JP2013134889A - Electrical contact material and manufacturing method of the same - Google Patents

Electrical contact material and manufacturing method of the same Download PDF

Info

Publication number
JP2013134889A
JP2013134889A JP2011284252A JP2011284252A JP2013134889A JP 2013134889 A JP2013134889 A JP 2013134889A JP 2011284252 A JP2011284252 A JP 2011284252A JP 2011284252 A JP2011284252 A JP 2011284252A JP 2013134889 A JP2013134889 A JP 2013134889A
Authority
JP
Japan
Prior art keywords
mass
powder
contact material
coating layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011284252A
Other languages
Japanese (ja)
Inventor
Hirotake Osako
寛岳 大迫
Hideo Kumita
英生 汲田
Yuji Yamaguchi
祐司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP2011284252A priority Critical patent/JP2013134889A/en
Publication of JP2013134889A publication Critical patent/JP2013134889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which an Ag-oxide-based electrical contact material laminated with a plurality of oxide layers of different oxidation forms is deposited with an oxide on a surface layer of a contact point by electrically repeating opening and closing, which results in increasing contact resistance at the contact point surface and causing a temperature rise.SOLUTION: A contact point surface includes one or more kinds of coating layers out of 1 to 99 mass% Ag-W, 1 to 99 mass% Ag-WC, W, and WC.

Description

本発明は、マグネットスイッチ、ブレーカ、リレー等の電磁開閉器に使用される電気接点材料に関する。   The present invention relates to an electrical contact material used for an electromagnetic switch such as a magnet switch, a breaker, or a relay.

従来、酸化物形態の異なる酸化層を複数層積層させたAgー酸化物系電気接点材料は、内部酸化時の酸化温度および酸素分圧を変化させながら内部酸化を施すことにより、Agー酸化物系電気接点材料の最大の特長であるAgマトリックス中における析出酸化物について、その形態が異なる酸化物を析出させた層を複数層積み上げて積層構造とし、その積層構造によってAgマトリックス中の酸化物の移動を抑制して接点表面への酸化物の凝集を防ぎ、接触抵抗の増加による温度上昇を防いでいる(例えば、特許文献1参照)。   Conventionally, an Ag-oxide-based electrical contact material in which a plurality of oxide layers having different oxide forms are laminated is obtained by applying internal oxidation while changing the oxidation temperature and oxygen partial pressure during internal oxidation. As for the precipitated oxide in the Ag matrix, which is the greatest feature of the electrical contact material, a plurality of layers in which different types of oxides are deposited are stacked to form a laminated structure, and the laminated structure of the oxide in the Ag matrix The movement is suppressed to prevent the oxide from aggregating on the contact surface, and the temperature rise due to the increase of the contact resistance is prevented (for example, see Patent Document 1).

このようなAgー酸化物系の電気接点材料は、耐溶着性、耐消耗性、温度特性の向上のために内部酸化条件の変更や第3元素、第4元素の添加によりその都度性能的な課題を克服してきた(例えば、特許文献2、特許文献3)。   Such an Ag-oxide-based electrical contact material is improved in performance by changing internal oxidation conditions or adding third and fourth elements in order to improve welding resistance, wear resistance, and temperature characteristics. The problem has been overcome (for example, Patent Document 2 and Patent Document 3).

特開2008−152971公報JP 2008-152971 A 特開2002−363665公報JP 2002-363665 A 特開平5−86426号公報JP-A-5-86426

しかし、上記の従来技術によると、Agー酸化物系の電気接点材料は、電気的開閉を繰り返すことにより、接点の表層に酸化物が堆積し、それが要因となって接点表面における接触抵抗を引き上げ、温度上昇を引き起こすという問題がある。   However, according to the above prior art, the Ag-oxide-based electrical contact material accumulates oxide on the surface layer of the contact by repeating electrical switching, which causes the contact resistance on the contact surface to decrease. There is a problem of raising the temperature and causing a temperature rise.

この温度上昇の問題を克服するためには、添加する酸化物量を減少させる等の方法により解決することができるが、添加する酸化物量を減少させると、耐溶着性、耐消耗性を引き下げることになる。   In order to overcome this problem of temperature rise, it can be solved by a method such as reducing the amount of oxide to be added, but reducing the amount of oxide to be added reduces the welding resistance and wear resistance. Become.

以上のことから、安定した接触抵抗により実現される優れた温度特性の実現と耐溶着性、耐消耗性の向上という性能は互いに相反する部分があり、接点材料の選択に当たっての問題となっている。   From the above, the performance of excellent temperature characteristics realized by stable contact resistance and the performance of improvement of welding resistance and wear resistance are in conflict with each other, which is a problem in selecting contact materials .

そこで本発明は、酸化物形態の異なる酸化層を複数層積層させることとし、そのAgー酸化物系電気接点材料に、1〜99質量%Ag−W、1〜99質量%Ag−WC、WCおよびWの内の1種以上で1層の厚みを0.1〜1000μmとしたコーティングを施すことにより構成する。   Therefore, in the present invention, a plurality of oxide layers having different oxide forms are laminated, and the Ag-oxide-based electrical contact material includes 1 to 99 mass% Ag-W, 1 to 99 mass% Ag-WC, and WC. And a coating of one or more of W and a thickness of one layer of 0.1 to 1000 μm.

ここで、コーティング層の1層の厚みを0.1〜1000μmとした理由は、1層の厚みが0.1μm未満ではコーティングの効果がないためであり、また、1000μmを超えると技術および生産コストの面からコーティングを行うことが難しいからである。   Here, the reason why the thickness of one layer of the coating layer is 0.1 to 1000 μm is that if the thickness of one layer is less than 0.1 μm, there is no effect of coating, and if it exceeds 1000 μm, the technology and production cost are increased. This is because it is difficult to perform coating from the surface.

なお、コーティングの方法は、プラズマ溶射、ガス溶射、高速フレーム溶射、コールドスプレー等の溶射でのコーティング、気中や液中での断続的な放電、パルス等の放電によるコーティングおよびPVD(Physical Vapor Deposition)、CVD(Cemical Vapor Deposition)等の蒸着法によるコーティングである。   Coating methods include plasma spraying, gas spraying, high-speed flame spraying, cold spray coating, etc., intermittent discharge in air or liquid, coating by discharge such as pulses, and PVD (Physical Vapor Deposition). ) And CVD (Chemical Vapor Deposition).

以上のAgー酸化物系の電気接点材料によると、接点材料の表面に上記条件のコーティングを施すことにより、耐溶着性、耐消耗性、接触抵抗等の諸電気特性が向上した接点材料となる。   According to the above-described Ag-oxide-based electrical contact material, a contact material having improved electrical characteristics such as welding resistance, wear resistance, contact resistance and the like is obtained by coating the surface of the contact material with the above conditions. .

空中放電によるコーティングの説明図Illustration of coating by air discharge 液中放電によるコーティングの説明図Illustration of coating by submerged discharge 1層のコーティングの説明図Illustration of single layer coating 部分的コーティングの説明図Illustration of partial coating 実施例9の説明図Explanatory drawing of Example 9. 実施例10の説明図Explanatory drawing of Example 10. 実施例11の説明図Explanatory drawing of Example 11. 実施例12の説明図Explanatory drawing of Example 12. 実施例13の説明図Explanatory drawing of Example 13. 実施例14の説明図Explanatory drawing of Example 14. コーティングの状態を示す断面組織顕微鏡写真Cross-sectional microstructure photo showing the coating state

本発明の実施例を説明する。   Examples of the present invention will be described.

板厚1.0mm、3.0mm角の材料を、酸素分圧0.5〜1.0MPa、内部酸化温度を400°C〜700°Cとし、周期的に変化させて100時間で内部酸化させることにより90.5質量%Ag−5.8質量%SnO2−3.5質量%In23−0.2質量%NiOの酸化物形態の異なる酸化層を複数層有する接点材料を作製する。 A material having a plate thickness of 1.0 mm and a 3.0 mm square is subjected to internal oxidation in 100 hours with an oxygen partial pressure of 0.5 to 1.0 MPa and an internal oxidation temperature of 400 ° C. to 700 ° C., which are periodically changed. producing 90.5 wt% Ag-5.8 mass% SnO 2 -3.5 wt% in 2 O 3 -0.2 wt% NiO contact material having multiple layers of different oxide layer of oxide forms of by .

上記接点材料2の接点表面にブラスト処理を行った後、コーティング層の厚さ800μm、コーティング層の組成を1質量%Ag−Wとして気中放電によって行った(図1)。その気中放電の条件は、陽極1に1質量%Ag−W、陰極に上記記載の接点材料2を用いて大気中にて、電流1〜3A、電圧60V、放電距離1mm、300〜400Hzで振動させ、断続的に放電させることによりコーティング層3を形成した(図3)。   After blasting the contact surface of the contact material 2, the coating layer was 800 μm thick and the coating layer composition was 1% by mass Ag—W by air discharge (FIG. 1). The air discharge conditions were as follows: 1 mass% Ag-W for the anode 1 and the contact material 2 described above for the cathode in the atmosphere, current 1 to 3 A, voltage 60 V, discharge distance 1 mm, 300 to 400 Hz. The coating layer 3 was formed by vibrating and intermittently discharging (FIG. 3).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、コーティング層の厚さ100μm、コーティング層の組成を1質量%Ag−WCとして気中放電によって行った(図1)。その気中放電の条件は、陽極に1質量%Ag−WC、陰極に上記記載の接点材料を用いて大気中にて、電流1〜3A、電圧60V、放電距離1mm、300〜400Hzで振動させ、断続的に放電させることにより部分的にコーティングを行った(図4)。   After blasting the contact surface of the same contact material as used in Example 1, the coating layer thickness was 100 μm, and the coating layer composition was 1 mass% Ag-WC, which was performed by air discharge (FIG. 1). ). The air discharge conditions were as follows: 1 mass% Ag-WC for the anode and contact materials described above for the cathode were used in the atmosphere to vibrate at a current of 1 to 3 A, a voltage of 60 V, a discharge distance of 1 mm, and 300 to 400 Hz. The coating was partially performed by intermittent discharge (FIG. 4).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とW粉末を50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の厚さ0.1μm、コーティング層の組成を50質量%Ag−Wとしてコーティングを行った(図3)。   The plasma spraying conditions are as follows: Ag powder having a particle size of 5 to 125 μm and W powder are mixed in a plasma jet atmosphere so as to have a ratio of 50:50. In the atmosphere, a jet current of 500 to 800 A, a spraying distance of 100 mm, Used argon (flow rate 30 l / min), reciprocated the spray gun at 300 mm / sec, and coated with a coating layer thickness of 0.1 μm and a coating layer composition of 50 mass% Ag-W ( FIG. 3).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とWC粉末を50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の厚さ20μm、コーティング層の組成を50質量%Ag−WCとしてコーティングを行った(図3)。   The plasma spraying conditions are as follows: Ag powder having a particle size of 5 to 125 μm and WC powder are mixed in a plasma jet atmosphere so as to have a ratio of 50:50, and a jet current of 500 to 800 A, a spraying distance of 100 mm, Used argon (flow rate 30 l / min), and the spray gun was reciprocated at 300 mm / sec to coat the coating layer with a thickness of 20 μm and a coating layer composition of 50 mass% Ag-WC (FIG. 3). ).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とW粉末を50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の厚さ500μm、コーティング層の組成を99質量%Ag−Wとしてコーティングを行った(図3)。   The plasma spraying conditions are as follows: Ag powder having a particle size of 5 to 125 μm and W powder are mixed in a plasma jet atmosphere so as to have a ratio of 50:50. In the atmosphere, a jet current of 500 to 800 A, a spraying distance of 100 mm, Used argon (flow rate 30 l / min), and the spray gun was reciprocated at 300 mm / sec to coat the coating layer with a thickness of 500 μm and a coating layer composition of 99 mass% Ag-W (FIG. 3). ).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。
プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とWC粉末を50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の厚さ1000μm、コーティング層の組成を99質量%Ag−WCとしてコーティングを行った(図3)。
The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.
The plasma spraying conditions are as follows: Ag powder having a particle size of 5 to 125 μm and WC powder are mixed in a plasma jet atmosphere so as to have a ratio of 50:50, and a jet current of 500 to 800 A, a spraying distance of 100 mm, Used argon (flow rate 30 l / min), and the spray gun was reciprocated at 300 mm / sec to coat the coating layer with a thickness of 1000 μm and a coating layer composition of 99 mass% Ag-WC (FIG. 3). ).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とW粉末を50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の厚さ300μm、コーティング層の組成をWとしてコーティングを行った(図3)。   The plasma spraying conditions are as follows: Ag powder having a particle size of 5 to 125 μm and W powder are mixed in a plasma jet atmosphere so as to have a ratio of 50:50. In the atmosphere, a jet current of 500 to 800 A, a spraying distance of 100 mm, Used argon (flow rate 30 l / min), and the thermal spray gun was reciprocated at 300 mm / sec, coating was performed with a coating layer thickness of 300 μm and a coating layer composition of W (FIG. 3).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とWC粉末を50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の厚さ600μm、コーティング層の組成をWCとしてコーティングを行った(図3)。   The plasma spraying conditions are as follows: Ag powder having a particle size of 5 to 125 μm and WC powder are mixed in a plasma jet atmosphere so as to have a ratio of 50:50, and a jet current of 500 to 800 A, a spraying distance of 100 mm, Used argon (flow rate 30 l / min), and the thermal spray gun was reciprocated at 300 mm / sec to perform coating with a coating layer thickness of 600 μm and a coating layer composition of WC (FIG. 3).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とW粉末およびAg粉末とWC粉末とをそれぞれ50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の1層の厚さを50μm、コーティング層の組成を1質量%Ag−W4と1質量%Ag−WC5として交互に8層のコーティングを行った(図5)。   The plasma spraying conditions were as follows: Ag powder and W powder having a particle size of 5 to 125 μm and Ag powder and WC powder were mixed in a plasma jet atmosphere so as to have a ratio of 50:50, respectively. The spraying distance is 100 mm, the plasma gas is argon (flow rate 30 l / min), the spraying gun is reciprocated at 300 mm / sec, the thickness of one coating layer is 50 μm, and the coating layer composition is 1 mass. Eight layers of coating were alternately carried out as% Ag-W4 and 1% by mass Ag-WC5 (FIG. 5).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とW粉末およびAg粉末とWC粉末とをそれぞれ50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の1層の厚さを50μm、コーティング層の組成を50質量%Ag−W6と50質量%Ag−WC7として交互に6層のコーティングを行った(図6)。   The plasma spraying conditions were as follows: Ag powder and W powder having a particle size of 5 to 125 μm and Ag powder and WC powder were mixed in a plasma jet atmosphere so as to have a ratio of 50:50, respectively. The spraying distance is 100 mm, argon is used as the plasma gas (flow rate 30 l / min), the spraying gun is reciprocated at 300 mm / sec, the thickness of one coating layer is 50 μm, and the composition of the coating layer is 50 mass. Six layers of coating were alternately performed as% Ag-W6 and 50% by mass Ag-WC7 (FIG. 6).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とW粉末およびAg粉末とWC粉末とをそれぞれ50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の1層の厚さを50μm、コーティング層の組成を99質量%Ag−W8と99質量%Ag−WC9として交互に4層のコーティングを行った(図7)。   The plasma spraying conditions were as follows: Ag powder and W powder having a particle size of 5 to 125 μm and Ag powder and WC powder were mixed in a plasma jet atmosphere so as to have a ratio of 50:50, respectively. The spraying distance is 100 mm, the plasma gas is argon (flow rate 30 l / min), the spray gun is reciprocated at 300 mm / sec, the thickness of one coating layer is 50 μm, and the coating layer composition is 99 mass. Four layers of coating were alternately performed as% Ag-W8 and 99% by mass Ag-WC9 (FIG. 7).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とW粉末およびAg粉末とWC粉末とをそれぞれ50:50になるように混入し、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の1層の厚さを50μm、コーティング層の組成をW10とWC11として交互に2層のコーティングを行った(図8)。   The plasma spraying conditions were as follows: Ag powder and W powder having a particle size of 5 to 125 μm and Ag powder and WC powder were mixed in a plasma jet atmosphere so as to have a ratio of 50:50, respectively. The spraying distance is 100 mm, argon is used as the plasma gas (flow rate 30 l / min), the spray gun is reciprocated at 300 mm / sec, the thickness of one coating layer is 50 μm, and the composition of the coating layer is W10. Two layers of coating were alternately performed as WC11 (FIG. 8).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とW粉末を99:1になるように混入し、徐々にW粉末を増量して段階的に組成を傾斜変化させ、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の1層の厚さを100μm、コーティング層の組成を下から99質量%Ag−W8、75質量%Ag−W13、50質量%Ag−W6、25質量%Ag−W12、1質量%Ag−W4としてコーティングを行った(図9)。   The plasma spraying conditions are as follows: Ag powder having a particle size of 5 to 125 μm and W powder are mixed in a plasma jet atmosphere so that the ratio becomes 99: 1. Inside, jet current 500-800A, spray distance 100mm, argon is used as plasma gas (flow rate 30l / min), and spray gun is reciprocated at 300mm / sec. The coating was performed with the composition of 100 μm and the coating layer from the bottom of 99 mass% Ag-W8, 75 mass% Ag-W13, 50 mass% Ag-W6, 25 mass% Ag-W12, 1 mass% Ag-W4 (Fig. 9).

上記実施例1に用いたと同様の接点材料の接点表面にブラスト処理を行った後、プラズマ溶射にてコーティングを行った。   The contact surface of the same contact material as used in Example 1 was blasted and then coated by plasma spraying.

プラズマ溶射の条件は、プラズマジェット雰囲気中に粒度5〜125μmのAg粉末とWC粉末を99:1になるように混入し、徐々にWC粉末を増量して段階的に組成を傾斜変化させ、大気中にて、ジェット電流500〜800A、溶射距離100mm、プラズマガスにはアルゴンを使用(流量30l/min)し、溶射ガンを300mm/secにて往復運動させ、コーティング層の1層の厚さを100μm、コーティング層の組成を下から99質量%Ag−WC9、75質量%Ag−WC15、50質量%Ag−WC7、25質量%Ag−WC14、1質量%Ag−WC5としてコーティングを行った(図10)。   The plasma spraying conditions were as follows: Ag powder having a particle size of 5 to 125 μm and WC powder were mixed in a plasma jet atmosphere so that the ratio was 99: 1, the WC powder was gradually increased, and the composition was gradually changed in gradient. Inside, jet current 500-800A, spray distance 100mm, argon is used as plasma gas (flow rate 30l / min), and spray gun is reciprocated at 300mm / sec. The coating was performed with the composition of 100 μm and the coating layer from the bottom as 99 mass% Ag-WC9, 75 mass% Ag-WC15, 50 mass% Ag-WC7, 25 mass% Ag-WC14, 1 mass% Ag-WC5 (Fig. 10).


比較例1
板厚1.0mm、3.0mm角の材料を、酸素分圧0.5〜1.0MPa、内部酸化温度を400°C〜700°Cとし、周期的に変化させて100時間で内部酸化させることにより90.5質量%Ag−5.8質量%SnO2−3.5質量%In23−0.2質量%NiOの酸化物形態の異なる酸化層を複数層有する接点材料を作製する。

比較例2
板厚1.0mm、3.0mm角の材料を、酸素分圧0.5〜1.0MPa、内部酸化温度を400°C〜700°Cとし、周期的に変化させて100時間で内部酸化させることにより92.3質量%Ag−5質量%SnO2−2.5質量%In23−0.2質量%NiOの酸化物形態の異なる酸化層を複数層有する接点材料を作製する。

比較例3
板厚1.0mm、3.0mm角の材料を、酸素分圧0.5〜1.0MPa、内部酸化温度を400°C〜700°Cとし、周期的に変化させて100時間で内部酸化させることにより91.9質量%Ag−7質量%SnO2−1質量%In23−0.1質量%NiOの酸化物形態の異なる酸化層を複数層有する接点材料を作製する。

Comparative Example 1
A material having a plate thickness of 1.0 mm and a 3.0 mm square is subjected to internal oxidation in 100 hours with an oxygen partial pressure of 0.5 to 1.0 MPa and an internal oxidation temperature of 400 ° C. to 700 ° C., which are periodically changed. making 90.5 wt% Ag-5.8 mass% SnO 2 -3.5 wt% in 2 O 3 -0.2 wt% NiO contact material having multiple layers of different oxide layer of oxide forms of by .

Comparative Example 2
A material having a plate thickness of 1.0 mm and a 3.0 mm square is subjected to internal oxidation in 100 hours with an oxygen partial pressure of 0.5 to 1.0 MPa and an internal oxidation temperature of 400 ° C. to 700 ° C., which are periodically changed. it by making 92.3 wt% Ag-5 weight% SnO 2 -2.5 wt% in 2 O 3 -0.2 wt% NiO contact material having multiple layers of different oxide layer of oxide forms of.

Comparative Example 3
A material having a plate thickness of 1.0 mm and a 3.0 mm square is subjected to internal oxidation in 100 hours with an oxygen partial pressure of 0.5 to 1.0 MPa and an internal oxidation temperature of 400 ° C. to 700 ° C., which are periodically changed. Thus, a contact material having a plurality of oxide layers having different oxide forms of 91.9% by mass, Ag-7% by mass, SnO 2 -1% by mass, In 2 O 3 -0.1% by mass, and NiO is prepared.

以上の各実施例および比較例について接点試験を行った。   A contact test was conducted on each of the above examples and comparative examples.

接点試験は接触抵抗の測定と溶射試験(60A定格用)ならびにブレーカによる消耗量の測定(AC200 20A)を行い、電気特性を評価した。   In the contact test, a contact resistance measurement and a thermal spray test (for 60A rating) and a consumption amount measurement using a breaker (AC200 20A) were performed to evaluate electrical characteristics.

1 電極
2 接点材料
3 コーティング層
4 1質量%Ag−W
5 1質量%Ag−WC
6 50質量%Ag−W
7 50質量%Ag−WC
8 99質量%Ag−W
9 99質量%Ag−WC
10 W
11 WC
12 25質量%Ag−W
13 75質量%Ag−W
14 25質量%Ag−WC
15 75質量%Ag−WC


DESCRIPTION OF SYMBOLS 1 Electrode 2 Contact material 3 Coating layer 4 1 mass% Ag-W
5 1% by mass Ag-WC
6 50% by mass Ag-W
7 50 mass% Ag-WC
899 mass% Ag-W
999 mass% Ag-WC
10 W
11 WC
12 25 mass% Ag-W
13 75 mass% Ag-W
14 25 mass% Ag-WC
15 75 mass% Ag-WC


Claims (5)

酸化物形態の異なる酸化層を複数層積層させたAgー酸化物系の電気接点材料において、
接点面に1〜99質量%Ag−W、1〜99質量%Ag−WC、W、WCの内、1種以上のコーティング層を有することを特徴とする電気接点材料。
In an Ag-oxide-based electrical contact material in which a plurality of oxide layers having different oxide forms are laminated,
An electrical contact material comprising one or more coating layers of 1 to 99 mass% Ag-W, 1 to 99 mass% Ag-WC, W, and WC on a contact surface.
請求項1において、コーティング層の厚みを0.1〜1000μmとしたことを特徴とする電気接点材料。   The electrical contact material according to claim 1, wherein the coating layer has a thickness of 0.1 to 1000 µm. 請求項1において、1〜99質量%Ag−Wおよび/もしくは1〜99質量%Ag−WCのコーティング層を1層以上有することを特徴とする電気接点材料。   The electrical contact material according to claim 1, comprising at least one coating layer of 1 to 99 mass% Ag—W and / or 1 to 99 mass% Ag—WC. 請求項1において、Ag−WもしくはAg−WCのコーティング層が、1〜99質量%Ag−Wもしくは1〜99質量%Ag−WCの範囲で段階的に変化した複層のコーティング層であることを特徴とする電気接点材料。   In Claim 1, the coating layer of Ag-W or Ag-WC is a multilayer coating layer that is changed stepwise in the range of 1 to 99 mass% Ag-W or 1 to 99 mass% Ag-WC. An electrical contact material characterized by 請求項4のコーティング層の製造方法において、Ag粉末とW粉末もしくはAg粉末とWC粉末をそれぞれ99:1になるように混入し、徐々にW粉末もしくはWC粉末を増量して段階的に組成を傾斜変化させて段階的に変化した複層のコーティング層を形成することを特徴とする電気接点材料の製造方法。   5. The method for producing a coating layer according to claim 4, wherein Ag powder and W powder or Ag powder and WC powder are mixed at a ratio of 99: 1, and the composition is gradually increased by gradually increasing the amount of W powder or WC powder. A method of manufacturing an electrical contact material, comprising forming a multilayer coating layer that changes stepwise by changing the inclination.
JP2011284252A 2011-12-26 2011-12-26 Electrical contact material and manufacturing method of the same Pending JP2013134889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284252A JP2013134889A (en) 2011-12-26 2011-12-26 Electrical contact material and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284252A JP2013134889A (en) 2011-12-26 2011-12-26 Electrical contact material and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013134889A true JP2013134889A (en) 2013-07-08

Family

ID=48911449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284252A Pending JP2013134889A (en) 2011-12-26 2011-12-26 Electrical contact material and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013134889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629954C2 (en) * 2015-12-28 2017-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Gradiental protective coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810319A (en) * 1981-07-13 1983-01-20 株式会社東芝 Composite sintered contact
JPS6258524A (en) * 1985-09-06 1987-03-14 エヌオーケー株式会社 Electric contact part
JP2000251585A (en) * 1999-02-25 2000-09-14 Toshiba Corp Arc resistant coating for electric equipment
JP2008152971A (en) * 2006-12-14 2008-07-03 Tokuriki Honten Co Ltd Ag-oxide based electric contact material and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810319A (en) * 1981-07-13 1983-01-20 株式会社東芝 Composite sintered contact
JPS6258524A (en) * 1985-09-06 1987-03-14 エヌオーケー株式会社 Electric contact part
JP2000251585A (en) * 1999-02-25 2000-09-14 Toshiba Corp Arc resistant coating for electric equipment
JP2008152971A (en) * 2006-12-14 2008-07-03 Tokuriki Honten Co Ltd Ag-oxide based electric contact material and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629954C2 (en) * 2015-12-28 2017-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Gradiental protective coating

Similar Documents

Publication Publication Date Title
US11875976B2 (en) Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
JP2015225855A (en) Method for manufacturing all solid electrode having solid electrolyte concentration gradient
EP2039796B1 (en) Method for obtaining ceramic coatings and ceramic coatings obtained
CN104674217B (en) A kind of preparation method of the thermal barrier coating of the tack coat containing double-decker
JP5684809B2 (en) Electrical contact material
JP2011514933A5 (en)
CN104204273B (en) Piston ring
TWI455820B (en) Ceramic coating comprising yttrium which is resistant to a reducing plasma
JP4616648B2 (en) Thermal barrier coating and method of applying such a coating
Aghasibeig et al. Fabrication of nickel electrode coatings by combination of atmospheric and suspension plasma spray processes
JP2015530480A (en) Electrolytic cell contact piece
RU2375493C1 (en) Method of application of ion-plasma coating
JP5159359B2 (en) Method for producing composite material of different materials
JP2013134889A (en) Electrical contact material and manufacturing method of the same
JP5295102B2 (en) Conductive protective film and manufacturing method thereof
Mauer et al. Recent developments in plasma spray processes for applications in energy technology
CN106319454A (en) Gradient MCrAlX coating single-target electric arc ion plating one-step preparation method
CN104694930A (en) Method for preparing thermal barrier coating by combining electro-spark deposition and micro-arc oxidation process
JP2012021191A (en) Bond coat layer, thermal spray powder therefor, high-temperature resistant member with bond coat layer, and method for manufacturing the same
WO2018134484A1 (en) Method for the manufacture of anode materials for li ion batteries by utilising short-term laser pulses
US20240035146A1 (en) Sputtering target and method of manufacturing the same
JP6116632B2 (en) Silicon target material for sputtering and method of forming a crack prevention layer on the target material
JP2004505411A (en) Glass plate with electrodes made of conductive material
US20100056009A1 (en) Method for fabricating field emission display
JPH01153505A (en) Ozonizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223