JP2013134550A - Linkage control system and linkage control method for storage battery and it apparatus - Google Patents

Linkage control system and linkage control method for storage battery and it apparatus Download PDF

Info

Publication number
JP2013134550A
JP2013134550A JP2011283238A JP2011283238A JP2013134550A JP 2013134550 A JP2013134550 A JP 2013134550A JP 2011283238 A JP2011283238 A JP 2011283238A JP 2011283238 A JP2011283238 A JP 2011283238A JP 2013134550 A JP2013134550 A JP 2013134550A
Authority
JP
Japan
Prior art keywords
power
storage battery
power supply
voltage
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011283238A
Other languages
Japanese (ja)
Other versions
JP5801706B2 (en
Inventor
Tetsuya Yamada
哲也 山田
Tadayuki Matsumura
忠幸 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011283238A priority Critical patent/JP5801706B2/en
Priority to CN201210520805.XA priority patent/CN103178577B/en
Publication of JP2013134550A publication Critical patent/JP2013134550A/en
Application granted granted Critical
Publication of JP5801706B2 publication Critical patent/JP5801706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Power Sources (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a linkage control system which estimates the characteristics (time, frequency, interval, and the like) of a future power failure in advance, and controls a no-break power supply having an IT apparatus and a storage battery in an interconnected manner for the supposed power failure, achieving a high charge-discharge efficiency of the storage battery.SOLUTION: A linkage control system comprises a commercial power supply 10, a voltage logger 20 which measures the voltage of the commercial power supply, a no-break power supply 30 to which a plurality of storage batteries 32 are connected, a power supply tap 40 having a power measuring mechanism, and a plurality of IT apparatuses 50 including a server 51 connected to the power supply tap. The voltage logger, the no-break power supply, the power supply tap having a power measuring mechanism, the server, and the IT apparatuses are connected to a network. A control part 55 in the server estimates the duration time of a future power failure, obtains the power limit value of the IT apparatus from the residual quantity of the storage battery and the estimated duration time of the power failure, so as to control the power of the IT apparatus within the power limit value. Furthermore, the control part 55 in the server estimates the interval of power failures so as to control the charge mode of the storage battery.

Description

本発明は、IT機器と大容量の蓄電池を備えるシステムに関し、特に、蓄電池を効率的に使用し、長時間、安定してIT機器を稼動させるのに好適なIT機器と蓄電池の連係制御システムに関する。   The present invention relates to a system including an IT device and a large-capacity storage battery, and more particularly to an IT device-storage battery link control system suitable for efficiently using the storage battery and operating the IT device stably for a long time. .

電力網のインフラ整備が不十分な地域では、停電が頻発する状態となっている。そこで、ビルには発電機が置かれ、停電時は発電機が稼動し、ビル内の電力を供給する方法をとっている。サーバルームには更に、発電機の故障に備え、発電機の修理中に必要な数時間分の鉛蓄電池アレイが置かれており、サーバ並びにクライアントPCへの電力供給を行う。蓄電池アレイは、無停電電源装置(UPS: Uninterruptible Power Supply)の鉛蓄電池の容量を拡張した形態をとっているのが一般的である。蓄電池アレイは発電機のバックアップとしての位置づけであり、蓄電池アレイの使用が高頻度ではないため、安価な鉛蓄電池を使用しているが、体積、重量は大きい。   In areas where power grid infrastructure is insufficient, power outages are frequent. Therefore, there is a method in which a generator is placed in the building, the generator is operated during a power failure, and the power in the building is supplied. The server room is further provided with a lead-acid battery array for several hours necessary for repair of the generator in preparation for a failure of the generator, and supplies power to the server and the client PC. The storage battery array generally takes the form of expanding the capacity of a lead storage battery of an uninterruptible power supply (UPS). The storage battery array is positioned as a backup for the generator, and since the storage battery array is not frequently used, an inexpensive lead storage battery is used, but its volume and weight are large.

一方、電力網のインフラは整備されているものの、夏場のエアコン使用などで、季節により電力需要が急増し、電力が不足する地域がある。この場合、突然の停電に比べて被害が少なく、日々決まった時間に輪番で停電をする計画停電が実施される。ビルに発電機が置かれた箇所では発電機を稼動するが、発電機がない箇所ではIT機器を停止せざるを得ない。これに対し、業務サービス継続のため、リチウムイオン型の蓄電池アレイを置く箇所がある。リチウムイオン電池は、急速充電ができ、充放電可能回数(サイクル性能)が大きいため、計画停電にも対応できる。このように、蓄電池アレイは、停電の特性やビルのファシリティに応じて異なる形態をとるものの、停電時に電力を供給する手段として用いられている。   On the other hand, although the power grid infrastructure is in place, there are areas where the demand for power increases rapidly due to the use of air conditioners in the summer, and there is a shortage of power. In this case, there is less damage than a sudden power outage, and a planned power outage is carried out with a rotating power supply at a fixed time every day. Although the generator is operated at the place where the generator is placed in the building, the IT equipment must be stopped at the place where the generator is not provided. On the other hand, there are places where lithium ion storage battery arrays are placed in order to continue business services. Lithium-ion batteries can be charged quickly and have a large number of charge / discharge cycles (cycle performance), so they can handle planned power outages. As described above, the storage battery array is used as a means for supplying power at the time of a power failure, although it takes different forms depending on the characteristics of the power failure and the facility of the building.

ところで、計画停電は電力会社が時間を規定し需要側は停電を把握できるが、非計画な停電でも需要側が停電を把握できる方が望ましい。非計画な停電の発生を予測する方法の一例が特許文献1に示されている。この文献では、停電の危険性を予測し、停電の事前に発電機を起動して商用電源から切り替えることで、UPSに接続する蓄電池容量削減、またはUPSを不要とする技術が開示されている。ここでの予測は、商用電源が「予め決められた時間以内に停電となる危険性が大きい」と判定することであり、インターネットに接続して得た気象情報と予め決められた条件から算出する。すなわち、特許文献1での予測は、停電が発生する時刻を予測するものである。   By the way, in the case of a planned power outage, the power company defines the time and the demand side can grasp the power outage. However, it is desirable that the demand side can grasp the power outage even in the case of an unplanned power outage. An example of a method for predicting the occurrence of an unplanned power outage is disclosed in Patent Document 1. This document discloses a technique for predicting the risk of a power failure, starting a power generator in advance of the power failure, and switching from a commercial power source, thereby reducing the capacity of the storage battery connected to the UPS or eliminating the need for a UPS. The prediction here is to determine that the commercial power source is “high risk of power failure within a predetermined time”, and is calculated from weather information obtained by connecting to the Internet and a predetermined condition. . That is, the prediction in Patent Document 1 predicts the time when a power failure occurs.

特開2004−355219号公報JP 2004-355219 A

特許文献1では、発電機の停電前起動が目的であったため、停電が発生する時刻の予測で十分であった。IT機器(ルータ、スイッチ、サーバ、ストレージなど)が置かれる場所としてサーバルーム、オフィスをグローバルに調査した結果、IT機器に併設して蓄電池アレイがある箇所が多くあることが判明した。そこで、本発明では、その蓄電池アレイを高効率に利用することに着目した。高効率利用とは、例えば、蓄電池の放電時間の延長、放電容量のマージン削減、不要な急速充電の削減などが挙げられる。鉛蓄電池アレイの場合、電池量を削減することによる電池コストの削減、並びに、重量を削減することができる。リチウムイオンの蓄電池アレイの場合、高頻度の停電に対応し、発電機の代替として用いることで、電気代の数倍の発電機の軽油代のコストを削減することができる。このように、蓄電池アレイを高効率に利用することで様々な利点がある。   In patent document 1, since the purpose was to start the generator before the power failure, it was sufficient to predict the time when the power failure occurred. As a result of a global survey of server rooms and offices where IT devices (routers, switches, servers, storages, etc.) are placed, it has been found that there are many locations with storage battery arrays attached to IT devices. Therefore, in the present invention, attention has been paid to the efficient use of the storage battery array. High-efficiency use includes, for example, extending the discharge time of the storage battery, reducing the discharge capacity margin, and reducing unnecessary rapid charging. In the case of a lead storage battery array, it is possible to reduce battery cost and weight by reducing the amount of battery. In the case of a lithium ion storage battery array, it can cope with frequent power outages and can be used as an alternative to the generator, thereby reducing the cost of the diesel fuel cost of the generator several times the electricity cost. Thus, there are various advantages by using the storage battery array with high efficiency.

蓄電池アレイの高効率化において、事前に停電を予測しておくことは有益である。例えば、停電の間隔がわかっているとその間隔で充電すれば、無駄な急速充電を防ぐことができる。このとき、停電で予測すべき項目は、特許文献1の停電発生時刻とは異なる。また、
蓄電池を有するUPS単体ではなく、IT機器とUPSを連係して制御することで、より蓄電池の高効率化が見込まれる。
In order to increase the efficiency of the storage battery array, it is useful to predict power outages in advance. For example, if the interval between power failures is known, if charging is performed at that interval, useless rapid charging can be prevented. At this time, the item to be predicted by the power failure is different from the power failure occurrence time in Patent Document 1. Also,
The efficiency of the storage battery is expected to be higher by controlling the IT device and the UPS in cooperation with each other than the UPS having the storage battery.

そこで、本発明の目的は、事前に来るべき停電の特性(時間、頻度、間隔等)を見積もり、その想定した停電に対してIT機器と蓄電池を有するUPSを連係して制御することで、蓄電池の充放電の高効率化を実現するシステムを提供することである。蓄電池の放電を効率的に制御することは、見かけの容量を増やし、ITの性能を向上することにもなる。   Accordingly, an object of the present invention is to estimate the characteristics (time, frequency, interval, etc.) of a power failure that should come in advance, and to control the storage battery by linking an IT device and a UPS having a storage battery in association with the assumed power failure. It is providing the system which implement | achieves the highly efficient charging / discharging. Efficiently controlling the discharge of the storage battery increases the apparent capacity and improves the IT performance.

本発明の前記の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。   The above objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

本発明は、上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above-described problems, the present invention employs, for example, the configurations described in the claims.

本発明のIT機器と蓄電池の連係制御システムの一例を挙げるならば、商用電源と、前記商用電源の電圧を計測する電圧ロガーと、前記商用電源に接続され、複数の蓄電池が接続された無停電電源装置と、前記無停電電源装置に接続された電力測定機構付電源タップと、前記電力測定機構付電源タップに接続されたサーバを含むIT機器から構成され、前記電圧ロガー、前記無停電電源装置、前記電力測定機構付電源タップ、および前記サーバはネットワークに接続され、前記サーバ内部の制御部は、停電の継続時間を予測し、前記予測した停電の継続時間と蓄電池の残量からIT機器の電力制限値を求め、電力制限値を満たすよう前記IT機器の電力を制御するものである。   If an example of the linkage control system of the IT equipment and storage battery of the present invention is given, an uninterruptible power supply connected to the commercial power supply, a voltage logger for measuring the voltage of the commercial power supply, and connected to a plurality of storage batteries The voltage logger, the uninterruptible power supply device, comprising: a power supply device; a power strip with a power measurement mechanism connected to the uninterruptible power supply device; and an IT device including a server connected to the power tap with the power measurement mechanism The power measuring mechanism-equipped power strip and the server are connected to the network, and the control unit inside the server predicts the duration of the power outage, and determines the IT equipment's capacity based on the predicted power outage duration and the remaining capacity of the storage battery. A power limit value is obtained, and the power of the IT device is controlled so as to satisfy the power limit value.

また、本発明のIT機器と蓄電池の連係制御方法の一例を挙げるならば、商用電源と、前記商用電源の電圧を計測する電圧ロガーと、前記商用電源に接続され、複数の蓄電池が接続された無停電電源装置と、前記無停電電源装置に接続された電力測定機構付電源タップと、前記電力測定機構付電源タップに接続されたサーバを含むIT機器から構成され、前記電圧ロガー、前記無停電電源装置、前記電力測定機構付電源タップ、および前記サーバはネットワークに接続されるシステムの連係制御方法であって、停電の継続時間を予測するステップと、前記予測した停電の継続時間と蓄電池の残量からIT機器の電力制限値を求めるステップと、電力制限値を満たすよう前記IT機器の電力を制御するステップとを含むものである。   Moreover, if an example of the linkage control method of the IT device and the storage battery according to the present invention is given, a commercial power source, a voltage logger for measuring the voltage of the commercial power source, and the commercial power source are connected to a plurality of storage batteries. The voltage logger, the uninterruptible power supply comprises an uninterruptible power supply, an IT device including a power tap with a power measurement mechanism connected to the uninterruptible power supply, and a server connected to the power tap with the power measurement mechanism. The power supply device, the power measuring mechanism-equipped power strip, and the server are linked control methods for a system connected to a network, the step of predicting the duration of a power outage, the predicted duration of power outage and the remaining storage battery A step of obtaining a power limit value of the IT device from the amount, and a step of controlling the power of the IT device so as to satisfy the power limit value.

頻発する停電に対し、停電の特性(時間、頻度、間隔等)を見積もり、その停電特性に合わせてIT機器と蓄電池の連係制御を行うことで、IT機器のサービスを継続し、性能低下をできるだけ抑えながら、蓄電池アレイの充電と放電を効率よく行うことができる。これにより、蓄電池の電池容量を減らすことができる。別の見方では、同じ蓄電池の容量でIT機器の性能を向上させることができる。更に、蓄電池アレイの充電方法を制御することで、蓄電池の長寿命化にも貢献する。   Estimate the characteristics (time, frequency, interval, etc.) of power outages for frequent power outages, and perform linkage control of IT equipment and storage batteries according to the power outage characteristics, so that IT equipment services can be continued and performance can be reduced as much as possible. While suppressing, the storage battery array can be charged and discharged efficiently. Thereby, the battery capacity of a storage battery can be reduced. From another perspective, the performance of IT equipment can be improved with the same storage battery capacity. Furthermore, by controlling the charging method of the storage battery array, it contributes to extending the life of the storage battery.

IT機器と蓄電池の連係制御を行うためのシステムの構成の一例を示す図である。It is a figure which shows an example of a structure of the system for performing linkage control of IT apparatus and a storage battery. 本発明のシステムを含む複数拠点のネットワーク構成の一例を示す図である。It is a figure which shows an example of the network structure of multiple bases containing the system of this invention. 停電間隔予測による充電スケジューリングの動作例を示す図である。It is a figure which shows the operation example of the charge scheduling by power failure interval prediction. 停電時間予測で性能制限が大きい放電スケジューリングの動作例を示す図である。It is a figure which shows the operation example of the discharge scheduling with a large performance limitation by power failure time prediction. 停電時間予測で性能制限が小さい放電スケジューリングの動作例を示す図である。It is a figure which shows the operation example of the discharge scheduling with a small performance limitation by power failure time prediction. 複数回停電するときの停電時間、間隔予測での動作例を示す図である。It is a figure which shows the example of an operation | movement by the power failure time at the time of power failure several times, and space | interval prediction. 停電の予測項目のテーブルの一例を示す図である。It is a figure which shows an example of the table of the prediction item of a power failure. 停電予測が外れたときの対処動作例を示す図である。It is a figure which shows the example of coping operation | movement when a power failure prediction comes off. IT機器と蓄電池を連係制御する制御部の一例を示す図である。It is a figure which shows an example of the control part which carries out linkage control of IT apparatus and a storage battery. 制御部内の停電予測部の一例を示す図である。It is a figure which shows an example of the power failure prediction part in a control part. 制御部内のIT電力予算部の一例を示す図である。It is a figure which shows an example of the IT electric power budget part in a control part. 蓄電池の放電特性の一例を示す図である。It is a figure which shows an example of the discharge characteristic of a storage battery. 制御部内のIT電力制御部の一例を示す図である。It is a figure which shows an example of the IT electric power control part in a control part. IT機器の低電力制御の動作の一例を示す図である。It is a figure which shows an example of the operation | movement of the low power control of IT apparatus. IT機器と蓄電池を連係制御するフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart which carries out linkage control of IT apparatus and a storage battery.

本発明を実施するための形態を、図面に基づいて詳細に説明する。なお、発明を実施するための形態を説明するための全図において、同一の機能を有する要素には同一の名称、符号を付して、その繰り返しの説明を省略する。   DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same names and reference symbols throughout the drawings for describing the embodiments for carrying out the invention, and the repetitive description thereof will be omitted.

図1に、本発明の一例に係るIT機器と蓄電池の連係制御を行うためのシステムの要部を示す。結線は、電源の系統を示している。電力は、商用電源CPWR10が発電所から供給される。商用電源の電圧を測定できる箇所に電圧ロガーVLTLOG20を置く。電圧ロガー20は、電圧を時系列またはイベント発生時に記録することができ、電圧値によりスウェル、ディップ、瞬停等に加え、停電を測定することができる。商用電源10には無停電電源装置UPS30が接続される。UPS30には、常時商用方式、ラインインタラクティブ方式、常時インバータ方式等、様々な方式があるが、特に制限されない。ここでは常時インバータ方式を記載している。UPS30は、整流器とACからDCへ変換するコンバータCNV31、蓄電池アレイBAT32、蓄電池アレイを制御する蓄電池制御部CHGCTL33、DCからACへ変換するインバータINV34、UPSの制御部UCTL35から構成される。UPSの制御部35では、蓄電池の残量監視、ネットワーク対応、IT機器へのシャットダウンの指示、通常または急速の充電モードに従った充電制御などの機能を有する。UPS30には電力測定機構付電源タップPDU40が接続される。電力測定機構付電源タップPDU40は、各コンセントで電流値と電圧値の測定ができ、ネットワーク接続によりリモートで電力監視や電源供給のオンオフを制御する機構を有する。PDU40には各IT機器50が接続される。例として、サーバSVR1(51)、SVR2(52)、ルータRTR53としているが、モデム、ファイヤーウォール、スイッチ、ストレージを接続してもよい。サーバSVR1(51)には本発明のIT機器と蓄電池を連係制御する制御部CTL55が内蔵される。   FIG. 1 shows a main part of a system for performing linkage control between an IT device and a storage battery according to an example of the present invention. The connection indicates the power supply system. Electric power is supplied from a power plant by a commercial power supply CPWR10. A voltage logger VLTLOG20 is placed at a location where the voltage of the commercial power supply can be measured. The voltage logger 20 can record the voltage in time series or when an event occurs, and can measure a power failure in addition to swell, dip, instantaneous interruption, and the like according to the voltage value. An uninterruptible power supply UPS 30 is connected to the commercial power supply 10. There are various types of UPS 30 such as a constant commercial method, a line interactive method, and a constant inverter method, but there is no particular limitation. Here, a constant inverter system is described. The UPS 30 includes a rectifier, a converter CNV31 that converts AC to DC, a storage battery array BAT32, a storage battery control unit CHGCTL33 that controls the storage battery array, an inverter INV34 that converts DC to AC, and a control unit UCTL35 of UPS. The UPS control unit 35 has functions such as monitoring of the remaining capacity of the storage battery, network support, a shutdown instruction to the IT device, and charge control according to the normal or rapid charge mode. A power supply tap PDU 40 with a power measurement mechanism is connected to the UPS 30. The power tap PDU 40 with a power measuring mechanism can measure a current value and a voltage value at each outlet, and has a mechanism for remotely monitoring power and controlling on / off of power supply through a network connection. Each IT device 50 is connected to the PDU 40. For example, the servers SVR1 (51), SVR2 (52), and the router RTR53 are used. However, a modem, a firewall, a switch, and a storage may be connected. The server SVR1 (51) has a built-in control unit CTL55 that controls the IT device of the present invention and the storage battery in association with each other.

図2に、本発明の実施例1のシステムを含む複数拠点のネットワーク構成図を示す。結線はネットワークの信号を示している。図1のIT機器と蓄電池の連係制御システム(Sys1)は、WAN(Wide Area Network)を介して他のシステム(Sys2,Sys3)と接続される。システム(Sys1)は、ルータ(RTR)53が外部のWANと内部のLAN(Local Area Network)60を接続し、複数のサーバ(SVR1、SVR2)、UPS30、電力測定付電源タップ(PDU)40はルータ(RTR)53に接続され、LAN60を形成している。UPS、PDU、ルータ、電圧ロガー(VLTLOG)、温湿度ロガー(TMPLOG)の情報はLAN60を介して、サーバ(SVR1、SVR2)と通信することができる。これは、サーバがLANを用いて他の機器の内部状態の監視、並びに制御できることを意味する。例えば、電圧ロガーなら電圧、温湿度センサーなら温度、湿度、UPSの蓄電池残量、蓄電池の端子電圧、UPSへのモード設定、電力測定機能付電源タップでの各IT機器の電力値、サーバ、ルータなどのIT機器の低電力制御などが挙げられる。   FIG. 2 shows a network configuration diagram of a plurality of bases including the system according to the first embodiment of the present invention. Connections indicate network signals. The IT device / storage battery linkage control system (Sys1) in FIG. 1 is connected to other systems (Sys2, Sys3) via a WAN (Wide Area Network). In the system (Sys1), a router (RTR) 53 connects an external WAN and an internal LAN (Local Area Network) 60, a plurality of servers (SVR1, SVR2), a UPS 30, and a power tap with power measurement (PDU) 40. A LAN 60 is formed by being connected to a router (RTR) 53. Information on the UPS, PDU, router, voltage logger (VLTLOG), and temperature / humidity logger (TMPLOG) can be communicated with the servers (SVR1, SVR2) via the LAN 60. This means that the server can monitor and control the internal state of other devices using the LAN. For example, voltage for a voltage logger, temperature, humidity for a temperature / humidity sensor, UPS remaining battery level, storage battery terminal voltage, UPS mode setting, power value of each IT device with power measurement function power tap, server, router And low power control of IT equipment.

本発明は、予測した停電の特性(時間、頻度、間隔等)に合わせてIT機器と蓄電池の連係制御を行うのが特長技術である。そこで、まず、停電を予測することでどのような効果、効用があるかを例を挙げて示す。IT機器と蓄電池の動作例の説明も兼ねる。停電の特性として停電間隔・頻度と停電の継続時間があるが、順番に説明する。   The feature of the present invention is that the linkage control between the IT device and the storage battery is performed in accordance with the predicted characteristics (time, frequency, interval, etc.) of the power failure. Therefore, first, an example will be given to show what effect and utility can be obtained by predicting a power failure. It also serves as an explanation of operation examples of IT equipment and storage batteries. The characteristics of power outages include power outage intervals / frequency and duration of power outages.

停電間隔を予測することで、蓄電池アレイの充電スケジューリングが可能となることを示す。図3に停電間隔の予測による充電スケジューリングの例を示す。停電中(時刻t1−t2)に蓄電池を用いてIT機器を稼動すると、蓄電池は放電され、時刻t2では電池容量はほぼゼロとなる。予測を行わない場合、次にいつ停電が来るかわからないので急速充電をし、次の停電に備える必要があり、時刻t3に充電は完了する。一方、予測を行う場合、次の停電開始が時刻t4であり、停電間に十分な時間があるため、低速の充電を行えばよいことがわかる。予測無しの場合、過剰な急速充電を行うことで、特に鉛電池の寿命を不当に縮めてしまうことになる。また、次の停電では、時刻t5で停電が終了した後、予測を行わない場合、低速充電を行うと時刻t6で停電が発生した場合、充電不足となってしまい、時刻t7で蓄電池が枯渇し、IT機器のサービスが継続できない。予測を行う場合は、急速充電により時刻t6迄に電池の充電を完了させることができる。このように、停電間隔を予測することにより、充電のスケジューリングを行うことができ、無駄な急速充電や低速充電による充電不足を回避することができる。   It shows that charge scheduling of a storage battery array is attained by predicting a power failure interval. FIG. 3 shows an example of charge scheduling based on prediction of power failure intervals. When an IT device is operated using a storage battery during a power failure (time t1-t2), the storage battery is discharged, and the battery capacity becomes substantially zero at time t2. If the prediction is not performed, it is not possible to know when the next power failure will occur, so it is necessary to quickly charge and prepare for the next power failure, and the charging is completed at time t3. On the other hand, when making a prediction, the next power failure starts at time t4, and there is sufficient time between power failures, so it can be seen that low-speed charging may be performed. In the case of no prediction, excessively rapid charging will unduly shorten the life of the lead battery in particular. In addition, in the next power failure, when prediction is not performed after the power failure ends at time t5, if low-speed charging is performed, if a power failure occurs at time t6, charging becomes insufficient, and the storage battery is depleted at time t7. , IT equipment services cannot be continued. When the prediction is performed, the charging of the battery can be completed by time t6 by rapid charging. In this way, by predicting the power failure interval, it is possible to schedule charging, and it is possible to avoid insufficient charging due to useless rapid charging or low-speed charging.

次に、停電の継続時間を予測することの効果を示す。ITサービスにおいては、停電中もサービスを継続し、できるだけ性能が高いことが望まれるが、性能が高いことは蓄電池を多く消費することを意味し、蓄電池の容量が枯渇することが考えられるため、性能と蓄電池容量にはトレードオフがある。そこで、本発明の停電の継続時間の予測によりどのように性能が改善されるかを示す。停電時間を予測することで、蓄電池の使用する時間を見積もることができるため、放電のスケジューリングを行うことができる。予測しない場合、停電の継続時間がわからないので、停電時間が長くても対応できるように予め電池の使用量を少なく制限するか、電池の使用量は大きいが停電時間が長いときに対応できない方法をとることが考えられる。図4に電池の使用量制限が大きい場合、図5に電池の使用量制限が小さい場合の例を示す。図4では、時刻t1−t2間で停電が発生する。停電時間の予測がない場合、電池の使用量制限が大きいため、停電中にITサービスは継続できたものの、性能はprf1に抑えられた。停電時間の予測を行う場合、予め電池の使用時間がわかるため、蓄電池残量も含めて判断して性能をprf2まで高めることができる。これは、停電時間を把握しているため、蓄電池の残量のマージンを削減することができるためである。図5では、時刻t3−t5間で停電が発生する。停電時間の予測がない場合、性能はprf4と高いものの電池の使用量が多かったため、停電中の時刻t4で電池が枯渇した。そのため、時刻t4−t5間はIT機器の電力はゼロとなり、ITサービスを中止せざるを得なくなった。24時間稼動が前提となっているサーバにとって、望ましくない結果となった。停電時間の予測を行う場合、予め電池の使用時間がわかるため、性能はprf3で抑えたものの、停電時間中に蓄電池の使用を継続することができた。このように、停電時間を予測することで、電池の放電のスケジューリングを行い、IT機器の性能を高めることができる。   Next, the effect of predicting the duration of a power outage will be shown. In IT services, it is desirable to continue the service even during a power outage and to have as high a performance as possible. However, high performance means that a large amount of storage battery is consumed, and the capacity of the storage battery can be depleted. There is a trade-off between performance and battery capacity. Therefore, it will be shown how the performance is improved by predicting the duration of the power failure according to the present invention. By predicting the power outage time, it is possible to estimate the time for which the storage battery is used, so that it is possible to schedule discharge. If you don't predict it, you don't know how long the power outage will last. It is possible to take. FIG. 4 shows an example when the battery usage limit is large, and FIG. 5 shows an example when the battery usage limit is small. In FIG. 4, a power failure occurs between times t1 and t2. When there was no prediction of the power outage time, the battery usage limit was large, so the IT service could be continued during the power outage, but the performance was limited to prf1. When the power failure time is predicted, since the battery usage time is known in advance, it is possible to improve the performance up to prf2 by judging including the remaining amount of the storage battery. This is because the margin of the remaining amount of the storage battery can be reduced because the power failure time is grasped. In FIG. 5, a power failure occurs between times t3 and t5. When the power failure time was not predicted, although the performance was as high as prf4, the battery was used up, so the battery was depleted at time t4 during the power failure. Therefore, the power of the IT device is zero between time t4 and t5, and the IT service has to be stopped. The result was undesirable for a server that was supposed to operate 24 hours a day. When the power failure time is predicted, the battery usage time is known in advance, so the performance was suppressed by prf3, but the storage battery could be used during the power failure time. Thus, by predicting the power failure time, it is possible to schedule battery discharge and improve the performance of the IT equipment.

更に、停電の継続時間と間隔を予測するときの新たな効果を示す。図4、図5では停電が1日に1回発生するときの例であった。1日に複数回停電が発生するときに、電池をどのように使うかの計画を立てる上で、停電時間と停電間隔の双方の予測が重要となる。複数回にわたってどのように電池を使用するか、いつ充電するかの計画を立てることができる。図6に複数回の停電が発生するときの例を示す。2回停電が発生している。予測を行わない場合、時刻t6−t7の1回目の停電では、prf7に性能制限を掛けており、電池容量はC3からC1へ減少するものの、ITサービスを継続することができた。時刻t8−t10の2回目の停電では、1回目と同じprf7での性能制限とすると、時刻t9で電池が枯渇してしまい、ITサービスを継続できない。停電時間と停電間隔を予測する場合、電池の種類によって2つの方法があるので、それぞれ説明する。一つは、複数回の停電の総合計時間を見積もり、その時間のITサービスを継続できるよう各回の停電の蓄電池使用量を定める方法である。充電に時間を要する鉛蓄電池に適する方法である。もう一つは、各回の停電時間と停電間隔を見積もり、停電間で急速充電を行い、電池容量を回復させることを前提にITのサービス継続と性能向上を図る方法である。急速充電での寿命劣化が少ないリチウムイオン電池に適する方法である。一つ目の方法では、性能をprf6に制限を掛けることで、2回の停電でも蓄電池を使用することができ、サービスが継続できる。電池容量は1回目の停電でC3からC2へ減少し、次の停電でC2からゼロとなる。二つ目の方法は、性能をprf6より高いprf7とした上で、停電間で急速充電を行うことで電池容量を回復し、サービスの継続と高い性能を両立することができる。時刻t6−t7は停電のため、電池容量はC3からC1へ減少するが、次の停電の時刻t8までに急速充電を実施し、電池容量をC3に回復させ、時刻t8からの停電に備える。   Furthermore, a new effect when predicting the duration and interval of a power failure is shown. 4 and 5 are examples when a power outage occurs once a day. It is important to predict both power outage time and power outage interval when planning how to use batteries when power outages occur multiple times a day. You can plan how to use the battery multiple times and when to charge it. FIG. 6 shows an example when multiple power outages occur. There have been two power outages. When prediction was not performed, the performance of prf7 was limited in the first power failure at time t6-t7, and although the battery capacity decreased from C3 to C1, the IT service could be continued. In the second power outage from time t8 to t10, if the performance restriction at prf7 is the same as that at the first time, the battery is depleted at time t9 and the IT service cannot be continued. When predicting the power outage time and the power outage interval, there are two methods depending on the type of battery. One is a method of estimating the total time of a plurality of power outages and determining the storage battery usage for each power outage so that the IT service for that time can be continued. This method is suitable for lead-acid batteries that require time for charging. The other is a method of estimating IT power outage time and power outage intervals, performing quick charging between power outages, and recovering battery capacity to improve IT service continuity and performance. This is a method suitable for a lithium-ion battery with little life deterioration during rapid charging. In the first method, by limiting the performance to prf6, the storage battery can be used even during two power outages, and the service can be continued. The battery capacity decreases from C3 to C2 at the first power failure, and becomes zero from C2 at the next power failure. In the second method, the performance is set to prf7 higher than prf6, and the battery capacity is recovered by performing rapid charging between power outages, so that both continuity of service and high performance can be achieved. The battery capacity is reduced from C3 to C1 due to a power failure at time t6-t7, but rapid charging is performed by time t8 of the next power failure, and the battery capacity is restored to C3 to prepare for a power failure from time t8.

このように、停電の継続時間と、停電と停電の間隔を予測し、見積もりを行うことで、電池の充放電の最適なスケジューリングを行うことができ、それに伴い、IT機器のサービス継続と性能向上を図ることができる利点がある。これを踏まえて、本発明の実施例1において、停電で予測する項目の例を図7に示す。管理単位を1日としているが、特に制限されない。ここでは、サマリと詳細に表を分けている。サマリとして停電の有無、1日の停電回数、最長停電時間、停電の総合計時間、停電間隔の最短と最長時間を挙げている。詳細のデータとして、24時間のうち、いつ停電するかを停電の開始時間と終了時間を挙げている。各分ごとにテーブルを持っておき、停電の有無を記載する方法でもよい。停電間隔に関しては、管理単位(1日)をまたいで計算しておく必要がある。3月1日では、9:00−12:00、16:00−18:00、20:00−21:00の停電が発生すると予測しており、停電回数は3回、最長停電時間は3時間、停電総時間は6時間、停電間隔は最低で2時間、最長で13時間である。停電間隔の最長の時間は、3月1日の21時から3月2日の10時までの13時間である。   In this way, by predicting and estimating the duration of a power outage and the interval between power outages, it is possible to perform optimal scheduling of battery charging / discharging, and accordingly, service continuity and performance improvement of IT equipment There is an advantage that can be achieved. Based on this, in Example 1 of the present invention, an example of items predicted by a power failure is shown in FIG. Although the management unit is one day, it is not particularly limited. Here, the table is divided into summary and details. The summary includes the presence or absence of power outages, the number of power outages per day, the longest power outage time, the total power outage time, and the shortest and longest time between power outages. As detailed data, the start time and end time of the power outage are listed as to when the power outage occurs in 24 hours. A method may be used in which a table is provided for each minute and the presence or absence of a power failure is described. The power outage interval needs to be calculated across management units (1 day). On March 1, it is predicted that a power outage of 9: 00-12: 00, 16: 00-18: 00, 20: 00-21: 00: 00 will occur, the number of power outages will be 3 times, and the maximum power outage time will be 3 The total power outage time is 6 hours, the power outage interval is a minimum of 2 hours, and a maximum of 13 hours. The longest time between power outages is 13 hours from 21:00 on March 1 to 10:00 on March 2.

なお、停電の特性(時間、頻度、間隔等)は、場所とか曜日などによって、変化すると予想される。   The characteristics of power outages (time, frequency, interval, etc.) are expected to change depending on the location and day of the week.

停電の予測に関しては、見積もりのため、予測が外れることがある。予測が外れるのは、停電が起きないことや、停電の時間や間隔が実際と異なる長短がある場合がある。このため、本特許では予測が外れるときの対処法について記載する。停電予測によるIT機器と蓄電池の連係制御は、電池残量がなくならないようにするためのフィードフォワード制御であった。予測が外れたときは、電池残量から判断するフィードバック制御に切り替える。その例を図8に示す。図を見やすくするために、性能prf1とprf2間、電池容量C1とC2間は圧縮して記載している。停電時間の見積もりとして時刻t1−t2としているが、実際はt1−t2より長く、時刻t1−t5で停電が発生した場合である。予測した時間より長い場合は、電池残量の実測を元にフィードバックする。時間延長に対する対策がない場合は、時刻t3で電池が枯渇してしまい、時刻t3−t5の間、IT機器を稼動することができない。そこで、予測した計画の時間を超えると、電池の残量、並びにIT機器の電力値の実測を元に、IT機器の性能制限を厳しくしていく。実測のタイミングも残量が少なくなるにつれて、頻度を上げていく。時刻t2−t3、t3−t4、t4−t5の間隔は順番に短くする。このように、電池の残量の実測値を停電期間中に電池の容量が持つように性能制限へフィードバックする方法により、予測が外れた場合の対処とする。   Regarding the prediction of power outage, the prediction may be out of order due to the estimation. There are cases where the power failure does not occur and there are cases where the power failure time and interval are different from the actual ones. For this reason, this patent describes how to deal with the case where the prediction is wrong. The linkage control between the IT device and the storage battery based on the prediction of the power failure is feedforward control for preventing the battery remaining amount from running out. When the prediction is lost, the control is switched to feedback control that is determined from the remaining battery level. An example is shown in FIG. In order to make the figure easy to see, the performance between prf1 and prf2 and between the battery capacities C1 and C2 are shown compressed. Although the time t1-t2 is estimated as the power failure time, it is actually a case where a power failure occurs at time t1-t5 which is longer than t1-t2. If it is longer than the predicted time, feedback is made based on the actual measurement of the remaining battery level. If there is no measure against time extension, the battery runs out at time t3, and the IT device cannot be operated during time t3-t5. Therefore, if the predicted planning time is exceeded, the performance limit of the IT device is tightened based on the actual measurement of the remaining battery level and the power value of the IT device. The frequency of actual measurement is increased as the remaining amount decreases. The intervals between times t2-t3, t3-t4, and t4-t5 are shortened in order. In this way, a measure is taken to cope with a case where prediction is lost by a method of feeding back the measured value of the remaining battery level to the performance limit so that the battery capacity has during the power failure.

以上より、停電を予測することの利点と、IT機器と蓄電池の動作、連係制御の例、並びに、停電予測が外れたときの対処の制御例に関して示した。IT機器と蓄電池の連携制御の動作例を踏まえて、次に、IT機器と蓄電池の連係制御部の詳細構造を説明する。   As mentioned above, it showed about the advantage of predicting a power failure, the operation of IT apparatus and a storage battery, the example of linkage control, and the control example of the countermeasure when a power failure prediction comes off. Next, the detailed structure of the linkage control unit between the IT device and the storage battery will be described based on the operation example of the cooperative control between the IT device and the storage battery.

図9に本発明の第一の実施例のIT機器と蓄電池を連係制御する制御部CTL55の構成を示す。制御部CTL55は、サーバSVRで動作する。制御部55は、マイコン等のハードウェアを用いて構成してもよいし、ソフトウェアで構成してもよい。電圧モニタとのインターフェースを持ち、停電の時間と頻度を予測し停電計画を立てることと実際に現在、停電かどうかの停電情報を示す停電予測部POE(Power Outages Estimation)70、UPS30とのインターフェースを持ち、予測した停電時間とUPSの蓄電池残量からのIT機器の電力制限値を定めるIT電力予算部IPB(IT Power consumption Budget)80、電源タップPDU40とのインターフェースを持ち、定められたIT機器の電力制限値を満たすように低電力制御を行うIT電力制御部IPC(IT low−Power Control)90から構成される。制御部CTL55の動作概要は次の通りである。停電の時間、間隔を予測し、見積もった停電時間分だけIT機器が稼動できるように、電池残量からIT機器の電力制限値を定める。そして、定められたIT機器の電力制限値に収まるようにIT機器の低電力制御を行う。   FIG. 9 shows the configuration of a control unit CTL 55 that controls the linkage of the IT device and the storage battery according to the first embodiment of the present invention. The control unit CTL 55 operates on the server SVR. The control unit 55 may be configured by using hardware such as a microcomputer or may be configured by software. It has an interface with a voltage monitor, predicts the time and frequency of a power outage, makes a power outage plan, and actually has an interface with a power outage prediction unit POE (Power Outages Estimation) 70 and UPS 30 showing power outage information about whether or not a power outage is present. It has an interface with the IT power budget unit (IPB) 80 and the power tap PDU 40 for determining the power limit value of the IT device from the predicted power outage time and the remaining battery capacity of the UPS. An IT power control unit IPC (IT low-Power Control) 90 that performs low power control so as to satisfy the power limit value is configured. An outline of the operation of the control unit CTL 55 is as follows. The power limit value of the IT device is determined from the remaining battery power so that the power failure time and interval are predicted and the IT device can be operated for the estimated power failure time. Then, low power control of the IT device is performed so that the power limit value of the IT device is set.

次に、各機能ブロックの構成について説明する。図10に停電予測部POE70の構成を示す。停電予測部POEは、電圧ロガー20の実測値を用いて停電の発生と終了、現在停電かどうかを示す実停電情報を出力することと、データ抽出部で電圧ロガーの電圧データを蓄積し、蓄積された電圧データを統計解析して停電計画を立てる。電圧ロガーVLTLOG20の電圧データ、OSから取得した日時データをデータ抽出部71で、データの整形、抽出を行う。時系列で抽出してもよいし、電圧変動のイベントに合わせて抽出してもよい。データ抽出部71で抽出されたデータを、日時を付加して時系列形式でデータ蓄積部72に保存しておく。統計解析部73では、データ蓄積部72の時系列データを統計解析し、時系列モデルを生成する。時系列モデルは、移動平均(MA)、自己回帰モデル(AR)、移動平均自己回帰モデル(ARMA)、自己回帰条件付き分散不均一モデル(GARCH)などがあるが、限定されない。統計解析部73では日々のデータで時系列モデルを更新する。時系列データに対し、日曜日の予測として、単純に毎週日曜日の平均をとるなど、一般的な統計処理を行ってもよい。また、機械学習を組み合わせて精度を向上させてもよい。停電計算部74にて、タイマーで設定した定時、例えば0:00に、当日の停電の頻度、時間、間隔の情報を予測した停電計画を立て、計画データを保存しておき、IT電力予算部80に通知する。   Next, the configuration of each functional block will be described. FIG. 10 shows the configuration of the power failure prediction unit POE70. The power outage prediction unit POE outputs the actual power outage information indicating whether or not a power outage has occurred and ends using the measured value of the voltage logger 20, and the data extraction unit stores the voltage logger voltage data. Statistical analysis of the measured voltage data makes a power outage plan. The data extraction unit 71 performs data shaping and extraction on the voltage data of the voltage logger VLTLOG20 and date / time data acquired from the OS. You may extract in a time series, and you may extract according to the event of a voltage fluctuation. The data extracted by the data extraction unit 71 is stored in the data storage unit 72 in a time series format with the date and time added. The statistical analysis unit 73 statistically analyzes the time series data stored in the data storage unit 72 to generate a time series model. Time series models include, but are not limited to, moving average (MA), autoregressive model (AR), moving average autoregressive model (ARMA), autoregressive conditional variance heterogeneous model (GAARCH), and the like. The statistical analysis unit 73 updates the time series model with daily data. For time series data, general statistical processing such as simply taking the average of every Sunday as a prediction of Sunday may be performed. Also, accuracy may be improved by combining machine learning. The power outage calculation unit 74 sets up a power outage plan that predicts information on the frequency, time, and interval of the current outage at a fixed time set by a timer, for example, 0:00, saves the plan data, and the IT power budget unit 80 is notified.

図11に、本発明の第一の実施例のIT電力予算部IPB80の構成を示す。IT電力予算部80では、停電予測部70の停電計画とUPS30の蓄電池残量を元に、IT機器の制限電力値であるIT電力制限値を定めることと、停電計画で予測した停電の間隔から充電モードを決定する機能を有する。UPS30から蓄電池の残量と電圧、停電予測部POE70からの停電計画、実停電情報と蓄電池アレイの仕様81を入力として、電池使用計画部82にて、電池をどの時間帯にどのモードで充電するかを定める電池充電計画と、電池残量と停電予定時間からIT電力制限値を算出する。電池充電計画に従って充電モードをUPS30へ通知する。停電時にタイマーで定期、または不定期にUPS30の蓄電池残量を測定し、その度に停電計画で示す停電の継続時間とその蓄電池残量から、IT電力制限値を計算する。   FIG. 11 shows the configuration of the IT power budget unit IPB 80 of the first embodiment of the present invention. The IT power budget unit 80 determines the IT power limit value, which is the limit power value of the IT equipment, based on the power outage plan of the power outage prediction unit 70 and the storage battery remaining amount of the UPS 30, and the interval between power outages predicted in the power outage plan. It has a function of determining the charging mode. The battery usage planning unit 82 is used to charge the battery in which mode and in what mode by using the remaining power and voltage of the storage battery from the UPS 30, the power failure plan from the power failure prediction unit POE 70, the actual power failure information and the specifications 81 of the storage battery array as inputs. The IT power limit value is calculated from the battery charging plan that determines the above, the remaining battery level, and the scheduled power outage time. The charging mode is notified to the UPS 30 according to the battery charging plan. When the power failure occurs, the remaining battery capacity of the UPS 30 is measured regularly or irregularly with a timer, and the IT power limit value is calculated from the power failure duration and the remaining battery capacity indicated in the power failure plan each time.

ここで、IT電力制限値を計算する方法について説明する。停電予測部POE70で見積もった停電時間にIT機器を継続稼動するために、UPS30の電池残量と端子電圧を基に、IT機器50にどれくらいの電流を流すかを定める必要がある。このためには、蓄電池の放電特性から算出する必要がある。図12に、蓄電池の放電特性の一例を示す。単純にするために、一つの12Vの蓄電池を用いている。蓄電池アレイでは適宜、並列化、直列化して考えればよい。定格容量をCとすると、放電電流CAの大きさによって蓄電池の放電時間が変わる。1CAでは40分だが、0.05CAでは20時間である。そこで、見積もった停電時間を満たす範囲で放電電流を定めればよい。これが、IT電力制限値となる。例えば、2時間の停電時間を持たせるためには、放電電流を0.25CA以下に設定すればよい。   Here, a method for calculating the IT power limit value will be described. In order to continuously operate the IT device during the power failure time estimated by the power failure prediction unit POE 70, it is necessary to determine how much current is supplied to the IT device 50 based on the battery remaining amount and the terminal voltage of the UPS 30. For this purpose, it is necessary to calculate from the discharge characteristics of the storage battery. FIG. 12 shows an example of the discharge characteristics of the storage battery. For simplicity, a single 12V storage battery is used. The storage battery array may be considered in parallel or in series as appropriate. When the rated capacity is C, the discharge time of the storage battery varies depending on the magnitude of the discharge current CA. It is 40 minutes at 1 CA, but 20 hours at 0.05 CA. Therefore, the discharge current may be determined within a range that satisfies the estimated power failure time. This is the IT power limit value. For example, in order to have a power failure time of 2 hours, the discharge current may be set to 0.25 CA or less.

次に、図13にIT電力制御部IPC90の構成を示す。IT電力制御部IPC90は、電力測定付電源タップPDU40で取得した各IT機器の電力データ、IT電力予算部IPB80で算出したIT電力制限値を入力とし、各IT機器の低電力制御を行う。   Next, FIG. 13 shows the configuration of the IT power control unit IPC90. The IT power control unit IPC 90 receives the power data of each IT device acquired by the power tap with power measurement PDU 40 and the IT power limit value calculated by the IT power budget unit IPB 80 as input, and performs low power control of each IT device.

停電期間中のIT電力制限値に対し、IT機器に低電力制御を行う動作例を図14に示す。蓄電池残量と停電予測時間から算出したIT電力制限値を満たすように低電力制御を行う。電池残量を定期的に、残りの停電予測時間で電池の残量がなくなるようにIT電力制限値の見直しをかける。実際の測定電力値を用いてIT電力制限値を設定する。   FIG. 14 shows an operation example in which low power control is performed on the IT device with respect to the IT power limit value during the power failure. Low power control is performed so as to satisfy the IT power limit value calculated from the remaining amount of storage battery and the estimated power failure time. The IT power limit value is reviewed periodically so that the remaining battery power is exhausted at the remaining power failure prediction time. The IT power limit value is set using the actual measured power value.

以上が、IT機器と蓄電池を連係制御する制御部CTL55の構成となる。それでは、この制御部を構成する制御ソフトウェアを用いてどのように全体の制御を行うかを、フローチャートを用いて説明する。図15にフローチャートを示す。定時(S1)、例えば0:00に、一日の停電時間、停電の頻度、間隔を予測する(S2)。停電が発生(S3)すると、定時に見積もった停電とマッチングをとり、停電の継続時間と間隔を読み出す。電池残量を実測し(S4)、停電の継続時間からIT電力の制限値を設定する(S5)。IT電力の制限値を、完全に電力を制限した状態でIT機器が最も消費電力が少ない最小値(完全電力制限)と比較(S10)し、IT電力制限値が大きい場合は、IT低電力制御を行う。IT電力制限値をITの電力実測値と比較し(S11)、IT電力制限値が大きい場合は、予算達成でIT低電力制御は電力制限は行わない。IT電力制限値が小さい場合は、予算未達成のため、IT電力がIT電力制限値以下となるよう低電力制御を行う(S12)。例外処理として、IT機器の最小電力値とIT電力制限値を比較し、IT機器の最小値が大きい場合(S10)は、電池容量が足らず、ITサービスが継続できないため、他サイトへ通知し(S13)、シャットダウンを行う(S14)。タイマー割込み(S6)で、定期的に電池残量実測を行い(S7)、IT電力制限値の再設定(S5)を行うことで、停電中に電池を最大限に使用しながら、IT性能を向上させることができる。復電すると(S8)、停電中のITの低電力制御を解除(S9)し、予測した停電間隔に従い、停電間隔が短いときは急速充電、長いときは通常充電とする充電モードを設定(S15)し、処理を継続する。これが、フローチャートでの動作である。   The above is the configuration of the control unit CTL 55 that links and controls the IT device and the storage battery. Now, how to perform overall control using the control software constituting the control unit will be described with reference to a flowchart. FIG. 15 shows a flowchart. At a fixed time (S1), for example, at 0:00, the power outage time of the day, the frequency of power outage, and the interval are predicted (S2). When a power failure occurs (S3), matching with the power failure estimated on a regular basis is performed, and the duration and interval of the power failure are read out. The battery remaining amount is measured (S4), and the limit value of IT power is set from the duration of power failure (S5). The IT power limit value is compared (S10) with the minimum value (complete power limit) in which the IT device consumes the least power in a state where the power is completely limited. If the IT power limit value is large, IT low power control is performed. I do. The IT power limit value is compared with the IT power actual measurement value (S11). If the IT power limit value is large, the IT low power control does not limit the power because the budget is achieved. When the IT power limit value is small, the budget is not achieved, and thus low power control is performed so that the IT power becomes equal to or less than the IT power limit value (S12). As an exception process, the minimum power value of the IT device is compared with the IT power limit value. If the minimum value of the IT device is large (S10), the battery capacity is insufficient and the IT service cannot be continued. S13), shutdown is performed (S14). The timer interrupt (S6) periodically measures the remaining battery power (S7), and resets the IT power limit value (S5), thereby improving the IT performance while using the battery to the maximum during a power failure. Can be improved. When power is restored (S8), the low power control of IT during a power failure is canceled (S9), and according to the predicted power failure interval, a charging mode is set for rapid charging when the power failure interval is short and normal charging when it is long (S15). ) And continue processing. This is the operation in the flowchart.

定期的に電池残量を測定しつつ、IT電力制限値を設定し、低電力制御が必要なときは、S6→S7→S5→S8→S10→S11→S12→S6のループ、低電力制御が不要なときはS6→S7→S5→S8→S10→S11→S6のループを形成する。ループのトリガは定期的な電池残量実測である。以上より、停電時間を予測し、その時間にIT機器の性能低下ができるだけ小さく、かつ、サービスを継続できるよう、電池残量を満たすようにIT機器の低電力制御を行うことができる。   If the IT power limit value is set while periodically measuring the remaining battery power and low power control is required, the loop of S6 → S7 → S5 → S8 → S10 → S11 → S12 → S6 When unnecessary, a loop of S6 → S7 → S5 → S8 → S10 → S11 → S6 is formed. The loop trigger is a periodic measurement of the remaining battery level. As described above, it is possible to predict the power failure time, and to perform low power control of the IT device so as to satisfy the remaining battery power so that the performance degradation of the IT device is as small as possible and the service can be continued.

10 商用電源CPWR
20 電圧ロガーVLTLOG
30 無停電電源装置UPS
31 コンバータCNV
32 蓄電池アレイBAT
33 蓄電池制御部CHGCTL
34 インバータINV
35 UPSの制御部UCTL
40 電力測定機構付電源タップPDU
50 IT機器
51 サーバSVR1
52 サーバSVR2
53 ルータRTR
55 サーバの制御部CTL
60 LAN
70 停電予測部POE
71 データ抽出部
72 データ蓄積部
73 統計解析部
74 停電計算部
80 IT電力予算部IPB
81 蓄電池アレイ仕様
82 電池使用計画部
90 IT電力制御部IPC
91 低電力制御部
10 Commercial power supply CPWR
20 Voltage logger VLTLOG
30 Uninterruptible power supply UPS
31 Converter CNV
32 Battery array BAT
33 Storage battery controller CHGCTL
34 Inverter INV
35 UPS control unit UCTL
40 Power tap PDU with power measurement mechanism
50 IT equipment 51 Server SVR1
52 Server SVR2
53 router RTR
55 Server Control Unit CTL
60 LAN
70 Power Failure Prediction Department POE
71 Data Extraction Unit 72 Data Accumulation Unit 73 Statistical Analysis Unit 74 Power Outage Calculation Unit 80 IT Power Budget Unit IPB
81 Storage battery specification 82 Battery usage planning unit 90 IT power control unit IPC
91 Low power controller

Claims (12)

商用電源と、
前記商用電源の電圧を計測する電圧ロガーと、
前記商用電源に接続され、複数の蓄電池が接続された無停電電源装置と、
前記無停電電源装置に接続された電力測定機構付電源タップと、
前記電力測定機構付電源タップに接続されたサーバを含むIT機器から構成され、
前記電圧ロガー、前記無停電電源装置、前記電力測定機構付電源タップ、および前記サーバはネットワークに接続され、
前記サーバ内部の制御部は、停電の継続時間を予測し、前記予測した停電の継続時間と蓄電池の残量からIT機器の電力制限値を求め、電力制限値を満たすよう前記IT機器の電力を制御することを特徴とするIT機器と蓄電池の連係制御システム。
Commercial power,
A voltage logger for measuring the voltage of the commercial power supply;
An uninterruptible power supply connected to the commercial power supply and connected to a plurality of storage batteries;
A power strip with a power measuring mechanism connected to the uninterruptible power supply;
It is composed of IT equipment including a server connected to the power measuring mechanism-equipped power strip,
The voltage logger, the uninterruptible power supply, the power measuring mechanism-equipped power strip, and the server are connected to a network,
The control unit inside the server predicts the duration of the power outage, obtains the power limit value of the IT device from the predicted duration of the power outage and the remaining amount of the storage battery, and sets the power of the IT device to satisfy the power limit value. An IT device and storage battery linkage control system characterized by control.
請求項1に記載のIT機器と蓄電池の連係制御システムにおいて、
前記制御部は、定期または不定期に前記蓄電池の残量を測定し、その度に前記予測した停電の継続時間と前記測定した蓄電池の残量からIT機器の電力制限値を求め、電力制限値を満たすよう前記IT機器の電力を制御することを特徴とするIT機器と蓄電池の連係制御システム。
In the linkage control system of the IT device and the storage battery according to claim 1,
The control unit measures the remaining amount of the storage battery regularly or irregularly, obtains the power limit value of the IT device from the predicted power outage duration and the measured remaining amount of the storage battery each time, and sets the power limit value An IT device and storage battery linkage control system, wherein power of the IT device is controlled to satisfy
請求項1に記載のIT機器と蓄電池の連係制御システムにおいて、
前記制御部は、
前記電圧ロガーの電圧データを蓄積し、蓄積された電圧データに基づいて停電の継続時間を予測する停電予測部と、
予測した停電の継続時間と前記測定した蓄電池の残量からIT機器の電力制限値を求めるIT電力予算部と、
前記電力測定機構付電源タップで取得したIT機器の電力データと前記IT機器の電力制限値に基づいて低電力制御を行うIT電力制御部と
から構成されることを特徴とするIT機器と蓄電池の連係制御システム。
In the linkage control system of the IT device and the storage battery according to claim 1,
The controller is
A power failure prediction unit that accumulates voltage data of the voltage logger and predicts a duration of a power failure based on the accumulated voltage data;
An IT power budget unit for obtaining a power limit value of an IT device from the predicted duration of power outage and the measured remaining battery capacity;
An IT device and a storage battery comprising: an IT power control unit that performs low power control based on power data of the IT device acquired by the power tap with the power measuring mechanism and a power limit value of the IT device. Linkage control system.
請求項3に記載のIT機器と蓄電池の連係制御システムにおいて、
前記停電予測部は、蓄積した時系列データを統計解析して、時系列モデルを生成することを特徴とするIT機器と蓄電池の連係制御システム。
In the linkage control system of the IT device and the storage battery according to claim 3,
The power failure prediction unit statistically analyzes the accumulated time series data to generate a time series model, and the IT device and storage battery linkage control system.
請求項1に記載のIT機器と蓄電池の連係制御システムにおいて、
前記制御部は、停電時間が予測した停電時間より長い場合は、前記蓄電池の残量の実測値を基に前記IT機器の性能制限のフィードバック制御を行うことを特徴とするIT機器と蓄電池の連係制御システム。
In the linkage control system of the IT device and the storage battery according to claim 1,
When the power failure time is longer than the predicted power failure time, the control unit performs feedback control of the performance limitation of the IT device based on the measured value of the remaining capacity of the storage battery. Control system.
請求項1に記載のIT機器と蓄電池の連係制御システムにおいて、
前記制御部は、更に、停電の間隔を予測し、前記予測した停電間隔に基づいて前記蓄電池の充電モードを制御することを特徴とするIT機器と蓄電池の連係制御システム。
In the linkage control system of the IT device and the storage battery according to claim 1,
The control unit further predicts an interval between power outages, and controls a charging mode of the storage battery based on the predicted power outage interval.
請求項6に記載のIT機器と蓄電池の連係制御システムにおいて、
前記制御部は、前記電圧ロガーの電圧データを蓄積し、蓄積された電圧データに基づいて停電の間隔を予測することを特徴とするIT機器と蓄電池の連係制御システム。
In the linkage control system of the IT device and the storage battery according to claim 6,
The control unit accumulates voltage data of the voltage logger, and predicts a power failure interval based on the accumulated voltage data.
商用電源と、前記商用電源の電圧を計測する電圧ロガーと、前記商用電源に接続され、複数の蓄電池が接続された無停電電源装置と、前記無停電電源装置に接続された電力測定機構付電源タップと、前記電力測定機構付電源タップに接続されたサーバを含むIT機器から構成され、前記電圧ロガー、前記無停電電源装置、前記電力測定機構付電源タップ、および前記サーバはネットワークに接続されるシステムの連係制御方法であって、
停電の継続時間を予測するステップと、
前記予測した停電の継続時間と蓄電池の残量からIT機器の電力制限値を求めるステップと、
電力制限値を満たすよう前記IT機器の電力を制御するステップと
を含むことを特徴とするIT機器と蓄電池の連係制御方法。
A commercial power supply, a voltage logger for measuring the voltage of the commercial power supply, an uninterruptible power supply connected to the commercial power supply and connected to a plurality of storage batteries, and a power supply with a power measuring mechanism connected to the uninterruptible power supply It comprises an IT device including a tap and a server connected to the power measuring mechanism-equipped power strip, and the voltage logger, the uninterruptible power supply, the power measuring mechanism-equipped power tap, and the server are connected to a network. A system linkage control method comprising:
Predicting the duration of a power outage;
Obtaining a power limit value of the IT device from the predicted power outage duration and the remaining amount of storage battery;
And a method for controlling the power of the IT device so as to satisfy a power limit value.
請求項8に記載のIT機器と蓄電池の連係制御方法において、
定期または不定期に前記蓄電池の残量を測定するステップと、
その度に前記予測した停電の継続時間と前記測定した蓄電池の残量からIT機器の電力制限値を求めるステップと、
電力制限値を満たすよう前記IT機器の電力を制御するステップと
を含むことを特徴とするIT機器と蓄電池の連係制御方法。
In the linkage control method of the IT device and the storage battery according to claim 8,
Measuring the remaining amount of the storage battery regularly or irregularly;
A step of obtaining a power limit value of the IT device from the predicted duration of the power outage and the measured remaining amount of the storage battery each time;
And a method for controlling the power of the IT device so as to satisfy a power limit value.
請求項8に記載のIT機器と蓄電池の連係制御方法において、
前記停電の継続時間を予測するステップは、前記電圧ロガーの電圧データを蓄積し、蓄積された電圧データに基づいて停電の継続時間を予測することを特徴とするIT機器と蓄電池の連係制御方法。
In the linkage control method of the IT device and the storage battery according to claim 8,
The step of predicting the duration of the power outage stores the voltage data of the voltage logger, and predicts the duration of the power outage based on the accumulated voltage data.
請求項8に記載のIT機器と蓄電池の連係制御方法において、更に、
停電の間隔を予測するステップと、
前記予測した停電間隔に基づいて前記蓄電池の充電モードを制御するステップと
を含むことを特徴とするIT機器と蓄電池の連係制御方法。
In the IT device and storage battery linkage control method according to claim 8, further comprising:
Predicting power outage intervals;
And a step of controlling a charging mode of the storage battery based on the predicted power outage interval.
請求項11に記載のIT機器と蓄電池の連係制御方法において、
前記停電の間隔を予測するステップは、前記電圧ロガーの電圧データを蓄積し、蓄積された電圧データに基づいて停電の間隔を予測することを特徴とするIT機器と蓄電池の連係制御方法。
The IT device and storage battery link control method according to claim 11,
The step of predicting the interval between power outages accumulates voltage data of the voltage logger, and predicts the interval between power outages based on the accumulated voltage data.
JP2011283238A 2011-12-26 2011-12-26 IT equipment and storage battery linkage control system and linkage control method Expired - Fee Related JP5801706B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011283238A JP5801706B2 (en) 2011-12-26 2011-12-26 IT equipment and storage battery linkage control system and linkage control method
CN201210520805.XA CN103178577B (en) 2011-12-26 2012-12-06 Cooperative control system and cooperative control method of IT device and storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011283238A JP5801706B2 (en) 2011-12-26 2011-12-26 IT equipment and storage battery linkage control system and linkage control method

Publications (2)

Publication Number Publication Date
JP2013134550A true JP2013134550A (en) 2013-07-08
JP5801706B2 JP5801706B2 (en) 2015-10-28

Family

ID=48638260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283238A Expired - Fee Related JP5801706B2 (en) 2011-12-26 2011-12-26 IT equipment and storage battery linkage control system and linkage control method

Country Status (2)

Country Link
JP (1) JP5801706B2 (en)
CN (1) CN103178577B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145784A1 (en) * 2014-03-27 2015-10-01 Nec Corporation Energy management method and system for energy supply system
JP2015208129A (en) * 2014-04-21 2015-11-19 京セラ株式会社 System, device and method for power control
JP2015211616A (en) * 2014-04-30 2015-11-24 株式会社Nttファシリティーズ Demand management device
DE102015013834A1 (en) 2014-10-28 2016-04-28 Fanuc Corporation Numerical control device
JP2016220292A (en) * 2015-05-14 2016-12-22 三菱電機株式会社 Power supply system
CN108539828A (en) * 2018-05-30 2018-09-14 深圳市鑫悦购网络科技有限公司 Charging circuit for electric vehicles and electric vehicle charging equipment
JP2019161819A (en) * 2018-03-12 2019-09-19 株式会社Nttファシリティーズ Secondary battery control device and secondary battery control method
US20190334353A1 (en) * 2018-04-25 2019-10-31 Microsoft Technology Licensing, Llc Intelligent battery cycling for lifetime longevity
JP2022051858A (en) * 2021-02-24 2022-04-01 バイドゥ ユーエスエイ エルエルシー Optimization of thermal management control of lithium-ion battery system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084179A1 (en) * 2014-11-27 2016-06-02 東芝三菱電機産業システム株式会社 Uninterruptible power supply
CN109995132A (en) * 2019-03-28 2019-07-09 武汉普天新能源有限公司 A kind of high frequency switch power supply system
CN114142593A (en) * 2021-10-27 2022-03-04 华为数字能源技术有限公司 Management method and related device for standby power duration of base station
CN115764848B (en) * 2023-01-09 2023-07-25 苏州浪潮智能科技有限公司 Supply network for a communication device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261031A (en) * 2004-03-10 2005-09-22 Toshiba Corp Controller, control system, apparatus control method and apparatus control program
JP2010259156A (en) * 2009-04-22 2010-11-11 Fujitsu Telecom Networks Ltd Communication system
JP2011010471A (en) * 2009-06-26 2011-01-13 Tamura Seisakusho Co Ltd Power control system during power failure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062595B2 (en) * 2002-06-12 2008-03-19 三菱電機株式会社 Elevator control device
JP4030920B2 (en) * 2003-05-28 2008-01-09 Necフィールディング株式会社 Power supply control system, power supply control device, power supply control method, and program during power failure
US20110234167A1 (en) * 2010-03-24 2011-09-29 Chin-Hsing Kao Method of Predicting Remaining Capacity and Run-time of a Battery Device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261031A (en) * 2004-03-10 2005-09-22 Toshiba Corp Controller, control system, apparatus control method and apparatus control program
JP2010259156A (en) * 2009-04-22 2010-11-11 Fujitsu Telecom Networks Ltd Communication system
JP2011010471A (en) * 2009-06-26 2011-01-13 Tamura Seisakusho Co Ltd Power control system during power failure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145784A1 (en) * 2014-03-27 2015-10-01 Nec Corporation Energy management method and system for energy supply system
US10003197B2 (en) 2014-03-27 2018-06-19 Nec Corporation Energy management method and system for energy supply system
JP2015208129A (en) * 2014-04-21 2015-11-19 京セラ株式会社 System, device and method for power control
JP2015211616A (en) * 2014-04-30 2015-11-24 株式会社Nttファシリティーズ Demand management device
DE102015013834A1 (en) 2014-10-28 2016-04-28 Fanuc Corporation Numerical control device
JP2016220292A (en) * 2015-05-14 2016-12-22 三菱電機株式会社 Power supply system
JP7257107B2 (en) 2018-03-12 2023-04-13 株式会社Nttファシリティーズ SECONDARY BATTERY CONTROL DEVICE AND SECONDARY BATTERY CONTROL METHOD
JP2019161819A (en) * 2018-03-12 2019-09-19 株式会社Nttファシリティーズ Secondary battery control device and secondary battery control method
US10958082B2 (en) * 2018-04-25 2021-03-23 Microsoft Technology Licensing, Llc Intelligent battery cycling for lifetime longevity
US20190334353A1 (en) * 2018-04-25 2019-10-31 Microsoft Technology Licensing, Llc Intelligent battery cycling for lifetime longevity
CN108539828A (en) * 2018-05-30 2018-09-14 深圳市鑫悦购网络科技有限公司 Charging circuit for electric vehicles and electric vehicle charging equipment
JP2022051858A (en) * 2021-02-24 2022-04-01 バイドゥ ユーエスエイ エルエルシー Optimization of thermal management control of lithium-ion battery system
JP7367091B2 (en) 2021-02-24 2023-10-23 バイドゥ ユーエスエイ エルエルシー Optimization of thermal management control for lithium-ion battery systems
US11929477B2 (en) 2021-02-24 2024-03-12 Baidu Usa Llc Optimization of thermal management control of lithium-ion battery system

Also Published As

Publication number Publication date
CN103178577B (en) 2015-04-01
JP5801706B2 (en) 2015-10-28
CN103178577A (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5801706B2 (en) IT equipment and storage battery linkage control system and linkage control method
JP5816906B2 (en) Battery status monitoring system
JP5187776B2 (en) Electrical equipment
JP2019176725A (en) System and method for managing battery at battery replacement station
JP6590762B2 (en) Power supply system
CN104137382A (en) System and method of smart energy storage in a ups
US20090204838A1 (en) Backup power system and method
US8195340B1 (en) Data center emergency power management
US10496060B2 (en) Power management system and method for power management
JP5788337B2 (en) IT equipment and cooling equipment linkage control system and linkage control method
US20220337080A1 (en) Method and devices for optimizing backup power control using machine learning
WO2014076839A1 (en) Storage battery voltage leveling device and storage battery state monitoring system
JP2011010471A (en) Power control system during power failure
JP6402924B2 (en) POWER MANAGEMENT SYSTEM, STORAGE BATTERY DEVICE LINKED WITH THE SAME AND CONTROL METHOD FOR POWER MANAGEMENT SYSTEM
KR101868770B1 (en) Energy saving solar power system having power control and battery management system
JP2015060775A (en) Maintenance management system for power storage system
JP2010110047A (en) Monitor for uninterruptible power supply unit
US10678285B2 (en) Systems and methods of monitoring bridging time
CN115441558B (en) Data center power supply architecture system
JP2019154108A (en) Power storage system
US20240106017A1 (en) Lead-Acid Battery Management System And Lead-Acid Battery Management Program
JP2023081779A (en) Electric power management system and electric power management method
JP2022147640A (en) Storage battery management system and storage battery management method
CN114362229A (en) Energy storage inverter is from parallelly connected control system of net
JP2015095922A (en) Energy management device and energy management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees