JP2013132787A - Anti-static laminate - Google Patents

Anti-static laminate Download PDF

Info

Publication number
JP2013132787A
JP2013132787A JP2011283368A JP2011283368A JP2013132787A JP 2013132787 A JP2013132787 A JP 2013132787A JP 2011283368 A JP2011283368 A JP 2011283368A JP 2011283368 A JP2011283368 A JP 2011283368A JP 2013132787 A JP2013132787 A JP 2013132787A
Authority
JP
Japan
Prior art keywords
resin
antistatic
antistatic layer
layer
weather resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011283368A
Other languages
Japanese (ja)
Other versions
JP5893389B2 (en
Inventor
Chieko Shirota
千栄子 代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2011283368A priority Critical patent/JP5893389B2/en
Publication of JP2013132787A publication Critical patent/JP2013132787A/en
Application granted granted Critical
Publication of JP5893389B2 publication Critical patent/JP5893389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an anti-static laminate which has all of excellent weather resistance, chemical resistance, and resistance to IPA wiping by incorporating a specific binder resin in an anti-static layer.SOLUTION: The anti-static laminate has: a resin base material 1; and the anti-static layer 2 formed on at least one surface of the resin base material 1, wherein the anti-static layer 2 is made with an electroconductive polymer and the binder resin as a main component. The binder resin is a mixed resin obtained by mixing a polyester resin and a polyurethane resin, and the surface resistivity of the anti-static layer 2 is less than 10Ω/sq. The anti-static laminate is made to exhibit excellent weather resistance by the polyester resin being one component of the binder resin of the anti-static layer, excellent chemical resistance by the polyurethane resin being the other component of the binder resin, and excellent resistance to IPA wiping by these resins.

Description

本発明は、静電気を逃がして塵埃等の付着を防止する制電性積層体に関し、更に詳しくは、良好な耐候性、耐薬性、耐アルコール払拭性を併せ持った制電性積層体に関する。   The present invention relates to an antistatic laminate that releases static electricity and prevents adhesion of dust and the like, and more particularly, to an antistatic laminate that has both good weather resistance, chemical resistance, and alcohol wiping resistance.

従来より、クリーンルームのパーティションのような塵埃を嫌う用途には、静電気を逃がして塵埃の付着を防止する制電性樹脂板が使用されている。この制電性樹脂板は、樹脂基板の少なくとも片面に、直接又は接着層を介して、制電層を設けた積層体であり、例えば、導電性ポリマーとバインダー樹脂とを含んだ制電層を設けたものなどが使用されている。   Conventionally, for applications that dislike dust, such as partitions in clean rooms, an antistatic resin plate that releases static electricity and prevents the adhesion of dust has been used. This antistatic resin plate is a laminate in which an antistatic layer is provided on at least one surface of a resin substrate directly or via an adhesive layer. For example, an antistatic layer containing a conductive polymer and a binder resin is provided. The provided ones are used.

そのような導電性ポリマーとバインダー樹脂とを含んだ制電層を樹脂基材の少なくとも片面に設けた制電性積層体の一つとして、下記特許文献1に記載された樹脂積層体が知られている。この樹脂積層体は、樹脂成形体の少なくとも片面に、π電子共役系導電性高分子と、ポリエステル系樹脂、ポリウレタン系樹脂、ポリエステルウレタン系樹脂、アクリル系樹脂、メラミン系樹脂から選ばれる樹脂とを含んだ帯電防止層を有し、さらに帯電防止層の上に、硬化型樹脂を硬化させてなる硬化塗膜層を有するものであって、帯電防止性、耐擦傷性、透明性に優れるとの記載がある。   As one of antistatic laminates in which an antistatic layer including such a conductive polymer and a binder resin is provided on at least one surface of a resin base material, a resin laminate described in Patent Document 1 below is known. ing. This resin laminate includes a π-electron conjugated conductive polymer and a resin selected from a polyester resin, a polyurethane resin, a polyester urethane resin, an acrylic resin, and a melamine resin on at least one surface of the resin molded body. It has an antistatic layer containing, and further has a cured coating layer formed by curing a curable resin on the antistatic layer, and is excellent in antistatic properties, scratch resistance, and transparency. There is a description.

国際公開第08/035660号International Publication No. 08/035660

しかしながら、π電子共役系導電性高分子として、上記特許文献1に記載されたPEDOT/PSSポリマーコンプレックス[ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体]を使用し、このPEDOT/PSSポリマーコンプレックスと例えばポリエステル樹脂とを主成分とする制電層を樹脂基材の片面に積層形成した制電性積層体は、後述の試験データから判るように良好な耐候性を有しているが、その反面、耐薬性に劣っており、60%硫酸などを滴下すると、短期間で制電層が劣化し、表面抵抗率が浸漬前の10倍以上に増加して制電性が損なわれるという問題があった。 However, as the π-electron conjugated conductive polymer, the PEDOT / PSS polymer complex [complex of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid] described in Patent Document 1 is used, The antistatic laminate obtained by laminating the antistatic layer mainly composed of PEDOT / PSS polymer complex and, for example, polyester resin on one side of the resin base material has good weather resistance as can be seen from the test data described later. to have, but on the other hand, is inferior in chemical resistance, added dropwise and the like 60% sulfuric acid, antistatic layer is deteriorated in a short period of time, antistatic surface resistivity is increased to more than 10 4 times before immersion There was a problem that the property was impaired.

また、上記PEDOT/PSSポリマーコンプレックスと例えばポリウレタン樹脂とを主成分とする制電層を樹脂基材の片面に積層形成した制電性積層体は、後述の試験データから判るように、良好な耐薬性を有する反面、制電層に含まれるポリウレタン樹脂がポリエステル樹脂よりも耐候性に劣るため、例えばキセノンウエザオメーターなどで暴露試験を行うと比較的短時間で制電層が劣化し、100時間程度で制電層の表面抵抗率が1014Ω/□以上に上昇して制電性が全く発揮されないという問題があった。 Further, the antistatic laminate obtained by laminating and forming the antistatic layer mainly composed of the PEDOT / PSS polymer complex and, for example, polyurethane resin on one side of the resin base material has a good chemical resistance. However, since the polyurethane resin contained in the antistatic layer is inferior in weather resistance to the polyester resin, the antistatic layer deteriorates in a relatively short time when an exposure test is performed using, for example, a xenon weatherometer. As a result, the surface resistivity of the antistatic layer increased to 10 14 Ω / □ or more, and the antistatic property was not exhibited at all.

また、クリーンルームのパーティションなどに使用される制電性樹脂板(積層体)は、イソプロピルアルコール(IPA)等のアルコール類を含ませたワイピングクロスで拭き取り洗浄を繰り返しても、表面抵抗率の大幅な上昇を抑制できるだけの耐アルコール払拭性(以下、耐IPA払拭性と記す)を有することが要求されるが、従来の制電性樹脂板(積層体)は耐IPA払拭性の点でも不充分であった。   In addition, the antistatic resin plate (laminate) used in clean room partitions has a large surface resistivity even after repeated wiping and cleaning with a wiping cloth containing alcohols such as isopropyl alcohol (IPA). Alcohol wiping resistance (hereinafter referred to as IPA wiping resistance) that can suppress the rise is required, but conventional antistatic resin plates (laminates) are also insufficient in terms of IPA wiping resistance. there were.

本発明は上記事情の下になされたもので、その解決しようとする課題は、導電性ポリマーとバインダー樹脂を主成分とする制電層を樹脂基材の少なくとも片面に設けた制電性積層体であって、特定のバインダー樹脂を採用することにより、良好な耐候性、耐薬性、耐IPA払拭性を併せ持つように改良した制電性積層体を提供することにある。   The present invention has been made under the above circumstances, and the problem to be solved is an antistatic laminate in which an antistatic layer mainly composed of a conductive polymer and a binder resin is provided on at least one side of a resin base material. Then, it is providing the antistatic laminated body improved so that it might have favorable weather resistance, chemical resistance, and IPA wiping-off property by employ | adopting specific binder resin.

上記課題を解決するため、本発明に係る制電性積層体は、樹脂基材と、樹脂基材の少なくとも片面に形成された制電層を有する制電性積層体であって、制電層が導電性ポリマーとバインダー樹脂を主成分とする層であり、バインダー樹脂がポリエステル樹脂とポリウレタン樹脂との混合樹脂であり、制電層の表面抵抗率が10Ω/□未満であることを特徴とするものである。 In order to solve the above problems, an antistatic laminate according to the present invention is an antistatic laminate having a resin base material and an antistatic layer formed on at least one side of the resin base material, and the antistatic layer Is a layer mainly composed of a conductive polymer and a binder resin, the binder resin is a mixed resin of a polyester resin and a polyurethane resin, and the surface resistivity of the antistatic layer is less than 10 9 Ω / □ It is what.

本発明の制電性積層体においては、ポリエステル樹脂とポリウレタン樹脂との混合比が、質量比で1:9〜8:2であることが好ましい。そして、制電層には紫外線吸収剤が含有されていることが好ましく、紫外線吸収剤は酸化亜鉛又は/及び酸化セリウムであることが好ましい。   In the antistatic laminate of the present invention, the mixing ratio of the polyester resin and the polyurethane resin is preferably 1: 9 to 8: 2 by mass ratio. The antistatic layer preferably contains an ultraviolet absorber, and the ultraviolet absorber is preferably zinc oxide and / or cerium oxide.

本発明の制電性積層体のように、制電層に含まれるバインダー樹脂がポリエステル樹脂とポリウレタン樹脂との混合樹脂であると、後述の試験データから判るように、ポリエステル樹脂によって良好な耐候性が発揮され、ポリウレタン樹脂によって良好な耐薬性が発揮される。そして、ポリエステル樹脂の弱点である耐薬性はポリウレタン樹脂によって補われ、ポリウレタン樹脂の弱点である耐候性はポリエステル樹脂によって補われる。このため、薬液を滴下したり、キセノンウエザオメーターで暴露試験を行っても、制電層の表面抵抗率の上昇が少なく、全光線透過率の低下やヘイズの上昇も少ない。また、制電層に含まれるバインダー樹脂がポリエステル樹脂とポリウレタン樹脂との混合樹脂であると、後述の試験データから判るように、耐IPA払拭性も良好であり、IPAを含ませたワイピングクロスで拭き取り洗浄を繰り返しても、表面抵抗率の大幅な上昇を抑えることができる。尚、本発明の制電性積層体のように制電層の表面抵抗率が10Ω/□未満であると、良好な制電性が発揮され、塵埃等の付着を防止できることは言うまでもない。 As in the antistatic laminate of the present invention, when the binder resin contained in the antistatic layer is a mixed resin of a polyester resin and a polyurethane resin, the polyester resin has good weather resistance as can be seen from the test data described later. And good chemical resistance is exhibited by the polyurethane resin. And the chemical resistance which is a weak point of a polyester resin is supplemented with a polyurethane resin, and the weather resistance which is a weak point of a polyurethane resin is supplemented with a polyester resin. For this reason, even if a chemical solution is dropped or an exposure test is performed with a xenon weatherometer, the surface resistivity of the antistatic layer is not increased, and the total light transmittance and haze are not increased. Further, when the binder resin contained in the antistatic layer is a mixed resin of a polyester resin and a polyurethane resin, as can be seen from the test data described later, the IPA wiping resistance is good, and the wiping cloth containing IPA is used. Even if wiping and cleaning are repeated, a significant increase in surface resistivity can be suppressed. Needless to say, when the surface resistivity of the antistatic layer is less than 10 9 Ω / □ as in the antistatic laminate of the present invention, good antistatic properties are exhibited and adhesion of dust and the like can be prevented. .

ポリエステル樹脂とポリウレタン樹脂との混合比は、前記のように質量比で1:9〜8:2であることが好ましく、この混合比の範囲内であると、良好な耐候性、耐薬性、耐IPA払拭性を併せ持つ制電性積層体を得ることができる。ポリエステル樹脂が質量比で8を超え、ポリウレタン樹脂が質量比で2を下回る場合は、制電層の耐薬性が不充分となり、他方、ポリエステル樹脂が質量比で1を下回り、ポリウレタン樹脂が質量比で9を超える場合は、耐候性が不充分となることに加えて、基材樹脂と制電層との密着性も低下するため、後述する接着層を介在させなければ制電層の形成が困難になる等の不都合が生じる。   As described above, the mixing ratio of the polyester resin and the polyurethane resin is preferably 1: 9 to 8: 2 in terms of mass ratio. If the mixing ratio is within the range, good weather resistance, chemical resistance, resistance An antistatic laminate having both IPA wiping properties can be obtained. When the polyester resin is more than 8 by mass and the polyurethane resin is less than 2 by mass, the antistatic layer has insufficient chemical resistance, while the polyester resin is less than 1 by mass and the polyurethane resin is less by mass. If it exceeds 9, the adhesion between the base resin and the antistatic layer is lowered in addition to the insufficient weather resistance. Inconveniences such as difficulty occur.

そして、制電層に紫外線吸収剤が含有されていると、耐候性が一層向上し、特に紫外線吸収剤が酸化亜鉛又は/及び酸化セリウムである場合は、耐候性の向上が顕著になり、キセノンウエザオメーターで暴露試験を行ったときのヘーズの上昇や表面抵抗率の上昇が激減する。   When the antistatic layer contains an ultraviolet absorber, the weather resistance is further improved. In particular, when the ultraviolet absorber is zinc oxide and / or cerium oxide, the improvement in weather resistance becomes remarkable, and xenon The increase in haze and the increase in surface resistivity are drastically reduced when an exposure test is conducted with a weatherometer.

本発明の一実施形態に係る制電性積層体の断面図である。It is sectional drawing of the antistatic laminated body which concerns on one Embodiment of this invention. 200〜500nmの波長域におけるポリエステル変性ポリウレタン樹脂塗膜と、塩化ビニル−酢酸ビニル共重合樹脂塗膜の吸光度を示すグラフである。It is a graph which shows the light absorbency of the polyester modified polyurethane resin coating film in a 200-500 nm wavelength range, and a vinyl chloride-vinyl acetate copolymer resin coating film.

図1に示す制電性積層体は、樹脂基材1と、この樹脂基材1の片面に接着層3を介して形成された制電層2を有する三層構造の積層体である。接着層3と制電層2は樹脂基材1の両面に形成してもよく、また、接着層3は後述するように省略してもよい。   The antistatic laminate shown in FIG. 1 is a three-layer laminate having a resin base material 1 and an antistatic layer 2 formed on one side of the resin base material 1 with an adhesive layer 3 interposed therebetween. The adhesive layer 3 and the antistatic layer 2 may be formed on both surfaces of the resin substrate 1, and the adhesive layer 3 may be omitted as will be described later.

樹脂基材1は、公知の熱可塑性樹脂や、熱、紫外線、電子線、放射線などで硬化する公知の硬化性樹脂からなるものであって、熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、環状ポリオレフィンなどのオレフィン系樹脂、ポリ塩化ビニル樹脂、ポリメチルメタクリレート、ポリスチレンなどのビニル系樹脂、ニトロセルロース、トリアセチルセルロースなどのセルロース系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、芳香族ポリエステルなどのエステル系樹脂、ABS樹脂、これらの樹脂の共重合樹脂や混合樹脂などが使用され、また、硬化性樹脂としては、例えばエポキシ樹脂、ポリイミド樹脂、アクリル樹脂などの熱硬化性又は紫外線硬化性樹脂が使用される。   The resin substrate 1 is made of a known thermoplastic resin or a known curable resin that is cured by heat, ultraviolet light, electron beam, radiation, or the like. Examples of the thermoplastic resin include polyethylene, polypropylene, and cyclic polyolefin. Such as olefin resin, polyvinyl chloride resin, vinyl resin such as polymethyl methacrylate, polystyrene, cellulose resin such as nitrocellulose, triacetyl cellulose, ester such as polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate, aromatic polyester Resin, ABS resin, copolymer resins and mixed resins of these resins are used, and as the curable resin, for example, a thermosetting or ultraviolet curable resin such as an epoxy resin, a polyimide resin, or an acrylic resin is used. Be done

樹脂基材1の形状は、制電性積層体の用途に応じて、板状でも、シート状でも、フィルム状でも、異形状でもよく、また、無色透明又は半透明でも、有色透明又は半透明でも、着色不透明でもよい。例えば、前述のクリーンルームのパーティションなどの用途に使用される制電性積層体の場合は、透明なポリ塩化ビニルやポリカーボネートの板状体などが好適である。
尚、この樹脂基材1には、可塑剤、安定剤、坑酸化剤その他の添加剤が適宜配合される。
The shape of the resin base material 1 may be a plate shape, a sheet shape, a film shape, or an irregular shape according to the use of the antistatic laminate, and may be colorless, transparent or translucent, colored transparent or translucent. However, it may be colored and opaque. For example, in the case of an antistatic laminate used for applications such as the above-mentioned clean room partition, a transparent polyvinyl chloride or polycarbonate plate is suitable.
The resin base material 1 is appropriately mixed with a plasticizer, a stabilizer, an anti-oxidant and other additives.

制電層2は導電性ポリマーとバインダー樹脂を主成分とする層であって、導電性ポリマーとしては、π共役系導電性ポリマーと、ドーパントとしてのアクセプターとなるポリマーとのコンプレックスが適しており、例えばポリチオフェン、ポリアルキルチオフェン、ポリアルキルジオキシチオフェンなどの水分散性のπ共役系導電性ポリマーと、例えばポリスルホン酸(ポリスチレンスルホン酸、ポリビニルスルホン酸など)、ポリカルボン酸(ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸など)などのアクセプターとのポリマーコンプレックスが好適に使用される。これらの中でも入手が容易なPEDOT/PSSポリマーコンプレックス、即ち、3,4−エチレンジオキシチオフェンのポリマーと、スチレンスルホン酸のポリマーとのコンプレックスが特に好ましく使用される。   The antistatic layer 2 is a layer mainly composed of a conductive polymer and a binder resin. As the conductive polymer, a complex of a π-conjugated conductive polymer and a polymer serving as an acceptor as a dopant is suitable. For example, water-dispersible π-conjugated conductive polymers such as polythiophene, polyalkylthiophene, polyalkyldioxythiophene, and polysulfonic acid (polystyrenesulfonic acid, polyvinylsulfonic acid, etc.), polycarboxylic acid (polyacrylic acid, polymethacrylic acid, etc.) A polymer complex with an acceptor such as an acid or polymaleic acid is preferably used. Among these, a PEDOT / PSS polymer complex that is easily available, that is, a complex of a polymer of 3,4-ethylenedioxythiophene and a polymer of styrenesulfonic acid is particularly preferably used.

導電性ポリマーの含有量は限定されないが、表面抵抗率が10Ω/□以上、10Ω/□未満の良好な制電性を付与するためには、導電性ポリマーの含有量(固形分)をバインダー樹脂の含有量(固形分)の1〜60質量%程度、好ましくは1〜30質量%程度に調整するのがよい。特に、導電性ポリマーの含有量(固形物)が1〜25質量%であると、型押し成形後の制電層に白濁が生じることがないのでより好ましい。 The content of the conductive polymer is not limited, but in order to give good antistatic properties with a surface resistivity of 10 4 Ω / □ or more and less than 10 9 Ω / □, the content of the conductive polymer (solid content ) Is adjusted to about 1 to 60% by mass, preferably about 1 to 30% by mass of the content (solid content) of the binder resin. In particular, it is more preferable that the content (solid matter) of the conductive polymer is 1 to 25% by mass, since white turbidity does not occur in the antistatic layer after stamping.

制電層2のバインダー樹脂は、ポリエステル樹脂とポリウレタン樹脂との混合樹脂を用いることが必要であり、かかる混合樹脂をバインダー樹脂として制電層2を形成すると、良好な耐候性、耐薬性、耐IPA払拭性を併せ持つ制電性積層体を得ることができる。   As the binder resin of the antistatic layer 2, it is necessary to use a mixed resin of a polyester resin and a polyurethane resin. When the antistatic layer 2 is formed using such a mixed resin as a binder resin, good weather resistance, chemical resistance, An antistatic laminate having both IPA wiping properties can be obtained.

混合樹脂の一方の成分であるポリエステル樹脂は、どのポリエステル樹脂も使用できるがその中でも、制電層2に含有させる前記水分散性の導電性ポリマーに対応して、水分散性のポリエステル樹脂を使用することが望ましく、特に、水分散性のアクリル変性ポリエステル樹脂が好適に使用される。ポリエステル樹脂は耐薬性に劣るが、アクリル変性したものは耐薬性が改善されるため、良好な耐薬性を有する制電層2を形成できる利点があり、また、制電層2が白化することもない。ポリエステル樹脂は0℃以上のガラス転移点を有するものが好ましく、そのようなポリエステル樹脂を用いると、制電層2のブロッキングを防止できる利点がある。   Any polyester resin can be used as the polyester resin, which is one component of the mixed resin. Among them, a water-dispersible polyester resin is used corresponding to the water-dispersible conductive polymer contained in the antistatic layer 2. In particular, a water-dispersible acrylic-modified polyester resin is preferably used. Polyester resins are inferior in chemical resistance, but those modified with acrylic have the advantage that the antistatic layer 2 having good chemical resistance can be formed because the chemical resistance is improved, and the antistatic layer 2 may be whitened. Absent. The polyester resin preferably has a glass transition point of 0 ° C. or higher. When such a polyester resin is used, there is an advantage that blocking of the antistatic layer 2 can be prevented.

混合樹脂の他方の成分であるポリウレタン樹脂も、どのポリウレタン樹脂も使用できるがその中でも、前記水分散性の導電性ポリマーに対応して、カルボキシル基などの親水性基を有する水分散性のポリウレタン樹脂を使用することが望ましく、特に、ガラス転移点が0℃以上、好ましくは70〜120℃の範囲にある水分散性のポリウレタン樹脂が好適に使用される。ガラス転移点が0℃よりも低いポリウレタン樹脂は、導電性ポリマーである前記PEDOT/PSSポリマーコンプレックスと混合するとゲル化し、制電層2の形成が困難になるので、ガラス転移点が0℃以上、好ましくは70〜120℃の範囲にある水分散性のポリウレタン樹脂が好ましい。   The polyurethane resin, which is the other component of the mixed resin, can be any polyurethane resin. Among them, the water-dispersible polyurethane resin having a hydrophilic group such as a carboxyl group corresponding to the water-dispersible conductive polymer. In particular, a water dispersible polyurethane resin having a glass transition point of 0 ° C. or higher, preferably in the range of 70 to 120 ° C. is preferably used. A polyurethane resin having a glass transition point lower than 0 ° C. is gelled when mixed with the PEDOT / PSS polymer complex, which is a conductive polymer, and the formation of the antistatic layer 2 becomes difficult. A water dispersible polyurethane resin in the range of 70 to 120 ° C. is preferable.

上記のポリエステル樹脂とポリウレタン樹脂との混合樹脂を制電層2のバインダー樹脂として使用すると、ポリエステル樹脂によって耐候性が発揮されると共に、制電層2の良好な密着性が得られ、ポリウレタン樹脂によって良好な耐薬性が発揮される。そして、ポリエステル樹脂の弱点である耐薬性はポリウレタン樹脂によって補われ、ポリウレタン樹脂の弱点である耐候性はポリエステル樹脂によって補われる。そのため、後述する耐薬性試験や耐候性試験において、制電性積層体に薬液を滴下したり、キセノンウエザオメーターで暴露しても、制電層2の表面抵抗率の上昇は少なく、全光線透過率の低下やヘイズの上昇も少ない。また、制電層2の耐IPA払拭性も良好であり、IPAを含ませたワイピングクロスで拭き取り洗浄を繰り返しても、表面抵抗率の大幅な上昇を抑えることができる。   When a mixed resin of the above polyester resin and polyurethane resin is used as the binder resin of the antistatic layer 2, weather resistance is exhibited by the polyester resin, and good adhesion of the antistatic layer 2 is obtained. Good chemical resistance is exhibited. And the chemical resistance which is a weak point of a polyester resin is supplemented with a polyurethane resin, and the weather resistance which is a weak point of a polyurethane resin is supplemented with a polyester resin. Therefore, even when a chemical solution is dropped on the antistatic laminate or exposed with a xenon weatherometer in the chemical resistance test or weather resistance test described later, the surface resistivity of the antistatic layer 2 does not increase so much. There is little decrease in transmittance and increase in haze. Moreover, the anti-IPA wiping resistance of the antistatic layer 2 is also good, and a significant increase in surface resistivity can be suppressed even if wiping and washing are repeated with a wiping cloth containing IPA.

ポリエステル樹脂とポリウレタン樹脂との混合比は、固形分の質量比で1:9〜8:2とすることが望ましく、このような混合比のポリエステル樹脂とポリウレタン樹脂との混合樹脂を制電層2のバインダー樹脂として使用すると、良好な耐候性、耐薬性、耐IPA払拭性を併せ持つ制電層2を形成することができる。ポリエステル樹脂が質量比で8を超え、ポリウレタン樹脂が質量比で2を下回る場合は、制電層2の耐薬性が不充分となり、他方、ポリエステル樹脂が質量比で1を下回り、ポリウレタン樹脂が質量比で9を超える場合は、耐候性が不充分になると共に、樹脂基材1に対する制電層2の接着性(密着性)も乏しくなるため接着層3を介在させなければ制電層2の積層形成が困難になり、接着層3の省略が不可能になる。また、耐薬性が良好なポリウレタン樹脂の量をポリエステル樹脂の量よりも多くして制電層2の耐薬性を高めることが望ましく、その場合は、紫外線吸収剤を制電層2に含有させて耐候性を高めることが望ましい。   The mixing ratio of the polyester resin and the polyurethane resin is preferably 1: 9 to 8: 2 in terms of the mass ratio of the solid content, and the mixture resin of the polyester resin and the polyurethane resin having such a mixing ratio is used as the antistatic layer 2. When used as a binder resin, it is possible to form the antistatic layer 2 having both good weather resistance, chemical resistance, and IPA wiping resistance. When the polyester resin exceeds 8 by mass and the polyurethane resin is less than 2 by mass, the antistatic layer 2 has insufficient chemical resistance, while the polyester resin is less than 1 by mass and the polyurethane resin is mass. When the ratio exceeds 9, the weather resistance is insufficient and the adhesion (adhesion) of the antistatic layer 2 to the resin substrate 1 is also poor. Lamination formation becomes difficult, and the omission of the adhesive layer 3 becomes impossible. Further, it is desirable to increase the chemical resistance of the antistatic layer 2 by increasing the amount of the polyurethane resin having good chemical resistance than the amount of the polyester resin. In this case, the antistatic layer 2 contains an ultraviolet absorber. It is desirable to increase weather resistance.

上記のように、制電層2には、耐候性を高めるために紫外線吸収剤を含有させることが望ましく、紫外線吸収剤としては、ヒドロキシフェニルトリアジン系、ヒンダードアミン系、ベンゾトリアゾール系、ベンゾフェノン系などの公知の有機系紫外線吸収剤や、酸化亜鉛、酸化セリウムなどの金属酸化物からなる無機系紫外線吸収剤が使用される。特に、後者の酸化亜鉛や酸化セリウムなどの金属酸化物は、前者の有機系紫外線吸収剤に比べて、制電層2の耐候性を向上させる効果が大きいので好適に使用される。これらの金属酸化物は、平均粒径が5〜80nm程度、好ましくは10〜40nm程度のものが好適である。   As described above, it is desirable that the antistatic layer 2 contains an ultraviolet absorber in order to improve weather resistance. Examples of the ultraviolet absorber include hydroxyphenyltriazine, hindered amine, benzotriazole, and benzophenone. Known organic ultraviolet absorbers and inorganic ultraviolet absorbers made of metal oxides such as zinc oxide and cerium oxide are used. In particular, the latter metal oxides such as zinc oxide and cerium oxide are preferably used because they have a greater effect of improving the weather resistance of the antistatic layer 2 than the former organic ultraviolet absorbers. These metal oxides have an average particle size of about 5 to 80 nm, preferably about 10 to 40 nm.

紫外線吸収剤の含有量は特に限定されないが、良好な耐候性を制電層2に付与するためには、有機系紫外線吸収剤の場合、その含有量をバインダー樹脂(前記混合樹脂)の含有量(固形分)の0.1〜40質量%程度、好ましくは1〜16質量%程度に調整するのがよく、また、無機系紫外線吸収剤(前記金属酸化物)の場合も、その含有量をバインダー樹脂(前記混合樹脂)の含有量(固形分)の0.1〜40質量%程度、好ましくは1〜16質量%程度に調整するのがよい。   Although content of a ultraviolet absorber is not specifically limited, In order to provide favorable weather resistance to the antistatic layer 2, in the case of an organic type ultraviolet absorber, the content is content of binder resin (the said mixed resin). (Solid content) is preferably adjusted to about 0.1 to 40% by mass, preferably about 1 to 16% by mass, and also in the case of an inorganic ultraviolet absorber (the metal oxide), the content is adjusted. The content (solid content) of the binder resin (the mixed resin) is adjusted to about 0.1 to 40% by mass, preferably about 1 to 16% by mass.

また、この制電層2には、カルボジイミド基を有する化合物を含有させてもよい。カルボジイミド基を有する化合物としては、イソシアネート末端ジシクロヘキシルメタンカルボジイミドに、ポリエチレンオキシドモノメチルエーテル、プロピレングリコールモノメチルエーテル、N,N−ジエチルイソプロパノールアミン、プロピレングリコールモノフェニルエーテル、トリプロピレングリコールモノメチルエーテルなどをそれぞれ付加したジシクロヘキシルメタンカルボジイミド誘導体の化合物や、また、テトラメチルキシリレンカルボジイミド誘導体などが挙げられる。カルボジイミド基を有する化合物の含有量は、制電層2のバインダー樹脂(前記混合樹脂)の含有量の2.7〜25質量%とすることが望ましい。   The antistatic layer 2 may contain a compound having a carbodiimide group. As the compound having a carbodiimide group, dicyclohexyl obtained by adding polyethylene oxide monomethyl ether, propylene glycol monomethyl ether, N, N-diethylisopropanolamine, propylene glycol monophenyl ether, tripropylene glycol monomethyl ether, etc. to isocyanate-terminated dicyclohexylmethane carbodiimide, respectively. Examples include methane carbodiimide derivative compounds and tetramethylxylylene carbodiimide derivatives. The content of the compound having a carbodiimide group is desirably 2.7 to 25% by mass with respect to the content of the binder resin (the mixed resin) of the antistatic layer 2.

制電層2にカルボジイミド基を有する化合物が含有されていると、カルボジイミド基がバインダー樹脂(前記混合樹脂)のポリマー分子中の親水性のカルボキシル基などと反応して架橋構造を形成し、IPAで拭き取り洗浄を繰り返したときにバインダー樹脂の膨潤による導電性ポリマーの通電阻害が生じ難くなるので、制電層2の耐IPA払拭性が高められ、また、IPA払拭による制電層2の白化も防止できるようになる。   When the antistatic layer 2 contains a compound having a carbodiimide group, the carbodiimide group reacts with a hydrophilic carboxyl group or the like in the polymer molecule of the binder resin (the mixed resin) to form a crosslinked structure. When the wiping and washing are repeated, it becomes difficult to inhibit energization of the conductive polymer due to swelling of the binder resin, so that the anti-IPA wiping resistance of the antistatic layer 2 is improved, and whitening of the antistatic layer 2 due to IPA wiping is also prevented. become able to.

制電層2の厚さは特に限定されないが、10nm〜700nm程度に設定するのが適当である。10nmよりも薄い制電層2は形成が容易でなく、700nmよりも厚い制電層2は材料の無駄使いとなり不経済である。   The thickness of the antistatic layer 2 is not particularly limited, but is appropriately set to about 10 nm to 700 nm. The antistatic layer 2 thinner than 10 nm is not easy to form, and the antistatic layer 2 thicker than 700 nm is wasteful of materials and uneconomical.

前記接着層3は、樹脂基材1に対する接着性(密着性)が乏しい制電層2を熱転写により樹脂基材1の少なくとも片面に形成する場合に必要なものであって、樹脂基材1に対する接着性が良いバインダー樹脂(例えば、接着性に優れたポリエステル樹脂の混合量が多い前記混合樹脂)を含んだ制電層2を樹脂基材1の少なくとも片面に直接転写する場合や、直接塗布して形成する場合には、省略できるものである。   The adhesive layer 3 is necessary when the antistatic layer 2 having poor adhesion (adhesiveness) to the resin base material 1 is formed on at least one surface of the resin base material 1 by thermal transfer. When the antistatic layer 2 containing a binder resin having a good adhesive property (for example, the mixed resin having a large amount of the polyester resin having a good adhesive property) is directly transferred to at least one surface of the resin substrate 1, or directly applied. Can be omitted.

接着層3を形成する樹脂としては、IPAによって変質、劣化しにくい耐アルコール性を有する感熱接着性の樹脂、例えば、オレフィン系樹脂、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂、ポリエステル樹脂、ウレタン変性共重合ポリエステル樹脂などが適しており、その中でも、塩化ビニル−酢酸ビニル共重合樹脂やウレタン変性共重合ポリエステル樹脂は、耐IPA払拭性や接着強度の観点から好ましく使用される。また、アクリル樹脂なども使用される。また、耐候性の観点から、紫外線領域(200〜400nm)の範囲で吸収が少ない接着剤が好ましく、特に塩化ビニル−酢酸ビニル共重合樹脂が好ましい。   Examples of the resin forming the adhesive layer 3 include a heat-sensitive adhesive resin having alcohol resistance that is not easily altered or deteriorated by IPA, such as an olefin resin, a vinyl chloride resin, a vinyl chloride-vinyl acetate copolymer resin, a polyester resin, Urethane-modified copolymer polyester resins and the like are suitable, and among them, vinyl chloride-vinyl acetate copolymer resins and urethane-modified copolymer polyester resins are preferably used from the viewpoint of IPA wiping resistance and adhesive strength. An acrylic resin or the like is also used. From the viewpoint of weather resistance, an adhesive that absorbs less in the ultraviolet region (200 to 400 nm) is preferable, and vinyl chloride-vinyl acetate copolymer resin is particularly preferable.

接着層3の厚さは特に限定されないが、制電層2と同程度もしくはそれ以上であることが望ましく、具体的には100nm〜3μm程度に設定するのが適当である。   The thickness of the adhesive layer 3 is not particularly limited, but is preferably about the same as or greater than that of the antistatic layer 2, and specifically, is set to about 100 nm to 3 μm.

上記の制電性積層体は、例えば下記の製造方法によって効率良く製造される。   Said antistatic laminated body is efficiently manufactured, for example with the following manufacturing method.

第一の製造方法は、まず、剥離フィルムの片面に、前記導電性ポリマーと前記バインダー樹脂(前記ポリエステル樹脂と前記ポリウレタン樹脂との混合樹脂)を主成分とする制電層、又は、前記紫外線吸収剤や前記カルボジイミド基を有する化合物を更に含有させた制電層と、前記耐アルコール性を有する樹脂からなる接着層とを、この順序で積層した三層積層構造の転写フィルムを作製し、次いで、この転写フィルムを、その接着層が樹脂基材側となるように樹脂基材の表面に重ね、接着層の樹脂の融点より高い温度に加熱、加圧して、転写フィルムの接着層と制電層を樹脂基材の少なくとも片面に熱転写することにより、制電性積層体を製造する方法である。転写圧や転写時間は特に限定されないが、例えば、転写圧を9〜30MPa程度に設定し、転写時間を0.1〜1800sec程度に設定するのが適当である。   In the first production method, first, on one side of a release film, an antistatic layer mainly composed of the conductive polymer and the binder resin (a mixed resin of the polyester resin and the polyurethane resin), or the ultraviolet absorption. Producing a transfer film having a three-layer laminated structure in which an antistatic layer further containing an agent or a compound having a carbodiimide group and an adhesive layer made of the alcohol-resistant resin are laminated in this order; The transfer film is laminated on the surface of the resin substrate such that the adhesive layer is on the resin substrate side, and heated and pressurized to a temperature higher than the melting point of the resin of the adhesive layer, and the transfer film adhesive layer and antistatic layer Is a method for producing an antistatic laminate by thermally transferring at least one surface of a resin substrate. The transfer pressure and transfer time are not particularly limited. For example, it is appropriate to set the transfer pressure to about 9 to 30 MPa and set the transfer time to about 0.1 to 1800 sec.

上記のように熱転写して制電性積層体を製造すると、転写圧で接着層3の耐アルコール性を有する樹脂が制電層2に浸透、混入し易くなり、制電層2の表面をIPAで払拭したときに、混入された耐アルコール性の樹脂によって制電層2のバインダー樹脂の膨潤が抑制されて導電性ポリマーの通電阻害が生じ難くなるため、制電層2の耐IPA払拭性が一層向上して10Ω/□未満の良好な制電性を維持できるようになる。 When the antistatic laminate is manufactured by thermal transfer as described above, the resin having the alcohol resistance of the adhesive layer 3 easily penetrates and mixes into the antistatic layer 2 by the transfer pressure, and the surface of the antistatic layer 2 is IPA. When the wiping is performed, the swelling of the binder resin of the antistatic layer 2 is suppressed by the mixed alcohol-resistant resin and it is difficult for the conductive polymer to be inhibited from being energized. It can be further improved and good antistatic properties of less than 10 9 Ω / □ can be maintained.

第二の製造方法は、剥離フィルムの片面に、前記導電性ポリマーと接着性が良好な前記バインダー樹脂(ポリエステル樹脂の量が多い前記混合樹脂)を主成分とする制電層、又は、前記紫外線吸収剤や前記カルボジイミド基を有する化合物を更に含有させた制電層を積層した二層積層構造の転写フィルムを作製し、この転写フィルムを、その制電層が樹脂基材側となるように樹脂基材の表面に重ね、加熱、加圧して転写フィルムの制電層を樹脂基材の少なくとも片面に直接熱転写することにより、接着層3のない制電性積層体を製造する方法である。   In the second production method, on one side of the release film, the antistatic layer mainly composed of the binder resin (the mixed resin having a large amount of polyester resin) having good adhesiveness with the conductive polymer, or the ultraviolet ray A transfer film having a two-layer laminated structure in which an antistatic layer further containing an absorbent and the compound having the carbodiimide group is laminated is prepared, and this transfer film is resin so that the antistatic layer is on the resin substrate side. This is a method for producing an antistatic laminate without the adhesive layer 3 by superimposing, heating and pressing on the surface of the base material, and directly transferring the antistatic layer of the transfer film to at least one surface of the resin base material.

第三の製造方法は、前記導電性ポリマーと前記バインダー樹脂を主成分とする制電層形成用組成物、又は、前記紫外線吸収剤や前記カルボジイミド基を有する化合物を更に含有させた制電層形成用組成物を調製し、この組成物を樹脂基材の少なくとも片面に直接塗布、乾燥して制電層を形成することにより、接着層3のない制電性積層体を製造する方法である。   The third production method is the formation of an antistatic layer further comprising the composition for forming an antistatic layer mainly composed of the conductive polymer and the binder resin, or the compound having the ultraviolet absorber or the carbodiimide group. The antistatic laminated body without the adhesive layer 3 is manufactured by preparing a composition for use and directly applying and drying the composition on at least one surface of a resin substrate to form an antistatic layer.

上記の各製造方法によって得られる制電性積層体はいずれも、導電性ポリマーと、ポリエステル樹脂とポリウレタン樹脂との混合樹脂(バインダー樹脂)を主成分とする制電層2を有するため、ポリエステル樹脂によって良好な耐候性が発揮され、ポリウレタン樹脂によって良好な耐薬性が発揮される。そして、ポリエステル樹脂の弱点である耐薬性はポリウレタン樹脂によって補われ、ポリウレタン樹脂の弱点である耐候性はポリエステル樹脂によって補われる。このため、薬液を滴下したり、キセノンウエザオメーターで暴露試験を行っても、制電層2の表面抵抗率の上昇が少なく、全光線透過率の低下やヘイズの上昇も少ない。特に制電層2に紫外線吸収剤を含有させた制電性積層体は、耐候性に優れている。また、ポリエステル樹脂とポリウレタン樹脂との混合樹脂をバインダー樹脂として含んだ制電層2は、良好な耐IPA払拭性をも兼ね備え、特に、制電層2にカルボジイミド基を有する化合物を含有させたものや、接着層3の耐アルコール性の樹脂が制電層2に浸透、混入したものは、耐IPA払拭性に優れている。   Since the antistatic laminate obtained by each of the above production methods has the antistatic layer 2 mainly composed of a conductive polymer and a mixed resin (binder resin) of a polyester resin and a polyurethane resin, the polyester resin Good weather resistance is exhibited by the polyurethane resin, and good chemical resistance is exhibited by the polyurethane resin. And the chemical resistance which is a weak point of a polyester resin is supplemented with a polyurethane resin, and the weather resistance which is a weak point of a polyurethane resin is supplemented with a polyester resin. For this reason, even if a chemical solution is dropped or an exposure test is performed with a xenon weatherometer, the surface resistivity of the antistatic layer 2 is not increased, and the total light transmittance is decreased and the haze is decreased. In particular, the antistatic laminate in which the antistatic layer 2 contains an ultraviolet absorber has excellent weather resistance. Further, the antistatic layer 2 containing a mixed resin of a polyester resin and a polyurethane resin as a binder resin also has good IPA wiping resistance, and in particular, the antistatic layer 2 contains a compound having a carbodiimide group. In addition, a resin in which the alcohol-resistant resin of the adhesive layer 3 has permeated and mixed into the antistatic layer 2 has excellent IPA wiping resistance.

次に、本発明の制電性積層体について行った耐薬性試験、耐候性試験、耐IPA払拭性試験について説明する。   Next, a chemical resistance test, a weather resistance test, and an IPA wiping resistance test performed on the antistatic laminate of the present invention will be described.

[耐薬性試験1]
水分散性のアクリル変性ポリエステル樹脂[高松油脂(株)製A515GE]と、水分散性のポリウレタン樹脂[第一工業製薬(株)製フレックス170]とを、下記表1に掲げた混合比(固形分の質量比)でそれぞれ混合した混合樹脂をバインダー樹脂とし、それぞれのバインダー樹脂に導電性ポリマーとしてPEDOT/PSSポリマーコンプレックスを6質量%配合して、4種類の制電層形成用組成物を調製した。これらの制電層形成用組成物を樹脂基材(厚さ3mmのポリカーボネート板)の片面に塗布、乾燥して、制電層(厚さ略300nm)を形成することにより、制電性積層体の試料1〜4を作製した。
これらの試料1〜4に、アンモニア、60%硫酸、60%硝酸をそれぞれ2ml滴下し、滴下前の表面抵抗率と、滴下後24時間放置したあとの表面抵抗率を(株)ダイアインスツルメンツ製のハイレスタUPで測定して、耐薬性の良否を調べた。その結果を下記表1に示す。
比較のために、バインダー樹脂をアクリル変性ポリエステル樹脂のみに変更した比較試料1と、バインダー樹脂をポリウレタン樹脂のみに変更した比較試料2を作製し、上記と同様にして耐薬性の良否を調べた。その結果を下記表1に併記する。
[Chemical resistance test 1]
The water-dispersible acrylic-modified polyester resin [A515GE manufactured by Takamatsu Yushi Co., Ltd.] and the water-dispersible polyurethane resin [Flex 170 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.] 4 mass ratios) are used as binder resins, and 6 mass% of PEDOT / PSS polymer complex is blended as a conductive polymer in each binder resin to prepare four types of antistatic layer forming compositions. did. The antistatic laminate is formed by applying these antistatic layer-forming compositions on one side of a resin base material (polycarbonate plate having a thickness of 3 mm) and drying to form an antistatic layer (approximately 300 nm in thickness). Samples 1 to 4 were prepared.
2 ml each of ammonia, 60% sulfuric acid, and 60% nitric acid was dropped on each of these samples 1 to 4, and the surface resistivity before dropping and the surface resistivity after standing for 24 hours after dropping were made by Dia Instruments Co., Ltd. Measured with Hiresta UP to check the quality of chemical resistance. The results are shown in Table 1 below.
For comparison, Comparative Sample 1 in which the binder resin was changed to only the acrylic-modified polyester resin and Comparative Sample 2 in which the binder resin was changed to only the polyurethane resin were prepared, and the quality of the chemical resistance was examined in the same manner as described above. The results are also shown in Table 1 below.

Figure 2013132787
Figure 2013132787

表1より、制電層のバインダー樹脂としてポリエステル樹脂を単独使用した比較試料1は、60%硫酸、60%硝酸をそれぞれ滴下した後の制電層の表面抵抗率が滴下前の表面抵抗率に比べて大幅に上昇し、特に、60%硫酸を滴下した後の表面抵抗率は1010Ω/□以上で制電性が失われている。このことから、比較試料1は耐薬性に劣っていることが判る。
これに対し、制電層のバインダー樹脂としてポリエステル樹脂とポリウレタン樹脂との混合樹脂を使用した本発明の制電性積層体の試料1〜4、及び、制電層のバインダー樹脂としてポリウレタン樹脂を単独使用した比較試料2は、アンモニア、60%硫酸、60%硝酸をそれぞれ滴下した後の制電層の表面抵抗率が滴下前の表面抵抗率に比べて殆ど上昇せず、滴下後でも10Ω/□未満の表面抵抗率を維持しており、良好な耐薬性を有することが判る。
From Table 1, Comparative Sample 1 using a polyester resin alone as the binder resin of the antistatic layer shows that the surface resistivity of the antistatic layer after dropping 60% sulfuric acid and 60% nitric acid is the surface resistivity before dropping. In particular, the surface resistivity after dropping 60% sulfuric acid is 10 10 Ω / □ or more, and the antistatic property is lost. From this, it can be seen that Comparative Sample 1 is inferior in chemical resistance.
In contrast, samples 1 to 4 of the antistatic laminate of the present invention using a mixed resin of a polyester resin and a polyurethane resin as a binder resin for the antistatic layer, and a polyurethane resin alone as the binder resin for the antistatic layer In the comparative sample 2 used, the surface resistivity of the antistatic layer after dropping ammonia, 60% sulfuric acid, and 60% nitric acid hardly increased as compared with the surface resistivity before dropping, and 10 9 Ω even after dropping. It can be seen that the surface resistivity is less than / □ and has good chemical resistance.

[耐薬性試験2]
上記耐薬性試験1において作製した制電性積層体の試料1,2,4と比較試料1,2にそれぞれアンモニア、60%硫酸、60%硝酸を2ml滴下し、スガ試験機(株)製の直読ヘーズコンピューターNDH5000を用いて、滴下後24時間放置したあとの試料1,2,4の全光線透過率とヘーズ、及び、比較試料1,2の滴下前と滴下後24時間放置したあとの全光線透過率とヘーズを測定して耐薬性の良否を調べた。その結果を下記表2に示す。
[Chemical resistance test 2]
2 ml of ammonia, 60% sulfuric acid, and 60% nitric acid were dropped on samples 1, 2, 4 and comparative samples 1, 2 of the antistatic laminate prepared in the above chemical resistance test 1, respectively, and manufactured by Suga Test Instruments Co., Ltd. Using a direct reading haze computer NDH5000, the total light transmittance and haze of samples 1, 2, and 4 after being allowed to stand for 24 hours after dropping, and the total amount after being allowed to stand for 24 hours before and after dropping of comparative samples 1 and 2 The light transmittance and haze were measured to check the chemical resistance. The results are shown in Table 2 below.

Figure 2013132787
Figure 2013132787

表2より、比較試料1,2はいずれも、60%硫酸、60%硝酸を滴下した後の全光線透過率が、滴下前の全光線透過率に比べて少し増減する程度であるが、制電層のバインダー樹脂としてポリエステル樹脂を単独使用した比較試料1は、滴下後のヘーズが滴下前に比べて大幅に上昇しており、耐薬性に劣っていることが判る。これに対し、制電層のバインダー樹脂としてポリウレタン樹脂を単独使用した比較試料2は、滴下後のヘーズが滴下前に比べて僅かに上昇する程度であって、3.5〜4.3%の範囲を維持しており、良好な耐薬性を有することが判る。
そして、制電層のバインダー樹脂としてポリエステル樹脂とポリウレタン樹脂との混合樹脂を使用した本発明の制電性積層体の試料1,2,4はいずれも、アンモニア、60%硫酸、60%硝酸を滴下した後の全光線透過率が比較試料2の滴下後のそれと遜色なく、滴下後のヘーズも比較試料2の滴下後のそれと同等もしくは少し上昇する程度であり、比較試料2とあまり変わらない良好な耐薬性を有することが判る。
From Table 2, in Comparative Samples 1 and 2, the total light transmittance after dropping 60% sulfuric acid and 60% nitric acid is slightly increased or decreased compared to the total light transmittance before dropping. It can be seen that Comparative Sample 1 using a polyester resin alone as the binder resin for the electric layer has a significantly increased haze after dropping compared with that before dropping, and is inferior in chemical resistance. On the other hand, the comparative sample 2 using a polyurethane resin alone as the binder resin of the antistatic layer is such that the haze after dropping is slightly increased as compared to before dropping, and is 3.5 to 4.3%. The range is maintained, and it can be seen that it has good chemical resistance.
The samples 1, 2, and 4 of the antistatic laminate of the present invention using a mixed resin of a polyester resin and a polyurethane resin as the binder resin of the antistatic layer are all made of ammonia, 60% sulfuric acid, and 60% nitric acid. The total light transmittance after the dripping is not inferior to that after the dropping of the comparative sample 2, and the haze after dropping is equal to or slightly higher than that after the dropping of the comparative sample 2 and is not much different from the comparative sample 2. It can be seen that it has excellent chemical resistance.

[耐候性試験1]
水分散性のアクリル変性ポリエステル樹脂[高松油脂(株)製A515GE]と、水分散性のポリウレタン樹脂[第一工業製薬(株)製フレックス170]とを、下記表3に掲げた混合比(固形分の質量比)でそれぞれ混合した混合樹脂をバインダー樹脂とし、それぞれのバインダー樹脂に導電性ポリマーとしてPEDOT/PSSポリマーコンプレックスを6質量%配合して制電層形成用組成物を調製した。
PETフィルムの片面に、アクリル変性ポリエステル樹脂とポリウレタン樹脂との混合比が8:2、6:4、4:6、2:8である上記制電層形成用組成物をそれぞれ塗布、乾燥して厚さ300nmの制電層を形成し、その上にアクリル樹脂液を塗布、乾燥して厚さ1μmの接着層を形成することにより、4種類の転写フィルムを得た。そして、それぞれの転写フィルムを樹脂基材(厚さ3mmのポリカーボネート板)の片面に熱転写することによって、樹脂基材と制電層との間に接着層が介在する本発明の制電性積層体の試料5〜8を作製した。
また、PETフィルムの片面に、アクリル変性ポリエステル樹脂とポリウレタン樹脂との混合比が2:8、0:10である上記制電層形成用組成物をそれぞれ塗布、乾燥して厚さ300nmの制電層を形成し、その上に、アクリル樹脂液に代えてウレタン変性ポリエステル樹脂液を塗布、乾燥して厚さ1μmの接着層を形成することにより、2種類の転写フィルムを得た。そして、各転写フィルムを上記樹脂基材の片面に熱転写することにより、樹脂基材と制電層との間に接着層が介在する本発明の制電性積層体の試料9と比較試料4を作製した。
上記の試料5〜9と比較試料3をキセノンウエザオメーター[スガ試験機(株)製、X75]でそれぞれ100時間、300時間、500時間暴露して耐候性試験を行い、暴露後の全光線透過率とヘーズを前記直読ヘーズコンピューターNDH5000で測定して耐候性の良否を調べた。なお、比較試料3については、暴露前の全光線透過率とヘーズも測定した。これらの結果を下記表3に示す。
[Weather resistance test 1]
The water-dispersible acrylic-modified polyester resin [A515GE manufactured by Takamatsu Yushi Co., Ltd.] and the water-dispersible polyurethane resin [Flex 170 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.] The mixture resin mixed at a mass ratio of each minute was used as a binder resin, and 6% by mass of PEDOT / PSS polymer complex as a conductive polymer was blended with each binder resin to prepare an antistatic layer forming composition.
On one side of the PET film, the antistatic layer forming composition having a mixing ratio of acrylic modified polyester resin and polyurethane resin of 8: 2, 6: 4, 4: 6, 2: 8 is applied and dried. An antistatic layer having a thickness of 300 nm was formed, and an acrylic resin liquid was applied thereon and dried to form an adhesive layer having a thickness of 1 μm. Thus, four types of transfer films were obtained. The antistatic laminate of the present invention in which an adhesive layer is interposed between the resin base material and the antistatic layer by thermally transferring each transfer film to one surface of the resin base material (polycarbonate plate having a thickness of 3 mm). Samples 5 to 8 were prepared.
Also, the antistatic layer-forming composition having a mixing ratio of acrylic modified polyester resin and polyurethane resin of 2: 8 and 0:10 was applied to one side of the PET film and dried to give a 300 nm thick antistatic material. Two layers of transfer films were obtained by forming a layer, applying a urethane-modified polyester resin solution instead of the acrylic resin solution, and drying to form an adhesive layer having a thickness of 1 μm. Then, each of the transfer films is thermally transferred to one surface of the resin base material, whereby the antistatic laminate sample 9 and the comparative sample 4 of the present invention in which an adhesive layer is interposed between the resin base material and the antistatic layer are obtained. Produced.
The above samples 5 to 9 and comparative sample 3 were exposed to a xenon weatherometer [X75] manufactured by Suga Test Instruments Co., Ltd. for 100 hours, 300 hours, and 500 hours, respectively, and subjected to a weather resistance test. The transmittance and haze were measured by the direct reading haze computer NDH5000, and the weather resistance was checked. For Comparative Sample 3, total light transmittance and haze before exposure were also measured. These results are shown in Table 3 below.

Figure 2013132787
Figure 2013132787

表3の各試料を対比すれば判るように、ポリエステル樹脂の配合比が大きいバインダー樹脂を用いて制電層を形成した試料ほど、耐候性が良くなり、暴露後の全光線透過率の低下やヘーズの上昇が少なくなる傾向にあることが判る。特に、ポリウレタン樹脂のみをバインダー樹脂として制電層を形成した比較試料4は、100時間暴露するだけでも、ヘーズが10.8%(暴露前の略5.7倍)まで上昇し、ポリエステル樹脂を混合した試料に比べ、耐候性に劣っていることが判る。
また、アクリル樹脂で接着層を形成した試料5〜8は、ウレタン変性ポリエステル樹脂で接着層を形成した試料9に比べると、300時間暴露後及び500時間暴露後の全光線透過率が高く、ヘーズが低く維持されており、このことからアクリル樹脂で接着層を形成すると、耐候性の向上に有効であることが判る。
As can be seen by comparing each sample in Table 3, the weather resistance is improved as the antistatic layer is formed using a binder resin having a large blending ratio of the polyester resin, and the total light transmittance after exposure is reduced. It can be seen that the increase in haze tends to decrease. In particular, the comparative sample 4 in which the antistatic layer was formed using only the polyurethane resin as the binder resin increased the haze to 10.8% (approximately 5.7 times before the exposure) even after being exposed for 100 hours. It can be seen that the weather resistance is inferior to the mixed sample.
Samples 5 to 8 having an adhesive layer formed of an acrylic resin have higher total light transmittance after exposure for 300 hours and after exposure for 500 hours, compared with Sample 9 having an adhesive layer formed of urethane-modified polyester resin. Therefore, it can be seen that forming an adhesive layer with an acrylic resin is effective in improving weather resistance.

[耐候性試験2]
制電層のバインダー樹脂をポリエステル樹脂とポリウレタン樹脂との混合比が1:9の混合樹脂に変更し、接着層を省略して樹脂基材上に制電層を直接形成した試料10を、前記の塗布による製造方法で作製した。また、制電層のバインダー樹脂をポリエステル樹脂のみに変更し、樹脂基材上にアクリル樹脂の接着層を介して制電層を形成した比較試料3を、前記の転写による製造方法で作製した。
前記の耐候性試験1で作製した試料5〜9及び比較試料4と、上記試料10と、上記比較試料3と、前記耐薬性試験1で作製した試料4及び比較試料1を、前記キセノンウエザオメーターでそれぞれ100時間、300時間、500時間暴露し、暴露前と暴露後の制電層の表面抵抗率を前記ハイレスタUPで測定して、耐候性の良否を調べた。その結果を下記表4に示す。
[Weather resistance test 2]
The sample 10 in which the binder resin of the antistatic layer was changed to a mixed resin having a mixing ratio of polyester resin and polyurethane resin of 1: 9, the adhesive layer was omitted, and the antistatic layer was directly formed on the resin substrate, It was produced by a manufacturing method by coating. Moreover, the binder resin of the antistatic layer was changed to only the polyester resin, and the comparative sample 3 in which the antistatic layer was formed on the resin base material through the adhesive layer of the acrylic resin was produced by the manufacturing method using the transfer described above.
Samples 5 to 9 and comparative sample 4 prepared in the weather resistance test 1, the sample 10, the comparative sample 3, and the sample 4 and comparative sample 1 prepared in the chemical resistance test 1 are combined with the xenon weathering. Exposure was made with a meter for 100 hours, 300 hours, and 500 hours, respectively, and the surface resistivity of the antistatic layer before and after exposure was measured with the Hiresta UP to examine whether the weather resistance was good or bad. The results are shown in Table 4 below.

Figure 2013132787
Figure 2013132787

表4より、制電層のバインダー樹脂をポリウレタン樹脂のみとし、接着層を紫外線領域での吸収が大きいウレタン変性ポリエステルで形成した比較試料4は、前記キセノンウエザオメーターによる100時間の暴露で、制電層の表面抵抗率が1014Ω/□を超えて測定不能になり、良好な耐候性が得られないことが判る。これに対し、ポリエステル樹脂とポリウレタン樹脂との混合樹脂をバインダー樹脂として制電層を形成した試料9は、ポリエステル樹脂の占める比率が20質量%と少なくても、100時間の暴露で表面抵抗率が1012Ω/□オーダーであり、比較試料4に比べ、耐候性が向上している。これは、バインダー樹脂中に耐候性が良好なポリエステル樹脂を混合したからである。さらに、アクリル樹脂の接着層を形成した比較試料3、試料5〜8を対比すると、制電層のバインダー樹脂中のポリエステル樹脂の混合比が高くなるほど、暴露後の表面抵抗率の上昇が少なくなり、耐候性が向上することが判る。また、試料8,9を対比すると、双方の制電層のバインダー樹脂は同じであるにも拘わらず、ウレタン変性ポリエステル樹脂で接着層を形成した試料9の方が、アクリル樹脂で接着層を形成した試料8に比べて、100時間暴露後の表面抵抗率がかなり上昇しており、紫外線吸収が小さいアクリル樹脂接着層の方がウレタン変性ポリエステル樹脂接着層よりも耐候性向上の観点から有効であることが判る。
尚、試料7と試料3、試料8,9と試料4をそれぞれ対比すると、バインダー樹脂中のポリエステル樹脂とポリウレタン樹脂との混合比がそれぞれ同じであるにも拘わらず、接着層を形成していない試料3,4の方が、接着層を形成した試料7,8,9よりも、暴露後の表面抵抗率の上昇が遥かに少なく、耐候性が大幅に向上していることが判る。その理由は、おそらくポリエステル樹脂と基材樹脂との密着性が非常に優れているからと推測される。
From Table 4, Comparative Sample 4 in which the binder resin of the antistatic layer is made only of polyurethane resin and the adhesive layer is made of urethane-modified polyester having a large absorption in the ultraviolet region is controlled by 100 hours of exposure with the xenon weatherometer. It can be seen that the surface resistivity of the electric layer exceeds 10 14 Ω / □ and measurement becomes impossible, and good weather resistance cannot be obtained. On the other hand, the sample 9 in which the antistatic layer was formed by using a mixed resin of polyester resin and polyurethane resin as a binder resin had a surface resistivity of 100 hours of exposure even if the polyester resin accounted for 20 mass%. Compared with the comparative sample 4, the weather resistance is improved to the order of 10 12 Ω / □. This is because a polyester resin having good weather resistance is mixed in the binder resin. Further, when comparing Comparative Sample 3 and Samples 5 to 8 in which an acrylic resin adhesive layer is formed, as the mixing ratio of the polyester resin in the binder resin of the antistatic layer increases, the increase in the surface resistivity after exposure decreases. It can be seen that the weather resistance is improved. Further, when comparing Samples 8 and 9, Sample 9 in which the adhesive layer is formed of urethane-modified polyester resin has the adhesive layer formed of acrylic resin, although the binder resin of both antistatic layers is the same. In comparison with Sample 8, the surface resistivity after exposure for 100 hours is considerably increased, and the acrylic resin adhesive layer having a smaller ultraviolet absorption is more effective from the viewpoint of improving the weather resistance than the urethane-modified polyester resin adhesive layer. I understand that.
Note that when Sample 7 and Sample 3, and Samples 8 and 9 and Sample 4 are compared, the adhesive layer is not formed even though the mixing ratio of the polyester resin and the polyurethane resin in the binder resin is the same. It can be seen that Samples 3 and 4 have much less increase in surface resistivity after exposure and significantly improved weather resistance than Samples 7, 8, and 9 with the adhesive layer formed. The reason is presumably because the adhesion between the polyester resin and the base resin is very excellent.

[耐候性試験3]
前記水分散性のアクリル変性ポリエステル樹脂と前記水分散性のポリウレタン樹脂とを下記表5に示す混合比で混合したバインダー樹脂と、該バインダー樹脂に導電性ポリマーとして6質量%配合された前記PEDOT/PSSポリマーコンプレックスと、該バインダー樹脂に8質量%配合された下記表5に示す紫外線吸収剤とを含有した厚さ300nmの制電層を、前記樹脂基材(厚さ3mmのポリカーボネート板)の片面に、ウレタン変性ポリエステル樹脂よりなる厚さ1μmの接着層を介して形成することにより、本発明の制電性積層体の試料11〜19を作製した。
これらの試料11〜19を、前記キセノンウエザオメーターでそれぞれ100時間、300時間、500時間暴露し、暴露後の各試料の全光線透過率とヘーズを前記直読ヘーズコンピューターNDH5000で測定して、耐候性の良否を調べた。その結果を下記表5に示す。また、紫外線吸収剤を含まない前記試料9の暴露後の全光線透過率とヘーズ(表3に記載したもの)も下記表5に併記した。
[Weather resistance test 3]
A binder resin in which the water-dispersible acrylic-modified polyester resin and the water-dispersible polyurethane resin are mixed at a mixing ratio shown in Table 5 below, and the PEDOT / An antistatic layer having a thickness of 300 nm containing PSS polymer complex and an ultraviolet absorber shown in Table 5 blended in 8% by mass with the binder resin is disposed on one side of the resin substrate (polycarbonate plate having a thickness of 3 mm). In addition, samples 11 to 19 of the antistatic laminate of the present invention were produced by forming via an adhesive layer having a thickness of 1 μm made of urethane-modified polyester resin.
These samples 11 to 19 were exposed with the xenon weatherometer for 100 hours, 300 hours and 500 hours, respectively, and the total light transmittance and haze of each sample after the exposure were measured with the direct reading haze computer NDH5000. The quality of the sex was examined. The results are shown in Table 5 below. Further, the total light transmittance and haze (explained in Table 3) after the exposure of the sample 9 containing no ultraviolet absorber are also shown in Table 5 below.

Figure 2013132787
Figure 2013132787

表5より、有機系紫外線吸収剤を制電層に含有させた試料11〜14は、暴露後の全光線透過率やヘーズが、制電層に紫外線吸収剤を含まない試料9のそれらと大差なく、耐候性が若干向上するものの、顕著な効果は見られなかった。これに対し、酸化セリウムや酸化亜鉛などの無機系紫外線吸収剤を制電層に含有させた試料15〜19は、暴露後の光学特性、特にヘーズの上昇が紫外線吸収剤を含まない試料9に比べて遥かに少なく、耐候性の顕著な改善効果が見られ、酸化セリウムや酸化亜鉛を含有した試料は300時間暴露後、ヘーズ値8.0以下、500時間暴露後、ヘーズ値10%以下を保持している。このことから、酸化セリウムや酸化亜鉛などの金属酸化物は、耐候性の向上に極めて有効であることが判明した。また、酸化セリウム(平均粒径10nm)を制電層に含有させた試料15、18、19を対比すると、ポリウレタン樹脂の混合比が大きくなってもヘーズはそれぼど上昇しておらず、500時間暴露後でもヘーズの上昇はあまり大きくないことから、ポリウレタン樹脂は、ヘーズや全光線透過率などの光学特性の耐候性に劣るものではないことが判る。   From Table 5, Samples 11 to 14 containing an organic ultraviolet absorber in the antistatic layer are largely different from those of Sample 9 in which the total light transmittance and haze after the exposure do not contain the ultraviolet absorber in the antistatic layer. Although the weather resistance was slightly improved, no significant effect was observed. On the other hand, Samples 15 to 19 containing an inorganic ultraviolet absorber such as cerium oxide or zinc oxide in the antistatic layer are similar to Sample 9 in which the increase in optical properties after exposure, particularly haze, does not include the ultraviolet absorber. Compared with the sample, the effect of significantly improving weather resistance was observed. Samples containing cerium oxide or zinc oxide had a haze value of 8.0 or less after exposure for 300 hours and a haze value of 10% or less after exposure for 500 hours. keeping. From this, it was found that metal oxides such as cerium oxide and zinc oxide are extremely effective in improving weather resistance. In addition, when Samples 15, 18, and 19 containing cerium oxide (average particle size of 10 nm) in the antistatic layer are compared, the haze does not increase as much as the mixing ratio of the polyurethane resin is increased. Since the haze increase is not so great even after time exposure, it can be seen that polyurethane resin is not inferior in weather resistance of optical characteristics such as haze and total light transmittance.

[耐候性試験4]
前記の耐候性試験3で作製した試料11〜19を、前記キセノンウエザオメーターで100時間、300時間、500時間、700時間、1000時間暴露し、暴露前と暴露後の制電層の表面抵抗率を前記ハイレスタUPで測定して、耐候性の良否を調べた。その結果を下記表6に示す。
比較のために、ポリウレタンのみをバインダー樹脂とし、前記PEDOT/PSSポリマーコンプレックスと酸化セリウムを前記と同量含む制電層を形成した比較試料5を作製し、この比較試料5について上記と同様に制電層の表面抵抗率を測定して耐候性の良否を調べた。その結果を下記表6に示す。また、紫外線吸収剤を含まない前記試料9の暴露前後の表面抵抗率(表4に記載したもの)も下記表6に併記する。
[Weather resistance test 4]
Samples 11 to 19 prepared in the weather resistance test 3 were exposed to the xenon weatherometer for 100 hours, 300 hours, 500 hours, 700 hours, and 1000 hours, and the surface resistance of the antistatic layer before and after the exposure. The rate was measured with the Hiresta UP to examine whether the weather resistance was good or bad. The results are shown in Table 6 below.
For comparison, a comparative sample 5 in which an antistatic layer containing only the polyurethane as a binder resin and containing the same amount of the PEDOT / PSS polymer complex and cerium oxide as described above was prepared, and the comparative sample 5 was controlled as described above. The surface resistivity of the electric layer was measured to check the weather resistance. The results are shown in Table 6 below. Further, the surface resistivity before and after the exposure of the sample 9 that does not contain an ultraviolet absorber (shown in Table 4) is also shown in Table 6 below.

Figure 2013132787
Figure 2013132787

表6より、有機系紫外線吸収剤を制電層に含有させた試料11〜14は、100時間暴露後の表面抵抗率の上昇が、制電層に紫外線吸収剤を含まない試料9に比べて少なく、耐候性が向上した。また、酸化セリウムや酸化亜鉛などの無機系紫外線吸収剤を制電層に含有させた試料15,17,18,19は、100時間暴露後および300時間暴露後の制電層の表面抵抗率の上昇が、紫外線吸収剤を含まない試料9や有機系紫外線吸収剤を制電層に含有させた試料11〜14に比べて少なく、耐候性の改善効果がより顕著に見られた。また、試料16は、試料9と同様に、300時間暴露後の表面抵抗率が1014Ω/□以上であったが、100時間暴露後の表面抵抗は試料9よりも遥かに低くなっており、やはり耐候性の改善効果が見られた。これらのことから、酸化セリウムや酸化亜鉛などの金属酸化物は、耐候性の向上に極めて有効であることが判明した。特に、酸化セリウム(10nm)を含有させた試料15,18,19は、500時間暴露後でも、1011〜13Ω/□オーダーの表面抵抗率を維持しており、耐候性の向上に著効を発揮することが判明した。 From Table 6, samples 11 to 14 containing an organic ultraviolet absorber in the antistatic layer show an increase in surface resistivity after 100 hours exposure compared to sample 9 in which the antistatic layer does not contain an ultraviolet absorber. Less weather resistance was improved. Samples 15, 17, 18, and 19 containing an inorganic ultraviolet absorber such as cerium oxide or zinc oxide in the antistatic layer show the surface resistivity of the antistatic layer after 100 hours exposure and 300 hours exposure. The increase was small compared to Sample 9 containing no UV absorber and Samples 11 to 14 containing an organic UV absorber in the antistatic layer, and the effect of improving weather resistance was more noticeable. In addition, sample 16 had a surface resistivity of 10 14 Ω / □ or more after 300 hours exposure as in sample 9, but the surface resistance after 100 hours exposure was much lower than that of sample 9. After all, the effect of improving weather resistance was observed. From these results, it has been found that metal oxides such as cerium oxide and zinc oxide are extremely effective in improving the weather resistance. In particular, Samples 15, 18, and 19 containing cerium oxide (10 nm) maintain a surface resistivity of the order of 10 11 to 13 Ω / □ even after exposure for 500 hours, and are highly effective in improving weather resistance. It was found that

[耐IPA払拭性試験1]
前記耐候性試験1で作製した本発明の制電性積層体の試料5〜9及び比較試料4と、前記耐候性試験2で作製した試料10について、それぞれの試料の制電層の表面を、IPAを含ませたワイピングクロスで払拭する作業を繰り返し、払拭前、50回払拭後、100回払拭後、200回払拭後、300回払拭後のそれぞれの表面抵抗率を前記ハイレスタUPで測定した。その結果を下記表7に示す。
[IPA wiping resistance test 1]
For the samples 5 to 9 and the comparative sample 4 of the antistatic laminate of the present invention prepared in the weather resistance test 1 and the sample 10 prepared in the weather resistance test 2, the surface of the antistatic layer of each sample is The operation of wiping with a wiping cloth containing IPA was repeated, and the surface resistivity was measured with the Hiresta UP before wiping, after 50 wiping, after 100 wiping, after 200 wiping, and after 300 wiping. The results are shown in Table 7 below.

Figure 2013132787
Figure 2013132787

表7より、試料5〜10、比較試料4はいずれも、IPAを含ませたワイピングクロスで50回払拭後、100回払拭後、200回払拭後、300回払拭後の制電層の表面抵抗率の上昇が殆どなく、良好な耐IPA払拭性を有することが判る。   According to Table 7, the surface resistance of the antistatic layer after wiping 50 times with a wiping cloth containing IPA, 100 wiping, 200 wiping, and 300 wiping for samples 5 to 10 and comparative sample 4 It can be seen that there is almost no increase in the rate and good IPA wiping resistance.

[耐IPA払拭性試験2]
前記耐候性試験3で作製した紫外線吸収剤を含む本発明の制電性積層体の試料11〜17と、前記耐候性試験1で作製した紫外線吸収剤を含まない試料9と、前記耐薬性試験1で作製した紫外線吸収剤を含まない試料3,4について、それぞれの試料の制電層の表面を、IPAを含ませたワイピングクロスで払拭する作業を繰り返し、払拭前、50回払拭後、100回払拭後、200回払拭後、300回払拭後のそれぞれの表面抵抗率を前記ハイレスタUPで測定した。その結果を下記表8に示す。
[IPA wiping resistance test 2]
Samples 11 to 17 of the antistatic laminate of the present invention containing the ultraviolet absorber prepared in the weather resistance test 3, the sample 9 not including the ultraviolet absorber prepared in the weather resistance test 1, and the chemical resistance test. For the samples 3 and 4 that do not contain the UV absorber prepared in 1, the operation of wiping the surface of the antistatic layer of each sample with a wiping cloth containing IPA was repeated, and before wiping, after wiping 50 times, 100 The surface resistivity after each wiping, 200 wiping, and 300 wiping was measured with the Hiresta UP. The results are shown in Table 8 below.

Figure 2013132787
Figure 2013132787

表8より、試料9、試料11〜17、試料3,4はいずれも、IPAを含ませたワイピングクロスで50回払拭後、100回払拭後、200回払拭後、300回払拭後の制電層の表面抵抗率の上昇が殆どなく、良好な耐IPA払拭性を有することが判る。そして、制電層に紫外線吸収剤を含まない試料9,4,3と、制電層に紫外線吸収剤を含む試料11〜17とを比べると、前者は300回払拭後の表面抵抗率が107〜8Ω/□オーダーあるのに対し、後者は300回払拭後の表面抵抗率が10Ω/□オーダーで、前者と大差がなく、このことから紫外線吸収剤の添加は耐IPA払拭性に悪影響を及ぼすものでないことが判る。 From Table 8, all of Sample 9, Samples 11-17, and Samples 3 and 4 were wiped with a wiping cloth containing IPA 50 times, after 100 times, after 200 times, after 300 times. It can be seen that there is almost no increase in the surface resistivity of the layer and it has good IPA wiping resistance. And when the samples 9, 4, and 3 in which the antistatic layer does not contain the ultraviolet absorber and the samples 11 to 17 in which the antistatic layer contains the ultraviolet absorber, the former has a surface resistivity of 10 after wiping 300 times. While the latter has an order of 7-8 Ω / □, the latter has a surface resistivity after wiping 300 times of 10 8 Ω / □, which is not much different from the former. It can be seen that it does not adversely affect

[耐候性試験5]
前記水分散性のアクリル変性ポリエステル樹脂と前記水分散性のポリウレタン樹脂を下記表9に示す混合比で混合したバインダー樹脂と、該バインダー樹脂に導電性ポリマーとして6質量%配合された前記PEDOT/PSSポリマーコンプレックスと、該バインダー樹脂に紫外線吸収剤として8質量%配合された酸化セリウム(10nm)とを含む厚さ300nmの制電層を、前記樹脂基材(厚さ3mmのポリカーボネート板)の片面に直接形成するか、塩化ビニル−酢酸ビニル共重合体よりなる厚さ1μmの接着層を介して形成することにより、本発明の制電性積層体の試料20〜25を作製した。
これらの試料20〜25を前記キセノンウエザオメーターで100時間、300時間、500時間、700時間、1000時間暴露し、暴露前と暴露後の試料20〜25の制電層の表面抵抗率を前記ハイレスタUPで測定して、耐候性の良否を調べた。その結果を下記表9に示す。また、前記試料15,18,19と比較試料5の表面抵抗率も、下記表9に併記する。
更に、厚さ3μmの塩化ビニル−酢酸ビニル共重合樹脂よりなる接着層と、厚さ3μmのウレタン変性ポリエステル樹脂よりなる接着層について、200〜500nmの波長域におけるUV吸光度を、UV吸光度計((株)島津製作所製のUV−3100PC)を用いて測定した。その結果を、図2のグラフに示す。
[Weather resistance test 5]
A binder resin obtained by mixing the water-dispersible acrylic-modified polyester resin and the water-dispersible polyurethane resin at a mixing ratio shown in Table 9 below, and the PEDOT / PSS blended in the binder resin by 6% by mass as a conductive polymer. An antistatic layer having a thickness of 300 nm containing a polymer complex and cerium oxide (10 nm) compounded by 8% by mass as an ultraviolet absorber in the binder resin is formed on one side of the resin base material (polycarbonate plate having a thickness of 3 mm). Samples 20 to 25 of the antistatic laminate of the present invention were produced by forming directly or through a 1 μm thick adhesive layer made of a vinyl chloride-vinyl acetate copolymer.
These samples 20 to 25 were exposed to the xenon weatherometer for 100 hours, 300 hours, 500 hours, 700 hours, and 1000 hours, and the surface resistivity of the antistatic layer of samples 20 to 25 before and after the exposure was measured as described above. It was measured with Hiresta UP to examine whether the weather resistance was good or bad. The results are shown in Table 9 below. The surface resistivity of Samples 15, 18, 19 and Comparative Sample 5 are also shown in Table 9 below.
Further, with respect to an adhesive layer made of a vinyl chloride-vinyl acetate copolymer resin having a thickness of 3 μm and an adhesive layer made of a urethane-modified polyester resin having a thickness of 3 μm, UV absorbance in a wavelength region of 200 to 500 nm was measured using a UV absorbance meter (( It was measured using Shimadzu Corporation UV-3100PC). The result is shown in the graph of FIG.

Figure 2013132787
Figure 2013132787

表9より、ポリウレタン樹脂のみを制電層のバインダー樹脂とする比較試料5は300時間暴露後の表面抵抗率が1014Ω/□以上に上昇するのに対し、ポリウレタン樹脂とポリエステル樹脂の混合樹脂をバインダー樹脂とする試料15,18〜25は、比較試料5よりも耐候性が向上し、ポリエステル樹脂の混合比が大きくなるほど表面抵抗率の上昇が少なくなる傾向にあることが判る。特に、接着層がない試料20,21,22,23は、300時間暴露後においても、10Ω/□以下の表面抵抗率を維持し、耐候性に優れているが、その理由は前述した通りである。 From Table 9, the comparative sample 5 using only the polyurethane resin as the binder resin of the antistatic layer has a surface resistivity of 10 14 Ω / □ or more after 300 hours exposure, whereas the mixed resin of polyurethane resin and polyester resin. It can be seen that Samples 15 and 18 to 25 having a binder resin have improved weather resistance as compared with Comparative Sample 5, and the increase in the surface resistivity tends to decrease as the mixing ratio of the polyester resin increases. In particular, Samples 20, 21, 22, and 23 without an adhesive layer maintain a surface resistivity of 10 9 Ω / □ or less even after 300 hours of exposure, and have excellent weather resistance. Street.

また、試料15,18,19と試料24,25を対比すると、図2のグラフに示すように紫外線領域(200〜400nm)での吸収が少ない塩化ビニル−酢酸ビニル共重合樹脂からなる接着層を設けた試料24,25は、紫外線領域での吸収が多いウレタン変性ポリエステル樹脂よりなる接着層を設けた試料15,18,19よりも、暴露前及び暴露後の表面抵抗率が小さく、このことから、紫外線領域での吸収が少ない塩化ビニル−酢酸ビニル共重合樹脂からなる接着層は耐候性に優れることが判る。   Further, when the samples 15, 18 and 19 are compared with the samples 24 and 25, an adhesive layer made of a vinyl chloride-vinyl acetate copolymer resin having little absorption in the ultraviolet region (200 to 400 nm) as shown in the graph of FIG. The provided samples 24 and 25 have lower surface resistivity before and after the exposure than the samples 15, 18 and 19 provided with an adhesive layer made of urethane-modified polyester resin that absorbs much in the ultraviolet region. It can be seen that an adhesive layer made of a vinyl chloride-vinyl acetate copolymer resin having little absorption in the ultraviolet region is excellent in weather resistance.

上述した各耐候性試験の結果より、樹脂基材と制電層との間に接着層を有する制電性積層体においては、接着層の樹脂としてウレタン樹脂、アクリル樹脂、塩化ビニル−酢酸ビニル共重合樹脂などが使用可能であるが、特に紫外線領域での吸収が少ない塩化ビニル−酢酸ビニル共重合樹脂が好ましく使用されることが判る。また、バインダー樹脂にポリエステル樹脂を含むことで、接着層を省略しても樹脂基材と制電層との密着性が向上すると共に、優れた耐候性が得られることも判る。そして、樹脂基材と制電層のみの2層構成の制電性積層体は、接着層をなくすことでコストダウンや薄肉化、製造工程の短縮などの効果も得られるようになる。   From the results of the above weather resistance tests, in the antistatic laminate having an adhesive layer between the resin base material and the antistatic layer, urethane resin, acrylic resin, vinyl chloride-vinyl acetate are used as the resin for the adhesive layer. Although a polymer resin can be used, it can be seen that a vinyl chloride-vinyl acetate copolymer resin having a small absorption in the ultraviolet region is preferably used. It can also be seen that the inclusion of the polyester resin in the binder resin improves the adhesion between the resin base material and the antistatic layer even if the adhesive layer is omitted, and provides excellent weather resistance. And the antistatic laminated body of the 2 layer structure only of a resin base material and an antistatic layer can also obtain effects, such as cost reduction, thickness reduction, and a shortening of a manufacturing process, by lose | eliminating an adhesive layer.

[バインダー樹脂選定試験]
下記表10に掲げる高松油脂(株)製の水分散性のアクリル変性ポリエステル樹脂(A515GE)、(A215GE)、無変性ポリエステル樹脂(A120)、(A510)、(A520)と、これらのバインダー樹脂に6質量%配合された前記PEDOT/PSSポリマーコンプレックスとを主成分として含有する厚さ300nmの制電層を、前記樹脂基材(厚さ3mmのポリカーボネート板)の片面に形成して5種類の試料を作製した。各試料の外観と制電層の成形性を調べると共に、A515GEを制電層のバインダー樹脂とする試料と、A520を制電層のバインダー樹脂とする試料について、それらの制電層をIPAを含ませたワイピングクロスで払拭する作業を繰り返し、払拭前、50回払拭後、100回払拭後、200回払拭後、300回払拭後のそれぞれの表面抵抗率を前記ハイレスタUPで測定した。その結果を下記表10に示す。
また、下記表10に掲げる第一工業製薬(株)製の水分散性のポリウレタン(フレックス170)、(フレックス130)、(フレックス420)、(フレックス650)と、これらのバインダー樹脂に6質量%配合された前記PEDOT/PSSポリマーコンプレックスとを主成分として含有する厚さ300nmの制電層を、前記樹脂基材の片面に形成して、上記と異なる4種類の試料を作製し、上記と同様に各試料の外観と制電層の成形性を調べると共に、ガラス転移点が0℃以上のフレックス170とフレックス130をそれぞれバインダー樹脂とする試料についてIPA払拭後のそれぞれの表面抵抗率を測定した。その結果を下記表10に併記する。
[Binder resin selection test]
The water dispersible acrylic modified polyester resins (A515GE), (A215GE), unmodified polyester resins (A120), (A510), (A520) manufactured by Takamatsu Yushi Co., Ltd. listed in Table 10 below, and these binder resins An antistatic layer having a thickness of 300 nm containing 6% by mass of the PEDOT / PSS polymer complex as a main component is formed on one side of the resin substrate (a polycarbonate plate having a thickness of 3 mm), and five types of samples are formed. Was made. In addition to examining the appearance of each sample and the moldability of the antistatic layer, for samples using A515GE as the binder resin for the antistatic layer and for samples using A520 as the binder resin for the antistatic layer, these antistatic layers include IPA. The surface resistivity after each wiping cloth was measured by the Hiresta UP before wiping, after wiping 50 times, after wiping 100 times, after wiping 200 times, and after wiping 300 times. The results are shown in Table 10 below.
Further, the water dispersible polyurethanes (Flex 170), (Flex 130), (Flex 420), (Flex 650) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. listed in Table 10 below, and 6% by mass in these binder resins An antistatic layer having a thickness of 300 nm containing the blended PEDOT / PSS polymer complex as a main component is formed on one side of the resin base material, and four types of samples different from the above are prepared. In addition, the appearance of each sample and the moldability of the antistatic layer were examined, and the surface resistivity after wiping IPA was measured for each of the samples having Flex 170 and Flex 130 having a glass transition point of 0 ° C. or more as binder resins. The results are also shown in Table 10 below.

Figure 2013132787
Figure 2013132787

表10より、制電層のバインダー樹脂としてアクリル変性ポリエステル樹脂(A515GE)や無変性ポリエステル樹脂(A520)を使用した試料は、IPA払拭を300回繰り返した後でも、制電層の表面抵抗率の上昇が殆どなく、耐IPA払拭性が良好であり、また、いずれのポリエステル樹脂を用いた試料も、制電層の成形性は良好である。しかし、外観については、アクリル変性ポリエステル樹脂(A515GE)、(A215GE)を用いた試料が良好であり、無変性ポリエステル樹脂(A120)、(A510)、(A520)を用いた試料は白化を生じる傾向が見られた。これより、制電層のバインダー樹脂の一方の成分として、どのポリエステル樹脂も使用できるが、その中でも変性されたポリエステル樹脂が好ましく、特に、アクリル変性ポリエステル樹脂が最適であることが判明した。また、ポリエステル樹脂のガラス転移点は0℃以上であることが好ましいことも判った。   From Table 10, the sample using acrylic modified polyester resin (A515GE) or non-modified polyester resin (A520) as the binder resin of the antistatic layer shows the surface resistivity of the antistatic layer even after repeating IPA wiping 300 times. There is almost no increase, the IPA wiping resistance is good, and the sample using any polyester resin has good moldability of the antistatic layer. However, in terms of appearance, samples using acrylic modified polyester resins (A515GE) and (A215GE) are good, and samples using unmodified polyester resins (A120), (A510), and (A520) tend to cause whitening. It was observed. As a result, any polyester resin can be used as one component of the binder resin of the antistatic layer, but among them, a modified polyester resin is preferable, and an acrylic modified polyester resin is particularly suitable. It has also been found that the glass transition point of the polyester resin is preferably 0 ° C. or higher.

一方、ガラス転移点が0℃以上(70〜120℃)の水分散性ポリウレタン樹脂(フレックス170)、(フレックス130)をバインダー樹脂とする試料は、IPA払拭を300回繰り返した後でも、制電層の表面抵抗率の上昇が殆どなく、耐IPA払拭性が良好なバインダー樹脂であり、制電層の外観や成形性も良好であるが、ガラス転移点が0°より低いポリウレタン樹脂(フレックス420)、(フレックス650)をバインダー樹脂とする試料は、導電性ポリマーのPEDOT/PSSを混ぜるとゲル化する傾向が見られ、成形性が良くなかった。このことから、制電層のバインダー樹脂の他方の成分として、どのポリウレタン樹脂も使用できるが、その中でも、ガラス転移点が0℃以上である水分散性ポリウレタン樹脂が好ましいことが判明した。   On the other hand, a sample using a water-dispersible polyurethane resin (Flex 170) or (Flex 130) having a glass transition point of 0 ° C. or higher (70 to 120 ° C.) as a binder resin is effective even after IPA wiping is repeated 300 times. Polyurethane resin (flex 420) having a glass transition point lower than 0 °, although the surface resistivity of the layer is hardly increased and the IPA wiping resistance is good and the antistatic layer has good appearance and moldability. ), A sample using (Flex 650) as a binder resin showed a tendency to gel when the conductive polymer PEDOT / PSS was mixed, and the moldability was not good. From this, it was found that any polyurethane resin can be used as the other component of the binder resin of the antistatic layer, and among them, a water dispersible polyurethane resin having a glass transition point of 0 ° C. or higher is preferable.

以上の耐薬性試験、耐候性試験、耐IPA払拭性試験の結果から裏付けられるように、本発明の制電性積層体は良好な耐薬性、耐候性、耐IPA払拭性を併せ持ち、長期に亘って制電性を維持できる優れた積層体である。   As supported by the results of the above chemical resistance test, weather resistance test, and IPA wiping resistance test, the antistatic laminate of the present invention has good chemical resistance, weather resistance, IPA wiping resistance, and has a long-term It is an excellent laminate that can maintain antistatic properties.

1 樹脂基材
2 制電層
3 接着層
1 Resin base material 2 Antistatic layer 3 Adhesive layer

Claims (4)

樹脂基材と、樹脂基材の少なくとも片面に形成された制電層を有する制電性積層体であって、
制電層が導電性ポリマーとバインダー樹脂を主成分とする層であり、バインダー樹脂がポリエステル樹脂とポリウレタン樹脂との混合樹脂であり、制電層の表面抵抗率が10Ω/□未満であることを特徴とする制電性積層体。
An antistatic laminate having a resin base and an antistatic layer formed on at least one side of the resin base,
The antistatic layer is a layer mainly composed of a conductive polymer and a binder resin, the binder resin is a mixed resin of a polyester resin and a polyurethane resin, and the surface resistivity of the antistatic layer is less than 10 9 Ω / □. An antistatic laminate characterized by that.
ポリエステル樹脂とポリウレタン樹脂との混合比が、質量比で1:9〜8:2であることを特徴とする請求項1に記載の制電性積層体。   2. The antistatic laminate according to claim 1, wherein a mixing ratio of the polyester resin and the polyurethane resin is 1: 9 to 8: 2 by mass ratio. 制電層に紫外線吸収剤が含有されていることを特徴とする請求項1又は請求項2に記載の制電性積層体。   The antistatic laminate according to claim 1, wherein the antistatic layer contains an ultraviolet absorber. 紫外線吸収剤が酸化亜鉛又は/及び酸化セリウムであることを特徴とする請求項3に記載の制電性積層体。   The antistatic laminate according to claim 3, wherein the ultraviolet absorber is zinc oxide and / or cerium oxide.
JP2011283368A 2011-12-26 2011-12-26 Antistatic laminate Expired - Fee Related JP5893389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011283368A JP5893389B2 (en) 2011-12-26 2011-12-26 Antistatic laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011283368A JP5893389B2 (en) 2011-12-26 2011-12-26 Antistatic laminate

Publications (2)

Publication Number Publication Date
JP2013132787A true JP2013132787A (en) 2013-07-08
JP5893389B2 JP5893389B2 (en) 2016-03-23

Family

ID=48909837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283368A Expired - Fee Related JP5893389B2 (en) 2011-12-26 2011-12-26 Antistatic laminate

Country Status (1)

Country Link
JP (1) JP5893389B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313596A (en) * 2003-09-30 2005-11-10 Dainippon Printing Co Ltd Decorative sheet
JP2010215738A (en) * 2009-03-14 2010-09-30 Mitsubishi Plastics Inc Antistatic pattern printing polyester film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313596A (en) * 2003-09-30 2005-11-10 Dainippon Printing Co Ltd Decorative sheet
JP2010215738A (en) * 2009-03-14 2010-09-30 Mitsubishi Plastics Inc Antistatic pattern printing polyester film

Also Published As

Publication number Publication date
JP5893389B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
US8298676B2 (en) Electroconductive material and method of producing the same
KR101071289B1 (en) Transparent conductive layered structure for a touch panel input device
US20100085319A1 (en) Organic electroconductive polymer coating liquid, organic electroconductive polymer film, electric conductor, and resistive film touch panel
KR100737182B1 (en) Antistatic coating composition
KR101186833B1 (en) White polyester film for liquid crystal display reflector
TWI307516B (en) Transparent conductor
US7695805B2 (en) Transparent conductor
JP4195050B2 (en) Antistatic composition
TW201040990A (en) A transparent electrically conductive film
TW200914505A (en) Method of manufacturing anti-static polyester film
US7357885B2 (en) Transparent conductive material and transparent conductive member
JP5630012B2 (en) Easy-adhesive thermoplastic film
JP2008023923A (en) Polyester film having antistatic coating layer
WO2010090422A1 (en) Antifouling and antistatic polyester film
JP5893389B2 (en) Antistatic laminate
TW200903522A (en) Conductive multilayer body
JP5333192B2 (en) Easy-adhesive thermoplastic film
KR100946157B1 (en) Ultra-violet curable antistatic coating composition with ionic liquids
JP2006156249A (en) Transparent conductor
KR101111410B1 (en) hard coating liquid and film
JP5732972B2 (en) Antistatic laminate and manufacturing method thereof
JP2010080236A (en) Conductive material and method of producing the same
KR101340317B1 (en) Antistatic coating composition for high voltage and antistatic polymer film using the same
KR101147542B1 (en) Coating Composition of Conductive Polymers Containing Ultra Violet Ray Absorbent
KR20140107895A (en) Transparent conductors having a metal nanowire and manufacturring method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5893389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees