor
Tadashi Komai
正 駒井
Hiroshi Ishikawa
博 石川
Yutaka Suzuki
裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012001154A priority Critical patent/JP5915182B2/en
Priority to PCT/JP2012/083952 priority patent/WO2013103128A1/en
Publication of JP2013140122A publication Critical patent/JP2013140122A/en
Application granted granted Critical
Publication of JP5915182B2 publication Critical patent/JP5915182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide air-coupled ultrasonic test equipment that ensures high ultrasonic testing accuracy even if an inspection object is a multi-layer structure where no transverse wave is generated due to mode change.SOLUTION: A multi-layer structure is employed as an inspection object (3). An air- coupled ultrasonic test equipment includes: a longitudinal ultrasonic wave transmitter (5) that transmits toward a measurement point on the inspection object (3) in the air atmosphere a longitudinal ultrasonic wave in an open-tube resonance frequency band including a center frequency f which satisfies a condition of f≒V*N/(2 t) (N is a positive integer), provided that the thickness of the inspection object is t, and the sonic speed of a longitudinal ultrasonic wave propagating in the inspection object is V; and a longitudinal ultrasonic wave receiver (6) that receives the longitudinal ultrasonic wave transmitting through the inspection object (3).

Description

この発明は空中超音波探傷装置に関する。   The present invention relates to an airborne ultrasonic flaw detector.

空気中の雰囲気に置かれた被検査体と、この被検査体に対して縦波の超音波を送信する超音波送信子と、被検査体を透過してくる超音波を受信する超音波受信子とを備え、被検査体に対して空気中を伝播する縦波の超音波を斜めに入射するものがある(特許文献1参照)。このものでは、被検査体への超音波の入射点でモード変換によって横波を発生させ、この横波を用いて、被検査体内での超音波の透過率を向上し、S/N比を改善している。   An object to be inspected placed in an atmosphere in the air, an ultrasonic transmitter for transmitting longitudinal ultrasonic waves to the object to be inspected, and an ultrasonic reception for receiving ultrasonic waves transmitted through the object to be inspected Some have a child and obliquely enter longitudinal ultrasonic waves propagating in the air with respect to the object to be inspected (see Patent Document 1). In this device, a transverse wave is generated by mode conversion at the incident point of the ultrasonic wave to the object to be inspected, and this transverse wave is used to improve the transmittance of the ultrasonic wave in the object to be inspected and to improve the S / N ratio. ing.

特開2009−63372号公報JP 2009-63372 A

ところで、電極とセパレータとを積層した発電要素を外装材としてのラミネートフィルムで被覆すると共に外装材の内部に電解液を充填しているラミネート型電池がある。
このラミネート型電池ではラミネートシート直下に電解液が存在する。この電解液内部ではモード変換による横波が発生しないので、上記特許文献1の技術をそもそも適用できない。
By the way, there is a laminate type battery in which a power generation element in which an electrode and a separator are laminated is covered with a laminate film as an exterior material and an electrolyte is filled in the exterior material.
In this laminate type battery, an electrolytic solution exists immediately below the laminate sheet. Since a transverse wave due to mode conversion does not occur inside the electrolyte, the technique of Patent Document 1 cannot be applied in the first place.

そこで本発明は、モード変換による横波が発生しない多層構造体のような検査体であっても、高い超音波探傷精度を実現し得る空中超音波装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an aerial ultrasonic apparatus capable of realizing high ultrasonic flaw detection accuracy even for an inspection object such as a multilayer structure in which a transverse wave due to mode conversion does not occur.

本発明の空中超音波探傷装置は多層構造体を被検査体とする。この被検査体の厚さをt、被検査体を伝播する縦波超音波の音速をVとしたとき
f≒V・N/(2t)(ただし、Nは正の整数) …(1)
の条件を満足する中心周波数fを含む開管共鳴周波数帯の縦波超音波を、空気中の雰囲気に置かれた被検査体上の測定点に向けて送信する縦波超音波送信子と、被検査体を透過してくる縦波超音波を受信する縦波超音波受信子とを備えている。
The airborne ultrasonic inspection apparatus of the present invention uses a multilayer structure as an object to be inspected. When the thickness of the object to be inspected is t and the sound velocity of the longitudinal wave ultrasonic wave propagating through the object to be inspected is V, f≈V · N / (2t) (where N is a positive integer) (1)
A longitudinal wave ultrasonic transmitter for transmitting a longitudinal wave ultrasonic wave in an open tube resonance frequency band including a center frequency f that satisfies the above condition toward a measurement point on an object to be inspected placed in an atmosphere in air; A longitudinal wave ultrasonic wave receiver for receiving longitudinal wave ultrasonic waves transmitted through the object to be inspected.

本発明によれば、上記(1)式の条件を満足する中心周波数を含む開管共鳴周波数帯の縦波超音波を空気中の雰囲気に置かれた被検査体上の測定点に向けて照射するので、縦波超音波の透過強度が大きくなる。これによって、S/N比が大きくなり、ラミネート型電池などのラミネート型電気デバイスなどの多層構造体であっても、高い超音波探傷精度を実現することができる。   According to the present invention, longitudinal wave ultrasonic waves in the open tube resonance frequency band including the center frequency satisfying the condition of the above expression (1) are irradiated toward the measurement point on the inspection object placed in the atmosphere in the air. Therefore, the transmission intensity of longitudinal wave ultrasonic waves increases. As a result, the S / N ratio is increased, and high ultrasonic flaw detection accuracy can be realized even in a multilayer structure such as a laminate type electric device such as a laminate type battery.

本発明の第1実施形態の空中超音波探傷装置の概略構成図である。1 is a schematic configuration diagram of an airborne ultrasonic flaw detector according to a first embodiment of the present invention. 被検査体の内部で生じる縦波超音波の開管共鳴現象の説明図である。It is explanatory drawing of the open tube resonance phenomenon of the longitudinal wave ultrasonic wave which arises inside a to-be-inspected object. 被検査体を伝播する開管共鳴周波数帯の縦波超音波の中心周波数の算出を説明するための第1実施形態のフローチャートである。It is a flowchart of 1st Embodiment for demonstrating calculation of the center frequency of the longitudinal wave ultrasonic wave of the open tube resonance frequency band which propagates to a to-be-inspected object. アクリル板厚に対する縦波超音波の透過強度の特性図である。It is a characteristic figure of the transmission intensity of the longitudinal wave ultrasonic wave with respect to an acrylic board thickness. 縦波超音波の透過強度が最大、最小になる条件のときの定在波の様子を示す説明図である。It is explanatory drawing which shows the mode of a standing wave on the conditions which the transmission intensity of a longitudinal wave ultrasonic wave becomes the maximum and the minimum. 正の整数からのズレに対する縦波超音波の透過強度の特性図である。It is a characteristic figure of the transmission intensity of the longitudinal wave ultrasonic wave with respect to the gap | deviation from a positive integer. 被検査体を伝播する開管共鳴周波数帯の縦波超音波の中心周波数の算出を説明するための第2実施形態のフローチャートである。It is a flowchart of 2nd Embodiment for demonstrating calculation of the center frequency of the longitudinal wave ultrasonic wave of the open tube resonance frequency band which propagates to a to-be-inspected object. 被検査体内部で共鳴する縦波超音波の波長の長さと被検査体の厚さ変動量の影響を示す説明図である。It is explanatory drawing which shows the influence of the length of the wavelength of the longitudinal wave ultrasonic wave which resonates inside to-be-inspected object, and the thickness fluctuation amount of to-be-inspected object. 実施例1の中心周波数に対する縦波超音波の透過強度の特性図である。FIG. 6 is a characteristic diagram of transmission intensity of longitudinal ultrasonic waves with respect to the center frequency of Example 1. 実施例1の正の整数1からのズレに対する縦波超音波の透過強度の特性図である。4 is a characteristic diagram of transmission intensity of longitudinal ultrasonic waves with respect to a deviation from a positive integer 1 in Example 1. FIG. ラミネート型電池の概略斜視図である。It is a schematic perspective view of a laminate type battery. 発電要素の分解斜視図である。It is a disassembled perspective view of an electric power generation element. 実施例2のサンプル電池の概略斜視図である。6 is a schematic perspective view of a sample battery of Example 2. FIG. 実施例2のサンプル電池の縦断面図である。3 is a longitudinal sectional view of a sample battery of Example 2. FIG. 実施例2の縦波超音波の透過強度の特性図である。6 is a characteristic diagram of transmission intensity of longitudinal wave ultrasonic waves according to Example 2. FIG. 実施例3のサンプル電池の概略斜視図である。6 is a schematic perspective view of a sample battery of Example 3. FIG. 実施例3のサンプル電池の縦断面図である。6 is a longitudinal sectional view of a sample battery of Example 3. FIG. 実施例3の縦波超音波の透過強度の特性図である。6 is a characteristic diagram of transmission intensity of longitudinal wave ultrasonic waves according to Example 3. FIG. 実施例2、3の縦波超音波の透過強度の変化率の特性図である。It is a characteristic view of the change rate of the transmission intensity of the longitudinal wave ultrasonic wave of Examples 2 and 3.

以下、図面に基づいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態の空中超音波探傷装置1の概略構成図である。空中超音波探傷装置1は、被検査体3、縦波超音波の送受信センサー5、6、Z軸移動機構11、X軸・Y軸移動機構13、縦波超音波パルサーレシーバ15、データ収集装置19、データ処理装置20などで構成される。
(First embodiment)
FIG. 1 is a schematic configuration diagram of an airborne ultrasonic flaw detector 1 according to a first embodiment of the present invention. The aerial ultrasonic flaw detector 1 includes an object to be inspected 3, longitudinal wave ultrasonic transmission / reception sensors 5 and 6, a Z axis moving mechanism 11, an X axis / Y axis moving mechanism 13, a longitudinal wave ultrasonic pulsar receiver 15, and a data collecting apparatus. 19, data processing device 20 and the like.

図1において被検査体3は、支持機構4に取り付けられ空気中に置かれている。支持機構4は基台14に固定されている。ここで、被検査体3としては、電極とセパレータとで構成され全体として四角扁平状の発電要素をアルミラミネートフィルムで被覆し周縁部を熱融着により接合密閉した、いわゆるラミネート型電池(多層構造体)を主に考えている。   In FIG. 1, a device under test 3 is attached to a support mechanism 4 and placed in the air. The support mechanism 4 is fixed to the base 14. Here, the object to be inspected 3 is a so-called laminate type battery (multi-layer structure) comprising an electrode and a separator, and covering a power generation element having a square flat shape as a whole with an aluminum laminate film, and joining and sealing a peripheral portion by heat fusion. Body).

被検査体3の上方には被検査体3に向けて縦波超音波7を照射する縦波超音波送信センサー(縦波超音波送信子)5を、下方には検査体3を透過してくる縦波超音波8を受信する縦波超音波受信センサー(縦波超音波受信子)6を備えている。ここで、「縦波超音波」とは被検査体3の厚さ方向(図1で上下方向)に伝播する超音波のことである。   A longitudinal wave ultrasonic wave transmission sensor (longitudinal wave ultrasonic wave transmitter) 5 that irradiates longitudinal wave ultrasonic waves 7 toward the object to be inspected 3 is passed above the object to be inspected 3, and the object to be inspected is transmitted through the object to be examined 3 below A longitudinal wave ultrasonic wave reception sensor (longitudinal wave ultrasonic wave receiver) 6 for receiving the incoming longitudinal wave ultrasonic wave 8 is provided. Here, the “longitudinal wave ultrasonic wave” is an ultrasonic wave that propagates in the thickness direction (vertical direction in FIG. 1) of the inspection object 3.

これら送受信センサー5、6は被検査体3を挟むようにして延びている一対の支持体9、10の一端に取り付けられ、支持体9、10の他端は、支持体9、10を鉛直方向に移動し得るZ軸移動機構11を介して移動体12に連結されている。Z軸移動機構11は、センサートラバースコントローラ22からの指示に従って、縦波超音波送受信センサー5、6の被検査体表面に対する高さ方向(図1で上下方向)に移動する。   These transmission / reception sensors 5 and 6 are attached to one ends of a pair of support bodies 9 and 10 extending so as to sandwich the object 3 to be inspected, and the other ends of the support bodies 9 and 10 move the support bodies 9 and 10 in the vertical direction. The movable body 12 is connected via a Z-axis moving mechanism 11 that can be used. The Z-axis moving mechanism 11 moves in the height direction (vertical direction in FIG. 1) of the longitudinal wave ultrasonic transmission / reception sensors 5 and 6 with respect to the surface of the object to be inspected according to an instruction from the sensor traverse controller 22.

移動体12はこの移動体12を被検査体3の面方向(図1で水平方向と紙面に直交する方向)に移動し得るX軸・Y軸移動機構13を介して基台14と連結されている。X軸、Y軸移動機構13は、センサートラバースコントローラ22からの指示に従って、被検査体表面の各測定点を被検査体3の面上の任意の点に(2次元に)移動(走査)する。また、X軸・Y軸移動機構13及びZ軸移動機構11は被検査体3の面上の各測定点を3次元の位置データ(X、Y、Z)として出力する。   The moving body 12 is connected to the base 14 via an X-axis / Y-axis moving mechanism 13 that can move the moving body 12 in the surface direction of the object 3 to be inspected (the horizontal direction in FIG. 1 and the direction orthogonal to the paper surface). ing. The X-axis and Y-axis moving mechanism 13 moves (scans) each measurement point on the surface of the inspection object 3 to an arbitrary point on the surface of the inspection object 3 in accordance with an instruction from the sensor traverse controller 22. . The X-axis / Y-axis moving mechanism 13 and the Z-axis moving mechanism 11 output each measurement point on the surface of the inspection object 3 as three-dimensional position data (X, Y, Z).

15は、被検査体3への入力信号としての縦波超音波を縦波超音波送信センサー5に向けて発信すると共に、縦波超音波受信センサー6からの縦波超音波の透過信号を受信して縦波超音波の透過強度を求める縦波超音波パルサーレシーバである。   15 transmits a longitudinal wave ultrasonic wave as an input signal to the inspection object 3 toward the longitudinal wave ultrasonic wave transmission sensor 5 and receives a transmission signal of the longitudinal wave ultrasonic wave from the longitudinal wave ultrasonic wave reception sensor 6. Thus, the longitudinal wave ultrasonic pulsar receiver obtains the transmission intensity of longitudinal wave ultrasonic waves.

縦波超音波パルサーレシーバ15からの縦波超音波の透過強度と、X軸・Y軸移動機構13及び及びZ軸移動機構11からの位置データとはデーター収集装置19に入力される。データー収集装置19ではこれら位置データと縦波超音波の透過強度データを関係付ける。   The transmission intensity of the longitudinal wave ultrasonic wave from the longitudinal wave ultrasonic pulser receiver 15 and the position data from the X-axis / Y-axis moving mechanism 13 and the Z-axis moving mechanism 11 are input to the data collecting device 19. The data collection device 19 associates these position data with longitudinal wave transmission intensity data.

データ収集装置19からの信号を受けるデータ処理装置20では、縦波超音波の透過強度のデータを2次元画像化するなどのデータ処理を行う。この2次元画像はモニター21に表示される。モニター21に表示される2次元画像によって、被検査体3の内部に欠陥があるか否かを目視できる。   The data processing device 20 that receives a signal from the data collection device 19 performs data processing such as two-dimensional imaging of longitudinal intensity transmission data. This two-dimensional image is displayed on the monitor 21. With the two-dimensional image displayed on the monitor 21, it is possible to visually check whether or not there is a defect inside the inspection object 3.

また、データ処理装置20は被検査体3の面方向の走査条件(移動条件)を設定する。データ処理装置20で設定した走査条件はセンサートラバースコントローラ22に送られる。センサートラバースコントローラ22では、この被検査体3の面方向の走査条件と一致するようにX軸・Y軸移動機構13及びZ軸移動機構11を介して、縦波超音波送受信センサー5、6を被検査体3の面方向に動かす。   Further, the data processing device 20 sets a scanning condition (movement condition) in the surface direction of the inspection object 3. The scanning conditions set by the data processing device 20 are sent to the sensor traverse controller 22. In the sensor traverse controller 22, the longitudinal wave ultrasonic transmission / reception sensors 5, 6 are connected via the X-axis / Y-axis movement mechanism 13 and the Z-axis movement mechanism 11 so as to coincide with the scanning conditions in the surface direction of the inspection object 3. It moves in the surface direction of the inspection object 3.

さて、本実施形態では、縦波超音波の伝播経路の一部(縦波超音波送信センサー5より被検体3まで及び被検査体3より縦波超音波受信センサー6まで)に空気が存在するので、この空気中(空中)を伝播する過程で超音波が減衰する。この場合に、空気中の雰囲気に置かれた被検査体と、この被検査体に対して縦波超音波を送信する超音波送信子と、被検査体を透過してくる超音波を受信する超音波受信子とを備え、被検査体に対して縦波超音波を斜めに入射する従来装置がある。この従来装置では、被検査体への縦波超音波の入射点でモード変換によって横波を発生させ、この横波を用いて、被検査体の内部での超音波の透過率を向上し(透過率:横波>縦波)、S/N(ノイズに対する信号強度)比を改善している。   In the present embodiment, air exists in a part of the propagation path of the longitudinal wave ultrasonic waves (from the longitudinal wave ultrasonic transmission sensor 5 to the subject 3 and from the subject 3 to the longitudinal wave ultrasonic reception sensor 6). Therefore, the ultrasonic wave attenuates in the process of propagating in the air (in the air). In this case, an object to be inspected placed in an atmosphere in the air, an ultrasonic transmitter for transmitting longitudinal ultrasonic waves to the object to be inspected, and an ultrasonic wave transmitted through the object to be inspected are received. 2. Description of the Related Art There is a conventional apparatus that includes an ultrasonic receiver and that makes longitudinal wave ultrasonic waves obliquely incident on an object to be inspected. In this conventional apparatus, a transverse wave is generated by mode conversion at the point of incidence of longitudinal ultrasonic waves on the object to be inspected, and this transverse wave is used to improve the transmittance of ultrasonic waves inside the object to be inspected (transmittance). : Transverse wave> longitudinal wave), S / N (signal intensity against noise) ratio is improved.

しかしながら、被検査体が、電極とセパレータとを積層した発電要素を外装材としてのラミネートフィルムで被覆すると共に外装材の内部に電解液を充填しているラミネート型電池である場合に、従来装置を適用できないという問題がある。ラミネート型電池ではラミネートシートの直下に電解液が存在し、この電解液の内部ではモード変換による横波が発生しないので、従来装置をそもそも適用できないのである。また、ラミネート型電池では電解液と薄い電極などが交互に配置された超音波伝播経路となるので、薄い電極などの積層体(固体)の中においてもS/N比を改善し得る横波は発生しない。   However, when the object to be inspected is a laminated battery in which a power generation element in which an electrode and a separator are laminated is covered with a laminate film as an exterior material and the interior of the exterior material is filled with an electrolyte, There is a problem that it cannot be applied. In a laminate type battery, an electrolytic solution exists immediately below a laminate sheet, and a transverse wave due to mode conversion does not occur inside the electrolytic solution. Therefore, the conventional device cannot be applied in the first place. In addition, since the laminate type battery has an ultrasonic wave propagation path in which electrolyte and thin electrodes are arranged alternately, transverse waves that can improve the S / N ratio are generated even in laminates (solids) such as thin electrodes. do not do.

そこで本発明の第1実施形態では、縦波超音波によって被検査体3に開管共鳴を生じさせるようにする。ここでいう「開管共鳴」とは、気柱振動における開管共鳴を応用するものである。縦波超音波によって被検査体3に開管共鳴を生じさせると、縦波超音波の透過強度が大きくなり、被検査体3の内部で縦波超音波が減衰しないのである。   Therefore, in the first embodiment of the present invention, open tube resonance is generated in the inspection object 3 by longitudinal wave ultrasonic waves. Here, “open tube resonance” applies open tube resonance in air column vibration. When open tube resonance is generated in the inspection object 3 by the longitudinal wave ultrasonic wave, the transmission intensity of the longitudinal wave ultrasonic wave is increased and the longitudinal wave ultrasonic wave is not attenuated inside the inspection object 3.

縦波は、媒質内の各点の振動方向と波の進行方向とが同じであり、そのままでは図示できないので、横波(例えば波の進行方向の変位を正、逆方向の変位を負とする)で表すと、被検査体3の内部に開管共鳴が生じているときの縦波超音波の状態は、図2に示したようになる。すなわち、開管共鳴が生じているとき定在波が生じる。ここでいう定在波とは、被検査体3の一端(図2で上端)から入射した縦波超音波が他端(図2で下端)で自由端反射し、再び元の一端で自由端反射を繰り返し干渉して両端が腹になるような波のことである。   The longitudinal wave has the same vibration direction at each point in the medium and the traveling direction of the wave and cannot be shown as it is, so it is a transverse wave (for example, the displacement in the traveling direction of the wave is positive and the displacement in the reverse direction is negative). In FIG. 2, the state of longitudinal wave ultrasonic waves when open tube resonance is generated inside the inspection object 3 is as shown in FIG. That is, a standing wave is generated when open tube resonance occurs. The standing wave here means that the longitudinal wave ultrasonic wave incident from one end (the upper end in FIG. 2) of the object 3 is reflected at the other end (the lower end in FIG. 2) at the free end, and again at the original end at the free end. It is a wave that repeatedly interferes with reflection and makes both ends belly.

図2において被検査体3の厚さをt、被検査体3を厚さ方向に伝播する縦波超音波の音速をVとしたとき、開管共鳴周波数帯の縦波超音波の中心周波数fは、次の(1)式を満足することとなる。ここで、(1)式のNは、正の整数(1,2,3・・・)である。   In FIG. 2, when the thickness of the object to be inspected 3 is t and the sound velocity of the longitudinal wave ultrasonic wave propagating through the object to be inspected 3 is V, the center frequency f of the longitudinal wave ultrasonic wave in the open tube resonance frequency band. Satisfies the following equation (1). Here, N in the formula (1) is a positive integer (1, 2, 3,...).

f≒V・N/(2t) …(1)
(1)式の条件を満足する中心周波数fを含む開管共鳴周波数帯の縦波超音波を被検査体3に照射したとき、被検査体3に定在波が生じる。図2には左側より1次の定在波、2次の定在波、3次の定在波、4次の定在波、5次の定在波の5種類の定在波を示している。
f≈V · N / (2t) (1)
When the inspection object 3 is irradiated with longitudinal wave ultrasonic waves in the open tube resonance frequency band including the center frequency f that satisfies the condition of the expression (1), a standing wave is generated in the inspection object 3. Fig. 2 shows five types of standing waves, the first standing wave, the second standing wave, the third standing wave, the fourth standing wave, and the fifth standing wave from the left side. Yes.

本実施形態では、被検査体3の厚さtや被検査体3を厚さ方向に伝播する縦波超音波の音速Vが相違しても対処し得るよう、図1に示したように縦波超音波パルサーレシーバ15に送信波周波数可変装置16及び入力装置17を付属している。すなわち、入力装置17で被検査体3の代表厚さtと縦波超音波の音速Vを入力すると、上記(1)式により送信波周波数可変装置16が縦波超音波の中心周波数fを算出する。そして、 縦波超音波パルサーレシーバ15では、送信波周波数可変装置16が算出した中心周波数成分を含む開管共鳴周波数帯の縦波超音波を作り、これを被検査体3への入力信号として縦波超音波送信センサー5に与える。入力信号としては、例えば、正弦波信号、ランダム波形信号、チャープ信号などを用いればよい。   In the present embodiment, as shown in FIG. 1, the thickness t of the inspection object 3 and the sound velocity V of the longitudinal wave ultrasonic wave propagating through the inspection object 3 in the thickness direction can be dealt with as shown in FIG. A transmission wave frequency variable device 16 and an input device 17 are attached to the ultrasonic wave pulser receiver 15. That is, when the representative thickness t of the object to be inspected 3 and the sound velocity V of the longitudinal wave ultrasonic wave are input by the input device 17, the transmission wave frequency varying device 16 calculates the center frequency f of the longitudinal wave ultrasonic wave by the above equation (1). To do. In the longitudinal wave ultrasonic pulsar receiver 15, longitudinal wave ultrasonic waves in the open tube resonance frequency band including the center frequency component calculated by the transmission wave frequency varying device 16 are generated, and this is used as an input signal to the device under test 3. This is given to the ultrasonic wave transmission sensor 5. As the input signal, for example, a sine wave signal, a random waveform signal, a chirp signal, or the like may be used.

図3のフローチャートは、被検査体3を伝播する開管共鳴周波数帯の縦波超音波の中心周波数fを算出するためのもので、送信波周波数可変装置16が実行する。ステップ1、2では被検査体3の代表厚さt及び被検査体3を伝播する縦波超音波の音速Vを読み込む。ここで、被検査体3の代表厚さtは予め測定しておく。被検査体3を伝播する縦波超音波の音速Vも適合により予め求めておく。音速Vは簡単には一定値でよいが、温度の影響を受けるときには温度に応じた値を用いることが考えられる。   The flowchart of FIG. 3 is for calculating the center frequency f of the longitudinal ultrasonic wave in the open tube resonance frequency band that propagates through the device under test 3, and is executed by the transmission wave frequency variable device 16. In steps 1 and 2, the representative thickness t of the object to be inspected 3 and the sound velocity V of the longitudinal ultrasonic wave propagating through the object to be inspected 3 are read. Here, the representative thickness t of the device under test 3 is measured in advance. The sound velocity V of the longitudinal ultrasonic wave propagating through the inspection object 3 is also obtained in advance by conformance. The sound velocity V may be a constant value simply, but it is conceivable to use a value corresponding to the temperature when affected by the temperature.

ステップ3では、上記(1)式と同じ式により開管共鳴周波数帯の縦波超音波の中心周波数fを算出し、ステップ4で算出した中心周波数fを縦波超音波パルサーレシーバ15に出力する。   In step 3, the center frequency f of the longitudinal wave ultrasonic wave in the open tube resonance frequency band is calculated by the same equation as the above equation (1), and the center frequency f calculated in step 4 is output to the longitudinal wave ultrasonic pulser receiver 15. .

中心周波数fが与えられる縦波超音波パルサーレシーバ15では、中心周波数fを含む開管共鳴周波数帯の縦波超音波を生成し、生成した開管共鳴周波数帯の縦波超音波を、被検査体3への入力信号として縦波超音波送信センサー5に送信する。超音波送信センサー5ではこの縦波超音波を被検査体3に照射し、縦波超音波受信センサー6が被検査体5を透過した縦波超音波を受信する。   The longitudinal wave ultrasonic pulsar receiver 15 to which the center frequency f is given generates longitudinal wave ultrasonic waves in the open tube resonance frequency band including the center frequency f, and the generated longitudinal wave ultrasonic waves in the open tube resonance frequency band are inspected. It transmits to the longitudinal wave ultrasonic transmission sensor 5 as an input signal to the body 3. The ultrasonic transmission sensor 5 irradiates the inspection object 3 with the longitudinal wave ultrasonic wave, and the longitudinal wave ultrasonic reception sensor 6 receives the longitudinal wave ultrasonic wave transmitted through the inspection object 5.

このように構成したとき、気柱振動の開管共鳴と同様の原理によって、図2に示したように被検査体3の内部で縦波超音波が共鳴する。その結果、被検査体3の内部を透過し縦波超音波受信センサー6で受信される縦波超音波の透過強度が大きくなる。   When configured in this manner, longitudinal wave ultrasonic waves resonate inside the device under test 3 as shown in FIG. 2 according to the same principle as open tube resonance of air column vibration. As a result, the transmission intensity of the longitudinal wave ultrasonic wave transmitted through the inside of the inspection object 3 and received by the longitudinal wave ultrasonic wave reception sensor 6 is increased.

図4は、中心周波数f=333[kHz]を含む開管共鳴周波数帯の縦波超音波を用い、縦波超音波の音速Vが2731[m/sec]であるアクリル板の厚さを変化させたときに、特定の板厚で開管共鳴が生じて縦波超音波の透過強度が大きくなった一例を示す。図4より、ピークを生じている2箇所のアクリル板厚のとき、縦波超音波の透過強度が1[V]に近いのに対して、他のアクリル板厚のときには0.8[V]にも届いていないことがわかる。   FIG. 4 shows the variation of the thickness of an acrylic plate using longitudinal wave ultrasonic waves in an open tube resonance frequency band including a center frequency f = 333 [kHz] and the sound velocity V of the longitudinal wave ultrasonic waves is 2731 [m / sec]. An example is shown in which open tube resonance occurs at a specific plate thickness and the transmission intensity of longitudinal ultrasonic waves is increased. As shown in FIG. 4, the transmission intensity of longitudinal ultrasonic waves is close to 1 [V] at the two acrylic plate thicknesses where the peak is generated, whereas 0.8 [V] at other acrylic plate thicknesses. You can see that it has not reached.

さらに詳述する。上記(1)式は、左辺に被検査体の厚さt、右辺に被検査体を伝播する超音波の波長λで整理すると、次の(2)式が得られる。   Further details will be described. When the above equation (1) is arranged by the thickness t of the object to be inspected on the left side and the wavelength λ of the ultrasonic wave propagating through the object to be inspected on the right side, the following equation (2) is obtained.

t≒(V/f)/2・N=λ/2・N …(2)
さらに(2)式をNで整理すると、
N=t/(λ/2)=2t/λ …(3)
の式が得られる。
t≈ (V / f) / 2 · N = λ / 2 · N (2)
Furthermore, when formula (2) is organized by N,
N = t / (λ / 2) = 2t / λ (3)
The following equation is obtained.

(3)式によって算出されるNの値が、限りなく正の整数(1,2,3・・・)に等しいときに縦波超音波の透過強度は最も大きくなり、S/N比が向上する。その反面、Nの値が、正の整数から最も遠ざかる0.5, 1.5, 2.5に等しくなるにつれて縦波超音波の透過強度は小さくなり、S/N比は低下する。例えば、図5の上段は縦波超音波の透過強度が最大になる条件で縦波超音波が被検査体を伝播する様子を、図5の下段は縦波超音波の透過強度が最小になる条件で縦波超音波が被検査体を伝播する様子を示している。両者を比較すればわかるように、図5の上段が開管共鳴が生じる場合の縦波超音波の状態である。   When the value of N calculated by the equation (3) is infinitely equal to a positive integer (1, 2, 3,...), The longitudinal wave ultrasonic wave transmission intensity is maximized and the S / N ratio is improved. To do. On the other hand, as the value of N becomes equal to 0.5, 1.5, 2.5, which is farthest from a positive integer, the transmission intensity of longitudinal ultrasonic waves decreases, and the S / N ratio decreases. For example, the upper part of FIG. 5 shows how the longitudinal wave ultrasonic wave propagates through the object under the condition that the transmission intensity of the longitudinal wave ultrasonic wave is maximized, and the lower part of FIG. 5 shows the transmission intensity of the longitudinal wave ultrasonic wave is minimized. It shows a state in which longitudinal wave ultrasonic waves propagate through the test object under conditions. As can be seen by comparing the two, the upper part of FIG. 5 shows the state of longitudinal wave ultrasonic waves when open tube resonance occurs.

また、図6にはアクリル板を伝播する縦波超音波の透過強度が最大及び最小になる条件を確認した一例を示している。すなわち、図6ではアクリル板を伝播する縦波超音波の音速Vを2731[m/sec]、縦波超音波の中心周波数fを333[kHz]とした条件で、アクリル板の板厚tを1[mm]〜11.5[mm]と振って、正の整数N(1,2,3・・・)の値を変化させている。図6よりNの値が限りなく正の整数に等しいとき、例えばN=0.96(正の整数1からのズレ0.04)のとき縦波超音波の透過強度は0.92[V]と大きくなっている。同様に、N=1.94(正の整数1からのズレ0.06)のとき縦波超音波の透過強度は0.91[V]と相対的に大きくなっている。一方、N=0.5(正の整数1からのズレ0.5)のとき縦波超音波の透過強度は0.30[V]と相対的に小さくなっている。このように、Nの値が限りなく正の整数(1,2,3・・・)に等しいときにはNの値が正の整数から最も遠ざかる0.5, 1.5, 2.5・・・に等しくなるときより約10[dB]の透過強度の増加およびS/N比の改善効果が認められた。   FIG. 6 shows an example in which the conditions under which the transmission intensity of longitudinal ultrasonic waves propagating through the acrylic plate is maximized and minimized are confirmed. That is, in FIG. 6, the thickness t of the acrylic plate is set under the condition that the sound velocity V of the longitudinal wave ultrasonic wave propagating through the acrylic plate is 2731 [m / sec] and the center frequency f of the longitudinal wave ultrasonic wave is 333 [kHz]. The value of a positive integer N (1, 2, 3,...) Is changed by shaking from 1 [mm] to 11.5 [mm]. From FIG. 6, when the value of N is equal to a positive integer, for example, when N = 0.96 (deviation 0.04 from the positive integer 1), the transmission intensity of longitudinal ultrasonic waves is 0.92 [V]. It is getting bigger. Similarly, when N = 1.94 (deviation 0.06 from positive integer 1), the transmission intensity of longitudinal ultrasonic waves is relatively high at 0.91 [V]. On the other hand, when N = 0.5 (deviation 0.5 from the positive integer 1), the transmission intensity of longitudinal ultrasonic waves is relatively small, 0.30 [V]. Thus, when the value of N is infinitely equal to a positive integer (1, 2, 3,...), The value of N is farthest from the positive integer. 0.5, 1.5, 2.5. An increase in transmission intensity of about 10 [dB] and an effect of improving the S / N ratio were observed compared to when equal to.

また、正の整数Nを大きく取ることは、上記(1)式の関係から被検査体の内部の共振周波数の次数が高くなることを意味する。そして、共振周波数の次数が高くなるほど、高精度かつ高分解能で検査体の内部を探傷し得る。このため、高周波(MHzオーダー)の縦波超音波送受信センサー5、6を用いることで、高精度かつ高分解能の縦波超音波による被検査体の内部の検知(内部探傷)が可能となる。具体的に述べる。ラミネート電池では発電要素を外装材で被覆した後に電解液を充填するが、その際に発電要素の内部の空気が電解液と置き換わらず、発電要素の内部に空気が粒状で残ってしまうことがある。空気が発電要素の内部に残存するとその部分では反応が生じることがなく、電池性能が低下することとなる。この場合に、図1に示した空中超音波探傷装置1を用いれば、そのモニター21によって発電要素の内部にで空気の粒が生じているか否かを目視で確認できることになる。空気の粒が小さくなるほど波長を短くしないと検出できないが、上記のように高周波の縦波超音波を用いることで、空気の粒が小さい場合でも検出できるようになるのである。   Further, taking a large positive integer N means that the order of the resonance frequency inside the object to be inspected is increased from the relationship of the above equation (1). As the order of the resonance frequency increases, the inside of the inspection object can be detected with high accuracy and high resolution. Therefore, by using the high-frequency (MHz order) longitudinal wave ultrasonic transmission / reception sensors 5 and 6, it is possible to detect the inside of the inspection object (internal flaw detection) with high-accuracy and high-resolution longitudinal wave ultrasonic waves. Specifically. In laminated batteries, the power generation element is covered with an exterior material and then filled with an electrolyte. At that time, the air inside the power generation element is not replaced with the electrolyte, and air may remain in the interior of the power generation element. is there. When air remains inside the power generation element, no reaction occurs in that portion, and the battery performance is lowered. In this case, if the aerial ultrasonic flaw detector 1 shown in FIG. 1 is used, it can be visually confirmed by the monitor 21 whether or not air particles are generated inside the power generation element. As the air particle becomes smaller, it cannot be detected unless the wavelength is shortened. However, by using the high-frequency longitudinal wave ultrasonic wave as described above, it becomes possible to detect even when the air particle is small.

ここで、第1実施形態の作用効果を説明する。   Here, the function and effect of the first embodiment will be described.

第1実施形態では、多層構造体を被検査体3とし、この被検査体3の厚さをt、被検査体3を伝播する縦波超音波の音速をVとしたとき
f≒V・N/(2t)(ただし、Nは正の整数) …(1)
の条件を満足する中心周波数fを含む開管共鳴周波数帯の縦波超音波を、空気中の雰囲気に置かれた被検査体3上の測定点に向けて送信する縦波超音波送信センサー5(縦波超音波送信子)と、被検査体3を透過してくる縦波超音波を受信する縦波超音波受信センサー6(縦波超音波受信子)とを備えている。第1実施形態によれば、上記(1)式の条件を満足する中心周波数fを含む開管共鳴周波数帯の縦波超音波を空気中の雰囲気に置かれた被検査体3上の測定点に向けて照射するので、縦波超音波の透過強度が大きくなる。これによって、S/N比が大きくなり、ラミネート型電池(ラミネート型電気デバイス)などの多層構造体であっても、高い超音波探傷精度を実現することができる。
In the first embodiment, when the multilayer structure is an object to be inspected 3, the thickness of the object to be inspected 3 is t, and the velocity of longitudinal wave ultrasonic waves propagating through the object to be inspected 3 is V. f≈V · N / (2t) (where N is a positive integer) (1)
The longitudinal wave ultrasonic wave transmission sensor 5 that transmits the longitudinal wave ultrasonic wave in the open tube resonance frequency band including the center frequency f that satisfies the above condition toward the measurement point on the inspection object 3 placed in the atmosphere in the air. (Longitudinal wave ultrasonic transmitter) and a longitudinal wave ultrasonic wave reception sensor 6 (longitudinal wave ultrasonic wave receiver) that receives the longitudinal wave ultrasonic wave transmitted through the object 3 to be inspected. According to the first embodiment, the measurement points on the inspected object 3 in which longitudinal wave ultrasonic waves in the open tube resonance frequency band including the center frequency f satisfying the condition of the above expression (1) are placed in the atmosphere in the air. As a result, the transmission intensity of longitudinal ultrasonic waves increases. As a result, the S / N ratio is increased, and high ultrasonic flaw detection accuracy can be realized even in a multilayer structure such as a laminate type battery (laminate type electrical device).

第1実施形態によれば、前記中心周波数fの成分を含む開管共鳴周波数帯の縦波超音波を、縦波超音波送信センサー5(縦波超音波送信子)から被検査体3に入力する入力信号として生成すると共に、縦波超音波受信センサー6(縦波超音波受信子)からの信号を受ける縦波超音波パルサーレシーバ15と、縦波超音波送信センサー5及び縦波超音波受信センサー6の被検査体3上の測定点に対する位置を被検査体3の厚さ方向に移動し得るZ軸移動機構11(厚さ方向移動機構)と、被検査体3上の測定点を被検査体3の面方向に移動し得るX軸・Y軸移動機構13(面方向移動機構)と、被検査体3上の測定点の位置データと縦波超音波パルサーレシーバ15から出力される縦波超音波の透過強度のデータとを関連づけて収集するデータ収集装置19と、このデータ収集装置19からの縦波超音波の透過強度の出力データを受けて2次元画像化するデータ処理装置20と、この二次元画像を表示するモニター21と、縦波超音波送受信センサー5、6(縦波超音波送受信子)の面方向の移動条件を設定する面方向移動条件設定装置(20)と、この面方向移動条件設定装置(20)で設定された移動条件となるようにX軸・Y軸移動機構13を制御するセンサートラバースコントローラ22(トラバースコントローラ)とを有するので、被検査体3上の任意の測定点で容易に被検査体3の内部の超音波探傷を行うことができる。   According to the first embodiment, longitudinal wave ultrasonic waves in the open tube resonance frequency band including the component of the center frequency f are input from the longitudinal wave ultrasonic transmission sensor 5 (longitudinal wave ultrasonic transmitter) to the inspection object 3. A longitudinal wave ultrasonic pulser receiver 15 that receives a signal from a longitudinal wave ultrasonic wave reception sensor 6 (longitudinal wave ultrasonic wave receiver), a longitudinal wave ultrasonic wave transmission sensor 5, and a longitudinal wave ultrasonic wave reception A Z-axis moving mechanism 11 (thickness direction moving mechanism) that can move the position of the sensor 6 relative to the measurement point on the inspection object 3 in the thickness direction of the inspection object 3, and the measurement point on the inspection object 3 The X-axis / Y-axis moving mechanism 13 (surface direction moving mechanism) that can move in the surface direction of the inspection object 3, the position data of the measurement points on the inspection object 3, and the longitudinal wave output from the longitudinal wave ultrasonic pulser receiver 15. Data collected in association with ultrasonic wave transmission intensity data A data collection device 19; a data processing device 20 that receives output data of transmission intensity of longitudinal wave ultrasonic waves from the data collection device 19 to form a two-dimensional image; a monitor 21 that displays the two-dimensional image; Surface direction movement condition setting device (20) for setting movement conditions in the surface direction of the acoustic wave transmission / reception sensors 5 and 6 (longitudinal ultrasonic transducers), and movement conditions set by the surface direction movement condition setting device (20) Since the sensor traverse controller 22 (traverse controller) for controlling the X-axis / Y-axis moving mechanism 13 is provided so that the ultrasonic wave inside the inspected object 3 can be easily obtained at any measurement point on the inspected object 3. Can perform flaw detection.

第1実施形態によれば、被検査体3の厚さt及び被検査体3を伝播する縦波超音波の音速Vを入力し得る入力装置17と、この入力装置17から入力される厚さt及び音速Vから前記中心周波数fを算出し、算出した中心周波数fを縦波超音波パルサーレシーバ15に伝える送信波周波数可変装置16を有するので、被検査体3の厚さtや被検査体3を伝播する縦波超音波の音速Vが相違しても、開管共鳴周波数帯の縦波超音波の中心周波数fを容易に変化させることができる。     According to the first embodiment, the input device 17 that can input the thickness t of the inspection object 3 and the speed of sound V of the longitudinal wave propagating through the inspection object 3, and the thickness input from the input device 17. Since the center frequency f is calculated from t and the sound velocity V, and the transmission wave frequency variable device 16 that transmits the calculated center frequency f to the longitudinal wave pulse pulsar receiver 15 is provided, the thickness t of the object to be inspected 3 and the object to be inspected are included. 3, the center frequency f of the longitudinal wave ultrasonic wave in the open tube resonance frequency band can be easily changed even if the sound velocity V of the longitudinal wave ultrasonic wave propagating through 3 is different.

(第2実施形態)
図7のフローチャートは、被検査体3を伝播する開管共鳴周波数帯の縦波超音波の中心周波数fを算出するためのもので、送信波周波数可変装置16が実行する。第1実施形態の図3と置き換わるものである。図3と同一ステップには同一番号を付している。
(Second Embodiment)
The flowchart of FIG. 7 is for calculating the center frequency f of the longitudinal ultrasonic wave in the open tube resonance frequency band that propagates through the device under test 3, and is executed by the transmission wave frequency variable device 16. This replaces FIG. 3 of the first embodiment. The same steps as those in FIG.

第1実施形態では被検査体3としてのラミネート型電池の厚さはほぼ一定であるとみなすものであった。実際にはラミネート型電池の表面は必ずしも平らでなく、厚みも厳密に一定でない。従って、ラミネート型電池の表面に少しの凹凸やしわによる傾斜部があると、空中からラミネート型電池の表面に入射する縦波超音波の入射角のばらつきにより、縦波超音波受信センサー6に到達する縦波超音波の透過強度のレベルが変動する。この変動を受けて、そのレベルが、「検知対象を判定する閾値」のレベル以下となったのでは、ラミネート型電池の表面の少しの凹凸やしわを「検知対象」と誤判定してしまうといった問題がある。   In the first embodiment, the thickness of the laminated battery as the object to be inspected 3 is considered to be substantially constant. Actually, the surface of the laminated battery is not necessarily flat and the thickness is not strictly constant. Therefore, if there is a slight unevenness or wrinkled slope on the surface of the laminated battery, it reaches the longitudinal ultrasonic wave reception sensor 6 due to variations in the incident angle of the longitudinal ultrasonic wave incident on the surface of the laminated battery from the air. The transmission intensity level of longitudinal wave ultrasonic waves that fluctuate varies. In response to this change, if the level falls below the “threshold for determining the detection target”, a slight unevenness or wrinkle on the surface of the laminated battery is erroneously determined as “detection target”. There's a problem.

そこで第2実施形態では、被検査体3の厚さの変動量Δtをみて、厚さ変動量Δtが所定値を超えるときには、誤判定が生じると判断し、上記(1)式の正の整数Nを1としたときの中心周波数fを含む開管共鳴周波数帯の縦波超音波を用いる。   Therefore, in the second embodiment, the thickness variation Δt of the inspected object 3 is seen, and when the thickness variation Δt exceeds a predetermined value, it is determined that an erroneous determination occurs, and a positive integer in the above equation (1). Longitudinal ultrasonic waves in an open tube resonance frequency band including the center frequency f where N is 1 are used.

第1実施形態との相違点を主に説明すると、図7のフローでは、ステップ11〜13が新たに加わっている。   When the difference from the first embodiment is mainly described, steps 11 to 13 are newly added in the flow of FIG.

まずステップ11では、被検査体3の厚さ変動量Δtを読み込む。被検査体3の厚さ変動量Δtは予め求めておき、送信波周波数可変装置16の入力装置17で入力する。   First, in step 11, the thickness variation Δt of the inspection object 3 is read. The thickness variation amount Δt of the object to be inspected 3 is obtained in advance and is input by the input device 17 of the transmission wave frequency variable device 16.

ステップ12では、この厚さ変動量Δtと所定値を比較する。所定値は誤判定が生じるか否かの判定値で、予め定めておく。厚さ変動量Δtが所定値以上であるときには誤判定が生じると判断し、ステップ13に進み、正の整数を1とする中心周波数fを次の(4)式で算出する。(4)式を上記(1)式と比較すればわかるように、(4)式は(1)式においてN=1としたものである。   In step 12, the thickness variation Δt is compared with a predetermined value. The predetermined value is a determination value for determining whether an erroneous determination occurs, and is determined in advance. When the thickness variation amount Δt is equal to or greater than a predetermined value, it is determined that an erroneous determination occurs, and the process proceeds to step 13 where a center frequency f having a positive integer of 1 is calculated by the following equation (4). As can be seen by comparing the equation (4) with the above equation (1), the equation (4) is N = 1 in the equation (1).

f≒V/(2t) …(4)
ステップ4では、ステップ13で算出した中心周波数fを縦波超音波パルサーレシーバ15に出力する。
f≈V / (2t) (4)
In step 4, the center frequency f calculated in step 13 is output to the longitudinal wave ultrasonic pulsar receiver 15.

一方、ステップ12で厚さ変動量Δtが所定値未満であるときには誤判定が生じないと判断し、ステップ3に進み上記(1)式と同じ式により縦波超音波の中心周波数fを算出する。ステップ4では、ステップ3で算出した中心周波数fを縦波超音波パルサーレシーバ15に出力する。   On the other hand, when the thickness variation amount Δt is less than the predetermined value in step 12, it is determined that no erroneous determination occurs, and the process proceeds to step 3 to calculate the center frequency f of the longitudinal ultrasonic wave by the same equation as the above equation (1). . In step 4, the center frequency f calculated in step 3 is output to the longitudinal wave ultrasonic pulsar receiver 15.

中心周波数fが与えられる縦波超音波パルサーレシーバ15では、中心周波数fを含む開管共鳴周波数帯の縦波超音波を生成し、生成した開管共鳴周波数帯の縦波超音波を、被検査体3への入力信号として縦波超音波送信センサー5に送信する。縦波超音波送信センサー5ではこの開管共鳴周波数帯の縦波超音波を被検査体3に照射し、縦波超音波受信センサー6が被検査体5を透過した縦波超音波を受信する。   The longitudinal wave ultrasonic pulsar receiver 15 to which the center frequency f is given generates longitudinal wave ultrasonic waves in the open tube resonance frequency band including the center frequency f, and the generated longitudinal wave ultrasonic waves in the open tube resonance frequency band are inspected. It transmits to the longitudinal wave ultrasonic transmission sensor 5 as an input signal to the body 3. The longitudinal wave ultrasonic wave transmission sensor 5 irradiates the inspection object 3 with longitudinal wave ultrasonic waves in the open tube resonance frequency band, and the longitudinal wave ultrasonic wave reception sensor 6 receives the longitudinal wave ultrasonic wave transmitted through the inspection object 5. .

次に、厚さ変動量Δtが所定値以上のときに正の整数Nを1とする上記(4)式で中心周波数fを算出することにした理由を説明する。   Next, the reason why the center frequency f is calculated by the above equation (4) in which the positive integer N is 1 when the thickness fluctuation amount Δt is equal to or greater than a predetermined value will be described.

上記(1)式を変形し、左辺に被検査体の厚さt、右辺に被検査体を伝播する縦波超音波の波長λで整理すると、次の(2)式が得られる。   When the above equation (1) is modified and arranged by the thickness t of the object to be inspected on the left side and the wavelength λ of the longitudinal ultrasonic wave propagating through the object to be inspected on the right side, the following equation (2) is obtained.

t≒(V/f)/2・N=λ/2・N …(2)
N=1のとき、すなわち被検査体の厚さ方向に1次の定在波が発生するように開管共鳴周波数帯の縦波超音波の中心周波数を決めることにより、(2)式は次の(5)式となる。
t≈ (V / f) / 2 · N = λ / 2 · N (2)
When N = 1, that is, by determining the center frequency of longitudinal ultrasonic waves in the open tube resonance frequency band so that a primary standing wave is generated in the thickness direction of the object to be inspected, equation (2) is (5).

t=λ/2 …(5)
(5)式より
λ=2t …(6)
となり、被検査体3の内部を伝播する縦波超音波の波長λが最も長くなる。
t = λ / 2 (5)
From equation (5) λ = 2t (6)
Thus, the wavelength λ of the longitudinal ultrasonic wave propagating through the inside of the inspection object 3 becomes the longest.

ここで、被検査体3の厚さtに±Δtの厚さ変動量があるとすると、Nの値は、厚さ変動の影響を受ける。上記(3) 式のtに代えてt±Δtを代入すると、次の(7)式が得られる。   Here, assuming that the thickness t of the object to be inspected 3 has a thickness variation amount of ± Δt, the value of N is affected by the thickness variation. Substituting t ± Δt in place of t in the above equation (3) yields the following equation (7).

N=t/(λ/2)
=2(t±Δt)/λ=2t/λ±2Δt/λ …(7)
(7)式を(3)式と比較すればわかるように、Nの値は、正の整数値に対し(7)式の右辺第2項の分、つまり±2Δt/λの分だけ変動する。
N = t / (λ / 2)
= 2 (t ± Δt) / λ = 2t / λ ± 2Δt / λ (7)
As can be seen by comparing equation (7) with equation (3), the value of N varies by the amount of the second term on the right side of equation (7), that is, ± 2Δt / λ with respect to a positive integer value. .

ここで、被検査体の内部を伝播する縦波超音波の波長λが、厚さ変動量Δtに対して限りなく大きければ±2Δt/λ≒0となり、Nの値が限りなく正の整数(1,2,3・・・)に近づく。このときには、被検査体に±Δtの厚さ変動量が存在しても縦波超音波受信センサー6により受信される縦波超音波の透過強度はほぼ変わらず、従って縦波超音波の透過強度の変動への影響はほとんどない。一方、被検査体の内部を伝播する縦波超音波の周波数が高い(波長λが短い)と、±2Δt/λは±0.5に近づく。つまり、Nの値が正の整数±0.5に近づくので、縦波超音波受信センサー6により受信される縦波超音波の透過強度が低下する(縦波超音波の透過強度が変動する)。   Here, if the wavelength λ of the longitudinal ultrasonic wave propagating inside the object to be inspected is as large as possible with respect to the thickness fluctuation amount Δt, ± 2Δt / λ≈0, and the value of N is unlimitedly a positive integer ( 1, 2, 3 ...). At this time, the transmission intensity of the longitudinal wave ultrasonic wave received by the longitudinal wave ultrasonic wave reception sensor 6 does not substantially change even if a thickness variation amount of ± Δt exists in the object to be inspected. There is almost no impact on the fluctuations. On the other hand, when the frequency of longitudinal ultrasonic waves propagating inside the object to be inspected is high (wavelength λ is short), ± 2Δt / λ approaches ± 0.5. That is, since the value of N approaches a positive integer ± 0.5, the transmission intensity of the longitudinal wave ultrasonic wave received by the longitudinal wave ultrasonic wave reception sensor 6 decreases (the transmission intensity of the longitudinal wave ultrasonic wave fluctuates). .

図8は被検査体の内部で共鳴する縦波超音波の波長の長さと被検査体の厚さ変動量Δtの影響を示している。図8からも分かるように、同じ厚さ変動量Δtが存在するとき、波長λが最も長いN=1のときが、波長λが相対的に短くなるN=2、3のときより、影響が少ないことがわかる。このように、波長λはより長いほうが被検査体の厚さ変動量Δtの影響を受けにくくなることから、厚さ変動量Δtが所定値以上であるときには縦波超音波の透過強度の低下があると判断し、波長λの最も長い縦波超音波が被検査体を伝播するようにNが1である場合の中心周波数を選択することとしたものである。これによって、被検査体には厚さ方向に波長λの最も長い1次の定在波(図8の左側参照)が発生するので、ラミネート型電池を被検査体とする場合に、電池表面に少しの凹凸やしわによる傾斜部などの厚さ変動量の存在があってもその影響を著しく低減することができる。   FIG. 8 shows the influence of the length of the longitudinal ultrasonic wave resonating inside the inspection object and the thickness variation Δt of the inspection object. As can be seen from FIG. 8, when the same thickness variation Δt exists, when the wavelength λ is the longest, N = 1, the influence is greater than when N = 2, 3, where the wavelength λ is relatively short. I understand that there are few. As described above, the longer the wavelength λ, the less the influence of the thickness variation Δt of the object to be inspected. Therefore, when the thickness variation Δt is equal to or greater than a predetermined value, the transmission intensity of longitudinal wave ultrasonic waves is reduced. The center frequency when N is 1 is selected so that the longitudinal ultrasonic wave having the longest wavelength λ propagates through the object to be inspected. As a result, the primary standing wave having the longest wavelength λ in the thickness direction is generated in the object to be inspected (see the left side of FIG. 8). Therefore, when a laminated battery is used as the object to be inspected, Even if there is a thickness variation such as an inclined portion due to a slight unevenness or wrinkle, the influence can be remarkably reduced.

第2実施形態では、電極と電解質とから構成される発電要素を外装材としての扁平状のフィルムで被覆した電気デバイスを被検査体3とし、この被検査体の厚さをt、被検査体を伝播する縦波超音波の音速をVとしたとき
f≒V/(2t) …(4)
の条件を満足する中心周波数fを含む開管共鳴周波数帯の縦波超音波を、空気中の雰囲気に置かれた被検査体3上の測定点に向けて送信する縦波超音波送信センサー5(縦波超音波送信子)と、被検査体3を透過してくる縦波超音波を受信する縦波超音波受信センサー6(縦波超音波受信子)とを備えている。第2実施形態によれば、上記(4)式の条件を満足する中心周波数fを含む開管共鳴周波数帯の縦波超音波を、空気中の雰囲気に置かれた被検査体3上の測定点に向けて照射している。つまり、開管共鳴周波数帯の中で最も波長λの長い縦波超音波を採用するので、ラミネート型電池の厚さ方向の変動量Δtの影響による縦波超音波の減衰をより小さくすることができる。これによって、ラミネート型電池の外装材であるラミネートフィルムの表面に凹凸やしわによる傾斜部があっても、高い超音波探傷精度を実現することができる。
In the second embodiment, an electric device in which a power generation element composed of an electrode and an electrolyte is covered with a flat film as an exterior material is an inspection object 3, and the thickness of the inspection object is t, and the inspection object When the velocity of longitudinal ultrasonic wave propagating in the wave is V, f≈V / (2t) (4)
The longitudinal wave ultrasonic wave transmission sensor 5 that transmits the longitudinal wave ultrasonic wave in the open tube resonance frequency band including the center frequency f that satisfies the above condition toward the measurement point on the inspection object 3 placed in the atmosphere in the air. (Longitudinal wave ultrasonic transmitter) and a longitudinal wave ultrasonic wave reception sensor 6 (longitudinal wave ultrasonic wave receiver) that receives the longitudinal wave ultrasonic wave transmitted through the object 3 to be inspected. According to the second embodiment, longitudinal wave ultrasonic waves in the open tube resonance frequency band including the center frequency f satisfying the condition of the above expression (4) are measured on the inspected object 3 placed in the atmosphere in the air. Irradiating to a point. That is, since the longitudinal wave ultrasonic wave having the longest wavelength λ in the open tube resonance frequency band is adopted, the attenuation of the longitudinal wave ultrasonic wave due to the influence of the variation Δt in the thickness direction of the laminated battery can be further reduced. it can. Thereby, even if the surface of the laminate film, which is an exterior material of the laminate type battery, has an inclined portion due to unevenness or wrinkles, high ultrasonic flaw detection accuracy can be realized.

(実施例1)
実施例1は第1実施形態の実施例である。代表厚さが4[mm]、縦波超音波が伝播するときの音速が2731[m/sec]であるアクリル板を被検査体とした。このアクリル板に対し、中心周波数175[kHz]、333[kHz]、741[kHz]をそれぞれ含む開管共鳴周波数帯の縦波超音波を照射した。すなわち、中心周波数が333[kHz]を含む開管共鳴周波数帯の縦波超音波を照射したとき縦波超音波の透過強度が0.92[V]となった。同様に、中心周波数が175[kHz]を含む開管共鳴周波数帯の縦波超音波を照射したとき縦波超音波の透過強度が0.44[V]となった。同様に、中心周波数が741[kHz]を含む開管共鳴周波数帯の縦波超音波を照射したとき縦波超音波の透過強度が0.19[V]となった。これらの結果をまとめて記入したものが図9である。
Example 1
Example 1 is an example of the first embodiment. An acrylic plate having a representative thickness of 4 [mm] and a sound velocity of 2731 [m / sec] when longitudinal wave ultrasonic waves propagate was used as an object to be inspected. The acrylic plate was irradiated with longitudinal ultrasonic waves in an open tube resonance frequency band including center frequencies of 175 [kHz], 333 [kHz], and 741 [kHz]. That is, when the longitudinal wave ultrasonic wave of the open tube resonance frequency band including the center frequency of 333 [kHz] is irradiated, the transmission intensity of the longitudinal wave ultrasonic wave becomes 0.92 [V]. Similarly, when the longitudinal wave ultrasonic wave in the open tube resonance frequency band including the center frequency of 175 [kHz] is irradiated, the transmission intensity of the longitudinal wave ultrasonic wave is 0.44 [V]. Similarly, when the longitudinal wave ultrasonic wave in the open tube resonance frequency band including the center frequency of 741 [kHz] is irradiated, the transmission intensity of the longitudinal wave ultrasonic wave is 0.19 [V]. FIG. 9 shows a summary of these results.

ここで、中心周波数が333[kHz]のときのNを計算してみると、N=0.96、つまり正の整数1からのズレは0.04である。同様に、中心周波数が175[kHz]のときのNを計算してみると、N=0.52、つまり正の整数1からのズレは0.48である。同様に、中心周波数が741[kHz]のときのNを計算してみると、N=2.20、つまり正の整数1からのズレは0.20である。   Here, when N is calculated when the center frequency is 333 [kHz], N = 0.96, that is, the deviation from the positive integer 1 is 0.04. Similarly, when N is calculated when the center frequency is 175 [kHz], N = 0.52, that is, the deviation from the positive integer 1 is 0.48. Similarly, when N is calculated when the center frequency is 741 [kHz], N = 2.20, that is, the deviation from the positive integer 1 is 0.20.

そこで、図9の結果を改めて正の整数1からのズレを横軸にして取り直してみると、図10の結果が得られた。図10より、中心周波数が333[kHz]のときに中心周波数f≒V・N/(2t)の条件を最もよく満足し、縦波超音波の透過強度が最大になった。   Therefore, when the result of FIG. 9 is re-examined with the deviation from the positive integer 1 as the horizontal axis, the result of FIG. 10 is obtained. From FIG. 10, when the center frequency is 333 [kHz], the condition of the center frequency f≈V · N / (2t) is best satisfied, and the transmission intensity of longitudinal ultrasonic waves is maximized.

(実施例2)
実施例2は第2実施形態の実施例である。ここでは、まずラミネート型電池31を図11、図12を参照して概説する。
(Example 2)
Example 2 is an example of the second embodiment. Here, first, the laminate type battery 31 will be outlined with reference to FIGS.

図11はリチウムイオン二次電池などのラミネート型電池31の概略斜視図、図12は発電要素32の分解斜視図である。   FIG. 11 is a schematic perspective view of a laminated battery 31 such as a lithium ion secondary battery, and FIG. 12 is an exploded perspective view of the power generation element 32.

図11に示すように、ラミネート型電池31は、実際に充放電反応が進行する略四角扁平状の発電要素32が、電池外装材であるラミネートフィルム44(扁平状のフィルム)の内部に封止された構造を有する。詳しくは、高分子−金属複合ラミネートフィルムを電池外装材として用いて、その周縁部44a、44b、44c、44dを熱融着にて接合することにより、発電要素32を収納し密封した構成を有している。   As shown in FIG. 11, in the laminate type battery 31, a substantially square flat power generation element 32 in which a charge / discharge reaction actually proceeds is sealed inside a laminate film 44 (flat film) that is a battery exterior material. Has a structured. Specifically, the polymer-metal composite laminate film is used as a battery exterior material, and its peripheral portions 44a, 44b, 44c, and 44d are joined by thermal fusion, so that the power generating element 32 is housed and sealed. doing.

図12に示したように、発電要素32は、負極34、セパレータ32、正極38をこの順に積層した構成を有している。ここで、負極34は四角薄板状の負極集電体35の両面に負極活物質層36、36を配置したものである。同様に正極38は四角薄板状の正極集電体39の両面に正極活物質層40、40を配置したものである。セパレータ42は主に多孔質の熱可塑性樹脂から形成されている。セパレータ42が電解液を保持することで、セパレータ42と一体に電解質層が形成されている。言い換えると、2つの電極間のLiイオンの移動媒体としての機能を有する電解質層が、液体電解質と樹脂を含む微多孔膜のセパレータ42とで構成されている。   As shown in FIG. 12, the power generation element 32 has a configuration in which a negative electrode 34, a separator 32, and a positive electrode 38 are stacked in this order. Here, the negative electrode 34 is obtained by disposing negative electrode active material layers 36 and 36 on both surfaces of a rectangular thin plate-like negative electrode current collector 35. Similarly, the positive electrode 38 is obtained by disposing positive electrode active material layers 40 and 40 on both surfaces of a rectangular thin plate-shaped positive electrode current collector 39. The separator 42 is mainly formed from a porous thermoplastic resin. Since the separator 42 holds the electrolytic solution, an electrolyte layer is formed integrally with the separator 42. In other words, an electrolyte layer having a function as a Li ion transfer medium between two electrodes is composed of a liquid electrolyte and a microporous membrane separator 42 containing a resin.

これにより、隣接する負極34、セパレータ42(電解液を含む)及び正極38は、一つの単電池層43(単電池)を構成する。単電池層43では、電子とイオンが2つの電極間を移動して電池の充放電反応(電気化学反応)を行う。従って、ラミネート型電池31は、単電池層43を積層することで、電気的に並列接続された構成を有するともいえる。また、単電池層43の外周には、隣接する負極集電体35と正極集電体39との間を絶縁するためのシール部(絶縁層)を設けてもよい。発電要素32の両最外層に位置する最外層負極集電体35には、いずれも片面のみ(図12で最上段の負極集電体35には下面のみ、最下段の負極集電体35には上面のみ)に負極活物質層36を配置している。   Thus, the adjacent negative electrode 34, separator 42 (including the electrolytic solution), and positive electrode 38 constitute one unit cell layer 43 (unit cell). In the single cell layer 43, electrons and ions move between the two electrodes to perform a charge / discharge reaction (electrochemical reaction) of the battery. Therefore, it can be said that the laminated battery 31 has a configuration in which the single battery layers 43 are stacked to be electrically connected in parallel. Further, a seal portion (insulating layer) for insulating between the adjacent negative electrode current collector 35 and positive electrode current collector 39 may be provided on the outer periphery of the unit cell layer 43. All of the outermost negative electrode current collectors 35 located on both outermost layers of the power generation element 32 are only on one side (in FIG. 12, the uppermost negative electrode current collector 35 has only the lower surface, and the lowermost negative electrode current collector 35 has Is disposed on the upper surface only).

負極集電体35及び正極集電体39には、各電極(負極または正極)から出入りする電子を外部に取り出す負極タブ45及び正極タブ46の2つの強電タブを取り付け、ラミネートフィルム44の周縁部に挟まれるようにラミネートフィルム44の外部に導出させている。発電要素32は全体として四辺を有する四角扁平状に形成されているので、四辺のうちの一辺のみより2つの強電タブ45、46をまとめて外部に導出させている(図11参照)。なお、図12において各負極タブ45同士を、また各正極タブ46同士を電気的に接続することはいうまでもない。これでラミネート型電池31の概説を終える。   The negative electrode current collector 35 and the positive electrode current collector 39 are attached with two high voltage tabs, a negative electrode tab 45 and a positive electrode tab 46, which take out electrons entering and exiting each electrode (negative electrode or positive electrode) to the outside. It is led out of the laminate film 44 so as to be sandwiched between the two. Since the power generation element 32 is formed in a square flat shape having four sides as a whole, the two high-power tabs 45 and 46 are collectively led to the outside only from one side of the four sides (see FIG. 11). In FIG. 12, it goes without saying that the negative electrode tabs 45 and the positive electrode tabs 46 are electrically connected. This completes the outline of the laminate-type battery 31.

さて、実施例2の被検査体として用いたサンプルのラミネート型電池(以下「サンプル電池」という。)31は代表厚さが7[mm]あり、しわなどの影響により0.73[mm]の厚さ変動量が生じていた。以下では、実施例2のサンプル電池31が図13に示すようであったとして述べる。   Now, the sample laminate type battery (hereinafter referred to as “sample battery”) 31 used as the object to be inspected in Example 2 has a representative thickness of 7 [mm] and is 0.73 [mm] due to the influence of wrinkles or the like. A thickness variation occurred. In the following description, it is assumed that the sample battery 31 of Example 2 was as shown in FIG.

図14は図13において面上の一点鎖線に沿った実施例2のサンプル電池31の縦断面図である。図14のように実施例2のサンプル電池31には表面(上面)に厚さ変動に伴う凸部51、52が2箇所に生じている。   FIG. 14 is a longitudinal sectional view of the sample battery 31 of Example 2 along the alternate long and short dash line on the surface in FIG. As shown in FIG. 14, the sample battery 31 of Example 2 has two convex portions 51 and 52 on the surface (upper surface) due to thickness variation.

この場合に、まず図13、図14に示したように縦波超音波送受信センサー5、6を第1測定位置(「測定位置A」とする。)にセットした(実線参照)。そして、中心周波数180[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた後、中心周波数746[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた。   In this case, first, as shown in FIGS. 13 and 14, the longitudinal wave ultrasonic transmission / reception sensors 5 and 6 were set at the first measurement position (referred to as “measurement position A”) (see the solid line). And after irradiating the longitudinal wave ultrasonic wave of the open tube resonance frequency band containing the center frequency 180 [kHz] and calculating | requiring the transmission intensity of the longitudinal wave ultrasonic wave, the open tube resonance frequency band containing the center frequency 746 [kHz] The longitudinal wave ultrasonic wave was irradiated, and the transmission intensity of the longitudinal wave ultrasonic wave was obtained.

次に、図13、図14に示したように測定位置Aより一点鎖線に沿って少しずらせた第2測定位置(「測定位置B」とする。)に縦波超音波送受信センサー5、6(破線参照)をセットした。そして、前記と同様に中心周波数180[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた後、中心周波数746[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた。   Next, as shown in FIGS. 13 and 14, the longitudinal ultrasonic transmission / reception sensors 5 and 6 (referred to as “measurement position B”) shifted slightly from the measurement position A along the alternate long and short dash line. Set (see broken line). In the same manner as described above, longitudinal wave ultrasonic waves in an open tube resonance frequency band including a center frequency of 180 [kHz] are irradiated, the transmission intensity of the longitudinal wave ultrasonic waves is obtained, and an open wave including a center frequency of 746 [kHz] is then obtained. Longitudinal ultrasonic waves in the tube resonance frequency band were irradiated, and the transmission intensity of the longitudinal wave ultrasonic waves was obtained.

このようにして得た縦波超音波の透過強度と測定位置との関係をまとめたのが図15で、横軸に測定位置を、縦軸に縦波超音波の透過強度を採っている。ここで、中心周波数180[kHz]の縦波超音波の波長λは9.1[mm]、中心周波数746[kHz]の縦波超音波の波長λは2.2[mm]である。図15より、波長λが相対的に長い9.1[mm]の縦波超音波ではその透過強度の変化量が0.09[V]であるのに対して、波長λが相対的に短い2.2[mm]の縦波超音波ではその透過強度の変化量が0.53[V]と大きくなっている。   FIG. 15 summarizes the relationship between the transmission intensity of the longitudinal wave ultrasonic wave thus obtained and the measurement position. The horizontal axis represents the measurement position, and the vertical axis represents the transmission intensity of the longitudinal wave ultrasonic wave. Here, the wavelength λ of longitudinal wave ultrasonic waves having a center frequency of 180 [kHz] is 9.1 [mm], and the wavelength λ of longitudinal wave ultrasonic waves having a center frequency of 746 [kHz] is 2.2 [mm]. From FIG. 15, the longitudinal wave ultrasonic wave of 9.1 [mm] having a relatively long wavelength λ has a transmission intensity variation of 0.09 [V], whereas the wavelength λ is relatively short. In longitudinal wave ultrasonic waves of 2.2 [mm], the amount of change in transmission intensity is as large as 0.53 [V].

このように、実施例2によれば、波長λが9.1[mm]と相対的に長い縦波超音波のほうが、サンプル電池31の電池表面の少しの凹凸(厚さ変動)による縦波超音波の透過強度の変化量を低減できることがわかる。   As described above, according to the second embodiment, the longitudinal wave ultrasonic wave having a relatively long wavelength λ of 9.1 [mm] is caused by a slight unevenness (thickness variation) on the battery surface of the sample battery 31. It can be seen that the amount of change in ultrasonic transmission intensity can be reduced.

(実施例3)
実施例3も第2実施形態の実施例である。ここでも、実施例3のサンプル電池31が図16に示すようであったとして述べる。図17は図16において面上の二点鎖線に沿った実施例3のサンプル電池31の縦断面図である。図17のように実施例3のラミネート型電池31には表面(上面)に厚さ変動に伴う凸部53が一箇所に生じている。
(Example 3)
Example 3 is also an example of the second embodiment. Here again, the sample battery 31 of Example 3 is described as shown in FIG. FIG. 17 is a longitudinal sectional view of the sample battery 31 of Example 3 along the two-dot chain line on the surface in FIG. As shown in FIG. 17, the laminate type battery 31 of Example 3 has a convex portion 53 on one surface (upper surface) due to thickness variation.

この場合に、まず図16、図17に示したように縦波超音波送受信センサー5、6を第3測定位置(「測定位置C」とする。)にセットした(実線参照)。そして、中心周波数180[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた後、中心周波数が746[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた。   In this case, first, as shown in FIGS. 16 and 17, the longitudinal wave ultrasonic transmission / reception sensors 5 and 6 were set at the third measurement position (referred to as “measurement position C”) (see the solid line). And after irradiating the longitudinal wave ultrasonic wave of the open tube resonance frequency band containing the center frequency 180 [kHz], and determining the transmission intensity of the longitudinal wave ultrasonic wave, the open tube resonance frequency including the center frequency of 746 [kHz]. The longitudinal ultrasonic wave of the band was irradiated and the transmission intensity of the longitudinal ultrasonic wave was determined.

次に、図16、図17に示したように測定位置Cより二点鎖線に沿って少しずらせた第4測定位置(「測定位置D」とする。)に縦波超音波送受信センサー5、6をセットした(長破線参照)。そして、前記と同様に中心周波数180[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた後、中心周波数746[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた。   Next, as shown in FIGS. 16 and 17, the longitudinal wave ultrasonic transmission / reception sensors 5 and 6 are moved to the fourth measurement position (referred to as “measurement position D”) slightly shifted from the measurement position C along the two-dot chain line. Was set (see long dashed line). In the same manner as described above, longitudinal wave ultrasonic waves in an open tube resonance frequency band including a center frequency of 180 [kHz] are irradiated, the transmission intensity of the longitudinal wave ultrasonic waves is obtained, and an open wave including a center frequency of 746 [kHz] is then obtained. Longitudinal ultrasonic waves in the tube resonance frequency band were irradiated, and the transmission intensity of the longitudinal wave ultrasonic waves was obtained.

次に、図16、図17に示したように測定位置Dより二点鎖線に沿ってさらにずらせた第5測定位置(「測定位置E」とする。)に縦波超音波送受信センサー5、6をセットした(短破線参照)。そして、前記と同様に中心周波数180[kHz]を含む開管共鳴周波数帯の縦波超音波を照射し、その縦波超音波の透過強度を求めた後、中心周波数が746[kHz]を含む開管共鳴周波数帯の縦波の超音波を照射し、その縦波超音波の透過強度を求めた。   Next, as shown in FIGS. 16 and 17, longitudinal wave ultrasonic transmission / reception sensors 5 and 6 are moved to a fifth measurement position (referred to as “measurement position E”) further shifted along the two-dot chain line from the measurement position D. Was set (see short dashed line). Then, as described above, after irradiating longitudinal wave ultrasonic waves in an open tube resonance frequency band including the center frequency 180 [kHz], and determining the transmission intensity of the longitudinal wave ultrasonic waves, the center frequency includes 746 [kHz]. Longitudinal ultrasonic waves in the open tube resonance frequency band were irradiated, and the transmission intensity of the longitudinal wave ultrasonic waves was obtained.

このようにして得た縦波超音波の透過強度と測定位置との関係をまとめたのが図18で、横軸に測定位置を、縦軸に縦波超音波の透過強度を採っている。ここで、中心周波数180[kHz]の縦波超音波の波長λは9.1[mm]、中心周波数746[kHz]の縦波超音波の波長λは2.2[mm]である。図18より、波長λが相対的に長い9.1[mm]の縦波超音波ではその透過強度の変化量が0.21[V]であるのに対して、波長λが相対的に短い2.2[mm]の縦波超音波ではその透過強度の変化量が0.53[V]と大きくなっている。   FIG. 18 summarizes the relationship between the transmission intensity of the longitudinal wave ultrasonic wave thus obtained and the measurement position. The measurement position is plotted on the horizontal axis, and the transmission intensity of the longitudinal wave ultrasonic wave is plotted on the vertical axis. Here, the wavelength λ of longitudinal wave ultrasonic waves having a center frequency of 180 [kHz] is 9.1 [mm], and the wavelength λ of longitudinal wave ultrasonic waves having a center frequency of 746 [kHz] is 2.2 [mm]. As shown in FIG. 18, in the longitudinal wave ultrasonic wave of 9.1 [mm] having a relatively long wavelength λ, the transmission intensity change amount is 0.21 [V], whereas the wavelength λ is relatively short. In longitudinal wave ultrasonic waves of 2.2 [mm], the amount of change in transmission intensity is as large as 0.53 [V].

このように、実施例3によれば、実施例2と同様に、波長λがが9.1[mm]と相対的に長い縦波超音波のほうが、サンプル電池31の電池表面の少しの凹凸(厚さ変動)による縦波超音波の透過強度の変化量を低減できることがわかる。   Thus, according to the third embodiment, as in the second embodiment, the longitudinal wave ultrasonic wave having a relatively long wavelength λ of 9.1 [mm] is slightly more uneven on the battery surface of the sample battery 31. It can be seen that the amount of change in the transmission intensity of longitudinal ultrasonic waves due to (thickness variation) can be reduced.

(実施例2、3のまとめ)
図19は実施例2、3で得た縦波超音波の透過強度の変化量から縦波超音波の透過強度の変化率を計算してまとめたものである。図19において、横軸は厚さ変動量/(λ/4)[%]で整理している。図19より、中心周波数が180[kHz]と相対的に低周波の縦波超音波のほうが、波長λに対する厚さ変動量の比率が中心周波数が746[kHz]と相対的に高周波の縦波超音波より小さくなっている。これより、共振条件からのズレが小さくなり縦波超音波の透過強度の変化率が相対的に小さくなることがわかる。なお、N=1、2、3は理論と実験によって求めたデータである。
(Summary of Examples 2 and 3)
FIG. 19 is a table summarizing the rate of change in the transmission intensity of longitudinal wave ultrasonic waves from the amount of change in the transmission intensity of longitudinal wave ultrasound obtained in Examples 2 and 3. In FIG. 19, the horizontal axis is arranged by thickness variation / (λ / 4) [%]. From FIG. 19, the longitudinal frequency ultrasonic wave with a relatively low center frequency of 180 [kHz] has a relatively high frequency longitudinal wave with a ratio of the thickness variation to the wavelength λ of 746 [kHz]. It is smaller than ultrasound. From this, it can be seen that the deviation from the resonance condition is small, and the rate of change of the transmission intensity of the longitudinal wave ultrasonic wave is relatively small. N = 1, 2, and 3 are data obtained by theory and experiment.

実施形態では、縦波超音波送受信センサー5、6が一組である場合で説明したが、これに限られるものでない。縦波超音波送受信センサー5、6を二組以上設けてもかまわない。   In the embodiment, the longitudinal wave ultrasonic transmission / reception sensors 5 and 6 are described as a set, but the present invention is not limited to this. Two or more sets of longitudinal wave ultrasonic transmission / reception sensors 5 and 6 may be provided.

実施形態では、電気デバイスとしてラミネート型電池を例示したが、これに限られるものでない。多層構造体であるかぎり、他のタイプの二次電池、さらには一次電池にも適用できる。また、電池だけでなく電気二重層キャパシタのような電気化学キャパシタにも適用がある。   In the embodiment, the laminated battery is exemplified as the electric device, but the electric device is not limited thereto. As long as it is a multilayer structure, it can be applied to other types of secondary batteries and even primary batteries. Moreover, it is applicable not only to batteries but also to electrochemical capacitors such as electric double layer capacitors.

1 縦波超音波探傷装置
3 被検査体
5 縦波超音波送信センサー(縦波超音波送信子)
6 縦波超音波受信センサー(縦波超音波受信子)
11 Z軸移動機構(厚さ方向移動機構)
13 X軸・Y軸移動機構(面方向移動機構)
15 縦波超音波パルサーレシーバ(縦波超音波パルサーレシーバ)
16 送信波周波数可変装置
19 データ収集装置
20 データ処理装置
21 モニター
22 センサートラバースコントローラ(トラバースコントローラ)
31 ラミネート型電池(多層構造体)
1 Longitudinal Wave Ultrasonic Flaw Detector 3 Inspected Object 5 Longitudinal Wave Ultrasonic Transmitter Sensor (Longitudinal Wave Ultrasonic Transmitter)
6 Longitudinal wave ultrasonic sensor (longitudinal wave ultrasonic receiver)
11 Z-axis movement mechanism (thickness direction movement mechanism)
13 X-axis / Y-axis moving mechanism (plane direction moving mechanism)
15 Longitudinal wave ultrasonic pulser receiver (longitudinal wave ultrasonic pulser receiver)
16 Transmission Wave Frequency Variable Device 19 Data Collection Device 20 Data Processing Device 21 Monitor 22 Sensor Traverse Controller (Traverse Controller)
31 Laminated battery (multilayer structure)

Claims (4)

多層構造体を被検査体とし、この被検査体の厚さをt、被検査体を伝播する縦波超音波の音速をVとしたとき
f≒V・N/(2t)(ただし、Nは正の整数)
の条件を満足する中心周波数fを含む開管共鳴周波数帯の縦波超音波を、空気中の雰囲気に置かれた被検査体上の測定点に向けて送信する超音波送信子と、被検査体を透過してくる縦波超音波を受信する受信子とを備えることを特徴とする空中超音波探傷装置。
When the multilayer structure is an object to be inspected, the thickness of the object to be inspected is t, and the velocity of longitudinal wave ultrasonic waves propagating through the object to be inspected is V. f≈V · N / (2t) (where N is Positive integer)
An ultrasonic transmitter for transmitting longitudinal wave ultrasonic waves in an open tube resonance frequency band including a center frequency f satisfying the above condition toward a measurement point on an object to be inspected placed in an atmosphere in air; An aerial ultrasonic flaw detector comprising: a receiver that receives longitudinal ultrasonic waves that pass through a body.
電極と電解質とから構成される発電要素を外装材としての扁平状のフィルムで被覆した電気デバイスを被検査体とし、この被検査体の厚さをt、被検査体を伝播する縦波超音波の音速をVとしたとき
f≒V/(2t)
の条件を満足する中心周波数fを含む開管共鳴周波数帯の縦波超音波を、空気中の雰囲気に置かれた被検査体上の測定点に向けて送信する縦波超音波送信子と、被検査体を透過してくる縦波超音波を受信する縦波超音波受信子とを備えることを特徴とする空中超音波探傷装置。
An electrical device in which a power generation element composed of an electrode and an electrolyte is covered with a flat film as an exterior material is an object to be inspected. The thickness of the object to be inspected is t, and longitudinal wave ultrasonic waves that propagate through the object to be inspected. When the speed of sound is V, f ≒ V / (2t)
A longitudinal wave ultrasonic transmitter for transmitting a longitudinal wave ultrasonic wave in an open tube resonance frequency band including a center frequency f that satisfies the above condition toward a measurement point on an object to be inspected placed in an atmosphere in air; An aerial ultrasonic flaw detector comprising: a longitudinal wave ultrasonic wave receiver that receives a longitudinal wave ultrasonic wave transmitted through an object to be inspected.
前記中心周波数の成分を含む開管共鳴周波数帯の縦波超音波を、前記縦波超音波送信子から前記被検査体に入力する入力信号として生成すると共に、前記縦波超音波受信子からの信号を受ける縦波超音波パルサーレシーバと、
前記縦波超音波送信子及び縦波超音波受信子の前記被検査体上の測定点に対する位置を前記被検査体の厚さ方向に移動し得る厚さ方向移動機構と、
前記被検査体上の測定点を前記被検査体の面方向に移動し得る面方向移動機構と、
前記被検査体上の測定点の位置データと前記縦波超音波パルサーレシーバから出力される縦波超音波の透過強度のデータとを関連づけて収集するデータ収集装置と、
このデータ収集装置からの前記縦波超音波の透過強度の出力データを受けて2次元画像化するデータ処理装置と、
この二次元画像を表示するモニターと、
前記縦波超音波送受信子の面方向の移動条件を設定する面方向移動条件設定装置と、
この面方向移動条件設定装置で設定された移動条件となるように前記面方向移動機構を制御するトラバースコントローラと
を有することを特徴とする請求項1または2に記載の空中超音波探傷装置。
A longitudinal wave ultrasonic wave in an open tube resonance frequency band including the center frequency component is generated as an input signal input from the longitudinal wave ultrasonic transmitter to the object to be inspected, and from the longitudinal wave ultrasonic receiver. A longitudinal ultrasonic pulsar receiver that receives the signal;
A thickness direction moving mechanism capable of moving a position of the longitudinal wave ultrasonic transmitter and the longitudinal wave ultrasonic receiver with respect to a measurement point on the inspection object in a thickness direction of the inspection object;
A surface direction moving mechanism capable of moving a measurement point on the inspection object in a surface direction of the inspection object; and
A data collection device that collects positional data of measurement points on the object to be inspected and data of transmission intensity of longitudinal wave ultrasonic waves output from the longitudinal wave ultrasonic pulser receiver;
A data processing device that receives the output data of the transmission intensity of the longitudinal ultrasonic waves from the data collection device to form a two-dimensional image;
A monitor that displays this two-dimensional image;
A plane direction movement condition setting device for setting a plane direction movement condition of the longitudinal wave ultrasonic transceiver; and
The aerial ultrasonic flaw detector according to claim 1, further comprising: a traverse controller that controls the surface direction moving mechanism so as to satisfy the movement condition set by the surface direction movement condition setting device.
前記被検査体の厚さ及び被検査体を伝播する縦波超音波の音速を入力し得る入力装置と、この入力装置から入力される厚さ及び音速から前記中心周波数を算出し、算出した中心周波数を前記縦波超音波パルサーレシーバに伝える送信波周波数可変装置を有することを特徴とする請求項3に記載の空中超音波探傷装置。   An input device that can input the thickness of the object to be inspected and the sound velocity of longitudinal ultrasonic waves propagating through the object to be inspected, and the center frequency calculated from the thickness and sound velocity input from the input device, 4. The airborne ultrasonic flaw detector according to claim 3, further comprising a transmission wave frequency variable device that transmits a frequency to the longitudinal ultrasonic pulser / receiver.
JP2012001154A 2012-01-06 2012-01-06 Aerial ultrasonic flaw detector Active JP5915182B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012001154A JP5915182B2 (en) 2012-01-06 2012-01-06 Aerial ultrasonic flaw detector
PCT/JP2012/083952 WO2013103128A1 (en) 2012-01-06 2012-12-27 Air-coupled ultrasonic testing device and air-coupled ultrasonic testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012001154A JP5915182B2 (en) 2012-01-06 2012-01-06 Aerial ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JP2013140122A true JP2013140122A (en) 2013-07-18
JP5915182B2 JP5915182B2 (en) 2016-05-11

Family

ID=48745188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012001154A Active JP5915182B2 (en) 2012-01-06 2012-01-06 Aerial ultrasonic flaw detector

Country Status (2)

Country Link
JP (1) JP5915182B2 (en)
WO (1) WO2013103128A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694114B1 (en) * 2015-11-05 2017-01-09 조선대학교 산학협력단 Non-contact ultrasonic inspection instrument

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090281A (en) * 2013-11-05 2015-05-11 パナソニックIpマネジメント株式会社 Ultrasonic measuring method and apparatus
CN105891339B (en) * 2016-04-06 2019-02-05 江苏筑升土木工程科技有限公司 Utilize the method, apparatus and system of impact Imaging Method detection geotechnical engineering media defect
CN105911148A (en) * 2016-04-12 2016-08-31 南昌航空大学 Ultrasonic evaluation method for evaluating dynamic viscoelasticity of composite material
JP6463396B2 (en) * 2017-03-03 2019-01-30 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
JP6479070B2 (en) * 2017-03-03 2019-03-06 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
JP6463395B2 (en) * 2017-03-03 2019-01-30 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
CN110554088A (en) * 2019-09-29 2019-12-10 中国科学院声学研究所 Air coupling ultrasonic detection method for defects

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323553A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Method and device for ultrasonic resonance flaw detection
JP2003021604A (en) * 2001-07-06 2003-01-24 Toshiba Corp Defect inspecting method and its device
JP2006147393A (en) * 2004-11-22 2006-06-08 Matsushita Electric Ind Co Ltd Method of inspecting laminated battery
JP2008128965A (en) * 2006-11-24 2008-06-05 Japan Probe Kk Airborne ultrasonic flaw detection system
JP2008180523A (en) * 2007-01-23 2008-08-07 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2009063372A (en) * 2007-09-05 2009-03-26 Kyushu Electric Power Co Inc Aerial ultrasonic flaw detector and detection method
JP2010040318A (en) * 2008-08-05 2010-02-18 Toyota Motor Corp Method and device for detecting ae signal generating part of secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323553A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Method and device for ultrasonic resonance flaw detection
JP2003021604A (en) * 2001-07-06 2003-01-24 Toshiba Corp Defect inspecting method and its device
JP2006147393A (en) * 2004-11-22 2006-06-08 Matsushita Electric Ind Co Ltd Method of inspecting laminated battery
JP2008128965A (en) * 2006-11-24 2008-06-05 Japan Probe Kk Airborne ultrasonic flaw detection system
JP2008180523A (en) * 2007-01-23 2008-08-07 Hitachi Engineering & Services Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2009063372A (en) * 2007-09-05 2009-03-26 Kyushu Electric Power Co Inc Aerial ultrasonic flaw detector and detection method
JP2010040318A (en) * 2008-08-05 2010-02-18 Toyota Motor Corp Method and device for detecting ae signal generating part of secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.W.SCHINDEL ET AL.: "Through-thickness characterization of solids by widebandair-coupled ultrasound", ULTRASONICS, vol. 33, no. 1, JPN7015003161, 1995, pages 11 - 17, ISSN: 0003194771 *
JOHN MCNAMARA ET AL.: "Air Coupled Ultrasonic Testing of Railroad Rails", MATERIALSEVALUATION, vol. 60, no. 12, JPN7015003160, December 2002 (2002-12-01), pages 1431 - 1437, ISSN: 0003194770 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694114B1 (en) * 2015-11-05 2017-01-09 조선대학교 산학협력단 Non-contact ultrasonic inspection instrument

Also Published As

Publication number Publication date
JP5915182B2 (en) 2016-05-11
WO2013103128A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5915182B2 (en) Aerial ultrasonic flaw detector
JP5293818B2 (en) Battery internal state detection device and method
JP5552447B2 (en) Ultrasonic measurement method and ultrasonic measurement apparatus
JP2012069267A (en) Battery internal state detection device
Kannusamy et al. Accurate baseline-free damage localization in plates using refined Lamb wave time-reversal method
JP5366796B2 (en) Ultrasonic stress measurement method and apparatus
US11162829B2 (en) Multilayer body that includes piezoelectric body
CN103983699A (en) Flexible comb-shaped acoustic surface wave phased-array energy converter
CN103995059A (en) Acoustic surface wave flexible comb-shaped transducer applicable to curved surface detection
CN110574215A (en) Battery cell diagnostics
WO2005095946A1 (en) Supersonic transducer drive method
Ziping et al. Research on the progress of interdigital transducer (IDT) for structural damage monitoring
Huang et al. Design, modelling, and characterization of display compatible pMUT device
Schmidt et al. Characterization of Lamb wave attenuation mechanisms
JP6492950B2 (en) Ultrasonic measuring apparatus and ultrasonic measuring method
Malaeb et al. Decomposition of Fundamental Lamb wave Modes in Complex Metal Structures Using COMSOL®.
Ostiguy et al. Assessment of the excitelet algorithm for in-situ mechanical characterization of orthotropic structures
JP5957758B2 (en) Ultrasonic transmitter / receiver and ultrasonic measuring device
Zhang et al. Air-coupled capacitive micromachined transducer array for non-contact Lamb wave detection
Huang et al. Display compatible pMUT device for mid air ultrasound gesture recognition
JP2011095210A (en) Method and system for detecting property value of object to be measured
Wu et al. Guided waves propagating in a bi-layer system consisting of a piezoelectric plate and a dielectric fluid layer
Sikdar et al. Detection of disbond in a honeycomb composite sandwich structure using ultrasonic guided waves and bonded PZT sensors
Steinhausen et al. New approaches to aircoupled ultrasound testing of composite lightweight materials
Jisheng et al. The study of phased-ultrasonic receiving-planar array transducer for PD location in power transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R151 Written notification of patent or utility model registration

Ref document number: 5915182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250