JP2013139366A - Indium tin oxide powder and method for producing the same - Google Patents

Indium tin oxide powder and method for producing the same Download PDF

Info

Publication number
JP2013139366A
JP2013139366A JP2012000810A JP2012000810A JP2013139366A JP 2013139366 A JP2013139366 A JP 2013139366A JP 2012000810 A JP2012000810 A JP 2012000810A JP 2012000810 A JP2012000810 A JP 2012000810A JP 2013139366 A JP2013139366 A JP 2013139366A
Authority
JP
Japan
Prior art keywords
indium tin
tin oxide
ionic radius
oxide powder
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012000810A
Other languages
Japanese (ja)
Other versions
JP5885507B2 (en
Inventor
Shinya Shiraishi
真也 白石
Hirotoshi Umeda
洋利 梅田
Suzuo Sasaki
佐々木鈴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2012000810A priority Critical patent/JP5885507B2/en
Publication of JP2013139366A publication Critical patent/JP2013139366A/en
Application granted granted Critical
Publication of JP5885507B2 publication Critical patent/JP5885507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide indium tin oxide powder having high conductivity and high infrared cutting characteristic.SOLUTION: This indium tin oxide powder has following characteristics. (A) In, Snand Snare contained, (B) the ratio of the ion radius of Into the Sn average ion radius which is an average of the ion radius of Snand the ion radius of Snis expressed as formula: (ion radius of In):(Sn average ion radius)=1:(0.990-1.009), and (C) the ratio of Sn is 2.5-25 moles with respect to 100 moles of the total of In and Sn.

Description

本発明は、赤外線カット特性に優れたインジウム錫酸化物粉末およびその製造方法に関する。   The present invention relates to an indium tin oxide powder having excellent infrared cut characteristics and a method for producing the same.

自動車、電車、船舶、建築機材や飛行機等の車両用の窓材、住宅の窓材、ショーケースに使用されるガラス板や、タッチパネル、ディスプレイ等の透明導電膜には、透明性に加えて、帯電防止のための導電性や、赤外線カット特性が求められる場合がある。このような用途向けの材料として、酸化インジウム錫粉末や、アンチモンドープ酸化錫粉末が知られている。特に、インジウム錫酸化物粉末は、透明性が高く、赤外線カット特性に優れているが、赤外線カット特性にさらなる改善が求められている用途がある。一方、アンチモンドープ酸化錫粉末は、酸化インジウム錫粉末と比較して安価であるが、可視光線透過率が低く、高透明の要求に対応できないのみならず、赤外線カット性能が酸化インジウム錫粉末より劣る、という問題がある。   In addition to transparency, window materials for vehicles such as automobiles, trains, ships, building equipment and airplanes, window materials for houses, glass plates used in showcases, and transparent conductive films such as touch panels and displays, There are cases where conductivity for preventing charging and infrared cut characteristics are required. As materials for such applications, indium tin oxide powder and antimony-doped tin oxide powder are known. In particular, indium tin oxide powder has high transparency and excellent infrared cut characteristics, but there are uses for which further improvement is required in the infrared cut characteristics. On the other hand, antimony-doped tin oxide powder is less expensive than indium tin oxide powder, but has low visible light transmittance and cannot meet the demand for high transparency, and is inferior in infrared cut performance to indium tin oxide powder. There is a problem.

本発明者らは、インジウム錫酸化物粉末の赤外線カット特性を改善させるために、錫含有量を増加させることが必要になると考えたが、公知の方法(特許文献1)で錫含有量を増加させると、インジウム錫酸化物の結晶化度が低下し、導電性が低下してしまう、という問題があった。   The present inventors thought that it was necessary to increase the tin content in order to improve the infrared cut characteristics of the indium tin oxide powder, but the tin content was increased by a known method (Patent Document 1). When it does, there existed a problem that the crystallinity degree of indium tin oxide fell and electroconductivity fell.

特開2000−3618号公報JP 2000-3618 A

本発明は、上記問題を解決するものであり、導電性が高く、赤外線カット特性が高いインジウム錫酸化物粉末を提供することを目的とする。   The present invention solves the above problems, and an object thereof is to provide an indium tin oxide powder having high conductivity and high infrared cut characteristics.

本発明は、以下に示す構成によって上記課題を解決したインジウム錫酸化錫粉末とその製造方法に関する。
〔1〕(A)In3+、Sn2+およびSn4+を含有し、
(B)In3+のイオン半径と、Sn2+のイオン半径とSn4+のイオン半径の平均であるSn平均イオン半径との割合が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表され、かつ
(C)Snが、InとSnの合計100モルに対して、2.5〜25モルの割合である
ことを特徴とする、インジウム錫酸化物粉末。
〔2〕Lab表色系において、L≦30、a<0、b<0の色調を有する、上記〔1〕記載のインジウム錫酸化物粉末。
〔3〕BET比表面積が、30m/g以上である、上記〔1〕または〔2〕記載のインジウム錫酸化物粉末。
〔4〕原料は、In3+、Sn2+およびSn4+を含有し、
In3+のイオン半径と、Sn2+のイオン半径とSn4+のイオン半径の平均であるSn平均イオン半径との割合が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表され、かつ
Snが、InとSnの合計100モルに対して、2.5〜25モルの割合である酸性水溶液であり;
原料の酸性水溶液からインジウム錫水酸化物を共沈させ、
共沈インジウム錫水酸化物を焼成することを特徴とする、インジウム錫酸化物粉末の製造方法。
〔5〕Sn2+が、Sn2+とSn4+の合計1モルに対して、0.90〜0.99モルの割合である、上記〔4〕記載のインジウム錫酸化物粉末の製造方法。
〔6〕上記〔1〕〜〔3〕のいずれか記載のインジウム錫酸化物粉末と、溶媒とを含有することを特徴とする、熱線遮蔽膜用組成物。
〔7〕さらに、樹脂を含有する、上記〔6〕記載の熱線遮蔽膜用組成物。
〔8〕上記〔6〕または〔7〕記載の熱線遮蔽膜用組成物を、基材上に塗布した後、乾燥して形成される、熱線遮蔽膜。
The present invention relates to an indium tin oxide powder and a method for producing the same that have solved the above-described problems with the following configuration.
[1] (A) containing In 3+ , Sn 2+ and Sn 4+ ,
(B) The ratio of the ionic radius of In 3+ to the Sn average ionic radius, which is the average of the Sn 2+ ionic radius and Sn 4+ ionic radius, is given by the formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
And (C) Sn is a ratio of 2.5 to 25 mol with respect to a total of 100 mol of In and Sn, indium tin oxide powder.
[2] The indium tin oxide powder according to the above [1], having a color tone of L ≦ 30, a <0, b <0 in the Lab color system.
[3] The indium tin oxide powder according to the above [1] or [2], wherein the BET specific surface area is 30 m 2 / g or more.
[4] The raw material contains In 3+ , Sn 2+ and Sn 4+ ,
The ratio of the ionic radius of In 3+ to the Sn average ionic radius, which is the average of the Sn 2+ ionic radius and Sn 4+ ionic radius, is given by the formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
And Sn is an acidic aqueous solution having a ratio of 2.5 to 25 mol with respect to 100 mol in total of In and Sn;
Co-precipitate indium tin hydroxide from the acidic aqueous solution of the raw material,
A method for producing indium tin oxide powder, comprising calcining coprecipitated indium tin hydroxide.
[5] Sn 2+ is, the total one mole of Sn 2+ and Sn 4+, which is the ratio of 0.90 to 0.99 mol, [4] above method for producing indium tin oxide powder according.
[6] A composition for heat ray shielding film, comprising the indium tin oxide powder according to any one of [1] to [3] above and a solvent.
[7] The composition for heat ray shielding film according to [6], further comprising a resin.
[8] A heat ray shielding film formed by applying the composition for heat ray shielding film according to the above [6] or [7] on a substrate and then drying.

本発明〔1〕によれば、導電性が高く、赤外線カット特性が高いインジウム錫酸化物粉末を提供することができる。   According to the present invention [1], it is possible to provide an indium tin oxide powder having high conductivity and high infrared cut characteristics.

また、本発明〔4〕によれば、導電性が高く、赤外線カット特性が高いインジウム錫酸化物粉末を簡便に製造することができる。   Moreover, according to the present invention [4], indium tin oxide powder having high conductivity and high infrared cut characteristics can be easily produced.

本発明〔6〕または〔7〕によれば、高導電性で、赤外線カット特性が高い熱線遮蔽膜を提供することができる。   According to the present invention [6] or [7], it is possible to provide a heat ray shielding film having high conductivity and high infrared cut characteristics.

本発明〔8〕によれば、高導電性で、赤外線カット特性が高い熱線遮蔽膜を提供することができるので、自動車、電車、船舶、建築機材や飛行機等の車両用の窓材、住宅の窓材、ショーケースに使用されるガラス板等に容易に応用することができる。   According to the present invention [8], it is possible to provide a heat ray shielding film having high conductivity and high infrared cut characteristics. Therefore, the window material for vehicles such as automobiles, trains, ships, building equipment and airplanes, It can be easily applied to glass plates used for window materials and showcases.

実施例1のインジウム錫酸化物粉末のX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of the indium tin oxide powder of Example 1. 比較例3のインジウム錫酸化物粉末のX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of the indium tin oxide powder of the comparative example 3. 実施例1と比較例3のインジウム錫酸化物粉末を含む分散液の透過率測定の結果を示す図である。It is a figure which shows the result of the transmittance | permeability measurement of the dispersion liquid containing the indium tin oxide powder of Example 1 and Comparative Example 3. 実施例6のインジウム錫酸化物粉末のX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of the indium tin oxide powder of Example 6. 比較例4のインジウム錫酸化物粉末のX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of the indium tin oxide powder of the comparative example 4.

以下、本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.

〔インジウム錫酸化物粉末〕
本発明のインジウム錫酸化物粉末は、(A)In3+、Sn2+およびSn4+を含有し、
(B)In3+のイオン半径と、Sn2+のイオン半径とSn4+のイオン半径の平均であるSn平均イオン半径との割合が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表され、かつ
(C)Snが、InとSnの合計100モルに対して、2.5〜25モルの割合である
ことを特徴とする。
[Indium tin oxide powder]
The indium tin oxide powder of the present invention contains (A) In 3+ , Sn 2+ and Sn 4+ ,
(B) The ratio of the ionic radius of In 3+ to the Sn average ionic radius, which is the average of the Sn 2+ ionic radius and Sn 4+ ionic radius, is given by the formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
And (C) Sn is a ratio of 2.5 to 25 mol with respect to 100 mol in total of In and Sn.

まず、In3+のイオン半径とSn平均イオン半径との関係について説明する。従来、インジウム錫酸化物粉末の原料である錫源とインジウム源には、In3+とSn4+または、In3+とSn2+の組み合わせで、具体的には、四塩化錫と三塩化インジウム、二塩化錫と三硝酸インジウム、または二塩化錫と三塩化インジウムを組み合わせて用い、これらを溶解した水溶液をアルカリ液と反応させて、インジウム錫の共沈水酸化物を生成させ、この共沈水酸化物を焼成して製造していた。インジウム錫酸化物は、酸化インジウムに錫をドーピングして、酸化インジウムのインジウムサイトを錫で置換することにより、導電性を向上させている。ここで、ドーピングする錫のイオン半径が大きいと、ドーピングされる側のインジウムのイオン半径と大きく異なり、インジウムのサイトに錫が置換されず、インジウム錫酸化物結晶にとりこまれにくくなり、結晶化度が低くなってしまう。一方、イオン半径が小さすぎても置換されにくくなり、結晶化度が低くなってしまう。インジウムと錫は、イオン半径が近いため、錫がドーピングされ易いが、更に錫ドーピングの効率を上げる為に、原料の時点で、SnとInのイオン半径を同等にすることにより、錫ドーピング効率を上げる効果を検討したところ、インジウム錫酸化物の結晶性の向上およびインジウム錫酸化物粉末の特性の向上を図ることができた。 First, the relationship between the ionic radius of In 3+ and the Sn average ionic radius will be described. Conventionally, a tin source and an indium source that are raw materials for indium tin oxide powder include In 3+ and Sn 4+ or a combination of In 3+ and Sn 2+ , specifically, tin tetrachloride and indium trichloride, dichloride. Using a combination of tin and indium trinitrate or tin dichloride and indium trichloride and reacting an aqueous solution in which these are dissolved with an alkali solution, a coprecipitated hydroxide of indium tin is produced, and the coprecipitated hydroxide is fired. And manufactured. Indium tin oxide improves conductivity by doping tin into indium oxide and replacing indium sites of indium oxide with tin. Here, if the ionic radius of tin to be doped is large, the ionic radius of indium on the doping side is greatly different, tin is not substituted at the site of indium, and it is difficult to be incorporated into the indium tin oxide crystal. Will be lower. On the other hand, even if the ion radius is too small, the substitution is difficult and the crystallinity becomes low. Since indium and tin are close in ionic radius, tin is easily doped. However, in order to further increase the efficiency of tin doping, by making the ionic radii of Sn and In equal at the raw material, tin doping efficiency is improved. As a result of examining the effect of increasing, it was possible to improve the crystallinity of indium tin oxide and the properties of indium tin oxide powder.

また、従来、In3+とSn2+の組み合わせの方が、In3+とSn4+の組み合わせよりも結晶性の高いインジウム錫酸化物を得やすいことが知られている(特許文献1)。この原因は、In3+とSn2+のイオン半径が近いことによるものと推測された。そこで、更にドーピング効果を良くするために、In3+と(Sn2+とSn4+)を組み合わせにより、In3+のイオン半径と、Sn2+のイオン半径とSn4+のイオン半径の平均であるSn平均イオン半径が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表される割合で、原料を混合することにより、ドーピング効果を良くすることを見出した。ここで、Sn4+のイオン半径は、74pm、Sn2+のイオン半径は、93pm、In3+のイオン半径は、92pmである。
Conventionally, it has been known that a combination of In 3+ and Sn 2+ can easily obtain indium tin oxide having higher crystallinity than a combination of In 3+ and Sn 4+ (Patent Document 1). This was presumed to be due to the close ionic radii of In 3+ and Sn 2+ . Therefore, in order to further improve the doping effect, by combining In 3+ and (Sn 2+ and Sn 4+ ), an Sn average ion which is the average of the ion radius of In 3+ , the ion radius of Sn 2+ and the ion radius of Sn 4+ Radius is the formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
It was found that the doping effect was improved by mixing the raw materials in the ratio represented by Here, the ion radius of Sn 4+ is 74 pm, the ion radius of Sn 2+ is 93 pm, and the ion radius of In 3+ is 92 pm.

表1に、InイオンとしてIn3+を、Snイオンとして、Sn2+とSn4+を使用する場合のIn3+のイオン半径とSn平均イオン半径の比を示す。Sn平均イオン半径は、Sn4+の割合とSn2+の割合から、加重平均して求める。ここで、Sn4+のイオン半径をRSn4と、Sn2+のイオン半径をRSn2とし、Sn4+のモル比が、Sn4+のモル比とSn2+のモル比の合計1モルに対して、xモルの割合である場合のSn平均イオン半径:RSnを、下記式:
(RSn)=(RSn4)×(x)+(RSn2)×(1−x)
に示す。
Table 1, the In 3+ as In ions, as Sn ions, indicating the ionic radius and Sn average ionic radius ratio of In 3+ when using Sn 2+ and Sn 4+. The Sn average ionic radius is obtained by weighted averaging from the ratio of Sn 4+ and the ratio of Sn 2+ . Here, the ionic radius of Sn 4+ and R Sn4, the ionic radius of Sn 2+ and R Sn2, the molar ratio of Sn 4+ is, relative to 1 mol of the total of the molar ratio and the Sn 2+ molar ratio of Sn 4+, x Sn average ionic radius: R Sn in the case of molar ratio is represented by the following formula:
(R Sn ) = (R Sn 4 ) × (x) + (R Sn 2 ) × (1−x)
Shown in

また、InイオンとしてIn3+を、SnイオンとしてSn4+とSn2+を、使用する場合の平均イオン半径の割合は、式:
(平均イオン半径の比)=(In3+のイオン半径)/(RSn
により求める。
The ratio of the average ion radius when using In 3+ as In ions and Sn 4+ and Sn 2+ as Sn ions is expressed by the formula:
(Ratio of average ion radius) = (ion radius of In 3 + ) / (R Sn )
Ask for.

表1からわかるように、Sn2+が、Sn2+とSn4+の合計1モルに対して、0.90〜0.99モルの割合であると、In3+のイオン半径と、Sn平均イオン半径が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表される割合になる。
As can be seen from Table 1, when Sn 2+ is in a ratio of 0.90 to 0.99 mol with respect to 1 mol in total of Sn 2+ and Sn 4+ , the ionic radius of In 3+ and the Sn average ionic radius are ,formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
It becomes the ratio represented by.

次に、Snは、InとSnの合計100モルに対して、2.5〜25モルの割合であり、赤外線カット特性を高くするためには、8〜15モルであると好ましい。ここで、SnとInの定量測定は、誘導結合プラズマ発光分析法により行う。   Next, Sn is a ratio of 2.5 to 25 moles with respect to a total of 100 moles of In and Sn, and is preferably 8 to 15 moles in order to improve infrared cut characteristics. Here, quantitative measurement of Sn and In is performed by inductively coupled plasma optical emission spectrometry.

インジウム錫酸化物粉末は、L≦30、a<0、b<0の色調を有すると、濃い青色調を有し、赤外線カット特性が高くなり、好ましい。ここで、L値、a値、b値は、スガ試験機製カラーコンピュータ(型番:SM−T)で測定する。   Indium tin oxide powder having a color tone of L ≦ 30, a <0, b <0 is preferable because it has a deep blue tone and high infrared cut characteristics. Here, the L value, a value, and b value are measured with a color computer (model number: SM-T) manufactured by Suga Test Instruments.

インジウム錫酸化物粉末は、BET比表面積が、30m/g以上であると、赤外線カット特性が高くなり、好ましく、50m/g以上であると、より好ましい。なお、BET比表面積が、80m/g以下であると、インジウム錫酸化物粉末のハンドリング性の観点から好ましい。 When the indium tin oxide powder has a BET specific surface area of 30 m 2 / g or more, infrared cut characteristics are improved, and preferably 50 m 2 / g or more. In addition, it is preferable from a viewpoint of the handleability of an indium tin oxide powder that a BET specific surface area is 80 m < 2 > / g or less.

インジウム錫酸化物粉末は、粉体体積抵抗率を、20Ω・cm以下にすることができる。ここで、粉体体積抵抗率は、三菱化学アナリック製の粉体抵抗測定システム(型番:MCP−PD51型)を用い、試料5gを、断面積(S)の金型に入れ、4.9kNで加圧し、加圧時の抵抗値(R)と試料の長さ(L)を測定し、R(Ω)×S(cm)/L(cm)の式に基づいて求める。 Indium tin oxide powder can have a powder volume resistivity of 20 Ω · cm or less. Here, the powder volume resistivity is 4.9 kN by using a powder resistance measurement system (model number: MCP-PD51 type) manufactured by Mitsubishi Chemical Analytical Co., Ltd., and putting 5 g of a sample in a mold having a cross-sectional area (S). Pressurize, measure the resistance value (R) and the length (L) of the sample at the time of pressurization, and obtain based on the formula of R (Ω) × S (cm 2 ) / L (cm).

〔インジウム錫酸化物粉末の製造方法〕
本発明のインジウム錫酸化物粉末の製造方法は、
原料は、In3+、Sn2+およびSn4+を含有し、
In3+のイオン半径と、Sn2+のイオン半径とSn4+のイオン半径の平均であるSn平均イオン半径との割合が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表され、かつ
Snが、InとSnの合計100モルに対して、2.5〜25モルの割合である酸性水溶液であり;
原料の酸性水溶液からインジウム錫水酸化物を共沈させ、
共沈インジウム錫水酸化物を焼成することを特徴とする。
[Method for producing indium tin oxide powder]
The method for producing the indium tin oxide powder of the present invention comprises:
The raw material contains In 3+ , Sn 2+ and Sn 4+ ,
The ratio of the ionic radius of In 3+ to the Sn average ionic radius, which is the average of the Sn 2+ ionic radius and Sn 4+ ionic radius, is given by the formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
And Sn is an acidic aqueous solution having a ratio of 2.5 to 25 mol with respect to 100 mol in total of In and Sn;
Co-precipitate indium tin hydroxide from the acidic aqueous solution of the raw material,
Co-precipitated indium tin hydroxide is fired.

ここで、表1からわかるように、Sn2+が、Sn2+とSn4+の合計1モルに対して、0.90〜0.99モルの割合であれば、In3+のイオン半径と、Sn平均イオン半径が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表される割合になる。
Here, as can be seen from Table 1, if Sn 2+ is a ratio of 0.90 to 0.99 mol with respect to 1 mol in total of Sn 2+ and Sn 4+ , the ion radius of In 3+ and the Sn average Ion radius is the formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
It becomes the ratio represented by.

In3+を含有する原料としては、InCl、In(NOが挙げられ、Sn2+を含有する原料としては、SnCl、SnSO、SnF、SnBr、SnIが挙げられ、Sn4+を含有する原料としては、SnCl、SnF、SnBrおよびSnIが挙げられる。 Examples of the raw material containing In 3+ include InCl 3 and In (NO 3 ) 3 , and examples of the raw material containing Sn 2+ include SnCl 2 , SnSO 4 , SnF 2 , SnBr 2 , and SnI 2 , and Sn. Examples of the raw material containing 4+ include SnCl 4 , SnF 4 , SnBr 4 and SnI 4 .

原料の酸性水溶液から、インジウム錫水酸化物を共沈させるために、アルカリ水溶液を用いる。アルカリ水溶液に使用するアルカリとしては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の水酸化物、炭酸塩やアンモニア等が挙げられ、これらを単独でも2種以上を混合して用いてもよい。原料の水溶液に、アルカリ水溶液を滴下する方法は、当業者に公知の方法でよい。滴下するときには、pH3.5〜13で、5〜100℃に加温すると好ましい。pH3.5未満であると、Inが溶解してしまう。一方、pH13を超えると、ハンドリング性が悪い。   An alkaline aqueous solution is used to co-precipitate indium tin hydroxide from the raw acidic aqueous solution. Examples of the alkali used in the alkaline aqueous solution include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate, carbonates and ammonia, and these may be used alone or in combination of two or more. May be used. A method known to those skilled in the art may be used as a method of dropping the alkaline aqueous solution into the raw material aqueous solution. When dripping, it is preferable to heat at 5-100 degreeC by pH 3.5-13. If pH is less than 3.5, In is dissolved. On the other hand, when it exceeds pH 13, handling property is bad.

なお、予め、In3+を含有する水溶液を作製し、Sn2+とSn4+を添加するときに、同時にアルカリ水溶液を添加することができる。ここで、Sn2+とSn4+を添加するときには、予め水溶液にしておくと、均一な原料の水溶液を得やすい観点から好ましい。同様に、予め、Sn2+とSn4+を含有する水溶液を含有する水溶液を作製し、In3+を添加するときに、同時にアルカリ水溶液を添加することができる。ここで、In3+を添加するときには、予め水溶液にしておくと、均一な原料の水溶液を得やすい観点から好ましい。 Note that when an aqueous solution containing In 3+ is prepared in advance and Sn 2+ and Sn 4+ are added, an alkaline aqueous solution can be added simultaneously. Here, when adding Sn < 2+> and Sn <4+> , it is preferable to make it aqueous solution beforehand from a viewpoint of obtaining the aqueous solution of a uniform raw material easily. Similarly, when an aqueous solution containing an aqueous solution containing Sn 2+ and Sn 4+ is prepared in advance and In 3+ is added, an alkaline aqueous solution can be added simultaneously. Here, when adding In 3+ , it is preferable to prepare an aqueous solution in advance from the viewpoint of easily obtaining an aqueous solution of a uniform raw material.

インジウム錫水酸化物を共沈させた後、デカンテーションにより残留塩分を除去し、ろ過後、ケーキまたは高濃度の水酸化物スラリーが得られる。残留塩分を除去する洗浄は、例えば、InとSnの水酸化物の電気伝導度が、100μS/cm以下になるように行う。   After coprecipitating indium tin hydroxide, residual salt is removed by decantation, and after filtration, a cake or a high concentration hydroxide slurry is obtained. Cleaning for removing residual salt is performed, for example, so that the electrical conductivity of In and Sn hydroxides is 100 μS / cm or less.

得られた共沈インジウム水酸化物を乾燥後、焼成または、乾燥工程を入れず、直接焼成を実施しても良い。共沈インジウム錫水酸化物の焼成は、250〜800℃で行うことが好ましい。250℃より低いと酸化物にならないことから、十分な導電性が得られず、800℃より高いと蒸気圧の高いインジウムの蒸発が始まり組成がずれること、インジウム錫酸化物粉末の焼結が始まり、膜にした際、ヘーズが高くなるので好ましくない。また、焼成を窒素ガスやアルゴンガス等の不活性ガス雰囲気中で行うことにより、酸素欠陥を多くすることができ、導電性を得つつ、インジウム錫酸化物粉末の透明度を高めることができる。   After the obtained coprecipitated indium hydroxide is dried, it may be fired or directly fired without a drying step. The coprecipitated indium tin hydroxide is preferably baked at 250 to 800 ° C. If it is lower than 250 ° C., it does not become an oxide, so that sufficient conductivity cannot be obtained. If it is higher than 800 ° C., evaporation of indium having a high vapor pressure starts and the composition shifts, and indium tin oxide powder starts sintering. When formed into a film, the haze increases, which is not preferable. Further, by performing firing in an inert gas atmosphere such as nitrogen gas or argon gas, oxygen defects can be increased, and the transparency of the indium tin oxide powder can be increased while obtaining conductivity.

この後、焼成後のインジウム錫酸化物粉末を、表面処理することにより、インジウム錫酸化物の透明性、導電性、熱線カット性能を高くすることができる。表面処理としては、焼成後のインジウム錫酸化物粉末を、無水エタノールと蒸留水を混合した表面処理液(混合比率は、エタノール95〜5質量部に対して、蒸留水5〜95質量部)に入れて含浸させた後、ガラスシャーレ等の容器に入れて、窒素ガス等の不活性ガス雰囲気下で、250〜800℃で、30分〜8時間加熱する処理が挙げられる。   Thereafter, the indium tin oxide powder after baking is subjected to a surface treatment, whereby the transparency, conductivity, and heat ray cutting performance of the indium tin oxide can be enhanced. As the surface treatment, the indium tin oxide powder after firing is mixed with a surface treatment liquid in which anhydrous ethanol and distilled water are mixed (the mixing ratio is 5 to 95 parts by mass of distilled water with respect to 95 to 5 parts by mass of ethanol). After impregnating and impregnating, it can be put into a container such as a glass petri dish and heated at 250 to 800 ° C. for 30 minutes to 8 hours in an inert gas atmosphere such as nitrogen gas.

以上により、導電性が高く、赤外線カット特性が高いインジウム錫酸化物粉末を製造することができる。   As described above, indium tin oxide powder having high conductivity and high infrared cut characteristics can be manufactured.

〔インジウム錫酸化物粉末の応用〕
本発明のインジウム錫酸化物粉末は、溶媒に分散させて熱線遮蔽膜用組成物として使用することができる。ここで、溶媒は、各種溶媒を用いることができ、特に限定はないが、水、エタノール、イソプロピルアルコール(IPA)等のアルコール系、メチルエチルケトン等のケトン系、ヘキサン、トルエン等の非極性溶媒が好ましい。
[Application of indium tin oxide powder]
The indium tin oxide powder of the present invention can be dispersed in a solvent and used as a composition for a heat ray shielding film. Here, various solvents can be used as the solvent, and although there is no particular limitation, alcohols such as water, ethanol and isopropyl alcohol (IPA), ketones such as methyl ethyl ketone, and nonpolar solvents such as hexane and toluene are preferable. .

熱線遮蔽膜用組成物中のインジウム錫酸化物粉末の含有量は、0.1〜90質量%、好ましくは50〜80質量%である。0.1質量%未満では、粉末を添加する効果が少なく、90質量%を超えるとインジウム錫酸化物粒子の固定化ができなく膜強度が得られない。なお、インジウム錫酸化物のみからなる膜を塗布した場合は、インジウム錫酸化物のみからなる膜の上にアクリル等の樹脂やシリカ等のコーティング層が必要となる。   Content of the indium tin oxide powder in the composition for heat ray shielding films is 0.1-90 mass%, Preferably it is 50-80 mass%. If the amount is less than 0.1% by mass, the effect of adding the powder is small, and if it exceeds 90% by mass, the indium tin oxide particles cannot be fixed and the film strength cannot be obtained. When a film made of only indium tin oxide is applied, a resin layer such as acrylic or a coating layer such as silica is required on the film made only of indium tin oxide.

また、熱線遮蔽膜用組成物は、さらに、樹脂を添加して使用することができる。ここで、予めインジウム錫酸化物粉末を、溶媒に分散させた後、樹脂を添加すると、作製時の分散エネルギー等の軽減を図る上で、好ましい。ここで、樹脂としては、例えば、ポリビニルアルコール樹脂、塩ビ−酢ビ樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、ポリエステル樹脂、エチレン酢酸ビニル共重合樹脂、アクリル−スチレン共重合樹脂、繊維素樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、シリコーン樹脂、石油樹脂、セラック、ロジン誘導体、ゴム誘導体等の天然系樹脂等が挙げられる。   Moreover, the composition for heat ray shielding films can be used after further adding a resin. Here, when indium tin oxide powder is dispersed in a solvent in advance and then a resin is added, it is preferable in terms of reducing dispersion energy and the like during production. Here, as the resin, for example, polyvinyl alcohol resin, vinyl chloride-vinyl acetate resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, polyester resin, ethylene vinyl acetate copolymer resin, acrylic-styrene copolymer resin, fiber element Examples thereof include natural resins such as resins, phenol resins, amino resins, fluororesins, silicone resins, petroleum resins, shellac, rosin derivatives, and rubber derivatives.

インジウム錫酸化物粉末の樹脂への配合量は、樹脂100質量部に対して0.1〜950質量部、好ましくは0.7〜800質量部である。要求される熱線遮蔽膜の電気抵抗率、赤外線カット特性や膜厚によって、好ましい値が変わる。   The compounding quantity of the indium tin oxide powder to the resin is 0.1 to 950 parts by mass, preferably 0.7 to 800 parts by mass with respect to 100 parts by mass of the resin. The preferred value varies depending on the required electrical resistivity, infrared cut characteristics and film thickness of the heat ray shielding film.

また、熱線遮蔽膜用組成物は、インジウム錫酸化物粉末を、熱線遮蔽用組成物:100質量部に対して、0.7〜1.2質量部含有するときに、光路長が1mmのガラスセルでの測定において、日射透過率:60%以下、可視光線透過率:85%以上、ヘーズ:0.5以下であると、高透明性で、赤外線カット特性が高く、好ましい。ここで、可視光線透過率と日射透過率は、日立製作所社製分光光度計U−4000を用いて測定する。ヘーズは、スガ試験機株式会社製ヘーズコンピュータ(型番:HZ−2)で測定する。なお、インジウム錫酸化物粉末を、熱線遮蔽用組成物:100質量部に対して、0.7〜1.2質量部含有させる割合は、ガラスセルを用いての評価用に適した割合であり、実際に使用する熱線遮蔽膜用組成物中のインジウム錫酸化物粉末の含有量の好ましい値は、上述のとおりである。   Further, the composition for heat ray shielding film is a glass having an optical path length of 1 mm when the indium tin oxide powder contains 0.7 to 1.2 parts by mass with respect to 100 parts by mass of the composition for heat ray shielding. In the measurement with a cell, it is preferable that the solar transmittance is 60% or less, the visible light transmittance is 85% or more, and the haze is 0.5 or less because of high transparency and high infrared cut characteristics. Here, the visible light transmittance and the solar radiation transmittance are measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. Haze is measured with a haze computer (model number: HZ-2) manufactured by Suga Test Instruments Co., Ltd. In addition, the ratio which makes an indium tin oxide powder contain 0.7-1.2 mass parts with respect to 100 mass parts for heat ray shielding composition is a ratio suitable for the evaluation using a glass cell. The preferable value of the content of indium tin oxide powder in the composition for heat ray shielding film actually used is as described above.

熱線遮蔽膜用組成物には、その目的を損なわない範囲内で、慣用の各種添加剤を配合してもよい。このような添加剤として、分散剤、分散助剤、重合禁止剤、硬化触媒、酸化防止剤、レベリング剤、膜形成樹脂等を挙げることができる。   You may mix | blend various conventional additives in the composition for heat ray shielding films within the range which does not impair the objective. Examples of such additives include a dispersant, a dispersion aid, a polymerization inhibitor, a curing catalyst, an antioxidant, a leveling agent, and a film-forming resin.

熱線遮蔽膜用組成物を、自動車、電車、船舶、建築機材や飛行機等の車両用の窓材、住宅の窓材、ショーケースに使用されるガラス板等の機材に塗布した後、乾燥することにより、導電性が高く、赤外線カット特性が高い熱線遮蔽膜を得ることができる。   Applying the composition for heat ray shielding film to window materials for vehicles such as automobiles, trains, ships, building equipment and airplanes, window materials for houses, glass plates used for showcases, and then drying. Thus, a heat ray shielding film having high conductivity and high infrared cut characteristics can be obtained.

熱線遮蔽膜用組成物の基材への塗布は、常法により、例えば、ロールコート、スピンコート、スクリーン印刷、アプリケーター等の手法で行うことができる。その後、バインダー成分を、必要により加熱して溶剤を蒸発させ、塗膜を乾燥させて硬化させる。このとき、加熱または紫外線等を照射してもよい。   Application of the composition for heat ray shielding film to the base material can be performed by a conventional method, for example, by means of roll coating, spin coating, screen printing, applicator, or the like. Thereafter, the binder component is heated as necessary to evaporate the solvent, and the coating film is dried and cured. At this time, you may irradiate a heating or an ultraviolet-ray.

熱線遮蔽膜の厚さは、透明性、導電性、赤外線カット特性の観点から、0.1〜5μmであると好ましく、0.5〜3μmであるとより好ましい。なお、インジウム錫酸化物粉末を、樹脂に直接練り込んで使用することもでき、この場合には、厚さは限定されない。   The thickness of the heat ray shielding film is preferably 0.1 to 5 μm and more preferably 0.5 to 3 μm from the viewpoints of transparency, conductivity, and infrared cut characteristics. Note that the indium tin oxide powder can be used by being directly kneaded into the resin, and in this case, the thickness is not limited.

このように本発明のインジウム錫酸化物粉末を用い、熱線遮蔽膜用組成物の形態で供給が可能である。また、これらによって形成された熱線遮蔽膜は、自動車、電車、船舶、建築機材や飛行機等の車両用の窓材、住宅の窓材、ショーケースに使用されるガラス板等に広く適用することができる。   Thus, the indium tin oxide powder of the present invention can be used for supply in the form of a composition for a heat ray shielding film. Moreover, the heat ray shielding film formed by these can be widely applied to window materials for vehicles such as automobiles, trains, ships, building equipment and airplanes, window materials for houses, glass plates used for showcases, etc. it can.

以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。実施例において、インジウム錫酸化物粉末(以下、ITO粉末という)のX線回折によるX線強度(CuKα線を用いた測定で、2θ:30.5°のピークの半値幅)は、リガク社製品(製品名:MiniFlexII)を用いて測定した。ITO粉末のL値、a値、b値は、スガ試験機製カラーコンピュータ(型番:SM−T)を用いて測定し、BET比表面積は、島津製作所社製流動式比表面積児童測定装置フローソーブ2310を用いて測定した。ITO粉末の粉体体積抵抗率は、三菱化学アナリック製の粉体抵抗測定システム(型番:MCP−PD51型)を用い、試料5gを、断面積(S)の金型に入れ、500kgfで加圧し、加圧時の抵抗値(R)と試料の厚み(H)を測定し、R(Ω)×S(cm)/H(cm)の式に基づいて求めた。可視光線透過率(%Tv、波長範囲:380〜780nm)と日射透過率(%Ts、波長範囲:300〜2500nm)は、ITO粉末を、熱線遮蔽用組成物:100質量部に対して、1.0質量部含有する熱線遮蔽膜用組成物を作製し、光路長が1mmのガラスセルで、日立製作所社製分光光度計U−4000を用いて測定し、可視光線透過率/日射透過率の比率(〔(%Tv)/(%Ts)〕)を算出した。ヘーズは、スガ試験機株式会社製ヘーズコンピュータ(型番:HZ−2)を用いて測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these. In the examples, the X-ray intensity (2θ: half-width of the peak at 2θ: 30.5 ° in the measurement using CuKα ray) of indium tin oxide powder (hereinafter referred to as ITO powder) by X-ray diffraction is a product of Rigaku Corporation. (Product name: MiniFlex II). The L value, a value, and b value of the ITO powder were measured using a color computer (model number: SM-T) manufactured by Suga Test Instruments, and the BET specific surface area was measured using a flow type specific surface area child measuring device Flowsorb 2310 manufactured by Shimadzu Corporation. And measured. The powder volume resistivity of the ITO powder is measured by using a powder resistance measurement system (model number: MCP-PD51 type) manufactured by Mitsubishi Chemical Analyc. 5 g of the sample is placed in a mold having a cross-sectional area (S) and pressurized with 500 kgf. The resistance value (R) at the time of pressurization and the thickness (H) of the sample were measured and determined based on the formula of R (Ω) × S (cm 2 ) / H (cm). Visible light transmittance (% Tv, wavelength range: 380 to 780 nm) and solar transmittance (% Ts, wavelength range: 300 to 2500 nm) are as follows: ITO powder, heat ray shielding composition: 100 parts by mass A composition for heat ray shielding film containing 0.0 part by mass was measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. with a glass cell having an optical path length of 1 mm. The ratio ([(% Tv) / (% Ts)]) was calculated. The haze was measured using a haze computer (model number: HZ-2) manufactured by Suga Test Instruments Co., Ltd.

〔実施例1〕
Snのモル比が、InとSnの合計100モルに対して、10モルの割合になるように、二塩化錫(SnCl・2HO):4.1g(Sn金属:2.14g(0.0181モル)含有)と55%濃度SnCl水溶液:0.6g(Sn金属:0.16g(0.00136モル)含有)と塩化インジウム(InCl)水溶液(In金属:20.0g(0.174モル)含有):50cmとを混合し、この混合水溶液とアンモニア(NH)水溶液を、水:500cmに同時に滴下し、pH7に調整し、30℃の液温で30分間反応させた。沈殿した共沈インジウム錫水酸化物を、イオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の電気伝導度が100μS/cm以下になったところで、共沈インジウム錫水酸化物を濾別し、乾燥粉末の色調が山吹色を有する共沈インジウム錫水酸化物を得た。固液分離した共沈インジウム錫水酸化物を、110℃で一晩乾燥した後、大気中、550℃で3時間焼成した。焼成により得られた凝集体を粉砕してほぐし、山吹色を有するITO粉末:約25gを得た。このITO粉末:約25gを、無水エタノールと蒸留水を混合した表面処理液(混合比率は、エタノール95重量部に対して、蒸留水5重量部)に入れて含浸させた後、ガラスシャーレに入れて、窒素ガス雰囲気下、330℃で2時間加熱処理し、実施例1のITO粉末を得た。表2に、得られたITO粉末の各特性の結果を示す。また、図1に、得られたITO粉末のX線回折の結果を、図3に、得られたITO粉末の透過率測定の結果を示す。次に、得られたITO粉末を用い、ITO粉末:20gを、無水エタノール:20g、リン酸ポリエステル:1.0gの混合液に入れて分散させた。この分散液を、エタノールでITO粉末濃度が0.7%になるように希釈し、希釈液を光路長1mmの石英セルに入れ、可視光線透過率(%Tv)、日射透過率(%Ts)、ヘーズを測定した。
[Example 1]
Tin dichloride (SnCl 2 .2H 2 O): 4.1 g (Sn metal: 2.14 g (0)) so that the molar ratio of Sn is 10 mol with respect to the total of 100 mol of In and Sn. 0.018 mol) and 55% aqueous SnCl 4 solution: 0.6 g (containing Sn metal: 0.16 g (0.00136 mol)) and indium chloride (InCl 3 ) aqueous solution (In metal: 20.0 g (0. 174 mol))): 50 cm 3, and this mixed aqueous solution and aqueous ammonia (NH 3 ) solution were simultaneously added dropwise to water: 500 cm 3 , adjusted to pH 7, and reacted at a liquid temperature of 30 ° C. for 30 minutes. . The precipitated coprecipitated indium tin hydroxide was repeatedly washed with ion exchange water. When the electrical conductivity of the supernatant became 100 μS / cm or less, the coprecipitated indium tin hydroxide was filtered off to obtain a coprecipitated indium tin hydroxide having a dry powder color tone. The solid-liquid separated coprecipitated indium tin hydroxide was dried at 110 ° C. overnight and then calcined at 550 ° C. for 3 hours in the air. The aggregate obtained by firing was pulverized and loosened to obtain about 25 g of ITO powder having a bright color. About 25 g of this ITO powder was impregnated with a surface treatment solution (mixing ratio: 5 parts by weight of distilled water with respect to 95 parts by weight of ethanol) mixed with absolute ethanol and distilled water, and then placed in a glass petri dish. Then, heat treatment was performed at 330 ° C. for 2 hours under a nitrogen gas atmosphere to obtain an ITO powder of Example 1. Table 2 shows the result of each characteristic of the obtained ITO powder. Moreover, the result of the X-ray diffraction of the obtained ITO powder is shown in FIG. 1, and the result of the transmittance | permeability measurement of the obtained ITO powder is shown in FIG. Next, using the obtained ITO powder, ITO powder: 20 g was dispersed in a mixed solution of anhydrous ethanol: 20 g and phosphoric acid polyester: 1.0 g. This dispersion is diluted with ethanol so that the ITO powder concentration becomes 0.7%, and the diluted solution is put in a quartz cell having an optical path length of 1 mm, visible light transmittance (% Tv), solar radiation transmittance (% Ts). The haze was measured.

〔実施例2〜5〕
表2に示す割合になるようにしたこと以外は、実施例1と同様にして、実施例2〜5のITO粉末を製造し、得られたITO粉末の各特性を測定した。表2に、これらの結果を示す。
[Examples 2 to 5]
Except for the proportions shown in Table 2, the ITO powders of Examples 2 to 5 were produced in the same manner as in Example 1, and the properties of the obtained ITO powders were measured. Table 2 shows these results.

〔比較例1〕
Snのモル比が、InとSnの合計100モルに対して、10モルの割合になるように、塩化インジウム(InCl)水溶液(In金属:20.0g(0.174モル)含有):55cmと、二塩化錫(SnCl・2HO):4.38g(Sn金属:2.31g(0.0194モル)含有とを混合し、この混合水溶液とアンモニア(NH)水溶液を、水:500cmに同時に滴下し、pH7に調整し、30℃の液温で30分間反応させた。沈殿したインジウム錫共沈水酸化物を、イオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の電気伝導度が100μS/cm以下になったところで、沈殿したインジウム錫共沈水酸化物を濾別し、乾燥粉末の色調が山吹色を有する共沈インジウム錫水酸化物を得た。固液分離したインジウム錫水酸化物を、110℃で一晩乾燥した後、大気中、550℃で3時間焼成した。焼成より得られた凝集体を粉砕してほぐし、山吹色を有するITO粉末:約25gを得た。このITO粉末:約25gを、無水エタノールと蒸留水を混合した表面処理液(混合比率は、エタノール95重量部に対して、蒸留水5重量部)に入れて含浸させた後、ガラスシャーレに入れて窒素ガス雰囲気下、330℃で2時間加熱処理し、比較例1のITO粉末を得た。得られたITO粉末の各特性を測定した。表2に、これらの結果を示す。
[Comparative Example 1]
Indium chloride (InCl 3 ) aqueous solution (containing In metal: 20.0 g (0.174 mol)): 55 cm so that the molar ratio of Sn is 10 mol with respect to the total of 100 mol of In and Sn. 3 and tin dichloride (SnCl 2 .2H 2 O): 4.38 g (containing Sn metal: 2.31 g (0.0194 mol)) are mixed, and this mixed aqueous solution and aqueous ammonia (NH 3 ) solution are mixed with water. : Dropped simultaneously at 500 cm 3 , adjusted to pH 7, and allowed to react for 30 minutes at a liquid temperature of 30 ° C. The precipitated indium tin coprecipitated hydroxide was repeatedly washed with ion-exchanged water. When the conductivity reached 100 μS / cm or less, the precipitated indium tin coprecipitated hydroxide was separated by filtration to obtain a coprecipitated indium tin hydroxide having a dry powder color tone. The indium tin hydroxide was dried overnight at 110 ° C. and then calcined in the air for 3 hours at 550 ° C. The aggregate obtained from the firing was crushed and loosened, and ITO powder having a bright color: about 25 g This ITO powder: After impregnating about 25 g in a surface treatment liquid (mixing ratio is 5 parts by weight of distilled water with respect to 95 parts by weight of ethanol) mixed with absolute ethanol and distilled water, It put into the glass petri dish, and heat-processed at 330 degreeC by nitrogen gas atmosphere for 2 hours, and obtained the ITO powder of the comparative example 1. Each characteristic of the obtained ITO powder was measured. .

〔比較例2〕
表2に示す割合になるようにしたこと以外は、実施例1と同様にして、比較例2のITO粉末を製造し、得られたITO粉末の各特性を測定した。表2に、これらの結果を示す。
[Comparative Example 2]
Except for the proportions shown in Table 2, the ITO powder of Comparative Example 2 was produced in the same manner as in Example 1, and each characteristic of the obtained ITO powder was measured. Table 2 shows these results.

〔比較例3〕
Snのモル比が、InとSnの合計100モルに対して、10モルの割合になるように、塩化インジウム(InCl)水溶液(In金属:20.0g(0.174モル)含有):55cmと、55%濃度SnCl水溶液:9.2g(Sn金属:2.31g(0.0194モル)含有)とを混合し、この混合水溶液とアンモニア(NH)水溶液を、水:500cmに同時に滴下し、pH7に調整し、30℃の液温で30分間反応させた。沈殿した共沈インジウム錫水酸化物を、イオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の電気伝導度が100μS/cm以下になったところで、共沈インジウム錫水酸化物を濾別し、乾燥粉末の色調が白色を有する共沈インジウム錫水酸化物を得た。固液分離した共沈インジウム錫水酸化物を、110℃で一晩乾燥した後、大気中、550℃で3時間焼成し、凝集体を粉砕してほぐし、ITO粉:約25gを得た。このITO粉:約25gを、無水エタノールと蒸留水を混合(混合比率はエタノール95重量部に対して蒸留水5重量部)した表面処理液に入れて含浸させた後、ガラスシャーレに入れて、窒素ガス雰囲気下、330℃で2時間加熱処理した。表2に、得られたITO粉末の各特性の結果を示す。また、図2に、得られたITO粉末のX線回折の結果を、図3に、得られたITO粉末の透過率測定の結果を示す。
[Comparative Example 3]
Indium chloride (InCl 3 ) aqueous solution (containing In metal: 20.0 g (0.174 mol)): 55 cm so that the molar ratio of Sn is 10 mol with respect to the total of 100 mol of In and Sn. 3 and 55% strength SnCl 4 aqueous solution: 9.2 g (containing Sn metal: 2.31 g (0.0194 mol)), and this mixed aqueous solution and aqueous ammonia (NH 3 ) solution were mixed with water: 500 cm 3 . The solution was added dropwise at the same time, adjusted to pH 7, and reacted at a liquid temperature of 30 ° C. for 30 minutes. The precipitated coprecipitated indium tin hydroxide was repeatedly washed with ion exchange water. When the electrical conductivity of the supernatant became 100 μS / cm or less, the coprecipitated indium tin hydroxide was filtered off to obtain a coprecipitated indium tin hydroxide having a white color tone of the dry powder. The solid-liquid separated coprecipitated indium tin hydroxide was dried at 110 ° C. overnight, then baked in the atmosphere at 550 ° C. for 3 hours, and the aggregate was pulverized and loosened to obtain about 25 g of ITO powder. About 25 g of this ITO powder: After impregnating it with a surface treatment solution obtained by mixing anhydrous ethanol and distilled water (mixing ratio is 5 parts by weight of distilled water with respect to 95 parts by weight of ethanol), put it in a glass petri dish, Heat treatment was performed at 330 ° C. for 2 hours in a nitrogen gas atmosphere. Table 2 shows the result of each characteristic of the obtained ITO powder. FIG. 2 shows the result of X-ray diffraction of the obtained ITO powder, and FIG. 3 shows the result of transmittance measurement of the obtained ITO powder.

表2からわかるように、Sn2+とSn4+を混合し、Snイオンの平均イオン半径を、In3+のイオン半径に近づけた実施例1〜5のすべてにおいて、従来の方法で作製した比較例1と3より、ITO粉末のX線強度の半値幅が小さい、すなわちITOの結晶化度が高く、ITO粉末の粉体体積抵抗率が低かった。これらのITO粉末を含有する分散液は、可視光線透過率が高く、日射透過率が低かった。したがって、分散液の可視光線透過率/日射透過率の比率(〔(%Tv)/(%Ts)〕)が高い値を示し、赤外線カット特性が良好であった。また、分散液のヘーズも低くなった。なお、図1と図2の比較から、図1の実施例1は、図2の比較例3より、X線回折でのピークがシャープであり、結晶化度が高いことがわかる。また、図3から、実施例1は、比較例3より、可視光線透過率の波長範囲では、透過率が高く、高波長の赤外線領域での透過率は低いことがわかる。一方、比較例1と3が示すように、原料に使用するSnイオンの価数の違いにより、インジウム錫水酸化物のX線強度が異なり、したがって、表1に示すように、ITO粉末としての強度も異なった。また、In3+のイオン半径と、平均であるSn平均イオン半径との割合が所定範囲ではない比較例2でも、X線強度の半値幅が大きく、結晶化度が低かった。したがって、粉体体積抵抗率が高く、可視光線透過率/日射透過率の比率が低かった。 As can be seen from Table 2, in all of Examples 1 to 5 in which Sn 2+ and Sn 4+ were mixed and the average ionic radius of Sn ions was close to the ionic radius of In 3+ , Comparative Example 1 produced by the conventional method 3 showed that the half width of the X-ray intensity of the ITO powder was small, that is, the degree of crystallinity of the ITO was high, and the powder volume resistivity of the ITO powder was low. Dispersions containing these ITO powders had high visible light transmittance and low solar transmittance. Therefore, the ratio of visible light transmittance / sunlight transmittance ([(% Tv) / (% Ts)]) of the dispersion was high, and the infrared cut characteristics were good. Moreover, the haze of the dispersion was also lowered. From the comparison between FIG. 1 and FIG. 2, it can be seen that Example 1 in FIG. 1 has a sharper peak in X-ray diffraction and higher crystallinity than Comparative Example 3 in FIG. From FIG. 3, it can be seen that Example 1 has higher transmittance in the wavelength range of visible light transmittance and lower transmittance in the infrared region of high wavelength than Comparative Example 3. On the other hand, as shown in Comparative Examples 1 and 3, the X-ray intensity of indium tin hydroxide varies depending on the valence of Sn ions used as raw materials. The strength was also different. Further, in Comparative Example 2 in which the ratio between the In 3+ ion radius and the average Sn average ion radius was not within the predetermined range, the half width of the X-ray intensity was large and the crystallinity was low. Therefore, the powder volume resistivity was high, and the ratio of visible light transmittance / sunlight transmittance was low.

〔実施例6〕
Snのモル比が、InとSnの合計100モルに対して、22モルの割合になるように、二塩化錫(SnCl・2HO):10.5g(Sn金属:5.54g(0.0467モル)含有)と55%四塩化錫水溶液(SnCl):1.2g(Sn金属:0.29g(0.0246モル)含有)と塩化インジウム(InCl)水溶液(In金属:20.0g含有(0.174モル)含有)):50cmとを混合し、この混合水溶液とアンモニア(NH)水溶液を、水:500cmに同時に滴下し、pH7に調整し、30℃の液温で30分間反応させた。沈殿した共沈インジウム錫水酸化物を、イオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の電気伝導度が100μS/cm以下になったところで、共沈インジウム錫水酸化物を濾別し、乾燥粉末の色調が山吹色を有する共沈インジウム錫水酸化物を得た。固液分離した共沈インジウム錫水酸化物を、110℃で一晩乾燥した後、大気中、600℃で3時間焼成した。焼成により得られた凝集体を粉砕してほぐし、山吹色を有するITO粉末:約25gを得た。このITO粉末:約25gを、無水エタノールと蒸留水を混合した表面処理液(混合比率は、エタノール95重量部に対して、蒸留水5重量部)に入れて含浸させた後、ガラスシャーレに入れて、窒素ガス雰囲気下、330℃で2時間加熱処理し、実施例6のITO粉末を得た。図4に、得られたITO粉末のX線回折の結果を示す。また、表3に、得られたITO粉末の各特性の結果を示す。
Example 6
Tin dichloride (SnCl 2 .2H 2 O): 10.5 g (Sn metal: 5.54 g (0) so that the molar ratio of Sn is 22 mol with respect to 100 mol of In and Sn in total. 0.0467 mol) and 55% tin tetrachloride aqueous solution (SnCl 4 ): 1.2 g (containing Sn metal: 0.29 g (0.0246 mol)) and indium chloride (InCl 3 ) aqueous solution (In metal: 20. 0 g containing (0.174 mol) containing)): 50 cm 3 , this mixed aqueous solution and an aqueous ammonia (NH 3 ) solution were simultaneously added dropwise to water: 500 cm 3 , adjusted to pH 7, and a liquid temperature of 30 ° C. For 30 minutes. The precipitated coprecipitated indium tin hydroxide was repeatedly washed with ion exchange water. When the electrical conductivity of the supernatant became 100 μS / cm or less, the coprecipitated indium tin hydroxide was filtered off to obtain a coprecipitated indium tin hydroxide having a dry powder color tone. The solid-liquid separated coprecipitated indium tin hydroxide was dried at 110 ° C. overnight and then calcined in air at 600 ° C. for 3 hours. The aggregate obtained by firing was pulverized and loosened to obtain about 25 g of ITO powder having a bright color. About 25 g of this ITO powder was impregnated with a surface treatment solution (mixing ratio: 5 parts by weight of distilled water with respect to 95 parts by weight of ethanol) mixed with absolute ethanol and distilled water, and then placed in a glass petri dish. Then, heat treatment was performed at 330 ° C. for 2 hours in a nitrogen gas atmosphere to obtain an ITO powder of Example 6. FIG. 4 shows the result of X-ray diffraction of the obtained ITO powder. Table 3 shows the result of each characteristic of the obtained ITO powder.

〔比較例4〕
Snのモル比が、InとSnの合計100モルに対して、22モルの割合になるように、二塩化錫(SnCl・2HO):11.1g(Sn金属:5.83g(0.049モル)含有)と塩化インジウム(InCl)水溶液(In金属:20g含有(0.174モル)含有)):50cmとを混合し、この混合水溶液とアンモニア(NH)水溶液を、水:500cmに同時に滴下し、pH7に調整し、30℃の液温で30分間反応させた。沈殿した共沈インジウム錫水酸化物を、イオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の電気伝導度が100μS/cm以下になったところで、共沈インジウム錫水酸化物を濾別し、乾燥粉末の色調が山吹色を有する共沈インジウム錫水酸化物を得た。固液分離した共沈インジウム錫水酸化物を、110℃で一晩乾燥した後、大気中、600℃で3時間焼成した。焼成により得られた凝集体を粉砕してほぐし、山吹色を有するITO粉末:約29gを得た。このITO粉末:約25gを、無水エタノールと蒸留水を混合した表面処理液(混合比率は、エタノール95重量部に対して、蒸留水5重量部)に入れて含浸させた後、ガラスシャーレに入れて、窒素ガス雰囲気下、330℃で2時間加熱処理し、比較例4のITO粉末を得た。図5に、得られたITO粉末のX線回折の結果を示す。また、表3に、得られたITO粉末の各特性の結果を示す。
[Comparative Example 4]
Tin dichloride (SnCl 2 .2H 2 O): 11.1 g (Sn metal: 5.83 g (0)) so that the molar ratio of Sn is 22 mol with respect to 100 mol of In and Sn in total. 0.049 mol)) and indium chloride (InCl 3 ) aqueous solution (In metal: containing 20 g (0.174 mol)): 50 cm 3, and this mixed aqueous solution and ammonia (NH 3 ) aqueous solution are mixed with water. : Added dropwise to 500 cm 3 at the same time, adjusted to pH 7, and reacted at a liquid temperature of 30 ° C. for 30 minutes. The precipitated coprecipitated indium tin hydroxide was repeatedly washed with ion exchange water. When the electrical conductivity of the supernatant became 100 μS / cm or less, the coprecipitated indium tin hydroxide was filtered off to obtain a coprecipitated indium tin hydroxide having a dry powder color tone. The solid-liquid separated coprecipitated indium tin hydroxide was dried at 110 ° C. overnight and then calcined in air at 600 ° C. for 3 hours. The aggregate obtained by firing was pulverized and loosened to obtain ITO powder having a bright yellow color: about 29 g. About 25 g of this ITO powder was impregnated with a surface treatment solution (mixing ratio: 5 parts by weight of distilled water with respect to 95 parts by weight of ethanol) mixed with absolute ethanol and distilled water, and then placed in a glass petri dish. Then, heat treatment was performed at 330 ° C. for 2 hours under a nitrogen gas atmosphere to obtain an ITO powder of Comparative Example 4. FIG. 5 shows the result of X-ray diffraction of the obtained ITO powder. Table 3 shows the result of each characteristic of the obtained ITO powder.

図4と図5を比較するとわかるように、SnとInの比率が同じであるにもかかわらず、イオン半径を制御した実施例6においては、酸化錫のピークが見られなかったが、比較例4においては、2θで26.7°、33.0°の酸化錫のピーク(図5に、△で示す)が生じた。このことからも、イオン半径を制御することで、ドーピングの効率が向上することを確認できた。また、表3からわかるように、実施例6では、比較例4より、ITO粉末のX線強度の半値幅が小さい、すなわちITOの結晶化度が高く、ITO粉末の粉体体積抵抗率が低かった。これらのITO粉末を含有する分散液は、日射透過率が低く、分散液の可視光線透過率/日射透過率の比率(〔(%Tv)/(%Ts)〕)が高い値を示し、赤外線カット特性が良好であった。また、分散液のヘーズも低くなった。   As can be seen from a comparison between FIG. 4 and FIG. 5, although the ratio of Sn and In was the same, the peak of tin oxide was not observed in Example 6 in which the ionic radius was controlled. In No. 4, 26.7 ° at 2θ and a tin oxide peak at 33.0 ° (indicated by Δ in FIG. 5) occurred. This also confirmed that the doping efficiency was improved by controlling the ion radius. Further, as can be seen from Table 3, in Example 6, the half width of the X-ray intensity of the ITO powder is smaller than that in Comparative Example 4, that is, the ITO crystallinity is high and the powder volume resistivity of the ITO powder is low. It was. Dispersions containing these ITO powders have low solar transmittance, and the ratio of visible light transmittance / solar transmittance ([(% Tv) / (% Ts)]) of the dispersion shows a high value. The cut characteristics were good. Moreover, the haze of the dispersion was also lowered.

Claims (8)

(A)In3+、Sn2+およびSn4+を含有し、
(B)In3+のイオン半径と、Sn2+のイオン半径とSn4+のイオン半径の平均であるSn平均イオン半径との割合が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表され、かつ
(C)Snが、InとSnの合計100モルに対して、2.5〜25モルの割合である
ことを特徴とする、インジウム錫酸化物粉末。
(A) containing In 3+ , Sn 2+ and Sn 4+ ,
(B) The ratio of the ionic radius of In 3+ to the Sn average ionic radius, which is the average of the Sn 2+ ionic radius and Sn 4+ ionic radius, is given by the formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
And (C) Sn is a ratio of 2.5 to 25 mol with respect to a total of 100 mol of In and Sn, indium tin oxide powder.
Lab表色系において、L≦30、a<0、b<0の色調を有する、請求項1記載のインジウム錫酸化物粉末。   2. The indium tin oxide powder according to claim 1, having a color tone of L ≦ 30, a <0, b <0 in the Lab color system. BET比表面積が、30m/g以上である、請求項1または2記載のインジウム錫酸化物粉末。 The indium tin oxide powder of Claim 1 or 2 whose BET specific surface area is 30 m < 2 > / g or more. 原料は、In3+、Sn2+およびSn4+を含有し、
In3+のイオン半径と、Sn2+のイオン半径とSn4+のイオン半径の平均であるSn平均イオン半径との割合が、式:
(In3+のイオン半径):(Sn平均イオン半径)=1:(0.990〜1.009)
で表され、かつ
Snが、InとSnの合計100モルに対して、2.5〜25モルの割合である酸性水溶液であり;
原料の酸性水溶液からインジウム錫水酸化物を共沈させ、
共沈インジウム錫水酸化物を焼成することを特徴とする、インジウム錫酸化物粉末の製造方法。
The raw material contains In 3+ , Sn 2+ and Sn 4+ ,
The ratio of the ionic radius of In 3+ to the Sn average ionic radius, which is the average of the Sn 2+ ionic radius and Sn 4+ ionic radius, is given by the formula:
(In 3+ ionic radius): (Sn average ionic radius) = 1: (0.990 to 1.009)
And Sn is an acidic aqueous solution having a ratio of 2.5 to 25 mol with respect to 100 mol in total of In and Sn;
Co-precipitate indium tin hydroxide from the acidic aqueous solution of the raw material,
A method for producing indium tin oxide powder, comprising calcining coprecipitated indium tin hydroxide.
Sn2+が、Sn2+とSn4+の合計1モルに対して、0.90〜0.99モルの割合である、請求項4記載のインジウム錫酸化物粉末の製造方法。 Sn 2+ is, the total one mole of Sn 2+ and Sn 4+, 0.90 to 0.99 which is the ratio of moles method of indium tin oxide powder according to claim 4, wherein. 請求項1〜3のいずれか1項記載のインジウム錫酸化物粉末と、溶媒とを含有することを特徴とする、熱線遮蔽膜用組成物。   A composition for a heat ray shielding film, comprising the indium tin oxide powder according to any one of claims 1 to 3 and a solvent. さらに、樹脂を含有する、請求項6記載の熱線遮蔽膜用組成物。   Furthermore, the composition for heat ray shielding films | membranes of Claim 6 containing resin. 請求項6または7記載の熱線遮蔽膜用組成物を、基材上に塗布した後、乾燥して形成される、熱線遮蔽膜。
A heat ray shielding film formed by applying the composition for heat ray shielding film according to claim 6 or 7 on a substrate and then drying the composition.
JP2012000810A 2012-01-05 2012-01-05 Indium tin oxide powder and method for producing the same Active JP5885507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000810A JP5885507B2 (en) 2012-01-05 2012-01-05 Indium tin oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000810A JP5885507B2 (en) 2012-01-05 2012-01-05 Indium tin oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013139366A true JP2013139366A (en) 2013-07-18
JP5885507B2 JP5885507B2 (en) 2016-03-15

Family

ID=49078188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000810A Active JP5885507B2 (en) 2012-01-05 2012-01-05 Indium tin oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5885507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128661A (en) * 2016-01-20 2017-07-27 三菱マテリアル電子化成株式会社 Heat ray cut film and coating for forming the heat ray cut film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123523A (en) * 2002-09-11 2004-04-22 Sumitomo Chem Co Ltd Method for producing indium oxide-tin oxide powder
US20040140456A1 (en) * 2002-09-11 2004-07-22 Sumitomo Chemical Company, Limited Method of producing indium Tin oxide powder
JP2008110915A (en) * 2008-01-16 2008-05-15 Dowa Holdings Co Ltd Tin-doped indium oxide powder
WO2011052689A1 (en) * 2009-10-29 2011-05-05 三菱マテリアル株式会社 Heat ray shielding composition and method for producing same
US20120070690A1 (en) * 2009-05-20 2012-03-22 Carsten Bubel Composition and Method for Producing ITO Powders or ITO Coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123523A (en) * 2002-09-11 2004-04-22 Sumitomo Chem Co Ltd Method for producing indium oxide-tin oxide powder
US20040140456A1 (en) * 2002-09-11 2004-07-22 Sumitomo Chemical Company, Limited Method of producing indium Tin oxide powder
JP2008110915A (en) * 2008-01-16 2008-05-15 Dowa Holdings Co Ltd Tin-doped indium oxide powder
US20120070690A1 (en) * 2009-05-20 2012-03-22 Carsten Bubel Composition and Method for Producing ITO Powders or ITO Coatings
WO2011052689A1 (en) * 2009-10-29 2011-05-05 三菱マテリアル株式会社 Heat ray shielding composition and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128661A (en) * 2016-01-20 2017-07-27 三菱マテリアル電子化成株式会社 Heat ray cut film and coating for forming the heat ray cut film

Also Published As

Publication number Publication date
JP5885507B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5798240B2 (en) Antimony-doped tin oxide powder and method for producing the same
KR101568561B1 (en) Indium tin oxide powder, method for producing same, dispersion, paint, and functional thin film
WO2010004814A1 (en) Core-shell particle and method for producing core-shell particle
JP7181827B2 (en) Zirconium nitride powder coated with alumina and method for producing the same
WO2011052689A1 (en) Heat ray shielding composition and method for producing same
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP2008066276A (en) Oxide conductive material, and its manufacturing method
TW201245046A (en) Fluorine-doped tin-oxide particles and manufacturing method therefor
JP4389368B2 (en) Conductive pigment powder and transparent conductive film made using the same
JP5885507B2 (en) Indium tin oxide powder and method for producing the same
KR101650611B1 (en) Ito powder and method of producing same
JP5829386B2 (en) Fine ITO powder with high crystallinity, its use and manufacturing method, etc.
KR101488116B1 (en) Indium tin oxide powder, production method therefor, transparent conductive composition, and indium tin hydroxide
AU2019267798A1 (en) Surface-treated infrared-absorbing fine particle dispersion and infrared-absorbing transparent substrate
JP5977603B2 (en) White conductive powder, dispersion thereof, paint, and film
KR20150088551A (en) Tungsten Oxide Complex Doped with Alkalimetal Oxide, Transparent Conducting Composition, Coating Film, Optical Device Comprising The Same
TWI568676B (en) ITO powder and its manufacturing method
JP6530673B2 (en) Composition for forming phosphorus-doped tin oxide conductive film and phosphorus-doped tin oxide conductive film
JP2015017012A (en) Oily dispersion liquid, thin film and method for producing the same
KR101117797B1 (en) Preparation method of transparent conductive complex comprising Yb doped ZnO, transparent conductive composition, coating film and optical device comprising the same
JP4171871B2 (en) Conductive oxide particles and method for producing the same
JP2015174790A (en) Conductive fine particle and production method of the same, conductive fine particle dispersion liquid, transparent conductive fine particle dispersion, and transparent conductive fine particle dispersion film
JP2011054508A (en) White conductive powder
JP5977602B2 (en) White conductive powder, dispersion thereof, paint, and film
WO2014003066A1 (en) White conductive powder, dispersion liquid thereof, coating material, and film composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R150 Certificate of patent or registration of utility model

Ref document number: 5885507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250