JP2013139107A - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP2013139107A
JP2013139107A JP2012000020A JP2012000020A JP2013139107A JP 2013139107 A JP2013139107 A JP 2013139107A JP 2012000020 A JP2012000020 A JP 2012000020A JP 2012000020 A JP2012000020 A JP 2012000020A JP 2013139107 A JP2013139107 A JP 2013139107A
Authority
JP
Japan
Prior art keywords
film
transparent
laminate
silver alloy
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012000020A
Other languages
Japanese (ja)
Inventor
Kiyoshi Chiba
潔 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012000020A priority Critical patent/JP2013139107A/en
Publication of JP2013139107A publication Critical patent/JP2013139107A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a transparent heat-reflective laminate that is higher in transparency, and lower in the shading coefficients than the past, and includes a protective film that does not damage the Low-E function.SOLUTION: The laminate comprises: a transparent heat reflection film of a low thermal emissivity that is formed of a transparent dielectric and the multilayer film of silver alloy and is transparent in the visible light; a transparent protective film; and the substrate, wherein the transparent protective film is an amorphous material fluororesin film that has the fluorine-containing aliphatic ring structure. The laminate has the excellent transparency, the near infrared barrier property, and the Low-E function (low radiative property), and is found having in well balance the transparent protective film function that defends the multilayer film from the mechanical and the chemical loading.

Description

本発明は、透明性が高く低熱放射率の透明熱反射膜で被覆し、含フッ素脂肪族環構造を有する非晶質フッ素樹脂膜で保護した積層体に関するものである。   The present invention relates to a laminate that is covered with a transparent heat reflective film having high transparency and low thermal emissivity and protected with an amorphous fluororesin film having a fluorinated aliphatic ring structure.

透明熱反射膜とは可視光に透明で、赤外線に高い反射率をもつ選択光透過膜である。低い熱放射率をもち、窓などの透明開口部から、透明性を保持したまま、熱放散を防ぎ、断熱性能を示し、約30%の省エネルギー効果をもつ薄膜である。また近赤外光遮蔽性能の高い構成は、太陽光の近赤外光による熱の流入を防ぎ、不快なぎらぎら感を防ぐ効果をもつ。   The transparent heat reflection film is a selective light transmission film that is transparent to visible light and has a high reflectance to infrared rays. It is a thin film that has a low thermal emissivity, prevents heat dissipation, exhibits heat insulation performance, and has an energy saving effect of about 30% through transparent openings such as windows while maintaining transparency. Moreover, the structure with high near-infrared light shielding performance has the effect of preventing inflow of heat due to the near-infrared light of sunlight and preventing unpleasant glare.

透明熱反射膜は、透明導電性を持つ錫をドープした酸化インジウム(ITO,Indium Tin Oxide)などの200nm厚以上の単層膜で自由電子による赤外反射を使うタイプと、透明誘電体と銀などの金属を多層膜とし、光干渉効果で金属の可視光での反射防止と金属による赤外光の高い反射を利用するタイプがある。単層膜は厚い膜が必要となることから、生産性に劣りヘーズが起きる問題がある。多層膜構成は高い生産性と、構成の最適化により優れたスペクトル特性を実現できることから、近年良く利用されている。TiO/Ag/TiO、ITO/Ag/ITOなどの3層膜構成、またTiO/Ag/TiO/Ag/TiOなどの5層構成が、ガラスまたはプラスチックフィルム基板上に作成され、工業的に使用されている。 Transparent heat reflective film is a single layer film with a thickness of 200 nm or more such as tin oxide doped indium oxide (ITO, Indium Tin Oxide) with transparent conductivity. It uses infrared reflection by free electrons, transparent dielectric and silver There is a type in which a metal such as a multilayer film is used, and reflection of metal with visible light is prevented by a light interference effect and infrared light is highly reflected by the metal. Since a single layer film requires a thick film, there is a problem that the productivity is inferior and haze occurs. Multilayer film structures are frequently used in recent years because they can realize high productivity and excellent spectral characteristics by optimizing the structure. A three-layer film configuration such as TiO 2 / Ag / TiO 2 , ITO / Ag / ITO, or a five-layer configuration such as TiO 2 / Ag / TiO 2 / Ag / TiO 2 is created on a glass or plastic film substrate, Used industrially.

これらの膜は低熱放射性(Low−E)を実現するためには、膜面が放熱する空気層側に露出することが必要である。単層の建物用窓ガラス、自動車用ガラスなどでは、膜面は室内側を向く。また複層ガラスでは、対向ガラスのギャップ側の面に被覆される。銀膜は高温高湿下に曝された場合など酸化が起きやすく、また銀原子の凝集など環境に不安定な問題がある。また直接大気に露出すると、その個所を起点にして環境中のイオウ、塩素などの化学物質と反応し、劣化が進む問題がある。 In order to realize low thermal radiation (Low-E), it is necessary for these films to be exposed to the air layer side that radiates heat. In a single-layer building window glass, automobile glass, etc., the membrane surface faces the indoor side. In the case of double-glazed glass, the gap side surface of the counter glass is covered. Silver films are prone to oxidation when exposed to high temperatures and high humidity, and have environmental instability problems such as aggregation of silver atoms. Moreover, when exposed directly to the atmosphere, there is a problem in that the reaction proceeds with chemical substances such as sulfur and chlorine in the environment starting from the location, and deterioration proceeds.

透明熱反射膜において、かかる銀膜の環境に対する不安定性の問題は、銀に対し、銅、金などとの合金化により改善がはかられてきた。銀に数原子%の銅を添加したAgCu合金は、銀の不安定性を改善することから、透明熱反射膜に工業的に広く使われている。さらに金を添加したAgCuAu合金は、透明性を向上する効果があることが報告されている。しかしながら、金の添加はコストが高くなる問題から、工業的にはあまり使われていない。銀にこれらの金属を添加することにより、透明熱反射膜の耐候性は改善されるが、可視光に対し光吸収の増加がおき、透明性が低下する問題があった。また、近赤外より赤外光に対し反射率低下の問題がおき、改善が望まれていた。これらに対し、AgCuNd合金、AgMgEu合金などは耐環境性が優れ、光学特性はAgに近く、優れたスペクトル性能を示す。   In the transparent heat reflecting film, the problem of instability of the silver film with respect to the environment has been improved by alloying silver with copper, gold or the like. An AgCu alloy obtained by adding several atomic percent of copper to silver improves the instability of silver and is therefore widely used industrially for transparent heat reflecting films. Furthermore, it has been reported that an AgCuAu alloy to which gold is added has an effect of improving transparency. However, the addition of gold is not used much industrially because of the high cost. By adding these metals to silver, the weather resistance of the transparent heat-reflecting film is improved, but there is a problem that light absorption increases with respect to visible light and transparency is lowered. In addition, there has been a problem of a decrease in reflectance with respect to infrared light from near infrared, and improvement has been desired. On the other hand, AgCuNd alloy, AgMgEu alloy and the like have excellent environmental resistance, optical properties are close to Ag, and show excellent spectral performance.

これらの透明熱反射膜は、膜面が放熱する空気層側に露出する構成では、該膜をスクラッチなどの機械的負荷、また薬品などの化学的負荷から守るために透明な保護膜の被覆が必要である。これらの透明保護膜は、同様な使用環境下で機械的、化学的負荷より膜面、及びまたは、基板面を守るCD、DVD、MODなど光ディスク面の保護膜に類似している。しかしながら、光ディスクに汎用に使われるアクリル樹脂などの膜は、透明熱反射膜では熱(赤外線)放射波長域に光吸収が大きく、熱放射率を増大し、Low−E機能とそれに伴う断熱効果を損なう問題があった。   When these transparent heat reflective films are exposed on the side of the air layer where heat is dissipated, a transparent protective film is coated to protect the film from mechanical loads such as scratches and chemical loads such as chemicals. is necessary. These transparent protective films are similar to protective films on the optical disk surface such as CD, DVD, and MOD that protect the film surface and / or substrate surface from mechanical and chemical loads under the same usage environment. However, a film such as an acrylic resin used for an optical disk for general purposes has a large light absorption in the heat (infrared) radiation wavelength region in the transparent heat reflecting film, and increases the heat emissivity, and the Low-E function and the heat insulation effect associated therewith. There was a problem to lose.

米国特許第4822120号明細書US Pat. No. 4,822,120 米国特許第4996105号明細書US Pat. No. 4,996,105 特開平7−66317号公報JP-A-7-66317 特開2006−126861号公報JP 2006-126861 A

解決しようとする問題点は、透明熱反射膜の透明性が高く、Low−E機能をもち、また近赤外光遮蔽性能が高く、また該膜をスクラッチなどの機械的負荷、また化学的負荷から守り、低熱放射率を損なわない、透明な保護膜で被覆した構成の実現である。   The problems to be solved are that the transparent heat reflecting film is highly transparent, has a Low-E function, and has a high near-infrared light shielding performance, and the film is subjected to mechanical loads such as scratches and chemical loads. It is realization of the structure covered with the transparent protective film which protects from and does not impair the low thermal emissivity.

本発明は、透明誘電体と銀合金の多層膜よりなる可視光に透明で低熱放射率の透明熱反射膜と基板よりなる積層体で、該多層膜の保護膜が、含フッ素脂肪族環構造を有する非晶質フッ素樹脂膜であることを特徴とする積層体である。   The present invention is a laminate comprising a transparent heat reflective film transparent to visible light and made of a multilayer film of a transparent dielectric and a silver alloy and a substrate, and the protective film of the multilayer film has a fluorine-containing aliphatic ring structure It is an amorphous fluororesin film having a laminate.

本発明の積層体は、該膜をスクラッチなどの機械的負荷、また化学的負荷から守り、低熱放射率を損なわない、透明な保護膜を被覆した構成で、高い透明性と共に、Low−E機能をもち、より好ましい構成では驚くほど高い近赤外光遮蔽性を備えた積層体である。   The laminate of the present invention has a structure with a transparent protective film that protects the film from mechanical loads such as scratches and chemical loads, and does not impair the low thermal emissivity. In a more preferable configuration, the laminate has a surprisingly high near infrared light shielding property.

本発明の積層体は、該膜をスクラッチなどの機械的負荷、また化学的負荷から守り、低熱放射率を損なわない透明な保護膜を有し、選択光透過性を生む光干渉性を示し、さらに驚くべきことには、Low−E機能を持ち、可視光透過率を約70%以上に保ったまま、遮蔽係数が0.5以下に至る構成を見出したことにある。可視光の透過率が高いほど視覚的に窓の透明性が高く、望ましい。また、可視光透過率を70%以上に保ったまま、遮蔽係数が0.4以下に至る構成を見出したことにある。なお、本発明における可視光透過率及び遮蔽係数は、日本工業規格JIS A5759にもとづき算出した値である。   The laminate of the present invention has a transparent protective film that protects the film from mechanical loads such as scratches and chemical loads, and does not impair the low thermal emissivity, and exhibits light coherence that produces selective light transmission, Further surprisingly, the present inventors have found a configuration having a Low-E function and having a shielding coefficient of 0.5 or less while maintaining a visible light transmittance of about 70% or more. The higher the visible light transmittance, the higher the transparency of the window visually, which is desirable. In addition, the present inventors have found a configuration in which the shielding coefficient reaches 0.4 or less while keeping the visible light transmittance at 70% or more. The visible light transmittance and the shielding coefficient in the present invention are values calculated based on Japanese Industrial Standard JIS A5759.

本発明における積層体は、透明誘電体と銀合金の多層膜よりなる可視光に透明で低熱放射率の透明熱反射膜と、フッ素脂肪族環構造を有する非晶質フッ素樹脂保護膜と基板とよりなる。より好ましくは、該積層体が基板側より透明誘電体/銀合金(1)/透明誘電体/銀合金(2)/透明誘電体膜/非晶質フッ素樹脂膜構造を有し、該銀合金(2)の膜厚が該銀合金(1)の膜厚より1.2倍以上2倍以下の範囲にある構成よりなる。   The laminate in the present invention comprises a transparent heat reflective film transparent to visible light and comprising a multilayer film of a transparent dielectric and a silver alloy and having a low thermal emissivity, an amorphous fluororesin protective film having a fluorine aliphatic ring structure, and a substrate. It becomes more. More preferably, the laminate has a transparent dielectric / silver alloy (1) / transparent dielectric / silver alloy (2) / transparent dielectric film / amorphous fluororesin film structure from the substrate side, and the silver alloy The film thickness of (2) is in the range of 1.2 times to 2 times the film thickness of the silver alloy (1).

本発明における積層体は、フッ素脂肪族環構造を有する非晶質フッ素樹脂保護膜で構成される。本発明の構成に用いられるフッ素脂肪族環構造を有する非晶質フッ素樹脂は、従来、可視から近赤外光波長域の透明性から、反射防止膜、光ファイバーのコア、クラッド材などに適用されていたが、赤外域の光学特性を工業的に積極的に利用した応用形態は、なかった。窓などの透明開口部からの熱の散逸を防ぐ、透明熱反射膜を機械的負荷、また化学的負荷から守り、また低熱放射率を保つ保護膜を鋭意検討した結果、フッ素脂肪族環構造を有する非晶質フッ素樹脂は、驚くべきことに窓の断熱性に必要な10μmの波長を中心とし、さらに8μmから12μmの波長域に、透明な窓を有することを見出した。 The laminate in the present invention is composed of an amorphous fluororesin protective film having a fluoroaliphatic ring structure. The amorphous fluororesin having a fluoroaliphatic ring structure used in the configuration of the present invention has been conventionally applied to antireflection films, optical fiber cores, cladding materials, etc. due to transparency in the visible to near-infrared wavelength region. However, there was no application form that actively utilized the optical characteristics in the infrared region industrially. As a result of intensive investigation of protective films that prevent heat dissipation from transparent openings such as windows, protect transparent heat-reflective films from mechanical and chemical loads, and maintain low heat emissivity. It has been surprisingly found that the amorphous fluororesin has a transparent window centered on the wavelength of 10 μm necessary for the heat insulation of the window and further in the wavelength range of 8 μm to 12 μm.

本発明の積層体を構成する保護膜は、フッ素脂肪族環構造を有する非晶質フッ素樹脂よりなる。フッ素脂肪族環構造を有する非晶質フッ素樹脂は、8μmから12μmの波長域に透明な窓を有するものであれば良いが、例えば、ペロフルオロポリマーがある。環化重合体は、単量体が繰り返し重合した構造以外に、他の共重合性単量体との共重合体でも良い。下地との接着性を増すため、末端官能基がCOOH、CONH、Siのアルコキシ基などでも良い。さらに、構造中に含まれる官能基が、実質的に水素原子を有しない化合物であることが、より好ましい。該保護膜の厚みは、特に限定するものではないが、例えば、1μmから10μmがあげられる。   The protective film constituting the laminate of the present invention is made of an amorphous fluororesin having a fluoroaliphatic ring structure. The amorphous fluororesin having a fluoroaliphatic ring structure may be any one having a transparent window in the wavelength range of 8 μm to 12 μm. For example, there is a perfluoropolymer. The cyclized polymer may be a copolymer with another copolymerizable monomer other than the structure in which the monomer is repeatedly polymerized. In order to increase the adhesion to the substrate, the terminal functional group may be an alkoxy group such as COOH, CONH, or Si. Furthermore, it is more preferable that the functional group contained in the structure is a compound having substantially no hydrogen atom. The thickness of the protective film is not particularly limited, and examples thereof include 1 μm to 10 μm.

本発明の積層体を構成する保護膜は、フッ素脂肪族環構造を有する非晶質フッ素樹脂よりなるが、下地との接着性をより増すため、下地にシランカップリング材などのカップリング剤を、数nmから数10nm程度の厚さで設けたものでも良い。また、本発明の効果を殆ど損なうことない範囲で、サブミクロンから数μm程度の他の保護膜、例えばアクリル膜との積層、また、保護膜中に酸化チタンなどの微粒子を含むものでも良い。   The protective film constituting the laminate of the present invention is made of an amorphous fluororesin having a fluoroaliphatic ring structure, but in order to further increase the adhesion to the base, a coupling agent such as a silane coupling material is applied to the base. Alternatively, a thickness of about several nm to several tens of nm may be provided. In addition, the protective film may be laminated with another protective film of about submicron to several μm, for example, an acrylic film, or fine particles such as titanium oxide may be included in the protective film as long as the effects of the present invention are hardly impaired.

本発明における透明誘電体としては、可視光に透明で、屈折率の高い固体物質であれば特に限定しないが、金属酸化物、金属窒化物、金属硫化物、金属炭化物などがあげられる。これらの金属化合物は、透明な電気絶縁体、及びまたは透明な半導体であっても良い。金属酸化物としては、チタン、ジルコニウム、亜鉛、インジウム、錫、カドミウム、シリコンよりなる群から選ばれた1種以上の金属の酸化物があげられる。金属窒化物としてはシリコン、アルミニウムなどの窒化物があげられる。金属硫化物としては亜鉛などの硫化物があげられる。金属炭化物としてはシリコンなどの炭化物があげられる。またダイヤモンドライクカーボン(DLC、Diamond Like Carbon)もあげられる。   The transparent dielectric in the present invention is not particularly limited as long as it is a solid substance that is transparent to visible light and has a high refractive index, and examples thereof include metal oxides, metal nitrides, metal sulfides, and metal carbides. These metal compounds may be transparent electrical insulators and / or transparent semiconductors. Examples of the metal oxide include one or more metal oxides selected from the group consisting of titanium, zirconium, zinc, indium, tin, cadmium, and silicon. Examples of the metal nitride include nitrides such as silicon and aluminum. Examples of metal sulfides include sulfides such as zinc. Examples of the metal carbide include carbides such as silicon. Further, diamond-like carbon (DLC, Diamond Like Carbon) is also exemplified.

これら酸化物、窒化物、硫化物及びまたは炭化物は、単独であっても混合体であっても良い。屈折率は金属膜の反射防止効果より1.6以上が好ましく、特に1.8以上が好ましい。これらの高屈折率の膜は、単独であっても、または積層構造でも良い。高屈折率膜とSiO、MgFなどの低屈折率膜の積層構造で、実質的に高屈折率膜となるものでも良い。該積層体の環境安定性と、膜歪が小さい点からは、AlSlNが特に好ましい。 These oxides, nitrides, sulfides and / or carbides may be used alone or as a mixture. The refractive index is preferably 1.6 or more, and particularly preferably 1.8 or more, from the antireflection effect of the metal film. These high refractive index films may be used alone or in a laminated structure. A laminated structure of a high refractive index film and a low refractive index film such as SiO 2 or MgF may be substantially a high refractive index film. AlSlN is particularly preferable from the viewpoint of environmental stability of the laminate and small film strain.

これらの透明誘電体膜の膜厚は干渉効果により選択光透過性を実現できるのであれば特に限定しないが、好ましくは10nm以上500nm以下、特に好ましくは30nm以上200nm以下である。   The film thickness of these transparent dielectric films is not particularly limited as long as selective light transparency can be realized by the interference effect, but is preferably 10 nm or more and 500 nm or less, particularly preferably 30 nm or more and 200 nm or less.

本発明における銀合金膜としては、該誘電体膜との積層により可視光に透明で、赤外光に高い反射率をもち低熱放射率の銀合金であれば特に限定しないが、耐環境性を改善するために該銀合金の少なくとも1つが、ネオジム、ユウロピウム、金、銅、マグネシウムの内、1つ以上の元素を含む銀合金よりなることが好ましい。本発明においては、該銀合金に、さらに、チタン、クロム、また希土類などの元素が添加されていても良い。かかる膜中に含まれる微量の添加物はこれらに限定されるものではない。優れた性能と共に、コストを含め工業的に広く使われるためには、該銀合金として、AgCuNd合金などのAgに近い合金、特に優れた透明性と環境性よりAgMgEu合金が好ましい。   The silver alloy film in the present invention is not particularly limited as long as it is transparent to visible light by being laminated with the dielectric film, has a high reflectance to infrared light, and has a low thermal emissivity. In order to improve, at least one of the silver alloys is preferably made of a silver alloy containing one or more elements of neodymium, europium, gold, copper, and magnesium. In the present invention, an element such as titanium, chromium or rare earth may be further added to the silver alloy. The trace amount additive contained in such a film is not limited to these. In order to be used widely industrially including cost, including excellent performance, an alloy close to Ag such as an AgCuNd alloy, particularly an AgMgEu alloy is preferable because of its excellent transparency and environmental properties.

これらの金属膜の膜厚は干渉効果により選択光透過性を実現できるのであれば特に限定しないが、好ましくは7nm以上24nm以下、特に好ましくは10nm以上22nm以下である。   The thickness of these metal films is not particularly limited as long as selective light transparency can be realized by the interference effect, but is preferably 7 nm to 24 nm, and particularly preferably 10 nm to 22 nm.

これらの金属と該誘電体膜との間に、金属の耐環境性の改善、誘電体作成の際の金属膜表面への成膜ダメージの低減、金属と誘電体膜界面の接着性改善などの目的で、Ti、ニクロムなどの極薄膜を積層することもある。   Between these metals and the dielectric film, improvement of metal environmental resistance, reduction of film-forming damage to the metal film surface during dielectric production, improvement of adhesion between metal and dielectric film interface, etc. For the purpose, a very thin film such as Ti or Nichrome may be laminated.

本発明における基板としては、透明で該透明熱反射膜を保持できるものであれば特に限定しないが、ガラスなどの無機材料、及びまたはプラスチックスなどの高分子成型物があげられる。   The substrate in the present invention is not particularly limited as long as it is transparent and can hold the transparent heat reflection film, and examples thereof include inorganic materials such as glass and polymer moldings such as plastics.

高分子成型物を構成する有機高分子化合物としては、耐熱性に優れた透明な有機高分子化合物であれば特に限定しないが、通常耐熱性として80℃以上、好ましくは100℃であって、例えば、ポリイミド、ポリエーテルスルホン、脂環式ポリオレフィン樹脂をはじめとし、ポリエチレンテレフタレート、ポリエチレン2,6ナフタレンジカルボキシレート、ポリジアリルフタレート、ポリカーボネートなど、及び芳香族ポリアミド、ポリアミド、ポリプロピレン、セルローストリアセテートなどがあげられる。これらはホモポリマー、コポリマーとして、また単独またはブレンドとしても使用しうる。   The organic polymer compound constituting the polymer molding is not particularly limited as long as it is a transparent organic polymer compound excellent in heat resistance, but usually has a heat resistance of 80 ° C. or higher, preferably 100 ° C. Polyimide, polyethersulfone, cycloaliphatic polyolefin resin, polyethylene terephthalate, polyethylene 2,6 naphthalene dicarboxylate, polydiallyl phthalate, polycarbonate, and aromatic polyamide, polyamide, polypropylene, cellulose triacetate, etc. . These can be used as homopolymers, copolymers, alone or as a blend.

かかる高分子成型物の形状は特に限定されるものではないが、通常シート状、フィルム状のものが好ましく、中でもフィルム上のものは巻き取り可能であり、また連続生産が可能であるため、特に好ましい。さらにフィルム状のものが使用される場合においては、フィルムの厚さは6μm以上500μm以下が好ましく、更には12μm以上200μm以下が好ましい。   Although the shape of such a polymer molded product is not particularly limited, it is usually preferably in the form of a sheet or film, and in particular, the one on the film can be rolled up and can be continuously produced. preferable. Further, when a film-like material is used, the thickness of the film is preferably 6 μm or more and 500 μm or less, and more preferably 12 μm or more and 200 μm or less.

本発明においては、該積層体が、好ましくは基板側より透明誘電体/銀合金(1)/透明誘電体/銀合金(2)/透明誘電体膜/保護膜の構成よりなり、かつ該銀合金(2)の膜厚が該銀合金(1)の膜厚より1.2倍以上2倍以下の範囲にあることを特徴とする。該銀合金(1)層の膜厚は、透明性の点で、7nm以上16nm以下で、該銀合金(2)層の膜厚は、15nm以上24nm以下が、特に好ましくは、該金属(2)層の膜厚は18nm以上20nm以下である。本発明は、これらの膜厚構成の積層体において、可視域における透明性をほとんど損なわずに、多層界面における近赤外光の反射の位相が乱れ、該効果が近赤外域の反射を急激に高め、遮蔽係数が0.5以下に至る構成を見出したことによる。また、可視光透過率を70%以上に保ったまま、遮蔽係数が0.4以下に至る構成を見出したことによる。   In the present invention, the laminate preferably comprises a transparent dielectric / silver alloy (1) / transparent dielectric / silver alloy (2) / transparent dielectric film / protective film from the substrate side, and the silver. The film thickness of the alloy (2) is in the range of 1.2 to 2 times the film thickness of the silver alloy (1). The film thickness of the silver alloy (1) layer is from 7 nm to 16 nm in terms of transparency, and the film thickness of the silver alloy (2) layer is from 15 nm to 24 nm, particularly preferably the metal (2 ) Layer thickness is 18 nm or more and 20 nm or less. In the laminated body having these film thickness configurations, the phase of the reflection of near-infrared light at the multilayer interface is disturbed without substantially impairing the transparency in the visible region, and this effect sharply reflects the reflection in the near-infrared region. This is because a configuration in which the shielding coefficient reaches 0.5 or less has been found. Moreover, it is because the structure in which the shielding coefficient reaches 0.4 or less was found while maintaining the visible light transmittance at 70% or more.

さらに、該銀合金(2)の膜厚を該銀合金(2)の膜面内で部分的に異なるパターンを形成することにより、透過、及びまたは反射色のパターンを透明熱反射膜に重畳することなどができる。このパターンを形成する方法は特に限定しないが、金属膜形成の際マスクを使用する方法、及びまたは膜形成を加速するパターン化された核形成シーズ剤を付与する方法などがある。また、電波透過性を増すための、パターン化も含まれるのは言うまでもない。   Furthermore, by forming a pattern in which the film thickness of the silver alloy (2) is partially different within the film surface of the silver alloy (2), the pattern of transmission and / or reflection color is superimposed on the transparent heat reflection film. You can do that. A method for forming this pattern is not particularly limited, and there are a method of using a mask in forming a metal film, a method of applying a patterned nucleation seeds agent for accelerating film formation, and the like. Needless to say, patterning for increasing radio wave transmission is also included.

本発明の積層体においては、基板上に透明熱反射膜を形成する。これらの透明熱反射膜の構成は干渉効果により選択光透過性を実現できる誘電体/金属/誘電体/保護膜、またより好ましくは誘電体/金属/誘電体/金属/誘電体/保護膜の膜構成よりなる。しかしながら、本構成の概念の延長上にある誘電体/金属/誘電体/金属/誘電体/金属/誘電体/保護膜の構成などにおいても、本発明の概念が実現できる構成であれば良い。該誘電体は、積層膜などで構成されていても良い。   In the laminate of the present invention, a transparent heat reflective film is formed on the substrate. The structure of these transparent heat reflection films is a dielectric / metal / dielectric / protective film, and more preferably a dielectric / metal / dielectric / metal / dielectric / protective film that can realize selective light transmission by interference effect. It consists of a membrane configuration. However, the configuration of the dielectric / metal / dielectric / metal / dielectric / metal / dielectric / protective film, which is an extension of the concept of the present configuration, may be any configuration that can realize the concept of the present invention. The dielectric may be composed of a laminated film or the like.

基板と誘電体との間に、接着性などを増すなどのための下塗り層の付加、及びまたは最上層の誘電体上に、さらに保護性能などを増すための無機コート層が付加されていても良いのはいうまでもない。   Even if an undercoat layer is added between the substrate and the dielectric to increase adhesion and / or an inorganic coat layer is added on the uppermost dielectric to further increase the protective performance. Needless to say, it is good.

本発明の積層体は、単層ガラス、または複層ガラスとして、また、プラスチックフィルム、該フィルムを単層ガラス、また複層ガラスに貼り合わせた形体などとして使用される。   The laminate of the present invention is used as a single-layer glass or a multi-layer glass, and as a plastic film, a form in which the film is bonded to a single-layer glass, or a multi-layer glass.

本発明の透明熱反射膜は、各種の工業的製造方法により形成される。かかる製造方法は特に限定されるものではないが、該薄膜の生成方法は、湿式法、及びまたは真空を用いる真空蒸着法、スパッタ法などの物理的気相蒸着法(PVD、Physical Vapor Deposition)、及びまたは反応ガスをもちいる化学的気相蒸着法(CVD、Chemical Vapor Deposition)などがあげられる。工業生産性よりは、金属および誘電体膜が、一貫した連続成膜が可能な、高周波、及びまたは直流2極マグネトロンスパッタ法、デュアルマグネトロンスパッタ法、さらには高速成膜と銀合金の安定性の点からは、直流マグネトロンスパッタ法が好ましい。用途によっては、イオンプレーティングまたはCVD法と、及びまたはコストを考え、ゾル・ゲルなどの湿式法との組み合わせなどを用いても良いことはいうまでもない。本発明の積層体を構成する保護膜の形成には、スピンコート法、dipコート法、スプレイ法などを含む一般湿式塗工法が使用される。   The transparent heat reflective film of the present invention is formed by various industrial production methods. Although such a manufacturing method is not particularly limited, a method for producing the thin film may be a wet method and / or a physical vapor deposition method (PVD, Physical Vapor Deposition) such as a vacuum deposition method using a vacuum, a sputtering method, And / or chemical vapor deposition (CVD) using a reactive gas. Rather than industrial productivity, metal and dielectric films can be consistently and continuously formed. High-frequency and / or DC bipolar magnetron sputtering, dual magnetron sputtering, and high-speed film formation and silver alloy stability. From this point, the DC magnetron sputtering method is preferable. It goes without saying that depending on the application, a combination of an ion plating or CVD method and / or a wet method such as a sol-gel may be used in consideration of cost. For forming the protective film constituting the laminate of the present invention, a general wet coating method including a spin coating method, a dip coating method, a spray method and the like is used.

透明誘電体と金属の多層膜よりなる可視光に透明で低熱放射率の透明熱反射膜と、該多層膜の保護膜が含フッ素脂肪族環構造を有する非晶質フッ素樹脂膜であることを特徴とする保護膜と、基板よりなる積層体で、好ましくは該積層体が基板側より透明誘電体/銀合金(1)/透明誘電体/銀合金(2)/透明誘電体膜の構成よりなり、該銀合金(2)の膜厚が該銀合金(1)の膜厚より1.2倍以上2倍以下の範囲にあり、かつ該積層体の可視光透過率が70%以上で遮蔽係数が0.5以下であることを特徴とする、優れた透明性と、高性能の近赤外光遮断性と低熱放射率と機械的負荷と化学的負荷より守る保護膜をバランス良く実現した。   A transparent heat-reflective film transparent to visible light and made of a transparent dielectric and metal multilayer film and having a low thermal emissivity, and the protective film of the multilayer film is an amorphous fluororesin film having a fluorine-containing aliphatic ring structure A laminate comprising a protective film and a substrate, wherein the laminate is preferably composed of transparent dielectric / silver alloy (1) / transparent dielectric / silver alloy (2) / transparent dielectric film from the substrate side. And the film thickness of the silver alloy (2) is in the range of 1.2 to 2 times the film thickness of the silver alloy (1), and the laminated body has a visible light transmittance of 70% or more to shield. Excellent transparency, high-performance near-infrared light blocking property, low thermal emissivity, and protective film that protects against mechanical and chemical loads, characterized by a coefficient of 0.5 or less. .

図1は、本発明積層体の1実施例の断面図を示す。直流2極マグネトロンスパッタリング装置を用い、スパッタ法で多層膜を作成した。基板1は、厚み75μmの2軸延伸したPET(ポリエチレンテレフタレート)フィルム基板である。該基板を真空槽内に設置した後、真空槽を2.7×10−4Paに真空に引いた。その後、ガス導入口より窒素を30%混合したアルゴンガスを真空槽内に導入し、5.3×10−1Paとした。直径10.2cmのAl70Si30(原子%)のターゲットを用い、150Wのスパッタ電力でAlSiN膜2を作成した。次にターゲットを直径10.2cmのAg99.1Mg0.5Eu0.4(原子%)合金とし、アルゴンガス(純度99.999%)を導入し5.3×10−1Paのガス雰囲気で、50Wのスパッタ電力でAgMgEu合金膜3を作成した。次に、再び窒素を30%混合したアルゴンガスを真空槽内に導入し、5.3×10−1Paとした。直径10.2cmのAl70Si30(原子%)のターゲットを用い、150Wのスパッタ電力でAlSiN膜4を作成した。これらの操作を繰り返し、基板上にAlSiN(47)/AgMgEu(11)/AlSiN(94)/AgMgEu(18)/AlSiN(47)(ただし、括弧内は膜厚でnmの単位を示す)の多層膜を形成した。尚、作製したAgMgEu膜の組成を(株)リガク製波長分散型蛍光X線装置により分析した結果、Ag99.1Mg0.5Eu0.4(原子%)合金膜が形成されていることがわかった。さらに、スピンコーターで、フッ素樹脂9%溶液(CTL−809A,旭硝子製)を塗布後120℃で10分ベークし、5μm厚の非晶質フッ素樹脂膜7を形成した。該試料を実施例1と称す。 FIG. 1 shows a cross-sectional view of one embodiment of the laminate of the present invention. A multilayer film was formed by sputtering using a direct current bipolar magnetron sputtering apparatus. The substrate 1 is a biaxially stretched PET (polyethylene terephthalate) film substrate having a thickness of 75 μm. After the substrate was placed in the vacuum chamber, the vacuum chamber was evacuated to 2.7 × 10 −4 Pa. Thereafter, argon gas mixed with 30% nitrogen was introduced into the vacuum chamber from the gas inlet, and the pressure was set to 5.3 × 10 −1 Pa. An AlSiN film 2 was formed with a sputtering power of 150 W using a target of Al 70 Si 30 (atomic%) having a diameter of 10.2 cm. Next, the target is an Ag 99.1 Mg 0.5 Eu 0.4 (atomic%) alloy with a diameter of 10.2 cm, and argon gas (purity 99.999%) is introduced to form a gas of 5.3 × 10 −1 Pa. In the atmosphere, the AgMgEu alloy film 3 was formed with a sputtering power of 50 W. Next, argon gas mixed with 30% of nitrogen was again introduced into the vacuum chamber to 5.3 × 10 −1 Pa. An AlSiN film 4 was formed with a sputtering power of 150 W using a target of Al 70 Si 30 (atomic%) having a diameter of 10.2 cm. By repeating these operations, a multilayer of AlSiN (47) / AgMgEu (11) / AlSiN (94) / AgMgEu (18) / AlSiN (47) (wherein the parentheses indicate the unit of nm in the film thickness) A film was formed. In addition, as a result of analyzing the composition of the produced AgMgEu film with a wavelength dispersive X-ray fluorescence apparatus manufactured by Rigaku Corporation, an alloy film of Ag 99.1 Mg 0.5 Eu 0.4 (atomic%) is formed. I understood. Further, a 9% fluororesin solution (CTL-809A, manufactured by Asahi Glass) was applied with a spin coater and baked at 120 ° C. for 10 minutes to form an amorphous fluororesin film 7 having a thickness of 5 μm. This sample is referred to as Example 1.

該積層体を、島津製作所UV−3150分光器で、膜面より光を入射し、220nmから2200nmの波長で透過率(%)と反射率(%)を測定した。透過率は、垂直入射、反射率は膜面垂直方向より6度斜め入射で測定した。この積層体の分光スペクトルは、選択光透過性を示し、可視光透過率78%で、遮蔽係数0.45の優れた熱遮蔽性能を示した。概積層体を、赤外分光器(日本分光製FT−IR装置)により、400cm−1から4000cm−1の波長範囲で反射スペクトルを測定した。1300cm−1付近に、2%程度のわずかな吸収が観測されたが、8μmから12μmの波長域では吸収は殆ど認められず、該保護膜は熱放射率の窓として機能することが分かった。 The laminate was irradiated with light from the film surface using a Shimadzu UV-3150 spectrometer, and the transmittance (%) and reflectance (%) were measured at a wavelength of 220 nm to 2200 nm. The transmittance was measured at normal incidence, and the reflectivity was measured at an oblique incidence of 6 degrees from the direction perpendicular to the film surface. The spectrum of the laminate showed selective light transmission, visible light transmittance of 78%, and excellent heat shielding performance with a shielding coefficient of 0.45. The approximate laminate infrared spectrometer by (manufactured by JASCO Corporation FT-IR device) to measure the reflection spectrum in the wavelength range of 4000 cm -1 from 400 cm -1. A slight absorption of about 2% was observed in the vicinity of 1300 cm −1 , but almost no absorption was observed in the wavelength range of 8 μm to 12 μm, and it was found that the protective film functions as a window of thermal emissivity.

比較例1として、実施例1と非晶質フッ素樹脂膜を形成するかわりに、紫外線硬化型アクリル樹脂(SD2200、DICK製)をスピンコーターで塗布し、紫外線照射による硬化により、5μm厚の膜を形成したことが異なる他は、同じ条件で多層膜を作成した。概積層体を、赤外分光器(日本分光製FT−IR装置)により、400cm−1から4000cm−1の波長範囲で反射スペクトルを測定した。8μmから12μmの波長域では、20%から30%の多数の吸収が認められ、熱放射率の窓として機能しないことが分かった。 As Comparative Example 1, instead of forming the amorphous fluororesin film in Example 1, an ultraviolet curable acrylic resin (SD2200, made by DICK) was applied with a spin coater, and a film having a thickness of 5 μm was formed by curing by ultraviolet irradiation. A multilayer film was prepared under the same conditions except that the formation was different. The approximate laminate infrared spectrometer by (manufactured by JASCO Corporation FT-IR device) to measure the reflection spectrum in the wavelength range of 4000 cm -1 from 400 cm -1. In the wavelength region of 8 μm to 12 μm, a large number of absorptions of 20% to 30% were observed, and it was found that the film did not function as a window of thermal emissivity.

これらの結果より明らかな通り、本発明の積層体は、透明断熱性に必要な可視光に透明で赤外光域でLow−E機能を持つと共に、建物窓、または自動車などの移動体の窓に膜面を室内側に向け設置した場合、フッ素樹脂のもつ優れた機械的、及び化学的保護機能をもつ驚くべき性能を示す構成を実現した。   As is clear from these results, the laminate of the present invention is transparent to visible light necessary for transparent heat insulation, has a Low-E function in the infrared light region, and is a window of a moving object such as a building window or an automobile. In the case where the membrane surface is installed facing the indoor side, a structure that exhibits surprising performance with the excellent mechanical and chemical protection functions of fluororesin has been realized.

本実施例より明らかなように、本発明の積層体は、高い光透過性と赤外線反射率を持つ、優れた透明熱反射体となる。尚、本発明は本実施例により制限されるものではない。   As is clear from this example, the laminate of the present invention is an excellent transparent heat reflector having high light transmittance and infrared reflectance. In addition, this invention is not restrict | limited by a present Example.

積層体の実施構成を示した実施例1の説明図である。It is explanatory drawing of Example 1 which showed the implementation structure of the laminated body.

1 基板
2 AlSiN膜
3 AgMgEu合金膜
4 AlSiN膜
5 AgMgEu合金膜
6 AlSiN膜
7 非晶質フッ素樹脂膜
1 Substrate 2 AlSiN film 3 AgMgEu alloy film 4 AlSiN film 5 AgMgEu alloy film 6 AlSiN film 7 Amorphous fluororesin film

Claims (3)

透明誘電体と銀合金の多層膜よりなる可視光に透明で低熱放射率の透明熱反射膜と透明保護膜と基板よりなる積層体で、該多層膜の透明保護膜が、含フッ素脂肪族環構造を有する非晶質フッ素樹脂膜であることを特徴とする積層体。   A laminated body composed of a transparent heat reflecting film, a transparent protective film, and a substrate transparent to visible light and made of a transparent dielectric and a silver alloy multilayer film, wherein the transparent protective film of the multilayer film is a fluorine-containing aliphatic ring. A laminate comprising an amorphous fluororesin film having a structure. 該積層体が基板側より透明誘電体/銀合金(1)/透明誘電体/銀合金(2)/透明誘電体膜/非晶質フッ素樹脂膜の構成よりなり、該銀合金(2)の膜厚が該銀合金(1)の膜厚より1.2倍以上2倍以下の範囲にあり、かつ該積層体の可視光透過率が70%以上で遮蔽係数が0.5以下であることを特徴とする請求項1の積層体。   The laminate has a structure of transparent dielectric / silver alloy (1) / transparent dielectric / silver alloy (2) / transparent dielectric film / amorphous fluororesin film from the substrate side. The film thickness is in the range of 1.2 to 2 times the film thickness of the silver alloy (1), the visible light transmittance of the laminate is 70% or more, and the shielding coefficient is 0.5 or less. The laminate according to claim 1. 該銀合金の少なくとも1つが、ネオジム、ユウロピウム、金、銅、マグネシウムの内、1つ以上の元素を含む銀合金よりなることを特徴とする請求項1または2の積層体。
The laminate according to claim 1 or 2, wherein at least one of the silver alloys comprises a silver alloy containing one or more elements of neodymium, europium, gold, copper, and magnesium.
JP2012000020A 2012-01-04 2012-01-04 Laminate Pending JP2013139107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000020A JP2013139107A (en) 2012-01-04 2012-01-04 Laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000020A JP2013139107A (en) 2012-01-04 2012-01-04 Laminate

Publications (1)

Publication Number Publication Date
JP2013139107A true JP2013139107A (en) 2013-07-18

Family

ID=49037038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000020A Pending JP2013139107A (en) 2012-01-04 2012-01-04 Laminate

Country Status (1)

Country Link
JP (1) JP2013139107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047716A1 (en) * 2015-09-15 2017-03-23 大日本印刷株式会社 Radio wave-transmitting infrared-reflecting laminate and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047716A1 (en) * 2015-09-15 2017-03-23 大日本印刷株式会社 Radio wave-transmitting infrared-reflecting laminate and method for producing same

Similar Documents

Publication Publication Date Title
KR101843302B1 (en) Infrared reflecting substrate and method for producing same
KR101918425B1 (en) Infrared-reflecting film
WO2016021532A1 (en) Infrared reflecting substrate
JP5859476B2 (en) Infrared reflective film
KR102500410B1 (en) Anti-reflective coated glass article
WO2014119683A1 (en) Method for producing infrared radiation reflecting film
WO2014119668A1 (en) Production method for infrared radiation reflecting film
WO2011062084A1 (en) Infrared ray reflective substrate
BR112019012722A2 (en) low emissivity coating for a glass substrate
KR101788368B1 (en) Low-emissivity coating film, method for preparing the same and functional building material for windows comprising the same
WO2016117436A1 (en) Multilayer laminated circuit board
KR20150026256A (en) Low-emissivity coat and building material for window including the same
JP2008233667A (en) Antireflection film and polarizing plate
JP2011037255A (en) Laminate
JP2008268328A (en) Reflection preventing film and polarizing plate using the same
JP2009226918A (en) Laminate
JP6163196B2 (en) Infrared reflective film
JP2008221732A (en) Laminate
JPWO2019004199A1 (en) Transparent heat insulating and heat insulating member and method for manufacturing the same
JP2013139107A (en) Laminate
JP5766172B2 (en) Heat ray shielding film
JP4404350B2 (en) Laminated body
JP2009202379A (en) Laminated body
WO2019216318A1 (en) Transparent heat-shielding/heat-insulating member and method for manufacturing same
JP6546461B2 (en) Transparent insulation material and method for manufacturing the same