JP2013140083A - Self-location measuring system of mobile object - Google Patents

Self-location measuring system of mobile object Download PDF

Info

Publication number
JP2013140083A
JP2013140083A JP2012000461A JP2012000461A JP2013140083A JP 2013140083 A JP2013140083 A JP 2013140083A JP 2012000461 A JP2012000461 A JP 2012000461A JP 2012000461 A JP2012000461 A JP 2012000461A JP 2013140083 A JP2013140083 A JP 2013140083A
Authority
JP
Japan
Prior art keywords
laser
reflecting member
rotating device
moving
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012000461A
Other languages
Japanese (ja)
Inventor
Junya Kino
淳也 樹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2012000461A priority Critical patent/JP2013140083A/en
Publication of JP2013140083A publication Critical patent/JP2013140083A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a self-location measuring system of a mobile object, which can measure the direction of the mobile object with simple structure.SOLUTION: A self-location measuring system of a mobile object comprises: a turning gear 20 arranged on a mobile object 10 which can move within a working area 70; a laser range finder 30 arranged on the turning gear 20; a mobile reflection member 40 arranged on the mobile object 10; and at least one of fixed reflection members 50a, 50b arranged at a predetermined position in the working area 70 or at a periphery of the working area. The self-location measuring system of the mobile object can accurately measure the direction of the mobile object 10 with simple structure.

Description

本発明は、移動体の自己位置測定システムに関する。   The present invention relates to a mobile body self-position measurement system.

農地での苗の植え付けや作物の収穫における農業用ロボットなど、様々な自走式作業ロボットの活用が検討されている。このようなロボットが自律的に作業するためには、ロボットが現在どの場所で作業しているのか、ロボットの自己位置認識の機能が要求される。   Various self-propelled working robots are being considered, such as planting seedlings on farmland and agricultural robots for crop harvesting. In order for such a robot to work autonomously, a function for recognizing the robot's own position as to where the robot is currently working is required.

自己位置認識の方法として、ロボットに内界センサを設置して認識する方法、ロボット外部に外界センサを設置して認識する方法がある。内界センサによる方法は、誤差が積分されるため、特に屋外で正確な誘導を行う場合には適さない。一方、外界センサの代表的な例である画像処理を利用した手法は、屋外の条件下では困難が多い。他方、車両外からのセンサを利用する手法には、GPSや光波測距儀を用いた手法があるが、これらは非常に高価であり、また、基地局の設置・移動に関する問題も生ずる。   As a method of self-position recognition, there are a method of recognizing by installing an inner world sensor in the robot, and a method of recognizing by installing an outer world sensor outside the robot. The method using the internal sensor is not suitable particularly when performing accurate guidance outdoors because the error is integrated. On the other hand, a technique using image processing, which is a typical example of an external sensor, is often difficult under outdoor conditions. On the other hand, methods using sensors from the outside of the vehicle include methods using GPS and light wave rangefinders, but these are very expensive and also cause problems related to the installation and movement of base stations.

その他、特許文献1には、自走車の位置制御装置について開示されている。作業領域周辺に少なくとも3箇所の基準点に光反射手段が設置され、自走車と各基準点との挟み角から自走車の方位角を測定している。   In addition, Patent Document 1 discloses a position control device for a self-propelled vehicle. Light reflecting means are installed at at least three reference points around the work area, and the azimuth angle of the self-propelled vehicle is measured from the angle between the self-propelled vehicle and each reference point.

特開平3−150609号公報JP-A-3-150609

特許文献1では、少なくとも3つの基準点が設置されている必要があり、簡素な測定手段とは言えない。   In Patent Document 1, it is necessary to provide at least three reference points, which cannot be said to be a simple measuring means.

本発明は上記事項に鑑みてなされたものであり、その目的は、簡素な構成で移動体の向きを測定可能な移動体の自己位置測定システムを提供することにある。   The present invention has been made in view of the above matters, and an object of the present invention is to provide a mobile body self-position measuring system capable of measuring the orientation of the mobile body with a simple configuration.

本発明に係る移動体の自己位置測定システムは、
作業領域を移動可能な移動体に配置される回転装置と、
前記回転装置に配置されるレーザ距離計と、
前記移動体に配置される移動反射部材と、
前記作業領域或いは前記作業領域周辺の所定位置に設置される少なくとも1つの固定反射部材と、を備え、
前記レーザ距離計は前記回転装置の回転軸からレーザを照射するよう配置され、
前記移動反射部材は前記移動体の正面と前記回転装置の回転軸とを結ぶ直線上に配置され、
前記移動体が前記作業領域の任意の位置に移動し、前記回転装置の駆動中に前記レーザ距離計がレーザを照射し、
前記固定反射部材で反射したレーザを受光して所定の基準方向と固定反射部材方向との角度を測定するとともに、前記移動反射部材で反射したレーザを受光して前記基準方向と移動反射部材方向との角度を測定し、
前記基準方向と前記固定反射部材方向との角度及び前記基準方向と前記移動反射部材方向との角度の差角から前記移動体の方位角を測定する、
ことを特徴とする。
The mobile body self-position measuring system according to the present invention is:
A rotating device disposed on a movable body movable in the work area;
A laser rangefinder disposed in the rotating device;
A movable reflecting member disposed on the movable body;
And at least one fixed reflecting member installed at a predetermined position around the work area or the work area,
The laser distance meter is arranged to irradiate a laser from a rotating shaft of the rotating device,
The moving reflecting member is disposed on a straight line connecting the front surface of the moving body and the rotation axis of the rotating device,
The moving body moves to an arbitrary position in the work area, the laser rangefinder irradiates a laser while the rotating device is driven,
The laser beam reflected by the fixed reflecting member is received to measure the angle between a predetermined reference direction and the fixed reflecting member direction, and the laser beam reflected by the moving reflecting member is received to receive the reference direction and the moving reflecting member direction. Measure the angle of
Measuring the azimuth angle of the moving body from the angle between the reference direction and the fixed reflecting member direction and the angle difference between the reference direction and the moving reflecting member direction;
It is characterized by that.

また、前記固定反射部材が少なくとも2つ離間して配置され、
前記移動体が前記作業領域の任意の位置に移動し、前記回転装置の駆動中に前記レーザ距離計がレーザを照射し、
それぞれの前記固定反射部材で反射したレーザを受光し、任意の位置からそれぞれの前記固定反射部材までの距離を測定して前記移動体の位置を測定することが好ましい。
Further, at least two of the fixed reflecting members are spaced apart from each other,
The moving body moves to an arbitrary position in the work area, the laser rangefinder irradiates a laser while the rotating device is driven,
It is preferable to measure the position of the moving body by receiving a laser beam reflected by each of the fixed reflecting members and measuring a distance from an arbitrary position to each of the fixed reflecting members.

また、前記移動体が高さ方向に伸縮自在な脚を有する脚式ロボットであり、
前記回転装置の回転軸が一定に維持され、前記固定反射部材と前記レーザ距離計との高さが一定に維持されることが好ましい。
Further, the mobile body is a legged robot having legs that can extend and contract in the height direction,
It is preferable that the rotating shaft of the rotating device is maintained constant and the heights of the fixed reflecting member and the laser distance meter are maintained constant.

また、前記脚式ロボットが農業用ロボットであることが好ましい。   The legged robot is preferably an agricultural robot.

本発明に係る移動体の自己位置測定システムでは、簡素な構成で精度よく移動体の向きを測定することができる。   In the mobile body self-position measurement system according to the present invention, the orientation of the mobile body can be accurately measured with a simple configuration.

移動体の自己位置測定システムの概略構成図である。It is a schematic block diagram of the self-position measurement system of a moving body. 移動体の平面図である。It is a top view of a moving body. 移動体の位置及び向きの測定を説明する図である。It is a figure explaining the measurement of the position and direction of a moving body. 移動体の向きの測定を説明する図である。It is a figure explaining the measurement of the direction of a moving body. 凹凸を有する地面における移動体の移動の様子を示す側面図である。It is a side view which shows the mode of the movement of the mobile body in the ground which has an unevenness | corrugation. 実施例における実験状況を説明する図である。It is a figure explaining the experimental condition in an Example. 実施例における移動体の位置の測定結果を示す図である。It is a figure which shows the measurement result of the position of the moving body in an Example.

図を参照しつつ、本実施の形態に係る移動体の自己位置測定システムについて説明する。移動体の自己位置測定システムは、作業領域70を移動可能な移動体10に設置される回転装置20と、レーザ距離計30と、移動反射部材40と、固定反射部材50a、50bと、演算装置60から構成される。なお、本説明において、作業領域70をX−Y平面座標として説明する。   The mobile body self-position measurement system according to the present embodiment will be described with reference to the drawings. The moving body self-position measuring system includes a rotating device 20 installed in a moving body 10 movable in a work area 70, a laser distance meter 30, a moving reflecting member 40, fixed reflecting members 50a and 50b, and an arithmetic unit. 60. In this description, the work area 70 will be described as XY plane coordinates.

移動体10は、ベース11と複数の脚12を備えた所謂脚式ロボットであり、不図示の制御装置等の指示に基づいて、自動で作業領域70を移動する。移動体10として、X−Y平面座標で規定され得る種々の作業領域にて、種々の作業を行い得るロボットであれば特に限定されるものではない。   The moving body 10 is a so-called legged robot provided with a base 11 and a plurality of legs 12, and automatically moves the work area 70 based on an instruction from a control device (not shown). The moving body 10 is not particularly limited as long as it is a robot capable of performing various tasks in various work areas that can be defined by XY plane coordinates.

回転装置20は、ベース11に設置される。上述のように、ベース11がX−Y平面に対して平行状態を維持可能であるので、回転装置20も同様にX−Y平面に対して平行に回転可能に構成されている。これにより、回転装置20の回転軸はX−Y平面に対して略垂直に維持される。回転装置20は、ベース11上で回転可能な構成であれば、どのような構成でもよく、例えば、高精度な回転雲台等、ステッピングモータやサーボモータ等の駆動源と回転台とを組み合わせた構成が挙げられる。   The rotating device 20 is installed on the base 11. As described above, since the base 11 can maintain a parallel state with respect to the XY plane, the rotating device 20 is also configured to be rotatable in parallel with the XY plane. Thereby, the rotating shaft of the rotating device 20 is maintained substantially perpendicular to the XY plane. The rotation device 20 may have any configuration as long as it can rotate on the base 11. For example, the rotation device 20 is a combination of a driving source such as a high-precision rotary head, a stepping motor, a servo motor, and the rotation table. A configuration is mentioned.

回転装置20には、レーザ距離計30が配置される。図2に示すように、レーザ距離計30は、回転装置20の回転に追従して回転する。回転装置20へのレーザ距離計30の設置は直接的であっても間接的であってもよい。レーザ距離計30は、レーザの照射及び受光が可能であり、対象物へレーザを照射し対象物で反射したレーザを受光し、レーザ距離計30から対象物までの距離を計測する。レーザ距離計30は、時間や周波数、位相等、種々の情報に基づいて対象物までの距離を測定可能な装置であればいずれであってもよい。   A laser distance meter 30 is disposed on the rotating device 20. As shown in FIG. 2, the laser distance meter 30 rotates following the rotation of the rotating device 20. Installation of the laser rangefinder 30 on the rotating device 20 may be direct or indirect. The laser distance meter 30 can irradiate and receive a laser, irradiates the object with the laser, receives the laser reflected by the object, and measures the distance from the laser distance meter 30 to the object. The laser rangefinder 30 may be any device as long as it can measure the distance to an object based on various information such as time, frequency, and phase.

レーザ距離計30は、回転装置20の回転軸上にレーザの照射・受光部が位置するよう配置されている。回転装置20の回転軸から回転軸に垂直な方向へレーザを照射するよう配置される。すなわち、上述のように回転装置20がX−Y平面に平行に回転可能であるため、レーザ距離計30もX−Y平面に平行にレーザを照射・受光する。   The laser distance meter 30 is arranged so that the laser irradiation / light receiving unit is positioned on the rotation axis of the rotating device 20. It arrange | positions so that a laser may be irradiated to the direction perpendicular | vertical to a rotating shaft from the rotating shaft of the rotating apparatus 20. FIG. That is, since the rotating device 20 can rotate in parallel with the XY plane as described above, the laser distance meter 30 also irradiates and receives laser in parallel with the XY plane.

移動反射部材40は、移動体10に設置される。図2に示すように、移動反射部材40は移動体10の正面方向で回転装置20の回転軸との間に設置される。移動反射部材40は、レーザを反射可能な素材であればいずれの素材から構成されていてもよい。   The moving reflecting member 40 is installed on the moving body 10. As shown in FIG. 2, the movable reflecting member 40 is installed between the rotating body 20 and the rotating shaft in the front direction of the moving body 10. The movable reflecting member 40 may be made of any material as long as it can reflect the laser.

固定反射部材50a、50bは、X−Y平面座標の所定の箇所に配置される。即ち、固定反射部材50a、50bのX−Y平面における座標はいずれも既知であり、A(x,y)、B(x,y)で表される。固定反射部材50a、50bは、いずれもレーザを反射可能な素材であればいずれの素材から構成されていてもよい。また、固定反射部材50a、50bは、レーザ距離計30から照射されたレーザが照射される高さに配置される。 The fixed reflecting members 50a and 50b are arranged at predetermined positions in the XY plane coordinates. That is, the coordinates of the fixed reflecting members 50a and 50b in the XY plane are both known and are represented by A (x a , y a ) and B (x b , y b ). The fixed reflecting members 50a and 50b may be made of any material as long as the material can reflect the laser. The fixed reflecting members 50a and 50b are disposed at a height at which the laser irradiated from the laser distance meter 30 is irradiated.

演算装置60は、後述する基準ベクトルや固定反射部材50a、50bの座標情報を記憶しておく記憶部、及び、得られた距離データや方向ベクトルから移動体10の位置並びに向きを算出する演算部を有している。   The calculation device 60 stores a reference vector and coordinate information of the fixed reflecting members 50a and 50b, which will be described later, and a calculation unit that calculates the position and orientation of the moving body 10 from the obtained distance data and direction vector. have.

続いて、移動体10の位置並びに向きの測定について説明する。   Next, measurement of the position and orientation of the moving body 10 will be described.

まず、移動体10の位置の測定について説明する。図3に示すように、移動体10がX−Y平面座標上の地点P(x,y)へ移動した場合を考える。地点Pは、回転装置20の回転軸座標である。地点Pにて、回転装置20が駆動する。さらに、回転装置20の駆動でレーザ距離計30が回転しつつレーザを照射する。 First, measurement of the position of the moving body 10 will be described. As shown in FIG. 3, consider a case where the moving body 10 has moved to a point P (x p , y p ) on the XY plane coordinates. The point P is a rotation axis coordinate of the rotation device 20. At the point P, the rotating device 20 is driven. Further, the laser distance meter 30 is irradiated with the laser while being rotated by driving the rotating device 20.

レーザが地点A(x,y)に設置されている反射部材50aで反射すると、レーザ距離計30は反射部材50aで反射したレーザを受光する。これにより、地点Aと地点Pとの距離Lが測定される。 When the laser beam is reflected by the reflecting member 50a installed at the point A (x a , y a ), the laser distance meter 30 receives the laser beam reflected by the reflecting member 50a. Thus, the distance L 1 between the points A and P are measured.

更に、レーザが地点B(x,y)に設置されている反射部材50bで反射すると、レーザ距離計30は反射部材50bで反射したレーザを受光する。これにより、地点Bと地点Pとの距離Lが測定される。 Further, when reflected by the reflecting member 50b which lasers are disposed point B (x b, y b), the laser rangefinder 30 receives the laser reflected by the reflecting member 50b. Thus, the distance L 2 between the point B and the point P is measured.

そして、測定されたL及びLの距離データから、演算装置60がX−Y平面座標上における地点Pの座標を求める。具体的には、地点Aを支点とする半径Lの円と地点Bを支点とする半径Lの円との交点が地点Pの座標である。このようにして地点Pの座標、即ち、移動体10の位置が測定される。 Then, from the measured L 1 and L 2 of the distance data, the arithmetic unit 60 obtains the coordinates of a point P on the X-Y plane coordinates. Specifically, the point of intersection of the circle of radius L 1 centered on point A and the circle of radius L 2 centered on point B is the coordinates of point P. In this way, the coordinates of the point P, that is, the position of the moving body 10 is measured.

続いて、X−Y平面座標上における移動体10の向きの測定について説明する。ここで、移動体10の向きθは、移動体10の基準方向(以下、基準ベクトルとも記す)からの変化量であり、基準ベクトルとの方位角である。本説明では、X軸方向のベクトルを基準ベクトルとして説明する。   Next, measurement of the orientation of the moving body 10 on the XY plane coordinates will be described. Here, the direction θ of the moving body 10 is an amount of change from a reference direction (hereinafter also referred to as a reference vector) of the moving body 10 and an azimuth angle with respect to the reference vector. In this description, a vector in the X-axis direction will be described as a reference vector.

まず、図3に示すように、移動体10が地点P(x,y)へ移動し、任意の方向を向いている状態を考える。そして、上記と同様、地点Pにて、回転装置20を駆動させる。回転装置20の駆動中、レーザ距離計30がレーザを照射する。 First, as shown in FIG. 3, a state is considered in which the moving body 10 moves to a point P (x p , y p ) and faces an arbitrary direction. Then, the rotating device 20 is driven at the point P as described above. While the rotating device 20 is driven, the laser distance meter 30 irradiates the laser.

レーザが反射部材50aに反射すると、レーザ距離計30は反射部材50aで反射したレーザを受光する。これにより、地点Pと地点Aを結ぶベクトル(以下、ベクトルAとも記す)が求められる。そして、図4に示すように、基準ベクトルとベクトルAとの差角θが求められる。 When the laser beam is reflected by the reflecting member 50a, the laser distance meter 30 receives the laser beam reflected by the reflecting member 50a. Thereby, a vector (hereinafter also referred to as vector A) connecting the point P and the point A is obtained. Then, as shown in FIG. 4, a difference angle θ A between the reference vector and the vector A is obtained.

更に、レーザが移動体10の正面方向に設置されている反射部材40に反射すると、レーザ距離計30が反射部材40で反射したレーザを受光する。これにより、地点Pと反射部材40とを結ぶベクトル(以下、ベクトルFとも記す)が求められる。そして、基準ベクトルとベクトルFとの差角θが求められる。 Further, when the laser is reflected by the reflecting member 40 installed in the front direction of the moving body 10, the laser distance meter 30 receives the laser reflected by the reflecting member 40. Thereby, a vector connecting the point P and the reflecting member 40 (hereinafter also referred to as a vector F) is obtained. Then, a difference angle θ F between the reference vector and the vector F is obtained.

そして、θとθとの差角から、移動体10の向きθが求まる。このように、演算装置60が予め基準ベクトルを記憶しておけば、θ及びθを求めることができ、これにより移動体10の方位角θを求めることができる。 Then, the direction θ of the moving body 10 is obtained from the difference angle between θ A and θ F. Thus, if the arithmetic unit 60 stores the reference vector in advance, θ A and θ F can be obtained, and thereby the azimuth angle θ of the moving body 10 can be obtained.

なお、地点Pと地点Bとを結ぶベクトル、及び、地点Pと反射部材40とを結ぶベクトルを求め、それらの差角から移動体10の向きθを求めてもよい。また、基準ベクトルはY軸方向のベクトルや任意の方向のベクトルを用いてもよい。   Alternatively, a vector connecting the point P and the point B and a vector connecting the point P and the reflecting member 40 may be obtained, and the direction θ of the moving body 10 may be obtained from the difference angle between them. The reference vector may be a vector in the Y-axis direction or a vector in an arbitrary direction.

なお、移動体10の移動方式は脚式に限らず、車輪等で移動するものであってもよいが、本実施の形態に係る自己位置測定システムは、田畑等の農地にて、苗や種の植え付け、作物の収穫などの農作業を行う脚式の農業用ロボットに対して特に有用である。農地などの場合、表面に凹凸が多々存在するとともに、地面が軟らかいので、ロボットが移動する際に、姿勢変化が生じやすい。このような状況下においても、脚式であれば、図5の矢印で示すように、移動体10が移動した際、それぞれの脚12が独立して伸縮するので、ベース11の傾き及び高さがほぼ一定に保たれるよう制御され得る。これにより、レーザ距離計30と固定反射部材50a、50bとの高さ関係及びレーザの水平面に対する照射角度が維持され得る。また、同様に回転装置20の回転軸の傾きもほぼ一定に維持され得る。したがって、移動体10の位置及び方位角を精度よく測定することができる。   Note that the moving method of the moving body 10 is not limited to the leg type, but may be moved by wheels or the like. However, the self-position measuring system according to the present embodiment is used for seedlings and seeds on farmland such as fields. It is particularly useful for legged agricultural robots that perform farming operations such as planting and harvesting crops. In the case of farmland or the like, since the surface has many irregularities and the ground is soft, posture change is likely to occur when the robot moves. Even in such a situation, if the leg type is used, as shown by the arrow in FIG. 5, when the moving body 10 moves, each leg 12 expands and contracts independently. Can be controlled to remain substantially constant. Thereby, the height relationship between the laser distance meter 30 and the fixed reflecting members 50a and 50b and the irradiation angle of the laser with respect to the horizontal plane can be maintained. Similarly, the inclination of the rotating shaft of the rotating device 20 can be maintained substantially constant. Therefore, the position and azimuth angle of the moving body 10 can be measured with high accuracy.

なお、固定反射部材50a、50bは、レーザ距離計30が照射するレーザを反射可能であり、その位置の座標が認識可能な箇所であれば、作業領域70或いは作業領域70周辺のいずれの位置に設置されていてもよい。   The fixed reflecting members 50a and 50b can reflect the laser irradiated by the laser distance meter 30, and can be located at any position around the work area 70 or the work area 70 as long as the coordinates of the position can be recognized. It may be installed.

また、上記では、固定反射部材が2つ設置されている例について説明したが、3つ以上設置されていてもよい。例えば、矩形の作業領域70の場合、作業領域70の4隅にそれぞれ固定反射部材が設置されていてもよい。この場合、移動体10の位置からそれぞれの固定反射部材までの距離データが4つ得られ、それぞれの固定反射部材を支点にしたそれぞれの距離の円の交点座標が移動体10の位置となる。また、任意の基準ベクトルが設定されていれば、いずれかの固定反射部材を利用して上記同様に、移動体10の方位角が測定される。   Moreover, although the above demonstrated the example in which the two fixed reflection members were installed, three or more may be installed. For example, in the case of the rectangular work area 70, fixed reflecting members may be installed at the four corners of the work area 70. In this case, four pieces of distance data from the position of the moving body 10 to each fixed reflecting member are obtained, and the intersection coordinates of the circles of the respective distances using the respective fixed reflecting members as fulcrums become the position of the moving body 10. If an arbitrary reference vector is set, the azimuth angle of the moving body 10 is measured in the same manner as described above using any fixed reflecting member.

車両80に回転装置20、レーザ距離計30及び移動反射部材40を設置した。そして、室内にて、図6に示すように、10m×4mの領域内を、ストップ・アンド・ゴーを繰り返しながら車両80を移動させた。車両80の停車時に、それぞれの停車位置における車両80のX−Y平面座標上の位置及び方位角の測定を試みた。上記装置で行ったものをLDSと記す。   The rotating device 20, the laser distance meter 30, and the moving reflection member 40 are installed in the vehicle 80. Then, as shown in FIG. 6, the vehicle 80 was moved indoors in a 10 m × 4 m area while repeating stop and go. When the vehicle 80 stopped, an attempt was made to measure the position and azimuth on the XY plane coordinates of the vehicle 80 at each stop position. What was performed with the said apparatus is described as LDS.

また、評価のために、比較例としてトータルステーション(精度5mm)で車両80のX−Y平面座標上の位置及び方位角を測定した。以下、トータルステーションで行ったものをTSと記す。   Further, for evaluation, the position and azimuth angle of the vehicle 80 on the XY plane coordinates were measured at a total station (accuracy 5 mm) as a comparative example. Hereinafter, TS performed at the total station will be described.

LDS及びTSでそれぞれ側定した車両80のX座標、Y座標、方位角、並びに、LDSとTSとの差を表1に示す。また、車両80の位置におけるノルムの平均及び標準偏差、並びに、車両80の方位角における角度の誤差絶対値の平均及び標準偏差を表2に示す。   Table 1 shows the X coordinate, Y coordinate, azimuth angle of the vehicle 80 determined by the LDS and TS, and the difference between the LDS and TS. Table 2 shows the average and standard deviation of the norm at the position of the vehicle 80 and the average and standard deviation of the error absolute value of the angle at the azimuth angle of the vehicle 80.

Figure 2013140083
Figure 2013140083

Figure 2013140083
Figure 2013140083

TSとLDSとの差を検討すると、ノルム(RMS(m))の平均(mean)および標準偏差(SD)がそれぞれ10mm程度であった。また、角度の誤差絶対値(abs_θ(°))の平均(mean)と標準偏差(SD)は、それぞれ0.2°程度であった。このように、簡素な構成でも、精度よく移動体の位置及び方位角を測定できることを確認した。   When the difference between TS and LDS was examined, the mean (standard) and standard deviation (SD) of the norm (RMS (m)) were each about 10 mm. In addition, the average (mean) and standard deviation (SD) of the absolute error value (abs_θ (°)) were about 0.2 °, respectively. Thus, it was confirmed that the position and azimuth angle of the moving body can be accurately measured even with a simple configuration.

以上説明したように、移動体の自己位置測定システムでは、簡素な構成で作業領域における移動体の位置及び向きを精度よく測定することが可能である。したがって、農地での苗の植え付けや作物の収穫における農業用ロボットなどをはじめ、様々な自走式作業ロボットへの利用が期待される。   As described above, the mobile body self-position measuring system can accurately measure the position and orientation of the mobile body in the work area with a simple configuration. Therefore, it is expected to be used for various self-propelled working robots, including agricultural robots for planting seedlings and harvesting crops on farmland.

1 自己位置測定システム
10 移動体(ロボット)
11 ベース
12 脚
13 車輪
20 回転装置
30 レーザ距離計
40 移動反射部材
50a 固定反射部材
50b 固定反射部材
60 演算装置
70 作業領域
80 車両
1 Self-positioning system 10 Mobile body (robot)
11 Base 12 Leg 13 Wheel 20 Rotating Device 30 Laser Distance Meter 40 Moving Reflective Member 50a Fixed Reflective Member 50b Fixed Reflective Member 60 Arithmetic Unit 70 Work Area 80 Vehicle

Claims (4)

作業領域を移動可能な移動体に配置される回転装置と、
前記回転装置に配置されるレーザ距離計と、
前記移動体に配置される移動反射部材と、
前記作業領域或いは前記作業領域周辺の所定位置に設置される少なくとも1つの固定反射部材と、を備え、
前記レーザ距離計は前記回転装置の回転軸からレーザを照射するよう配置され、
前記移動反射部材は前記移動体の正面と前記回転装置の回転軸とを結ぶ直線上に配置され、
前記移動体が前記作業領域の任意の位置に移動し、前記回転装置の駆動中に前記レーザ距離計がレーザを照射し、
前記固定反射部材で反射したレーザを受光して所定の基準方向と固定反射部材方向との角度を測定するとともに、前記移動反射部材で反射したレーザを受光して前記基準方向と移動反射部材方向との角度を測定し、
前記基準方向と前記固定反射部材方向との角度及び前記基準方向と前記移動反射部材方向との角度の差角から前記移動体の方位角を測定する、
ことを特徴とする移動体の自己位置測定システム。
A rotating device disposed on a movable body movable in the work area;
A laser rangefinder disposed in the rotating device;
A movable reflecting member disposed on the movable body;
And at least one fixed reflecting member installed at a predetermined position around the work area or the work area,
The laser distance meter is arranged to irradiate a laser from a rotating shaft of the rotating device,
The moving reflecting member is disposed on a straight line connecting the front surface of the moving body and the rotation axis of the rotating device,
The moving body moves to an arbitrary position in the work area, the laser rangefinder irradiates a laser while the rotating device is driven,
The laser beam reflected by the fixed reflecting member is received to measure the angle between a predetermined reference direction and the fixed reflecting member direction, and the laser beam reflected by the moving reflecting member is received to receive the reference direction and the moving reflecting member direction. Measure the angle of
Measuring the azimuth angle of the moving body from the angle between the reference direction and the fixed reflecting member direction and the angle difference between the reference direction and the moving reflecting member direction;
A self-positioning system for a moving object.
前記固定反射部材が少なくとも2つ離間して配置され、
前記移動体が前記作業領域の任意の位置に移動し、前記回転装置の駆動中に前記レーザ距離計がレーザを照射し、
それぞれの前記固定反射部材で反射したレーザを受光し、任意の位置からそれぞれの前記固定反射部材までの距離を測定して前記移動体の位置を測定する、
ことを特徴とする請求項1に記載の移動体の自己位置測定システム。
At least two fixed reflecting members are spaced apart from each other;
The moving body moves to an arbitrary position in the work area, the laser rangefinder irradiates a laser while the rotating device is driven,
Receiving the laser beam reflected by each of the fixed reflecting members, measuring the position of the movable body by measuring the distance from any position to each of the fixed reflecting members,
The self-position measuring system for a moving body according to claim 1.
前記移動体が高さ方向に伸縮自在な脚を有する脚式ロボットであり、
前記回転装置の回転軸が一定に維持され、前記固定反射部材と前記レーザ距離計との高さが一定に維持される、
ことを特徴とする請求項1又は2に記載の移動体の自己位置測定システム。
The mobile body is a legged robot having legs that can expand and contract in the height direction,
The rotational axis of the rotating device is maintained constant, and the height of the fixed reflecting member and the laser distance meter is maintained constant.
The mobile body self-position measuring system according to claim 1 or 2,
前記脚式ロボットが農業用ロボットである、
ことを特徴とする請求項3に記載の移動体の自己位置測定システム。
The legged robot is an agricultural robot;
The self-position measuring system for a moving body according to claim 3.
JP2012000461A 2012-01-05 2012-01-05 Self-location measuring system of mobile object Pending JP2013140083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000461A JP2013140083A (en) 2012-01-05 2012-01-05 Self-location measuring system of mobile object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000461A JP2013140083A (en) 2012-01-05 2012-01-05 Self-location measuring system of mobile object

Publications (1)

Publication Number Publication Date
JP2013140083A true JP2013140083A (en) 2013-07-18

Family

ID=49037636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000461A Pending JP2013140083A (en) 2012-01-05 2012-01-05 Self-location measuring system of mobile object

Country Status (1)

Country Link
JP (1) JP2013140083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047202A (en) * 2018-09-21 2020-03-26 三菱ロジスネクスト株式会社 Unmanned conveyance system
JP7466722B1 (en) 2023-02-10 2024-04-12 日鉄パイプライン&エンジニアリング株式会社 Coordinate measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829166A (en) * 1994-07-13 1996-02-02 Japan Aviation Electron Ind Ltd Track gate type light position detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829166A (en) * 1994-07-13 1996-02-02 Japan Aviation Electron Ind Ltd Track gate type light position detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047202A (en) * 2018-09-21 2020-03-26 三菱ロジスネクスト株式会社 Unmanned conveyance system
JP7466722B1 (en) 2023-02-10 2024-04-12 日鉄パイプライン&エンジニアリング株式会社 Coordinate measurement method

Similar Documents

Publication Publication Date Title
US9197810B2 (en) Systems and methods for tracking location of movable target object
CA2831682C (en) Measuring system for determining 3d coordinates of an object surface
CN111095355B (en) Real-time positioning and orientation tracker
CA2817240C (en) Device for measuring and marking space points along horizontally running contour lines
CN102985232B (en) For being positioned at the method for the calibration of the robot on moveable platform
CN106903687B (en) Industrial robot calibration system and method based on laser ranging
EP3781367A1 (en) Systems and methods for surgical robotic cart placement
EP3669138B1 (en) Laser tracker with improved roll angle measurement
US20190186907A1 (en) Multi-dimensional measurement system for precise calculation of position and orientation of a dynamic object
JP2013140083A (en) Self-location measuring system of mobile object
CN207675158U (en) One kind being based on anallatic inclination measuring device
US20220179052A1 (en) System and method for positioning of a laser projection system
CN113758480B (en) Surface type laser positioning system, AGV positioning calibration system and AGV positioning method
JP2003302469A (en) Autonomous work vehicle and control method of autonomous work vehicle
CN111851634A (en) Measuring arrangement for measuring the three-dimensional position and orientation of the central axis of a first shaft relative to the central axis of a second shaft
KR101467895B1 (en) A localization method of marking unit and an appartus for marking using the same
US20220365216A1 (en) Method for Setting More Precisely a Position and/or Orientation of a Device Head
US20220410329A1 (en) Method for Setting More Precisely a Position and/or Orientation of a Device Head
Kaewkorn MULTISENSOR FUSION FOR PRECISE AGRICULTURE IN PADDY FIELDS
CN112792825A (en) Movable brick laying robot system for building construction and control method
JP2019144119A (en) Three-dimensional laser scanner
Ciężkowski et al. Compensating Position Measurement Errors for the IR Static Triangulation System
GB2601365A (en) Location of objects over an area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202