JP2013136034A - Urea scr catalyst and exhaust gas post-treatment system - Google Patents

Urea scr catalyst and exhaust gas post-treatment system Download PDF

Info

Publication number
JP2013136034A
JP2013136034A JP2011288912A JP2011288912A JP2013136034A JP 2013136034 A JP2013136034 A JP 2013136034A JP 2011288912 A JP2011288912 A JP 2011288912A JP 2011288912 A JP2011288912 A JP 2011288912A JP 2013136034 A JP2013136034 A JP 2013136034A
Authority
JP
Japan
Prior art keywords
iron silicate
exhaust gas
scr catalyst
ions
urea scr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011288912A
Other languages
Japanese (ja)
Other versions
JP5817522B2 (en
Inventor
Kokichi Maekawa
弘吉 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011288912A priority Critical patent/JP5817522B2/en
Publication of JP2013136034A publication Critical patent/JP2013136034A/en
Application granted granted Critical
Publication of JP5817522B2 publication Critical patent/JP5817522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an urea SCR catalyst capable of highly actively eliminating NOx discharged from an engine at low temperature and having high water and heat durability and an exhaust gas post-treatment system.SOLUTION: In the urea SCR catalyst for reducing NOx in exhaust gas with ammonia, heating treatment is performed after Cu ions are introduced to Al isomorphous substitution iron silicate in which Al ions are introduced into an iron silicate skeleton, in particular iron silicate beta zeolite by using the ion exchange method.

Description

本発明は、ディーゼル排ガスに含まれるNOxを無害化するための尿素SCR触媒に係り、特に、高活性で水熱耐久性がありしかも低温でのNOx吸着特性に優れた尿素SCR触媒及び排ガスの後処理システムに関するものである。   The present invention relates to a urea SCR catalyst for detoxifying NOx contained in diesel exhaust gas, and more particularly to a urea SCR catalyst having high activity, hydrothermal durability, and excellent NOx adsorption characteristics at low temperatures, and after the exhaust gas. It relates to a processing system.

ディーゼル排ガスに含まれるNOxを無害化する装置の1つとして、尿素SCR(Selective Catalytic Reduction;以下SCRと略記)が実用化されている。   As one device for detoxifying NOx contained in diesel exhaust gas, urea SCR (Selective Catalytic Reduction; hereinafter abbreviated as SCR) has been put into practical use.

図5は、特許文献1に示されたディーゼル排ガスの後処理システムを示し、ディーゼルエンジンの排ガス管10に酸化触媒(DOC)反応器11、ディーゼルパティキュレートフィルタ(DPF)12、SCR反応器13が順に接続されてディーゼル排ガスの後処理システムが構成される。   FIG. 5 shows a diesel exhaust gas aftertreatment system disclosed in Patent Document 1, in which an oxidation catalyst (DOC) reactor 11, a diesel particulate filter (DPF) 12, and an SCR reactor 13 are provided in an exhaust gas pipe 10 of a diesel engine. The diesel exhaust gas aftertreatment system is connected in order.

ディーゼルエンジンからの排ガスは、酸化触媒反応器11内で、排ガス中の未燃焼燃料(HC)や、一酸化炭素(CO)等が酸化された後、排ガス中のPM(パティキュレートマター)がディーゼルパティキュレートフィルタ(DPF)12で捕集される。次に、排ガス中の窒素酸化物(NOx)は、SCR反応器13の入口側で噴射された尿素水14の加水分解で生じたアンモニアとSCR反応器13内のSCR触媒で反応して窒素と水とに還元されて無害化される。   Exhaust gas from the diesel engine is oxidized in the oxidation catalyst reactor 11 after unburned fuel (HC), carbon monoxide (CO), etc. in the exhaust gas are oxidized, and then PM (particulate matter) in the exhaust gas is diesel. It is collected by a particulate filter (DPF) 12. Next, nitrogen oxide (NOx) in the exhaust gas reacts with ammonia generated by hydrolysis of the urea water 14 injected at the inlet side of the SCR reactor 13 by the SCR catalyst in the SCR reactor 13 to react with nitrogen. It is reduced to water and detoxified.

SCR反応器13に用いられるSCR触媒としては、一般にゼオライト触媒が用いられており(特許文献2)、このゼオライト触媒を含むスラリーをセラミックハニカムなどの担体に塗布したもの或いはその成型体がSCRコンバータとして用いられる。   As the SCR catalyst used in the SCR reactor 13, a zeolite catalyst is generally used (Patent Document 2). A slurry containing the zeolite catalyst applied to a carrier such as a ceramic honeycomb or a molded body thereof is used as an SCR converter. Used.

従来、SCR触媒用ゼオライトとして鉄イオン交換アルミノシリケート(以下従来触媒と表記する)が広く用いられており、この触媒を用いて、尿素水が加水分解して生じるアンモニアを還元剤として作用させることで、ディーゼル排ガス中の窒素酸化物(NOx)を除去することができる。   Conventionally, iron ion-exchange aluminosilicate (hereinafter referred to as conventional catalyst) has been widely used as a zeolite for SCR catalysts. By using this catalyst, ammonia generated by hydrolysis of urea water acts as a reducing agent. Nitrogen oxide (NOx) in diesel exhaust gas can be removed.

特開2011−152496号公報JP 2011-152696 A 特開2007−296521号公報JP 2007-296521 A 特開2007−222742号公報JP 2007-222742 A

E.A. Urquieta-Gonzalez, L. Martins, R.P.S. Peguin, M.S. Batista, Materials Reserch, 5, 321-327 (2002)E.A.Urquieta-Gonzalez, L. Martins, R.P.S.Peguin, M.S.Batista, Materials Reserch, 5, 321-327 (2002) O. P. Krivoruchko, N. T. Vasenin, T. V. Larina, V. F. Anufruenko, and Academician V. N. Parmon, DOKLADY PHYSICAL CHEMISTRY, 430, 13-16 (2010)O. P. Krivoruchko, N. T. Vasenin, T. V. Larina, V. F. Anufruenko, and Academician V. N. Parmon, DOKLADY PHYSICAL CHEMISTRY, 430, 13-16 (2010) Yihua Zhang, Ian J. Drake, and Alexis T. Bell, Chem. Mater., 18, 2347-2356 (2006)Yihua Zhang, Ian J. Drake, and Alexis T. Bell, Chem. Mater., 18, 2347-2356 (2006)

しかしながら、上記の従来触媒は、低温(〜160℃程度)においては、NOx浄化能力が十分ではないため、エンジン始動直後、即ち低温時においては、エンジンから排出されたNOxの大部分が浄化されずに大気中に放出される問題がある。従って、低温時のNOx排出を抑制するためには、低温時のNOx浄化能力を高めるか、或いはNOx吸着剤を用いてNOxを保持するなどの方策が必要となる。   However, since the above conventional catalyst does not have sufficient NOx purification capability at low temperatures (about 160 ° C.), most of the NOx discharged from the engine is not purified immediately after engine startup, that is, at low temperatures. There is a problem of being released into the atmosphere. Therefore, in order to suppress NOx emission at low temperatures, measures such as increasing the NOx purification capability at low temperatures or holding NOx using a NOx adsorbent are necessary.

本発明者は、特願2011−243348(発明の名称:尿素SCR触媒及び排ガスの後処理システム)にて、鉄シリケート骨格内にAlイオンを導入した尿素SCR触媒を発明した。この先願の尿素SCR触媒は、高いNOx浄化活性ならびに水熱耐久性を有し、しかも従来の触媒と同等のNOx吸着特性を有するものであるが、低温活性に未だ改良の余地があることがわかった。   The present inventor invented a urea SCR catalyst in which Al ions are introduced into an iron silicate skeleton in Japanese Patent Application No. 2011-243348 (name of invention: urea SCR catalyst and exhaust gas aftertreatment system). This prior application urea SCR catalyst has high NOx purification activity and hydrothermal durability, and has NOx adsorption characteristics equivalent to those of conventional catalysts, but there is still room for improvement in low-temperature activity. It was.

そこで、本発明の目的は、上記課題を解決し、低温時にエンジンから排出されるNOxを浄化できる尿素SCR触媒及び排ガスの後処理システムを提供することにある。   Therefore, an object of the present invention is to provide a urea SCR catalyst and an exhaust gas aftertreatment system that can solve the above-described problems and purify NOx discharged from the engine at a low temperature.

上記目的を達成するために請求項1の発明は、排ガス中のNOxをアンモニアで還元するための尿素SCR触媒において、鉄シリケート骨格内にAlイオンを導入したAl同型置換鉄シリケートに、Cuイオンを導入したことを特徴とする尿素SCR触媒である。   In order to achieve the above object, the invention of claim 1 is the urea SCR catalyst for reducing NOx in the exhaust gas with ammonia, and Cu ions are introduced into the Al isomorphous substituted iron silicate in which Al ions are introduced into the iron silicate skeleton. It is a urea SCR catalyst characterized by having been introduced.

請求項2の発明は、Al同型置換鉄シリケートに導入するCu導入量は、Al同型置換鉄シリケートに対し0.4〜6.0mass%とした請求項1記載の尿素SCR触媒である。   The invention according to claim 2 is the urea SCR catalyst according to claim 1, wherein the amount of Cu introduced into the Al isomorphous substituted iron silicate is 0.4 to 6.0 mass% with respect to the Al isomorphous substituted iron silicate.

請求項3の発明は、鉄シリケートベータゼオライトと硝酸アルミニウムと蒸留水を混ぜ、これを還流してAl同型置換鉄シリケートとし、Al同型置換鉄シリケートにイオン交換によってCuイオンを導入し、これを500℃以上で焼成した請求項1記載の尿素SCR触媒である。   In the invention of claim 3, iron silicate beta zeolite, aluminum nitrate and distilled water are mixed and refluxed to obtain an Al isomorphous substituted iron silicate, and Cu ions are introduced into the Al isomorphous substituted iron silicate by ion exchange. The urea SCR catalyst according to claim 1, which is calcined at a temperature of not lower than ° C.

請求項4の発明は、ディーゼルエンジンの排ガス管にSCR反応器を接続し、そのSCR反応器の上流側で尿素水を噴射して排ガス中のNOxを除去する排ガスの後処理システムにおいて、SCR反応器の触媒に、鉄シリケート骨格内にAlイオンを導入したAl同型置換鉄シリケートに、Cuイオンを導入した尿素SCR触媒を用いることを特徴とする排ガスの後処理システムである。   According to a fourth aspect of the present invention, there is provided an SCR reaction system in an exhaust gas aftertreatment system in which an SCR reactor is connected to an exhaust gas pipe of a diesel engine and urea water is injected upstream of the SCR reactor to remove NOx in the exhaust gas. The exhaust gas aftertreatment system is characterized in that a urea SCR catalyst in which Cu ions are introduced into an Al isomorphous substituted iron silicate in which Al ions are introduced into an iron silicate skeleton is used as the catalyst of the vessel.

本発明は、Al同型置換鉄シリケートにCuイオンを導入することによって、低温時の高いNOx浄化活性ならびに水熱耐久性を有し、しかも従来の触媒と同等のNOx吸着特性を有するSCR用の触媒とすることができるという優れた効果を発揮する。   The present invention provides a catalyst for SCR having high NOx purification activity at low temperature and hydrothermal durability by introducing Cu ions into Al isomorphous substituted iron silicate and having NOx adsorption characteristics equivalent to conventional catalysts. The excellent effect of being able to be demonstrated.

本発明の尿素SCR触媒の骨格構造を説明する図である。It is a figure explaining the frame | skeleton structure of the urea SCR catalyst of this invention. 本発明の尿素SCR触媒と先願のAl同型置換鉄シリケートからなる尿素SCR触媒と従来の鉄ゼオライトSCR触媒のNOx浄化率とNOx吸着率を示す図である。It is a figure which shows the NOx purification rate and NOx adsorption rate of the urea SCR catalyst which consists of the urea SCR catalyst of this invention, the Al isomorphous substituted iron silicate of a prior application, and the conventional iron zeolite SCR catalyst. 従来のゼオライト(アルミノシリケート)から鉄ゼオライトSCR触媒を製造する際の骨格構造を説明する図である。It is a figure explaining the frame | skeleton structure at the time of manufacturing an iron zeolite SCR catalyst from the conventional zeolite (aluminosilicate). 従来の鉄シリケートSCR触媒の骨格構造(a)と骨格内のFeが離脱した骨格構造(b)とFeが離脱した骨格にAlを導入したAl同型置換鉄シリケートの骨格構造(c)を説明する図である。A skeleton structure (a) of a conventional iron silicate SCR catalyst, a skeleton structure (b) from which Fe in the skeleton is released, and a skeleton structure (c) of an Al isomorphous substituted iron silicate in which Al is introduced into the skeleton from which Fe is released FIG. ディーゼルエンジンの排ガスの後処理システムを示す図である。It is a figure which shows the aftertreatment system of the exhaust gas of a diesel engine.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の尿素SCR触媒の骨格構造を示したもので、出発原料として鉄シリケートベータゼオライトを用い、その骨格構造内からのFeの脱離によって生じた空孔(シラノールネスト)にAlを導入してAl同型置換鉄シリケートとし、そのAl同型置換鉄シリケートに、イオン交換処理によりCuイオンを導入するものである。   FIG. 1 shows a skeleton structure of the urea SCR catalyst of the present invention. Iron silicate beta zeolite is used as a starting material, and vacancies (silanol nests) generated by the elimination of Fe from the skeleton structure are Al. To form an Al isomorphous substituted iron silicate, and Cu ions are introduced into the Al isomorphous substituted iron silicate by ion exchange treatment.

先ず、鉄シリケートベータゼオライトからAl同型置換鉄シリケートとすることで、Feが抜けた空孔にAlによる活性点の補填が行えると共に水熱耐久性の強化が行え、かつ従来の鉄シリケート触媒と同等のNOx吸着特性を維持できるものであり、本発明は、このAl同型置換鉄シリケートにCuイオンを導入することで、低温活性を改良するものである。   First, Al isomorphous substituted iron silicate from iron silicate beta zeolite can compensate for active sites by Al in pores from which Fe has been removed, and can enhance hydrothermal durability, and is equivalent to conventional iron silicate catalysts. Thus, the present invention improves the low-temperature activity by introducing Cu ions into the Al isomorphous substituted iron silicate.

ゼオライトは、シリカ(SiO2)を基本とする網目状の骨格構造から成る。この骨格内に、Al,B等の3価の陽イオンが置換されることによって負電荷が生じるが、その対イオンがプロトン(H+)の場合、このサイトが酸点として機能する。この酸点はSCR反応に必要なアンモニアを吸着保持するために不可欠である。 Zeolite has a network-like skeleton structure based on silica (SiO 2 ). A negative charge is generated by substituting trivalent cations such as Al and B in this skeleton. When the counter ion is a proton (H + ), this site functions as an acid point. This acid point is indispensable for adsorbing and holding ammonia necessary for the SCR reaction.

従来のゼオライト触媒は、図3(a)に示した骨格の一部がAlによって置換されたアルミノシリケートを基本に、対イオンがFeイオンに交換された構造の鉄ゼオライトになっている(図3(b))。   A conventional zeolite catalyst is based on an aluminosilicate in which a part of the skeleton shown in FIG. 3 (a) is replaced by Al, and is an iron zeolite having a structure in which counter ions are exchanged with Fe ions (FIG. 3). (B)).

先願のAl同型置換鉄シリケートは、図4(a)に示すように、骨格の一部がFeで置換された鉄シリケートの骨格構造から、熱処理や使用による劣化で、図4(b)に示すように、鉄シリケートの骨格内からFeの離脱によって生じた空孔(シラノールネスト)に、図4(c)に示すようにAlを導入することによって鉄シリケートの骨格構造内にFeの一部をAl同型置換した構造である。   As shown in FIG. 4 (a), the Al isomorphous substituted iron silicate of the prior application is shown in FIG. 4 (b) due to deterioration due to heat treatment and use from the skeleton structure of iron silicate in which a part of the skeleton is substituted with Fe. As shown in FIG. 4 (c), Al is introduced into the vacancies (silanol nests) generated by the detachment of Fe from the skeleton of the iron silicate, so that a part of Fe is contained in the skeleton structure of the iron silicate. Is a structure in which Al is isomorphously substituted.

この先願のAl同型置換鉄シリケートは、従来触媒よりも高いNOx浄化性能ならびにNOx吸着特性を保持しながら、高いNOx浄化性能ならびに水熱耐久性を付与したSCR触媒とすることができるものである。   The Al-substituted iron silicate of the prior application can be an SCR catalyst that has high NOx purification performance and hydrothermal durability while maintaining higher NOx purification performance and NOx adsorption characteristics than conventional catalysts.

しかし、先願のAl同型置換鉄シリケートは、低温活性に問題を残していることがわかった。   However, it was found that the Al isomorphous substituted iron silicate of the prior application left a problem in low temperature activity.

そこで本発明では、Al同型置換の手法によって鉄シリケート骨格内にAlを導入して酸点を増補し、さらにこのAl同型置換鉄シリケートにCuイオンを導入することによって、低温活性、すなわち低温時のNOx浄化性能を向上させ、Al同型置換鉄シリケートの特長である水熱耐久性を兼ね備えた尿素SCR触媒としたものである。   Therefore, in the present invention, by introducing Al into the iron silicate skeleton by the Al isomorphous substitution technique to supplement the acid sites, and further introducing Cu ions into the Al isomorphous substituted iron silicate, low temperature activity, that is, at low temperatures. This is a urea SCR catalyst that improves NOx purification performance and also has hydrothermal durability, which is a feature of Al isomorphous substituted iron silicate.

以下に本発明の尿素SCR触媒について、さらに詳しく説明する。   Hereinafter, the urea SCR catalyst of the present invention will be described in more detail.

鉄シリケートの合成;
鉄シリケートは、コロイダルシリカ、シリコンアルキシド、ヒュームドシリカ等のシリカ源と、テトラエチルアンモニウムヒドロキシド(TEAOH)水溶液等のベータ構造を与える構造規制有機物質(SDA)水溶液と、水酸化ナトリウム、水酸化カリウム等のアルカリ金属源、硝酸鉄、硫酸鉄、塩化鉄等の鉄源と、蒸留水とから合成する。
Synthesis of iron silicates;
Iron silicate is composed of a silica source such as colloidal silica, silicon alkoxide, and fumed silica, an aqueous structure-regulating organic substance (SDA) solution that provides a beta structure such as an aqueous tetraethylammonium hydroxide (TEAOH) solution, sodium hydroxide, and hydroxide. It is synthesized from an alkali metal source such as potassium, an iron source such as iron nitrate, iron sulfate, or iron chloride, and distilled water.

具体的には、シリカ源としてコロイダルシリカ(Ludox HS−40)、構造規制有機物質(SDA)として、テトラエチルアンモニウムヒドロキシド(35mass%水溶液、以下TEAOHという)、アルカリ金属源としてNaOH(25mass%水溶液)、鉄源として硝酸鉄(III)九水和物および蒸留水を用いた。   Specifically, colloidal silica (Ludox HS-40) as a silica source, tetraethylammonium hydroxide (35 mass% aqueous solution, hereinafter referred to as TEAOH) as a structure-regulated organic substance (SDA), and NaOH (25 mass% aqueous solution) as an alkali metal source As an iron source, iron (III) nitrate nonahydrate and distilled water were used.

テフロン(登録商標)容器に、NaOH水溶液とTEAOHを加えて室温で15分間撹拌後、コロイダルシリカを加えて40分室温で撹拌した。ここに、硝酸鉄を蒸留水で溶解した水溶液を撹拌しながら滴下して室温で4時間撹拌し、出発ゲルを得た。   To a Teflon (registered trademark) container, an aqueous NaOH solution and TEAOH were added and stirred at room temperature for 15 minutes, and then colloidal silica was added and stirred at room temperature for 40 minutes. The aqueous solution which melt | dissolved iron nitrate with distilled water was dripped here, stirring, and it stirred at room temperature for 4 hours, and obtained the starting gel.

このゲルの組成モル比は、1(SiO2):0.37(TEAOH):0.05(Fe23):0.3(NaOH):20(H2O)である。 The compositional molar ratio of this gel is 1 (SiO 2 ): 0.37 (TEAOH): 0.05 (Fe 2 O 3 ): 0.3 (NaOH): 20 (H 2 O).

得られたゲルをオートクレーブに移し、150℃のオーブン中で144時間静置して水熱合成を行った。得られた生成物を室温まで冷却した後、濾過し、蒸留水で洗浄して白色粉末を得た。   The obtained gel was transferred to an autoclave and allowed to stand in an oven at 150 ° C. for 144 hours for hydrothermal synthesis. The obtained product was cooled to room temperature, filtered, and washed with distilled water to obtain a white powder.

出発ゲルの組成比は、SiO21molに対し、Fe導入量は、Fe230.005〜0.03molが好ましく、より好ましくは0.01〜0.02molである。 The composition ratio of the starting gel, to SiO 2 1 mol, Fe incorporated in a quantity of, Fe 2 O 3 0.005~0.03mol, and more preferably from 0.01~0.02Mol.

また、Fe源としては、硝酸鉄、硫酸鉄、塩化鉄、その他の3価の陽イオンFe塩が適用可能である。シリカ源としては、コロイダルシリカ、シリコンアルキシド、ヒュームドシリカなどの非晶質シリカを用いることができる。   As the Fe source, iron nitrate, iron sulfate, iron chloride, and other trivalent cation Fe salts are applicable. As the silica source, amorphous silica such as colloidal silica, silicon alkoxide, or fumed silica can be used.

水熱合成反応時の加熱温度は、130℃以上180℃以下が好ましく、より好ましくは、140℃以上160℃以下である。また加熱時間は120時間以上160時間以下が好ましい。   The heating temperature during the hydrothermal synthesis reaction is preferably 130 ° C. or higher and 180 ° C. or lower, and more preferably 140 ° C. or higher and 160 ° C. or lower. The heating time is preferably 120 hours or longer and 160 hours or shorter.

Al導入方法:
Al同型置換の処理は次のようにして実施した。
Al introduction method:
The treatment of Al isomorphous replacement was performed as follows.

ベータ型鉄シリケート([Fe]−Beta)、Al(NO33・9H2Oおよび蒸留水を、[Fe]−Beta:Al(NO33:H2O=1:1:50の質量比になるように混ぜ、80℃のウォーターバスを用いて18時間還流した。還流終了後、室温まで冷却し、濾過した後、蒸留水を用いて洗浄して褐色粉末を得た。 Beta-type iron silicate ([Fe] -Beta), Al (NO 3 ) 3 .9H 2 O and distilled water were mixed with [Fe] -Beta: Al (NO 3 ) 3 : H 2 O = 1: 1: 50. It mixed so that it might become mass ratio, and it recirculate | refluxed for 18 hours using the 80 degreeC water bath. After completion of the reflux, the mixture was cooled to room temperature, filtered, and washed with distilled water to obtain a brown powder.

このサンプルを、550℃で5時間焼成し、Cuイオン交換前のAl導入[Fe]−Betaを得た。   This sample was calcined at 550 ° C. for 5 hours to obtain Al-introduced [Fe] -Beta before Cu ion exchange.

このベータ型鉄シリケートに導入するAlイオンは、Fe離脱によって生じた空孔(シラノールネスト)を補填する量以上であればよく、SiO2/Al23のモル比で200以下であればよい。 The Al ions introduced into the beta-type iron silicate need only be in an amount that can compensate for voids (silanol nests) generated by Fe desorption, and may have a SiO 2 / Al 2 O 3 molar ratio of 200 or less. .

Cuイオン交換方法:
Al同型置換鉄シリケート(Al導入鉄シリケート)のCuイオン交換方法としては、既知の方法を用いればよく、例えば非特許文献1、2に示された液相イオン交換法でも、非特許文献3に示された固相イオン交換法を用いてもよい。
Cu ion exchange method:
As a Cu ion exchange method of Al isomorphous substituted iron silicate (Al-introduced iron silicate), a known method may be used. For example, even in the liquid phase ion exchange method shown in Non-Patent Documents 1 and 2, Non-Patent Document 3 The indicated solid phase ion exchange method may be used.

ここで、液相イオン交換法とは、Cuイオンを含む溶液にAl同型置換シリケートに分散することによって、イオン交換する方法であり、固相イオン交換法とは、Al同型置換シリケートにCuの塩または酸化物を混合し、還元雰囲気あるいは不活性雰囲気で熱処理することによって、イオン交換する方法である。   Here, the liquid phase ion exchange method is a method of performing ion exchange by dispersing in a solution containing Cu ions in an Al isomorphous substituted silicate, and the solid phase ion exchange method is a salt of Cu in the Al isomorphous substituted silicate. Alternatively, an ion exchange is performed by mixing oxides and performing heat treatment in a reducing atmosphere or an inert atmosphere.

Cuイオン交換方法によるCu導入量は、Al同型置換シリケートの質量に対し、0.4〜0.6mass%が好適である。   The amount of Cu introduced by the Cu ion exchange method is preferably 0.4 to 0.6 mass% with respect to the mass of the Al isomorphous substituted silicate.

Cuイオン交換に用いる銅塩としては、例えば酢酸銅、塩化銅、硫酸銅などの各種銅塩を用いることができる。液相イオン交換時の溶液濃度は、0.005〜0.05mol/Lが好適である。この溶液中で室温〜100℃の範囲で12〜36時間処理することによって、Cuイオン交換を行う。この処理は、複数回行うことにより多くのCuを導入することができる。   As a copper salt used for Cu ion exchange, for example, various copper salts such as copper acetate, copper chloride, and copper sulfate can be used. The solution concentration during the liquid phase ion exchange is preferably 0.005 to 0.05 mol / L. Cu ion exchange is performed by treating in this solution for 12 to 36 hours at room temperature to 100 ° C. By performing this treatment a plurality of times, a large amount of Cu can be introduced.

イオン交換処理後、蒸留水を用いて濾過・洗浄し、室温〜120℃の範囲の温度で乾燥させた後、空気気流下520℃で1時間焼成し、本発明の尿素SCR触媒を得る。なお焼成温度は、500℃以上で、焼成時間は1時間以上であればよい。   After the ion exchange treatment, it is filtered and washed with distilled water, dried at a temperature ranging from room temperature to 120 ° C., and then calcined at 520 ° C. for 1 hour in an air stream to obtain the urea SCR catalyst of the present invention. The firing temperature may be 500 ° C. or higher and the firing time may be 1 hour or longer.

次に、この本発明のAl同型置換鉄シリケートにCuイオンを導入した尿素SCR触媒と、図4(c)に示した先願のAl同型置換鉄シリケートと、図3(b)に示した従来触媒のNOx浄化性能とNOx吸着性能を試験した結果を図2に示す。   Next, the urea SCR catalyst in which Cu ions are introduced into the Al isomorphous substituted iron silicate of the present invention, the Al isomorphous substituted iron silicate of the prior application shown in FIG. 4 (c), and the prior art shown in FIG. 3 (b). FIG. 2 shows the results of testing the NOx purification performance and NOx adsorption performance of the catalyst.

図2において、横軸は排ガスの温度、縦軸はNOxの浄化率を示し、また排ガス温度50〜120℃の範囲でのNOx吸着率も同時に示している。   In FIG. 2, the horizontal axis represents the exhaust gas temperature, the vertical axis represents the NOx purification rate, and the NOx adsorption rate in the exhaust gas temperature range of 50 to 120 ° C. is also shown.

図2において、実線aは本発明の尿素SCR触媒、二点鎖線bは先願のAl同型置換鉄シリケート、点線cは従来の尿素SCR触媒(アルミノシリケート)のNOx浄化率とNOx吸着率をそれぞれ示したものである。   In FIG. 2, the solid line a represents the urea SCR catalyst of the present invention, the two-dot chain line b represents the Al isomorphous substituted iron silicate of the prior application, and the dotted line c represents the NOx purification rate and NOx adsorption rate of the conventional urea SCR catalyst (aluminosilicate), respectively. It is shown.

この図2より、従来の触媒に対して、本発明の尿素SCR触媒および先願のAl同型置換鉄シリケートは、NOx吸着率については同等であるが、NOx浄化率については、従来の触媒より格段に上昇していることがわかる。   From FIG. 2, the urea SCR catalyst of the present invention and the Al isomorphous substituted iron silicate of the prior application are equivalent to the conventional catalyst in terms of NOx adsorption rate, but the NOx purification rate is much higher than that of the conventional catalyst. You can see that it is rising.

特に、本発明の尿素SCR触媒は、先願のAl同型置換鉄シリケートに対してNOx浄化率が全体に高く、特に100〜200℃で触媒活性が高いことがわかる。   In particular, it can be seen that the urea SCR catalyst of the present invention generally has a high NOx purification rate compared with the Al isomorphous substituted iron silicate of the prior application, and particularly high catalytic activity at 100 to 200 ° C.

このように、本発明は、先願のAl同型置換鉄シリケートにCuイオンを導入することによって、高いNOx浄化活性ならびに水熱耐久性を付与した触媒とすることができると共に、従来SCR触媒と同等のNOx吸着特性を有し、かつ先願のAl同型置換鉄シリケートよりもNOx浄化活性が向上し、しかも耐久性に優れた触媒とすることができる。   As described above, the present invention can provide a catalyst having high NOx purification activity and hydrothermal durability by introducing Cu ions into the Al isomorphous substituted iron silicate of the prior application, and is equivalent to the conventional SCR catalyst. Thus, the NOx purification activity is improved as compared with the Al isomorphous substituted iron silicate of the prior application, and the catalyst is excellent in durability.

10 排ガス管
13 SCR反応器
14 尿素水
10 exhaust gas pipe 13 SCR reactor 14 urea water

Claims (4)

排ガス中のNOxをアンモニアで還元するための尿素SCR触媒において、鉄シリケート骨格内にAlイオンを導入したAl同型置換鉄シリケートに、Cuイオンを導入したことを特徴とする尿素SCR触媒。   A urea SCR catalyst for reducing NOx in exhaust gas with ammonia, wherein Cu ions are introduced into an Al isomorphous substituted iron silicate in which Al ions are introduced into an iron silicate skeleton. Al同型置換鉄シリケートに導入するCu導入量は、Al同型置換鉄シリケートに対し0.4〜6.0mass%とした請求項1記載の尿素SCR触媒。   The urea SCR catalyst according to claim 1, wherein the amount of Cu introduced into the Al isomorphous substituted iron silicate is 0.4 to 6.0 mass% with respect to the Al isomorphous substituted iron silicate. 鉄シリケートベータゼオライトと硝酸アルミニウムと蒸留水を混ぜ、これを還流してAl同型置換鉄シリケートとし、Al同型置換鉄シリケートにイオン交換によってCuイオンを導入し、これを500℃以上で焼成した請求項1記載の尿素SCR触媒。   Claims: A mixture of iron silicate beta zeolite, aluminum nitrate and distilled water, refluxed to obtain an Al isomorphous substituted iron silicate, Cu ions introduced into the Al isomorphous substituted iron silicate by ion exchange, and calcined at 500 ° C or higher. The urea SCR catalyst according to 1. ディーゼルエンジンの排ガス管にSCR反応器を接続し、そのSCR反応器の上流側で尿素水を噴射して排ガス中のNOxを除去する排ガスの後処理システムにおいて、SCR反応器の触媒に、鉄シリケート骨格内にAlイオンを導入したAl同型置換鉄シリケートに、Cuイオンを導入した尿素SCR触媒を用いることを特徴とする排ガスの後処理システム。   In an exhaust gas aftertreatment system that connects an SCR reactor to the exhaust gas pipe of a diesel engine and injects urea water upstream of the SCR reactor to remove NOx in the exhaust gas, an iron silicate is used as the catalyst of the SCR reactor. An exhaust gas aftertreatment system, wherein a urea SCR catalyst into which Cu ions are introduced is used for Al isomorphous substituted iron silicate in which Al ions are introduced into the skeleton.
JP2011288912A 2011-12-28 2011-12-28 Method for producing urea SCR catalyst Expired - Fee Related JP5817522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011288912A JP5817522B2 (en) 2011-12-28 2011-12-28 Method for producing urea SCR catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288912A JP5817522B2 (en) 2011-12-28 2011-12-28 Method for producing urea SCR catalyst

Publications (2)

Publication Number Publication Date
JP2013136034A true JP2013136034A (en) 2013-07-11
JP5817522B2 JP5817522B2 (en) 2015-11-18

Family

ID=48912251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288912A Expired - Fee Related JP5817522B2 (en) 2011-12-28 2011-12-28 Method for producing urea SCR catalyst

Country Status (1)

Country Link
JP (1) JP5817522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215649A (en) * 2012-04-05 2013-10-24 Isuzu Motors Ltd Urea scr catalyst and post-treatment system for exhaust gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137597A (en) * 1996-11-12 1998-05-26 Mitsubishi Heavy Ind Ltd Catalyst for purifying nitrogen oxide
JP2008104914A (en) * 2006-10-24 2008-05-08 Tosoh Corp Nitrogen oxide purification catalyst and method
JP2010536692A (en) * 2007-08-13 2010-12-02 ピーキュー コーポレイション Novel iron-containing aluminosilicate zeolite and methods for making and using the same
EP2308596A1 (en) * 2009-10-07 2011-04-13 Ford Global Technologies, LLC Cu/zeolite SCR catalyst for NOx reduction in exhaust gases and manufacture method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137597A (en) * 1996-11-12 1998-05-26 Mitsubishi Heavy Ind Ltd Catalyst for purifying nitrogen oxide
JP2008104914A (en) * 2006-10-24 2008-05-08 Tosoh Corp Nitrogen oxide purification catalyst and method
JP2010536692A (en) * 2007-08-13 2010-12-02 ピーキュー コーポレイション Novel iron-containing aluminosilicate zeolite and methods for making and using the same
EP2308596A1 (en) * 2009-10-07 2011-04-13 Ford Global Technologies, LLC Cu/zeolite SCR catalyst for NOx reduction in exhaust gases and manufacture method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215649A (en) * 2012-04-05 2013-10-24 Isuzu Motors Ltd Urea scr catalyst and post-treatment system for exhaust gas

Also Published As

Publication number Publication date
JP5817522B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6403658B2 (en) Chabazite zeolite catalyst with low silica / alumina ratio
CN103599813B (en) A kind of molecular sieve based catalyst for low temperature SCR denitration and preparation method thereof
US10596518B2 (en) Bimetal-exchanged zeolite beta from organotemplate-free synthesis and use thereof in the selective catalytic reduction of NOx
KR102458492B1 (en) Synthesis of AEI and Cu-AEI Zeolites
JP2011152496A (en) Denitration method of nox in diesel engine exhaust gas
KR20160093681A (en) Synthesis of aei zeolite
JP2017503635A (en) CU-CHA-containing SCR catalyst
JP2015510484A (en) Iron and copper containing zeolite beta from synthesis without organic template and its use in selective catalytic reduction of NOx
JP2017504558A (en) Mixed template synthesis of high silica Cu-CHA
WO2023216447A1 (en) Cu-cha and h-aei composite catalyst, and preparation method therefor and application thereof
CN110947416A (en) For NH3-SCR iron/molecular sieve catalyst, preparation method and application thereof
KR101394625B1 (en) Preparation Method of the Zeolite containing Iron catalyst for SCR(Selective catalyst reaction)
JP5817522B2 (en) Method for producing urea SCR catalyst
JPH04219141A (en) Exhaust gas purification catalyst
US20020094314A1 (en) Method for the reduction and removal of nitrogen oxides
JPH08323151A (en) Method for purifying waste gas containing nitrogen oxides
JP5821540B2 (en) Method for producing urea SCR catalyst
JP5970927B2 (en) Method for producing urea SCR catalyst
JPH04244218A (en) Method for purifying exhaust gas
JPH0389942A (en) Exhaust gas purifying catalyst and purifying method with it utilized therefor
JP5966263B2 (en) Diesel engine exhaust gas purification device and purification method
JP2013015025A (en) Exhaust gas purifying apparatus for diesel engine
JPH03127629A (en) Direct catalytic cracking catalyst for nitrogen oxides
WO2014083869A1 (en) Catalyst for discharge gas purification
JPH0352644A (en) Catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees