JP2013136500A - Apparatus and method for producing trichlorosilane - Google Patents

Apparatus and method for producing trichlorosilane Download PDF

Info

Publication number
JP2013136500A
JP2013136500A JP2012170437A JP2012170437A JP2013136500A JP 2013136500 A JP2013136500 A JP 2013136500A JP 2012170437 A JP2012170437 A JP 2012170437A JP 2012170437 A JP2012170437 A JP 2012170437A JP 2013136500 A JP2013136500 A JP 2013136500A
Authority
JP
Japan
Prior art keywords
heat medium
steam
trichlorosilane
heat
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012170437A
Other languages
Japanese (ja)
Other versions
JP5900224B2 (en
Inventor
Naruto Ono
成人 大野
Takamasa Yasukawa
隆昌 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012170437A priority Critical patent/JP5900224B2/en
Publication of JP2013136500A publication Critical patent/JP2013136500A/en
Application granted granted Critical
Publication of JP5900224B2 publication Critical patent/JP5900224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a heat energy loss by recovering efficiently heat generated in a reactor and utilizing the heat effectively for production of trichlorosilane.SOLUTION: In this apparatus having a reactor 2 for fluidizing ad reacting metal silicon powder Si with hydrogen chloride gas HCl, and a distillation column 3 for distilling crude trichlorosilane generated by the reaction, the reactor 2 is provided with a heating medium circulation pipe 6 through which the heating medium is circulated via the reactor 2, and a steam generator 8 for heating water by the heating medium acquiring a high temperature by absorbing heat in the reactor 2 to thereby generate steam is connected to the heating medium circulation pipe 6, and steam transport pipe 26 for utilizing steam as a heat source for the distillation column 3 is connected to the steam generator 8.

Description

本発明は、金属シリコン粉末と塩化水素ガスとを反応させてトリクロロシランを製造するトリクロロシラン製造装置及び製造方法に関する。   The present invention relates to a trichlorosilane production apparatus and production method for producing trichlorosilane by reacting metal silicon powder with hydrogen chloride gas.

半導体材料等に用いられる多結晶シリコンは、例えば、トリクロロシラン(三塩化珪素:SiHCl3:TCS)と水素を原料とし、この混合ガスを赤熱したシリコン棒に接触させ、高温下のトリクロロシランの水素還元や熱分解によってシリコン棒表面にシリコンを析出させる方法(シーメンス法)によって主に製造されている。また、上記トリクロロシランは、例えば、金属シリコン粉末と塩化水素ガスとを流動式の反応炉に導入して反応させ、シリコンを塩素化して粗トリクロロシランを生成させ、これを蒸留精製して高純度のトリクロロシランにしたものが用いられている。 Polycrystalline silicon used as a semiconductor material, for example, is made of trichlorosilane (silicon trichloride: SiHCl 3 : TCS) and hydrogen as raw materials, and this mixed gas is brought into contact with a red hot silicon rod, so that hydrogen of trichlorosilane at a high temperature is obtained. It is mainly manufactured by a method (Siemens method) in which silicon is deposited on the surface of a silicon rod by reduction or thermal decomposition. In addition, the above-mentioned trichlorosilane is obtained by, for example, introducing metal silicon powder and hydrogen chloride gas into a flow type reaction furnace and reacting them to chlorinate silicon to produce crude trichlorosilane, which is purified by distillation. The one made of trichlorosilane is used.

このトリクロロシランを製造するための装置として、例えば特許文献1や特許文献2に示されるものがある。これらトリクロロシラン製造装置は、反応炉の底部に金属シリコン粉末と塩化水素ガスとを導入し、反応炉内の金属シリコン粉末を塩化水素ガスによって流動させながら反応させ、生成した粗トリクロロシランを反応炉の上部から取り出すようになっている。この金属シリコン粉末と塩化水素ガスとの反応は発熱を伴うため、反応炉内には、上下方向に沿って熱媒体を流通させる伝熱管が備えられ、反応炉内の熱を吸収して外部に排出するようにしている。   As an apparatus for producing this trichlorosilane, for example, there are apparatuses shown in Patent Document 1 and Patent Document 2. These trichlorosilane production devices introduce metal silicon powder and hydrogen chloride gas into the bottom of the reactor, react the metal silicon powder in the reactor while flowing with hydrogen chloride gas, and generate the generated crude trichlorosilane. It comes to take out from the upper part of. Since the reaction between the metal silicon powder and the hydrogen chloride gas is accompanied by heat generation, the reaction furnace is provided with a heat transfer tube for circulating a heat medium along the vertical direction, and absorbs the heat in the reaction furnace to the outside. It is trying to discharge.

特開平8−59221号公報JP-A-8-59221 特開2010−189256号公報JP 2010-189256 A

ところで、伝熱管内を流通した熱媒体は冷却器等によって温度調整されることで循環使用されるが、例えば熱媒体の熱を吸収して高温になった冷却媒体はクーリングタワー等に送られ、その熱は通常は放散され、他に利用されることはなかった。   By the way, the heat medium that circulates in the heat transfer tube is circulated and used by adjusting the temperature by a cooler or the like. For example, the cooling medium that has become a high temperature by absorbing the heat of the heat medium is sent to a cooling tower or the like. The heat was normally dissipated and not otherwise utilized.

本発明は、このような事情に鑑みてなされたもので、反応炉内で発生した熱を効率よく回収し、トリクロロシラン製造のために有効活用して熱エネルギーのロスを低減することを目的とする。   The present invention was made in view of such circumstances, and aims to efficiently recover the heat generated in the reaction furnace and effectively use it for the production of trichlorosilane to reduce the loss of heat energy. To do.

本発明のトリクロロシラン製造装置は、金属シリコン粉末を塩化水素ガスによって流動させながら反応させる反応炉と、この反応により生成された粗トリクロロシランを蒸留する蒸留塔とを有し、前記反応炉に、該反応炉内を経由して熱媒体が循環流通する熱媒流通管が設けられ、該熱媒流通管に、前記反応炉内の熱を吸収して高温になった熱媒体により水を加熱して蒸気を発生する蒸気発生器が接続され、該蒸気発生器に、前記蒸気を前記蒸留塔の熱源として利用する蒸気輸送管が接続されていることを特徴とする。
反応炉内で発生した熱を蒸留塔の熱源として利用するものであり、トリクロロシラン製造装置全体としての熱エネルギーロスを低減することができる。蒸留塔としては、塔底を蒸気で直接加熱する方式、リボイラを蒸気により加熱する方式のいずれにも適用でき、その蒸気を蒸気発生器から供給する。
The trichlorosilane production apparatus of the present invention comprises a reaction furnace for reacting metal silicon powder while flowing with hydrogen chloride gas, and a distillation column for distilling crude trichlorosilane produced by this reaction. A heat medium circulation pipe through which the heat medium circulates through the reaction furnace is provided, and water is heated in the heat medium circulation pipe by absorbing the heat in the reaction furnace to a high temperature. A steam generator that generates steam is connected to the steam generator, and a steam transport pipe that uses the steam as a heat source of the distillation column is connected to the steam generator.
The heat generated in the reaction furnace is used as a heat source for the distillation tower, and the thermal energy loss of the entire trichlorosilane production apparatus can be reduced. The distillation tower can be applied to either a system in which the bottom of the tower is directly heated with steam or a system in which the reboiler is heated with steam, and the steam is supplied from a steam generator.

本発明のトリクロロシラン製造装置において、前記熱媒流通管に、さらに冷却器が接続されるとともに、前記蒸気発生器及び前記冷却器への熱媒体の流通量を制御する熱媒流通量制御手段が設けられ、前記蒸気発生器には、蒸気源としての水の水位のレベル制御を行う水位レベル制御手段が設けられているとよい。   In the trichlorosilane production apparatus of the present invention, a heat medium flow rate control means for controlling a flow rate of the heat medium to the steam generator and the cooler while further connecting a cooler to the heat medium flow tube. The steam generator may be provided with water level control means for controlling the level of water level as a steam source.

反応炉内の熱は、供給される原料、特に塩化水素ガスの量によって変動する。熱媒流通管内を流通する熱媒体は、熱媒流通量制御手段により蒸気発生器や冷却器への流通量が制御されることにより、反応炉内を例えば300℃程度に維持するように制御される。反応炉から送り出された熱媒体の温度は蒸気発生器を経由することにより低下するが、その温度低下を大きくしたい場合は蒸気発生器及び冷却器への流通量を多くして冷却する。逆に、温度低下を抑制したいときは、蒸気発生器及び冷却器への流通量を少なくする。このように、蒸気発生器及び冷却器への流通量を制御することにより、熱媒体の温度を制御して反応炉内の温度を適切に管理することができる。
一方、蒸気発生器で発生した蒸気の圧力制御を行うことにより、蒸留塔に送られる蒸気の品質(圧力及び温度)をほぼ一定に維持することができる。
The heat in the reactor varies depending on the amount of raw material supplied, particularly hydrogen chloride gas. The heat medium flowing in the heat medium flow pipe is controlled to maintain the inside of the reaction furnace at, for example, about 300 ° C. by controlling the flow amount to the steam generator and the cooler by the heat medium flow amount control means. The Although the temperature of the heat medium sent out from the reaction furnace is lowered by passing through the steam generator, when it is desired to increase the temperature drop, cooling is performed by increasing the circulation amount to the steam generator and the cooler. Conversely, when it is desired to suppress the temperature drop, the amount of circulation to the steam generator and the cooler is reduced. As described above, by controlling the flow rate to the steam generator and the cooler, the temperature of the heat medium can be controlled to appropriately manage the temperature in the reaction furnace.
On the other hand, by controlling the pressure of the steam generated by the steam generator, the quality (pressure and temperature) of the steam sent to the distillation tower can be maintained almost constant.

本発明のトリクロロシラン製造方法は、金属シリコン粉末を反応炉内で塩化水素ガスによって流動させながら反応させ、粗トリクロロシランを生成する粗トリクロロシラン生成工程と、生成された粗トリクロロシランを蒸留操作により純度を高める蒸留工程とを備えるトリクロロシラン製造方法であって、前記反応炉内を経由して熱媒体を循環流通させておき、該反応炉内の熱を吸収して高温になった熱媒体により蒸気発生器にて水を加熱して蒸気を発生させ、その蒸気を前記蒸留工程の熱源として利用することを特徴とする。   The method for producing trichlorosilane according to the present invention comprises a step of reacting metal silicon powder while flowing with hydrogen chloride gas in a reaction furnace to produce crude trichlorosilane, and a distillation operation for the produced crude trichlorosilane. A method for producing trichlorosilane comprising a distillation step for increasing purity, wherein a heat medium is circulated through the reaction furnace, and the heat medium absorbed by the heat in the reaction furnace is heated to a high temperature. Water is heated with a steam generator to generate steam, and the steam is used as a heat source for the distillation step.

本発明によれば、反応炉で粗トリクロロシランを製造しながら、その反応熱により蒸気を発生させ、その蒸気を粗トリクロロシランの蒸留の熱源として利用しており、熱エネルギーロスを低減して効率的にトリクロロシランを製造することができる。   According to the present invention, while producing crude trichlorosilane in a reaction furnace, steam is generated by the reaction heat, and the steam is used as a heat source for distillation of the crude trichlorosilane, thereby reducing thermal energy loss and improving efficiency. In particular, trichlorosilane can be produced.

本発明に係るトリクロロシラン製造装置の一実施形態を示す全体構成図である。It is a whole lineblock diagram showing one embodiment of a trichlorosilane manufacturing device concerning the present invention. 本発明に係るトリクロロシラン製造装置の他の実施形態を示す全体構成図である。It is a whole block diagram which shows other embodiment of the trichlorosilane manufacturing apparatus which concerns on this invention.

以下、本発明に係るトリクロロシラン製造装置及び製造方法の実施形態を図面を参照しながら説明する。
一実施形態のトリクロロシラン製造装置1は、図1に示すように、金属シリコン粉末Siと塩化水素ガスHClとを供給して、金属シリコン粉末Siを塩化水素ガスHClによって流動させながら反応させる反応炉2と、この反応により生成された粗トリクロロシランを蒸留する蒸留塔3とが備えられている。なお、蒸留塔3で得られた高純度のトリクロロシランは、気化器4で気化された後、水素と混合され、水素との混合ガスとして多結晶シリコンの原料とされ、多結晶シリコン析出炉5に供給されることにより、赤熱したシリコン棒Sの表面に多結晶シリコンPを析出する。
Hereinafter, embodiments of a trichlorosilane production apparatus and production method according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, a trichlorosilane production apparatus 1 of one embodiment supplies a metal silicon powder Si and a hydrogen chloride gas HCl, and reacts the metal silicon powder Si while flowing with the hydrogen chloride gas HCl. 2 and a distillation column 3 for distilling the crude trichlorosilane produced by this reaction. The high-purity trichlorosilane obtained in the distillation column 3 is vaporized in the vaporizer 4 and then mixed with hydrogen to be used as a raw material for polycrystalline silicon as a mixed gas with hydrogen. , The polycrystalline silicon P is deposited on the surface of the red hot silicon rod S.

反応炉2は、金属シリコン粉末Siがキャリアガス(塩化水素ガス)により気力輸送されて供給され、底部に供給された塩化水素ガスHClが所定のノズル(図示略)を通して上方に向けて噴出することにより、金属シリコン粉末Siが流動しながら塩化水素ガスHClと反応して粗トリクロロシランが生成される構成である。   In the reactor 2, the metal silicon powder Si is supplied by being pneumatically transported by a carrier gas (hydrogen chloride gas), and the hydrogen chloride gas HCl supplied to the bottom is jetted upward through a predetermined nozzle (not shown). Thus, the metal silicon powder Si reacts with the hydrogen chloride gas HCl while flowing to produce crude trichlorosilane.

また、この反応炉2には、その内部を経由して熱媒体が循環流通する熱媒流通管6が接続されている。この熱媒流通管6は、多数本が並列に分岐して反応炉2の内部に設けられるとともに、反応炉2の外部では、二つに分岐され、ヒータ7と、蒸気発生器8及び冷却器9とに接続されている。蒸気発生器8及び冷却器9は直列に接続されているが、それぞれにバイパス管10,11が並列に接続されている。ヒータ7は、反応炉2の運転初期等において反応炉2内部を必要な温度まで上昇させるために熱媒体を加熱するものであり、冷却器9は、熱媒体を冷却して温度を低下させるためのものであり、蒸気発生器8は、熱媒体により水を加熱して蒸気を発生するためのものである。バイパス管10,11は、蒸気発生器8及び冷却器9のそれぞれに設けられており、バイパス管10,11のそれぞれに弁12,13が設けられ、これらの弁12,13及び後述する弁29,30の開度を調整することにより、蒸気発生器8及び冷却器9へ導入される熱媒体の流通量を制御することができるようになっている。また、ヒータ7にも、熱媒体の流通量を制御する弁14が設けられている。蒸気発生器8の後ろには弁29が設けられ、この弁29と弁12による熱媒体の流量の制御により、蒸気発生器8での蒸気量を制御できる。また、冷却器9の後ろには弁30が設けられ、この弁30と弁13,14による熱媒体の流通量を制御により、反応炉2に送られる熱媒体の温度を制御することができる。
図1の符号15,16は熱媒流通管6内を流通する熱媒体の温度を計測する温度計を示しており、その計測結果により弁の開度が制御される。蒸気発生器8の出口部(蒸気発生器8と冷却器9との間)に設けられている温度計15は、その計測結果によりバイパス管10の弁12、および弁29の開度が制御され、蒸気発生器8に流通する熱媒体の流通量を制御する。また、温度計16の計測結果により、バイパス管11の弁13および弁30の開度が制御される。この実施形態では、熱媒流通量制御手段は、各バイパス管10,11、弁12,13,29,30及び温度計15,16によって構成される。
なお、符号17は熱媒体を圧送するポンプである。
The reaction furnace 2 is connected to a heat medium circulation pipe 6 through which the heat medium circulates and circulates. The heat medium flow pipe 6 is branched in parallel and provided inside the reaction furnace 2, and is branched into two outside the reaction furnace 2, and includes a heater 7, a steam generator 8, and a cooler. 9 is connected. Although the steam generator 8 and the cooler 9 are connected in series, the bypass pipes 10 and 11 are connected in parallel to each other. The heater 7 heats the heat medium in order to raise the inside of the reaction furnace 2 to a necessary temperature in the initial stage of operation of the reaction furnace 2, and the cooler 9 cools the heat medium and lowers the temperature. The steam generator 8 is for generating steam by heating water with a heat medium. The bypass pipes 10 and 11 are provided in each of the steam generator 8 and the cooler 9, and valves 12 and 13 are provided in the bypass pipes 10 and 11, respectively. , 30 can be adjusted to control the flow rate of the heat medium introduced into the steam generator 8 and the cooler 9. The heater 7 is also provided with a valve 14 for controlling the flow rate of the heat medium. A valve 29 is provided behind the steam generator 8, and the amount of steam in the steam generator 8 can be controlled by controlling the flow rate of the heat medium using the valve 29 and the valve 12. Further, a valve 30 is provided behind the cooler 9, and the temperature of the heat medium sent to the reaction furnace 2 can be controlled by controlling the flow rate of the heat medium through the valve 30 and the valves 13 and 14.
Reference numerals 15 and 16 in FIG. 1 denote thermometers for measuring the temperature of the heat medium flowing through the heat medium flow pipe 6, and the opening degree of the valve is controlled based on the measurement result. The thermometer 15 provided at the outlet of the steam generator 8 (between the steam generator 8 and the cooler 9) controls the opening degree of the valve 12 and the valve 29 of the bypass pipe 10 according to the measurement result. The flow rate of the heat medium flowing through the steam generator 8 is controlled. Further, the opening degree of the valve 13 and the valve 30 of the bypass pipe 11 is controlled by the measurement result of the thermometer 16. In this embodiment, the heat medium flow rate control means is constituted by the bypass pipes 10, 11, valves 12, 13, 29, 30 and thermometers 15, 16.
Reference numeral 17 denotes a pump that pumps the heat medium.

蒸気発生器8は、内部に水Wが貯留され、その水Wの中に浸漬状態に熱媒流通管6が設けられている。内部に貯留される水Wは、例えば、工業用水が水供給管21によって供給される。蒸気発生器8内には水Wの水位を検出するために液面計22が設けられるとともに、水供給管21に弁23が設けられており、液面計22によって検出される蒸気発生器8内の水Wの水位に応じて弁23の開閉が制御されることにより、蒸気発生器8内の水Wの水位が所定の範囲に維持されるようにレベル制御される。この実施形態では、これら弁23及び液面計22により本発明の水位レベル制御手段が構成される。符号24は水供給管21に設けられたポンプであり、符号25は蒸気発生器8からの排水管である。   The steam generator 8 stores water W therein, and the heat medium flow pipe 6 is provided in the water W so as to be immersed therein. As the water W stored inside, for example, industrial water is supplied by the water supply pipe 21. In the steam generator 8, a liquid level gauge 22 is provided for detecting the water level of the water W, and a valve 23 is provided in the water supply pipe 21, and the steam generator 8 detected by the liquid level gauge 22. The level of the water W in the steam generator 8 is controlled so as to be maintained within a predetermined range by controlling the opening and closing of the valve 23 in accordance with the water level of the water W inside. In this embodiment, the valve 23 and the liquid level gauge 22 constitute the water level control means of the present invention. Reference numeral 24 is a pump provided in the water supply pipe 21, and reference numeral 25 is a drain pipe from the steam generator 8.

蒸気発生器8において発生した蒸気は、所定の温度、圧力(例えば120〜145℃で0.1〜0.3MPaG)になると蒸気輸送管26に導出され、圧力調整弁27によって所定圧力に調整された後に蒸留塔3に送られる。
蒸留塔3は、図示例では塔底にリボイラ28が接続されており、蒸気輸送管26はこのリボイラ28内を経由するように設置され、リボイラ28内で塔底液を加熱するようになっている。
When the steam generated in the steam generator 8 reaches a predetermined temperature and pressure (for example, 0.1 to 0.3 MPaG at 120 to 145 ° C.), the steam is led to the steam transport pipe 26 and adjusted to a predetermined pressure by the pressure adjustment valve 27. After that, it is sent to the distillation column 3.
In the illustrated example, the distillation tower 3 has a reboiler 28 connected to the bottom of the tower, and the steam transport pipe 26 is installed so as to pass through the reboiler 28, and the bottom liquid is heated in the reboiler 28. Yes.

このように構成されたトリクロロシラン製造装置1において、多結晶シリコン析出炉5に供給するトリクロロシランを製造する場合、反応炉2内に金属シリコン粉末Siと塩化水素ガスHClとを供給して、これらを流動させながら反応させ、粗トリクロロシランを生成し(粗トリクロロシラン生成工程)、得られた粗トリクロロシランを蒸留塔3において蒸留操作により高純度のトリクロロシランを製造する(蒸留工程)。
以下、これらの工程を詳細に説明する。
In the trichlorosilane production apparatus 1 configured as described above, when producing trichlorosilane to be supplied to the polycrystalline silicon precipitation furnace 5, metal silicon powder Si and hydrogen chloride gas HCl are supplied into the reaction furnace 2, To produce crude trichlorosilane (crude trichlorosilane production step), and the resulting crude trichlorosilane is distilled in the distillation tower 3 to produce high-purity trichlorosilane (distillation step).
Hereinafter, these steps will be described in detail.

粗トリクロロシラン生成工程において、反応炉2に熱媒体を循環させておき、ヒータ7で熱媒体を昇温させる。温度計15で熱媒体の温度を確認しながら、徐々に反応炉2の温度を上昇させる。
反応炉2の運転初期は、弁14が開かれるとともに、他の弁12,13,29,30の開閉制御により熱媒流通管6はヒータ7への流路が接続されており、ヒータ7で加熱された高温の熱媒体が流通することにより、反応炉2内部を金属シリコン粉末Siと塩化水素ガスHClとの反応に必要な温度(例えば300℃)まで加熱する。これら金属シリコン粉末Siと塩化水素ガスHClとの反応が開始すると、徐々に発熱を伴うので、ヒータ7に通じる弁14が閉じられるとともに、他の弁12,13,29,30の開閉が段階的に制御される。
まず、反応炉2内の温度が一定範囲内に達すると、反応が開始されるため、炉内温度が上昇するようになり、それとともに熱媒体の温度も上昇する傾向になるため、温度計15で熱媒体の温度推移を確認し、弁12及び弁30を開放して冷却器9に熱媒体を通し、熱媒体の温度を安定化させるとともに、反応炉2内の温度を所定の温度範囲内に入るように温度計15の計測値に基づき、弁13,30の開度を調整することで、熱媒体の温度を調整し、安定化させる。冷却器9で冷却された熱媒体は、反応炉2の冷媒として使用するため、反応炉2に導かれる。
In the crude trichlorosilane production step, the heat medium is circulated in the reaction furnace 2 and the temperature of the heat medium is raised by the heater 7. While confirming the temperature of the heat medium with the thermometer 15, the temperature of the reaction furnace 2 is gradually raised.
In the initial operation of the reaction furnace 2, the valve 14 is opened and the flow path to the heater 7 is connected to the heater 7 by opening / closing control of the other valves 12, 13, 29, 30. When the heated high-temperature heat medium flows, the inside of the reaction furnace 2 is heated to a temperature (for example, 300 ° C.) necessary for the reaction between the metal silicon powder Si and the hydrogen chloride gas HCl. When the reaction between the metal silicon powder Si and the hydrogen chloride gas HCl starts, heat is gradually generated, so that the valve 14 leading to the heater 7 is closed and the other valves 12, 13, 29, 30 are opened and closed stepwise. Controlled.
First, when the temperature in the reaction furnace 2 reaches a certain range, the reaction is started, so that the temperature in the furnace rises and the temperature of the heat medium tends to rise at the same time. The temperature transition of the heat medium is confirmed, the valve 12 and the valve 30 are opened, the heat medium is passed through the cooler 9, the temperature of the heat medium is stabilized, and the temperature in the reaction furnace 2 is kept within a predetermined temperature range. The temperature of the heat medium is adjusted and stabilized by adjusting the opening degree of the valves 13 and 30 based on the measured value of the thermometer 15 so as to enter. The heat medium cooled by the cooler 9 is guided to the reaction furnace 2 for use as a refrigerant in the reaction furnace 2.

この場合、熱媒体の温度は熱媒流通管6に設けられた温度計15,16により検知されており、反応炉2内の温度を300℃前後(例えば290〜310℃)に維持するように制御される。反応炉2内の温度は、供給される原料、特に塩化水素ガスHClの量によって変動する。このため熱媒体の温度も変動するが、その温度が下がり過ぎていない場合は、熱媒体は蒸気発生器8に導かれる。
このとき、温度計15,16の温度を確認しながら、弁29を徐々に開放し、温度の急激な変化がないように、開度を調整する。この際、反応炉2に入る熱媒体の温度が所定の温度範囲内になっていることを確認しながら開度を調整する。この場合、弁29を開放した分だけ弁12を閉めるようにしてもよい。
蒸気発生器8には、水供給管21から供給される水Wが貯留されており、水中に浸漬されている熱媒流通管6により水が加熱され、蒸気が発生する。前述したように、この蒸気発生器8内で発生する蒸気は所定の温度、圧力になると蒸気輸送管26に導出され、蒸留塔3に送られる。
温度計15,16での計測温度が安定してきたら(温度計16の計測温度が温度計15の計測温度に近づいてきたら)、温度計16での設定値を設け、両温度計15,16の計測温度の温度差が一定以下(例えば、5℃以下)になるように、弁30、弁13または弁29、弁12の開度を調整して安定した熱媒体の流通を行う。
In this case, the temperature of the heat medium is detected by thermometers 15 and 16 provided in the heat medium flow pipe 6 so that the temperature in the reaction furnace 2 is maintained at around 300 ° C. (for example, 290 to 310 ° C.). Be controlled. The temperature in the reaction furnace 2 varies depending on the amount of raw material supplied, particularly hydrogen chloride gas HCl. For this reason, the temperature of the heat medium also fluctuates, but when the temperature is not too low, the heat medium is guided to the steam generator 8.
At this time, while checking the temperature of the thermometers 15 and 16, the valve 29 is gradually opened, and the opening degree is adjusted so that there is no sudden change in temperature. At this time, the opening degree is adjusted while confirming that the temperature of the heat medium entering the reaction furnace 2 is within a predetermined temperature range. In this case, the valve 12 may be closed as much as the valve 29 is opened.
The steam generator 8 stores water W supplied from the water supply pipe 21, and water is heated by the heat medium flow pipe 6 immersed in the water to generate steam. As described above, when the steam generated in the steam generator 8 reaches a predetermined temperature and pressure, it is led out to the steam transport pipe 26 and sent to the distillation column 3.
When the temperature measured by the thermometers 15 and 16 becomes stable (when the temperature measured by the thermometer 16 approaches the temperature measured by the thermometer 15), a set value for the thermometer 16 is provided. A stable heat medium is circulated by adjusting the opening of the valve 30, the valve 13 or the valve 29, or the valve 12 so that the temperature difference between the measured temperatures is less than a certain value (for example, 5 ° C. or less).

熱媒流通管6内を流通する熱媒体が高温になり過ぎる場合は、蒸気発生器8及び冷却器9のバイパス管10,11に設けられている弁12,13の開度が小さくなるように調整され、蒸気発生器8と冷却器9の出口側の弁(弁29,30)の開度が大きくなるように調整され、熱媒体は蒸気発生器8及び冷却器9に送られ冷却される。熱媒体の温度が下がると、冷却器9のバイパス管11に設けられている弁13の開度が大きくなるように、弁30の開度が小さくなるようにそれぞれ調整される。また、蒸気発生器8のバイパス管10に設けられている弁12、弁29の開度も適宜調整される。蒸気発生器8と冷却器9との熱媒体の流通比率は、蒸気発生器8の出口部の温度計15及び冷却器9出口以降の温度計16の検出結果に基づいて制御される。
また、冷却器9の温度調整やそれに伴う温度変動などで熱媒体の温度が設定温度より下がり過ぎるような場合は、バイパス管11の弁13の開度を大きくするなどの調整を断続的に行い、反応炉内温度を所定温度範囲内に維持するように熱媒体の流量を制御する。
When the heat medium flowing through the heat medium flow pipe 6 becomes too high, the opening degree of the valves 12 and 13 provided in the bypass pipes 10 and 11 of the steam generator 8 and the cooler 9 is reduced. It is adjusted so that the opening degree of the valves (valves 29, 30) on the outlet side of the steam generator 8 and the cooler 9 is increased, and the heat medium is sent to the steam generator 8 and the cooler 9 to be cooled. . When the temperature of the heat medium is lowered, the opening degree of the valve 30 is adjusted so that the opening degree of the valve 13 provided in the bypass pipe 11 of the cooler 9 is increased. Moreover, the opening degree of the valve 12 and the valve 29 provided in the bypass pipe 10 of the steam generator 8 is also adjusted as appropriate. The distribution ratio of the heat medium between the steam generator 8 and the cooler 9 is controlled based on the detection results of the thermometer 15 at the outlet of the steam generator 8 and the thermometer 16 after the cooler 9 outlet.
Further, when the temperature of the heat medium is excessively lower than the set temperature due to temperature adjustment of the cooler 9 or accompanying temperature fluctuation, adjustment such as increasing the opening of the valve 13 of the bypass pipe 11 is performed intermittently. The flow rate of the heat medium is controlled so as to maintain the reaction furnace temperature within a predetermined temperature range.

このようにして、蒸気発生器8、冷却器9、バイパス管10,11への熱媒体の流通を制御しながら、反応炉2内の温度を所定温度範囲に維持して金属シリコン粉末Siと塩化水素ガスHClとを安定的に反応させ、粗トリクロロシランを製造し、一方、その際の熱を利用して蒸気発生器8において蒸気を発生する。この場合、蒸気発生器8への熱媒体の流通量が変動するので、蒸気発生器8の液面を液面計22によって監視しながら、水供給管21からの供給水量を調整することにより、蒸気量を調節することができる。
そして、粗トリクロロシランは蒸留塔3において蒸留され(蒸留工程)、その際の熱源として蒸気発生器8で発生した蒸気が用いられ、蒸留されて純度が高められたトリクロロシランは、多結晶シリコン析出炉5に供給されて多結晶シリコンPの製造に供される。
In this way, while controlling the flow of the heat medium to the steam generator 8, the cooler 9, and the bypass pipes 10, 11, the temperature in the reaction furnace 2 is maintained within a predetermined temperature range and the metal silicon powder Si and the chloride are maintained. Hydrogen gas HCl is allowed to react stably to produce crude trichlorosilane, while steam is generated in the steam generator 8 using the heat at that time. In this case, since the flow rate of the heat medium to the steam generator 8 fluctuates, by adjusting the amount of water supplied from the water supply pipe 21 while monitoring the liquid level of the steam generator 8 with the liquid level gauge 22, The amount of steam can be adjusted.
The crude trichlorosilane is distilled in the distillation tower 3 (distillation step), and the steam generated in the steam generator 8 is used as a heat source at that time. It is supplied to the furnace 5 and used for the production of polycrystalline silicon P.

以上説明したように、このトリクロロシラン製造装置1は、反応炉2で粗トリクロロシランを製造しながら、反応炉2内で発生する熱を回収し、その熱を利用して蒸気を発生させ、その蒸気を後工程の蒸留塔3において利用することにより、粗トリクロロシランを蒸留して純度を高め、高純度のトリクロロシランを製造するものであり、反応炉2で生じた熱を後工程において有効に活用し、熱エネルギーロスを低減して効率的にトリクロロシランを製造することができる。   As described above, the trichlorosilane production apparatus 1 recovers heat generated in the reaction furnace 2 while producing crude trichlorosilane in the reaction furnace 2, generates steam using the heat, By using the steam in the distillation column 3 in the post-process, the crude trichlorosilane is distilled to increase the purity, and high-purity trichlorosilane is produced. The heat generated in the reactor 2 is effectively used in the post-process. Utilizing it, it is possible to efficiently produce trichlorosilane with reduced thermal energy loss.

図2は、複数の反応炉を有するトリクロロシラン製造装置の実施形態の一例を示している。本実施形態では、先の一実施形態と共通要素に同一符号を付して説明を簡略化する。また、図2においては、蒸留塔、多結晶シリコン析出炉など、一部の構成要素を省略しており、省略した部分については一実施形態のものと同様である。
このトリクロロシラン製造装置51においては、各反応炉2と、一つの蒸気発生器8との間が熱媒流通管6により並列状態に接続され、各熱媒流通管6に、蒸気発生器8に対して並列状態のヒータ7と、蒸気発生器8に直列状態の冷却器9とが設けられ、蒸気発生器8及び冷却器9にそれぞれバイパス管10,11が接続されている。
FIG. 2 shows an example of an embodiment of a trichlorosilane production apparatus having a plurality of reaction furnaces. In the present embodiment, the same reference numerals are assigned to common elements as in the previous embodiment, and the description is simplified. Moreover, in FIG. 2, some components, such as a distillation tower and a polycrystalline silicon precipitation furnace, are abbreviate | omitted, About the omitted part, it is the same as that of one Embodiment.
In this trichlorosilane manufacturing apparatus 51, each reaction furnace 2 and one steam generator 8 are connected in parallel by a heat medium flow pipe 6, and each heat medium flow pipe 6 is connected to the steam generator 8. On the other hand, a heater 7 in parallel and a cooler 9 in series with the steam generator 8 are provided, and bypass pipes 10 and 11 are connected to the steam generator 8 and the cooler 9, respectively.

この実施形態の場合も、図1の実施形態と同様な方法で操作されるが、2系統の反応炉に対して一系統ずつ操作して安定させる。そして、これら反応炉2で発生した熱を効率よく回収し、トリクロロシラン製造のために有効活用して、熱エネルギーのロスを低減することができる。   This embodiment is also operated in the same manner as in the embodiment of FIG. 1, but is operated and stabilized one by one for the two reactors. And the heat generated in these reactors 2 can be efficiently recovered and effectively used for the production of trichlorosilane, and the loss of thermal energy can be reduced.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、リボイラを備える蒸留塔を示したが、蒸気により蒸留塔の釜底を直接加熱するようにしてもよい。
また、蒸気発生量の変動に伴い、外部からの蒸気を蒸気輸送管に導入する形を構成して、安定した蒸気を蒸留塔へ送る方法を用いてもよい。また、蒸気発生量変動に伴い、複数の反応炉の熱媒体を蒸気発生器に供給する形を構成させて、安定した蒸気を蒸留塔へ送る方法を用いてもよい。
また、蒸気発生器8と冷却器9との熱媒流量比率は、蒸気発生器8の出口部の温度計15及び冷却器9の出口以降の温度計16の検出結果に基づいて制御されるとしたが、温度計15と16の予め設定された温度または、温度範囲によって制御させるようにしてもよい。
また、蒸留塔、リボイラー、蒸気発生器でのドレンを蒸気の水源として用いてもよい。
また、蒸気発生器8においては、弁12,13,29,30にて熱媒体の流通量を制御することで蒸気発生器8内での蒸気発生量も変動するが、蒸気発生器8の水位レベルの単位時間当たりの変化量を液面計22で監視し、その結果を熱媒体の流通量の制御に反映させる方法を用いてもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, although the distillation tower provided with the reboiler was shown in the said embodiment, you may make it heat the bottom of a distillation tower directly with a vapor | steam.
Further, a method may be used in which a form in which steam from the outside is introduced into the steam transport pipe in accordance with fluctuations in the amount of steam generated, and stable steam is sent to the distillation tower. In addition, a method may be used in which the heat medium of a plurality of reactors is supplied to the steam generator in accordance with fluctuations in the amount of steam generated, and stable steam is sent to the distillation tower.
Further, when the heat medium flow rate ratio between the steam generator 8 and the cooler 9 is controlled based on the detection results of the thermometer 15 at the outlet of the steam generator 8 and the thermometer 16 after the outlet of the cooler 9. However, the temperature may be controlled by the preset temperature or temperature range of the thermometers 15 and 16.
In addition, drain in a distillation column, reboiler, or steam generator may be used as a steam water source.
In the steam generator 8, the amount of steam generated in the steam generator 8 also varies by controlling the flow rate of the heat medium with the valves 12, 13, 29, and 30. A method of monitoring the amount of change per unit time of the level with the liquid level gauge 22 and reflecting the result in the control of the flow rate of the heat medium may be used.

1 トリクロロシラン製造装置
2 反応炉
3 蒸留塔
4 気化器
5 多結晶シリコン析出炉
6 熱媒流通管
7 ヒータ
8 蒸気発生器
9 冷却器
10,11 バイパス管
12〜14 弁
15,16 温度計
17 ポンプ
21 水供給管
22 液面計
23 弁
24 ポンプ
25 排水管
26 蒸気輸送管
27 圧力調整弁
28 リボイラ
29,30 弁
51 トリクロロシラン製造装置
DESCRIPTION OF SYMBOLS 1 Trichlorosilane production apparatus 2 Reactor 3 Distillation tower 4 Vaporizer 5 Polycrystalline silicon precipitation furnace 6 Heat-medium flow pipe 7 Heater 8 Steam generator 9 Cooler 10, 11 Bypass pipe 12-14 Valve 15, 16 Thermometer 17 Pump 21 Water supply pipe 22 Level gauge 23 Valve 24 Pump 25 Drain pipe 26 Steam transport pipe 27 Pressure control valve 28 Reboiler 29, 30 Valve 51 Trichlorosilane production equipment

Claims (3)

金属シリコン粉末を塩化水素ガスによって流動させながら反応させる反応炉と、この反応により生成された粗トリクロロシランを蒸留する蒸留塔とを有し、前記反応炉に、該反応炉内を経由して熱媒体が循環流通する熱媒流通管が設けられ、該熱媒流通管に、前記反応炉内の熱を吸収して高温になった熱媒体により水を加熱して蒸気を発生する蒸気発生器が接続され、該蒸気発生器に、前記蒸気を前記蒸留塔の熱源として利用する蒸気輸送管が接続されていることを特徴とするトリクロロシラン製造装置。   A reaction furnace for reacting metal silicon powder while flowing with hydrogen chloride gas; and a distillation column for distilling crude trichlorosilane produced by the reaction. The reactor is heated via the reaction furnace. A heat medium circulation pipe through which the medium circulates is provided, and a steam generator that generates steam by heating water with a heat medium that has absorbed the heat in the reaction furnace and has reached a high temperature is provided in the heat medium circulation pipe. An apparatus for producing trichlorosilane, wherein the apparatus is connected and a steam transport pipe that uses the steam as a heat source of the distillation column is connected to the steam generator. 前記熱媒流通管に、さらに冷却器が接続されるとともに、前記蒸気発生器及び前記冷却器への熱媒体の流通量を制御する熱媒流通量制御手段が設けられ、前記蒸気発生器には、蒸気源としての水の水位のレベル制御を行う水位レベル制御手段が設けられていることを特徴とする請求項1記載のトリクロロシラン製造装置。   The heat medium circulation pipe is further connected to a cooler, and is provided with a heat medium flow rate control means for controlling the flow rate of the heat medium to the steam generator and the cooler. The apparatus for producing trichlorosilane according to claim 1, further comprising a water level control means for controlling the level of water as a steam source. 金属シリコン粉末を反応炉内で塩化水素ガスによって流動させながら反応させ、粗トリクロロシランを生成する粗トリクロロシラン生成工程と、生成された粗トリクロロシランを蒸留操作により純度を高める蒸留工程とを備えるトリクロロシラン製造方法であって、前記反応炉内を経由して熱媒体を循環流通させておき、該反応炉内の熱を吸収して高温になった熱媒体により蒸気発生器にて水を加熱して蒸気を発生し、その蒸気を前記蒸留工程の熱源として利用することを特徴とするトリクロロシラン製造方法。   A trichlorosilane production step for reacting metal silicon powder with hydrogen chloride gas in a reaction furnace to produce crude trichlorosilane, and a distillation step for increasing the purity of the produced crude trichlorosilane by distillation operation. In the chlorosilane production method, a heat medium is circulated and circulated through the reaction furnace, and water is heated by a steam generator by the heat medium that has absorbed the heat in the reaction furnace and has become high temperature. A method for producing trichlorosilane, characterized in that the steam is generated and used as a heat source for the distillation step.
JP2012170437A 2011-11-30 2012-07-31 Trichlorosilane production apparatus and production method Active JP5900224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170437A JP5900224B2 (en) 2011-11-30 2012-07-31 Trichlorosilane production apparatus and production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011262141 2011-11-30
JP2011262141 2011-11-30
JP2012170437A JP5900224B2 (en) 2011-11-30 2012-07-31 Trichlorosilane production apparatus and production method

Publications (2)

Publication Number Publication Date
JP2013136500A true JP2013136500A (en) 2013-07-11
JP5900224B2 JP5900224B2 (en) 2016-04-06

Family

ID=48912598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170437A Active JP5900224B2 (en) 2011-11-30 2012-07-31 Trichlorosilane production apparatus and production method

Country Status (1)

Country Link
JP (1) JP5900224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017011A (en) * 2013-07-10 2015-01-29 三菱マテリアル株式会社 Chlorosilane manufacturing apparatus and chlorosilane manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110411A (en) * 1995-06-26 1997-04-28 General Electric Co <Ge> Method for passivating fine powder in organochlorosilane reactor and for recovering value from there
JP2008184378A (en) * 2007-01-31 2008-08-14 Osaka Titanium Technologies Co Ltd Method for producing high-purity trichlorosilane
JP2009007240A (en) * 2007-05-25 2009-01-15 Mitsubishi Materials Corp Method and apparatus for preparing trichlorosilane and method for preparing polycrystal silicon
JP2013023398A (en) * 2011-07-19 2013-02-04 Mitsubishi Materials Corp Apparatus for producing trichlorosilane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110411A (en) * 1995-06-26 1997-04-28 General Electric Co <Ge> Method for passivating fine powder in organochlorosilane reactor and for recovering value from there
JP2008184378A (en) * 2007-01-31 2008-08-14 Osaka Titanium Technologies Co Ltd Method for producing high-purity trichlorosilane
JP2009007240A (en) * 2007-05-25 2009-01-15 Mitsubishi Materials Corp Method and apparatus for preparing trichlorosilane and method for preparing polycrystal silicon
JP2013023398A (en) * 2011-07-19 2013-02-04 Mitsubishi Materials Corp Apparatus for producing trichlorosilane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017011A (en) * 2013-07-10 2015-01-29 三菱マテリアル株式会社 Chlorosilane manufacturing apparatus and chlorosilane manufacturing method

Also Published As

Publication number Publication date
JP5900224B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
US6827786B2 (en) Machine for production of granular silicon
KR100813131B1 (en) Method for sustainable preparation of polycrystalline silicon using fluidized bed reactor
JP5655429B2 (en) Polycrystalline silicon manufacturing method, manufacturing apparatus, and polycrystalline silicon
TWI430947B (en) Method for producing trichlorosilane, apparatus for producing trichlorosilane and method for producing polycrystal silicon
TWI434805B (en) Method and apparatus of manufacturing trichlorosilane and method of manufacturing polycrystal silicon
CN102862987B (en) For the method producing polysilicon
JP5648575B2 (en) Polycrystalline silicon production equipment
CN102498063B (en) System for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, and process for producing polycrystalline silicon
US20130247998A1 (en) Method for feeding zinc gas and apparatus therefor
JP2011057526A (en) Reaction furnace for producing polycrystalline silicon, system for producing polycrystalline silicon, and method for producing polycrystalline silicon
KR100947836B1 (en) Apparatus for manufacturing silicon ingot
JP2016138021A (en) Method and apparatus of manufacturing polycrystalline silicon rod
JP5900224B2 (en) Trichlorosilane production apparatus and production method
TWI516443B (en) Process for producing granular polysilicon
US20150175430A1 (en) Method for Producing Polysilicon
CN103880011B (en) For being the method for trichlorosilane by converting silicon tetrachloride
JPWO2014103939A1 (en) Polycrystalline silicon rod and manufacturing method thereof
JP6090018B2 (en) Chlorosilanes manufacturing apparatus and chlorosilanes manufacturing method
JP5917359B2 (en) Method for supplying raw material gas for producing polycrystalline silicon and polycrystalline silicon
CN107074561A (en) Use the poly plant and method of high-efficiency hybrid horizontal reactor
JP5155708B2 (en) Method for hydrogen reduction of chlorosilane-containing gas and apparatus for hydrogen reduction of chlorosilanes
JP5708332B2 (en) Trichlorosilane production equipment
TW201708108A (en) Process and plant for decomposition of monosilane
KR20160061405A (en) Methanation reactor for reacting hydrogen with at least one carbon-based compound and producing methane and water
JP2014152060A (en) Manufacturing apparatus and manufacturing method of disilanes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5900224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250