JP2013132660A - Pressure control method for spot welding apparatus - Google Patents

Pressure control method for spot welding apparatus Download PDF

Info

Publication number
JP2013132660A
JP2013132660A JP2011284788A JP2011284788A JP2013132660A JP 2013132660 A JP2013132660 A JP 2013132660A JP 2011284788 A JP2011284788 A JP 2011284788A JP 2011284788 A JP2011284788 A JP 2011284788A JP 2013132660 A JP2013132660 A JP 2013132660A
Authority
JP
Japan
Prior art keywords
sub
side electrode
welding
electrode
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011284788A
Other languages
Japanese (ja)
Other versions
JP5922926B2 (en
Inventor
Kensuke Sakai
健輔 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2011284788A priority Critical patent/JP5922926B2/en
Publication of JP2013132660A publication Critical patent/JP2013132660A/en
Application granted granted Critical
Publication of JP5922926B2 publication Critical patent/JP5922926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pressure control method for a spot welding apparatus that can obtain excellent welding quality by controlling pressing force and sub-pressing force by a welding electrode acting on a member to be welded.SOLUTION: The spot welding apparatus includes a pressing actuator 20 for applying the pressing force F to a fixed side electrode 15 and a movable side electrode 25, and a sub-pressing actuator 31 allowing a sub-pressing part 39 to abut on the member 100 to be welded, to apply the sub-pressing force f. The member 100 to be welded is held and pressed with the pressing force F by the fixed side electrode 15 and the movable side electrode 25, and a current is applied for a predetermined time between the fixed side electrode 15 and the movable side electrode 25. The sub-pressing part 39 is allowed to abut on the member 100 to be welded at an initial predetermined time within the current applying time to apply the sub-pressing force f by the sub-pressing actuator 31.

Description

本発明は、被溶接部材をスポット溶接するスポット溶接装置の加圧制御方法に関する。   The present invention relates to a pressure control method for a spot welding apparatus for spot welding a member to be welded.

一般に、重ね合わされた鋼板等の板材の接合には、一対の溶接電極間で挟み加圧力を与えながら両電極間に大電流を一定時間通電し、接合部をほぼ溶融温度まで上げて接合するスポット溶接が広く行われている。   In general, when joining plate materials such as stacked steel plates, a spot where a large current is passed between the electrodes for a certain period of time while applying pressure between a pair of welding electrodes, and the joint is heated to a substantially melting temperature and joined. Welding is widely performed.

スポット溶接にあたり、両溶接電極による加圧力及び通電時間が一定の場合には、ナゲット径は電流の増加に従って徐々に増加するが、電流値が過大になると発熱量が多くなり板材間に溶融金属が飛散する散りの発生原因となる。即ち、接合部における板厚の減少と共に強度低下の要因となる。反対に電流が過少の場合にはナゲットが小さくなり十分な接合強度が得られない。また、加圧力が小さいと板材間の接触面積が少なくなり、電流密度が高くなり過熱による散り発生原因となる。一方、加圧力が大き過ぎると接合部の接触面積が大きくなり電流密度が低下して発熱量が減少し、ナゲットが小さくなり溶接強度が低下する。   In spot welding, when the applied pressure and energization time by both welding electrodes are constant, the nugget diameter gradually increases as the current increases, but if the current value is excessive, the amount of heat generation increases and molten metal is present between the plate materials. Causes scattering. That is, it causes a reduction in strength as the plate thickness decreases at the joint. On the other hand, when the current is too small, the nugget becomes small and sufficient bonding strength cannot be obtained. In addition, when the applied pressure is small, the contact area between the plate materials is reduced, the current density is increased, and scattering due to overheating is caused. On the other hand, if the applied pressure is too large, the contact area of the joint is increased, the current density is reduced, the heat generation is reduced, the nugget is reduced, and the welding strength is reduced.

ここで、図10に示すように、剛性の低い薄板101、この薄板101より剛性が高い第1厚板102及び第2厚板103の3枚を重ね合わせた被溶接部材100をスポット溶接する場合には、各板材101、102、103の間に隙間がなく密着した状態では、可動側電極111と固定側電極112により被溶接部材100を加圧して電源113により通電すると、可動側電極111と固定側電極112間の通電経路における電流密度がほぼ均一となり薄板101から第2厚板103に亘って良好なナゲットが形成されて溶接強度を得ることができる。   Here, as shown in FIG. 10, spot welding is performed on a member to be welded 100 in which three sheets of a thin plate 101 having low rigidity and a first thick plate 102 and a second thick plate 103 having higher rigidity than the thin plate 101 are overlapped. In the state where the plate members 101, 102, and 103 are in close contact with each other, when the member to be welded 100 is pressed by the movable side electrode 111 and the fixed side electrode 112 and energized by the power source 113, the movable side electrode 111 and The current density in the energization path between the fixed side electrodes 112 is substantially uniform, and a good nugget is formed from the thin plate 101 to the second thick plate 103, so that welding strength can be obtained.

しかし、実際には、可動側電極111と固定側電極112によって被溶接部材100を加圧したときに、剛性の低い薄板101と第1厚板102が上方に撓んで、薄板101と第1厚板102の間及び第1厚板102と第2厚板103との間に隙間が生じる。この場合、可動側電極111と薄板101間の接触面積は薄板101の撓みにより大きくなるのに対して、薄板101と第1厚板102間及び第1厚板102と第2厚板103間の接合部の接触面積はより小さくなる。   However, actually, when the member to be welded 100 is pressed by the movable side electrode 111 and the fixed side electrode 112, the thin plate 101 and the first thick plate 102 having low rigidity bend upward, and the thin plate 101 and the first thickness are bent. A gap is generated between the plates 102 and between the first thick plate 102 and the second thick plate 103. In this case, the contact area between the movable electrode 111 and the thin plate 101 is increased by the bending of the thin plate 101, whereas between the thin plate 101 and the first thick plate 102 and between the first thick plate 102 and the second thick plate 103. The contact area of the joint becomes smaller.

このため、可動側電極111と固定側電極112間の電流密度が薄板101側に対して第2厚板103側が高くなり、薄板101と第1厚板102間よりも第1厚板102と第2厚板103間の方が局部的な発熱量が多くなる。その結果、図10(a)に示すように、先ず第1厚板102と第2厚板103との接合部にナゲットNが形成され、次第にナゲットNが大きくなりやがて図10(b)に示すように薄板101と第1厚板102間が溶着される。しかし、この薄板101と第1厚板102との間の溶け込み量は小さく溶接強度が不安定で、薄板101の剥離が懸念され、かつ溶接品質にバラツキがある。この不具合は、特に第1厚板102及び第2厚板103が厚いほど第1厚板102と薄板101との間にナゲットNが到達しにくく、顕著である。   For this reason, the current density between the movable side electrode 111 and the fixed side electrode 112 is higher on the second thick plate 103 side than on the thin plate 101 side, and the first thick plate 102 and the first thick plate 102 are larger than between the thin plate 101 and the first thick plate 102. The amount of heat generated locally between the two thick plates 103 increases. As a result, as shown in FIG. 10A, first, the nugget N is formed at the joint portion between the first thick plate 102 and the second thick plate 103, and the nugget N gradually becomes larger and then shown in FIG. 10B. In this way, the thin plate 101 and the first thick plate 102 are welded. However, the amount of penetration between the thin plate 101 and the first thick plate 102 is small, the welding strength is unstable, the peeling of the thin plate 101 is a concern, and the welding quality varies. This problem is particularly noticeable because the nugget N is less likely to reach between the first thick plate 102 and the thin plate 101 as the first thick plate 102 and the second thick plate 103 are thicker.

この対策として、例えば特許文献1に開示されスポット溶接装置がある、このスポット溶接装置は、図11に示すように、溶接ロボット115の手首部116にスポット溶接装置120が搭載され、溶接ロボット115は、クランパ118によって支持された被溶接部材100の各打点位置にスポット溶接ガン120を移動し、被溶接部材100のスポット溶接を行う。   As a countermeasure, for example, there is a spot welding apparatus disclosed in Patent Document 1. In this spot welding apparatus, a spot welding apparatus 120 is mounted on a wrist portion 116 of a welding robot 115 as shown in FIG. The spot welding gun 120 is moved to each spot position of the member to be welded 100 supported by the clamper 118, and spot welding of the member to be welded 100 is performed.

スポット溶接装置120は、手首部116に取り付けられたガン支持ブラケット117に固定されたリニアガイド121によって上下動自在に支持されたベース部122を備え、ベース部122に下方に延びる固定アーム123が設けられ、固定アーム123の下端先端に固定側電極124が設けられる。また、ベース部122の上端に加圧アクチュエータ126が搭載され、加圧アクチュエータ126により上下動するロッド127の下端に可動側電極125が取り付けられる。ガン支持ブラケット117の上端にサーボモータ128が搭載され、サーボモータ128の作動によりボールねじ機構を介してベース部122が上下動する。   The spot welding device 120 includes a base portion 122 supported by a linear guide 121 fixed to a gun support bracket 117 attached to the wrist portion 116 so as to be movable up and down, and a fixed arm 123 extending downward is provided on the base portion 122. The fixed side electrode 124 is provided at the lower end tip of the fixed arm 123. A pressure actuator 126 is mounted on the upper end of the base portion 122, and the movable electrode 125 is attached to the lower end of the rod 127 that moves up and down by the pressure actuator 126. A servo motor 128 is mounted on the upper end of the gun support bracket 117, and the operation of the servo motor 128 causes the base portion 122 to move up and down via a ball screw mechanism.

ここで、図示しないコントローラに予め記憶されているティーチングデータに従って、薄板101側に位置する可動側電極125による加圧力FUを固定側電極124による加圧力FLよりも小さくする(FU<FL)。   Here, in accordance with teaching data stored in advance in a controller (not shown), the pressure FU applied by the movable electrode 125 located on the thin plate 101 side is made smaller than the pressure FL applied by the fixed electrode 124 (FU <FL).

このように可動側電極125による加圧力FUを固定側電極124による加圧力FLより小さくするために、先ず、サーボモータ128によりベース部122を上昇させて固定側電極124を被溶接部材100の下面に当接させると共に、加圧アクチュエータ126により可動側電極125を下降させて被溶接部材100の上面に当接させて加圧する。次に、サーボモータ128によりベース部122を押し上げる。このベース部122の押し上げにより、固定側電極124の加圧力FLがベース部122の押し上げ分だけ増加し、可動側電極125による加圧力FUが固定側電極124による加圧力FLより小さくなる。   In order to make the pressure FU applied by the movable electrode 125 smaller than the pressure FL applied by the fixed electrode 124 in this way, first, the base portion 122 is raised by the servo motor 128 to connect the fixed electrode 124 to the lower surface of the member 100 to be welded. The movable side electrode 125 is lowered by the pressure actuator 126 and is brought into contact with the upper surface of the member to be welded 100 for pressurization. Next, the base portion 122 is pushed up by the servo motor 128. As the base portion 122 is pushed up, the pressing force FL of the fixed side electrode 124 is increased by the pushing amount of the base portion 122, and the pressing force FU by the movable side electrode 125 becomes smaller than the pressing force FL by the fixed side electrode 124.

その結果、可動側電極125と固定側電極124との間に通電したときに、薄板101と第1厚板102の接合部における電流密度が高くなり発熱量が第1厚板102と第2厚板103の接合部における発熱量に対して相対的に増加する。これにより、薄板101から第2厚板103に亘って偏りのない良好なナゲットが形成されて溶接強度を確保できる。   As a result, when the movable side electrode 125 and the fixed side electrode 124 are energized, the current density at the joint between the thin plate 101 and the first thick plate 102 is increased, and the amount of heat generated is the first thick plate 102 and the second thickness. It increases relative to the amount of heat generated at the joint of the plate 103. Thereby, a good nugget without bias is formed from the thin plate 101 to the second thick plate 103, and the welding strength can be ensured.

特開2003−251469号公報JP 2003-251469 A

上記特許文献1によると、固定側電極124の加圧力FLより可動側電極125側の加圧力FUを小さくすることで、相対的に薄板101と第1厚板102間の電流密度が高くなり、薄板101と第1厚板102の接合部における発熱量が確保でき、溶け込み量が増大して溶接強度が増加する。   According to Patent Document 1, the current density between the thin plate 101 and the first thick plate 102 is relatively increased by making the applied pressure FU on the movable side electrode 125 side smaller than the applied pressure FL of the fixed side electrode 124. The amount of heat generated at the joint between the thin plate 101 and the first thick plate 102 can be secured, the amount of penetration increases, and the welding strength increases.

しかし、クランパ118によりクランプ保持された被溶接部材100を固定側電極124と可動側電極125によって挟持加圧した状態でベース部122を移動して固定側電極124の加圧力FLより可動側電極125による加圧力FUを小さくするには、被溶接部材100をクランプ保持するクランパ118に大きな負荷が要求される。一方、クランパ118による被溶接部材100のクランプ位置と溶接位置が大きく離間した状態では、被溶接部材100が撓み変形して固定側電極124による加圧力FLと可動側電極125による加圧力FUにバラツキが生じて安定した薄板101と第1厚板102との間の接触抵抗及び第1厚板102と第2厚板103との間の接触抵抗の確保が困難であり、接合部における電流密度にバラツキが生じてスポット溶接の品質低下が懸念される。   However, the member to be welded 100 clamped and held by the clamper 118 is moved between the fixed side electrode 124 and the movable side electrode 125 while the base part 122 is moved and the movable side electrode 125 is moved by the pressure FL of the fixed side electrode 124. In order to reduce the applied pressure FU caused by the above, a large load is required for the clamper 118 that clamps and holds the member to be welded 100. On the other hand, in the state where the clamp position of the member 100 to be welded by the clamper 118 and the welding position are largely separated from each other, the member 100 to be welded is bent and deformed, and the applied pressure FL by the fixed side electrode 124 and the applied pressure FU by the movable side electrode 125 vary. It is difficult to secure a stable contact resistance between the thin plate 101 and the first thick plate 102 and a contact resistance between the first thick plate 102 and the second thick plate 103 due to the occurrence of There is a concern that the quality of spot welding may deteriorate due to variations.

そこで、本特許出願人は、特願2010−200643において、図12に概要を示すように、固定側電極132と、加圧アクチュエータにより作動する可動側電極131との間で被溶接部材100の溶接部を所定の加圧力F、即ち可動側電極132の加圧力FUと固定側電極132の加圧力FLで挟持すると共に加圧し(F=FU+FL)、更に図示しない副加圧アクチュエータにより副加圧部133を被溶接部材100の薄板101に押圧して副加圧力fを付与することで、薄板101側に作用する固定側電極132の加圧力を第2厚板103側に作用する可動側電極131の加圧力より小さく制御して、可動側電極131と固定側電極132との間に通電して溶接するスポット溶接装置を提案した。   Therefore, the applicant of the present patent application, as shown in FIG. 12 in Japanese Patent Application No. 2010-200633, welds the member to be welded 100 between the fixed electrode 132 and the movable electrode 131 operated by the pressure actuator. The portion is clamped and pressurized by a predetermined pressure F, that is, the pressure FU of the movable side electrode 132 and the pressure FL of the fixed side electrode 132 (F = FU + FL). By pressing 133 to the thin plate 101 of the member to be welded 100 and applying the sub-pressing force f, the movable side electrode 131 that applies the pressing force of the fixed side electrode 132 acting on the thin plate 101 side to the second thick plate 103 side. A spot welding apparatus has been proposed in which welding is performed by energizing between the movable side electrode 131 and the fixed side electrode 132 while controlling the applied pressure to be smaller than the applied pressure.

鋭意実験等の結果、このスポット溶接装置においては、可動側電極131と固定側電極132とによって設定された加圧力Fで被溶接部材100を挟持加圧すると共に副加圧力fを付加した状態で可動側電極131と固定側電極132とのに間に所定時間通電して溶接することから、この通電により加熱されて溶接部が軟化して溶接中に可動側電極131と固定側電極132による加圧力が低下して第1厚板102と第2厚板103と間の接触面積が減少してナゲット径が所期の径より小さくなり第1厚板102と第2厚板103との間の所期の溶接強度が達成できないことが懸念される。   As a result of diligent experiments and the like, in this spot welding apparatus, the member to be welded 100 is sandwiched and pressurized with the applied force F set by the movable electrode 131 and the fixed electrode 132, and the movable member 100 is movable with the auxiliary applied force f applied. Since the welding is performed by energizing the side electrode 131 and the fixed side electrode 132 for a predetermined time, the welding portion is heated by this energization and the welded portion is softened, and the pressure applied by the movable side electrode 131 and the fixed side electrode 132 during the welding is performed. Decreases, the contact area between the first plank 102 and the second plank 103 decreases, the nugget diameter becomes smaller than the intended diameter, and the place between the first plank 102 and the second plank 103 is reduced. There is concern that the welding strength of the initial stage cannot be achieved.

従って、かかる点に鑑みてなされた本発明の目的は、被溶接部材に作用する溶接電極による加圧力及び副加圧力を制御することで優れた溶接品質が得られるスポット溶接装置の加圧制御方法を提供することにある。   Accordingly, an object of the present invention made in view of such a point is to provide a pressurizing control method for a spot welding apparatus in which excellent welding quality can be obtained by controlling the pressing force and the sub-pressing force by the welding electrode acting on the member to be welded. Is to provide.

上記目的を達成する請求項1に記載のスポット溶接装置の加圧制御方法の発明は、第1溶接電極と、該第1電極と協働して被溶接部材を挟持する第2溶接電極に加圧力を付与する加圧アクチュエータと、副加圧部を前記被溶接部材に当接して副加圧力を付与する副加圧アクチュエータとを有し、前記第1溶接電極及び第2溶接電極によって前記被溶接部材を予め設定された加圧力で挟持加圧すると共に前記第1溶接電極と第2溶接電極との間で通電し、かつ副加圧部によって予め設定された副加圧力を付与して溶接するスポット溶接装置の加圧制御方法であって、前記加圧アクチュエータにより第1溶接電極と第2溶接電極とで前記被溶接部材を予め設定された加圧力で挟持加圧して第1溶接電極と第2溶接電極に所定時間通電する通電時間内の一部所定時間において被溶接部材に副加圧部を当接して副加圧アクチュエータによる副加圧力を付与することを特徴とする。   The invention of the pressurization control method for a spot welding apparatus according to claim 1, which achieves the above object, is applied to a first welding electrode and a second welding electrode that holds the member to be welded in cooperation with the first electrode. A pressure actuator for applying pressure; and a sub-pressurization actuator for applying a sub-pressurizing force by contacting a sub-pressurizing portion to the member to be welded. The welding member is clamped and pressurized with a preset pressure, energized between the first welding electrode and the second welding electrode, and welded with a secondary pressure applied by the secondary pressure unit. A pressurizing control method for a spot welding apparatus, wherein the welded member is sandwiched and pressed between a first welding electrode and a second welding electrode by a pressurizing actuator with a preset pressurizing force. 2 Energizing time to energize the welding electrode for a predetermined time Characterized by imparting secondary pressure to FukuKa pressure part to be welded member abuts by the sub-pressure actuator in some predetermined time.

これによると、加圧アクチュエータにより第1溶接電極と第2溶接電極とで被溶接部材を予め設定された加圧力で挟持加圧して第1溶接電極と第2溶接電極に所定時間通電する通電時間内の一部所定時間において被溶接部材に副加圧部を当接して副加圧アクチュエータによる副加圧力を付与することで、均等な第1溶接電極と第2溶接電極による加圧力付加による溶接特性によるスポット溶接と、副加圧部による副加圧力により第1溶接電極と第2溶接電極の加圧力が制御された溶接特性のスポット溶接が連続的に得られ、優れた溶接品質が得られる。例えば、2枚の厚板の一方に薄板を重ね合わせた3枚重ねの板組によって構成され被溶部材を第1溶接電極及び第2溶接電極によって挟持加圧することで第1溶接電極と第2溶接電極による加圧力が確保されて両厚板間のナゲットの生成が促進されて両厚板の間における十分なナゲットの径が得られ、かつ被溶接部材を第1溶接電極及び第2溶接電極によって加圧力で挟持加圧すると共に副加圧部によって副加圧力を付与することで、相対的に薄板と厚板間の接触抵抗が大きくなると共に両厚板間の接触抵抗が小さくなるように制御されて薄板側から両厚板に亘るナゲットが形成され薄板の溶接強度が確保できて優れた溶接品質が得られる。   According to this, the energization time in which the first welding electrode and the second welding electrode are energized for a predetermined time by sandwiching and pressurizing the member to be welded with the first welding electrode and the second welding electrode with a preset pressing force by the pressurizing actuator. Welding by applying a pressurizing force by the uniform first welding electrode and the second welding electrode by applying a subpressing force by a subpressurizing actuator while abutting the subpressurizing portion on the member to be welded for a predetermined period of time Spot welding with characteristics and spot welding with welding characteristics in which the pressing force of the first welding electrode and the second welding electrode is controlled by the sub-pressurizing force by the sub-pressurizing part can be obtained continuously, and excellent welding quality can be obtained. . For example, the first welding electrode and the second welding electrode are formed by sandwiching and pressurizing the member to be melted by the first welding electrode and the second welding electrode, which is configured by a three-layered plate assembly in which a thin plate is superimposed on one of two thick plates. The pressure applied by the welding electrode is ensured, and the generation of nuggets between the two thick plates is promoted to obtain a sufficient nugget diameter between the two thick plates, and the member to be welded is applied by the first welding electrode and the second welding electrode. By holding and pressurizing with pressure and applying a sub-pressurizing force by the sub-pressurizing unit, the contact resistance between the thin plate and the thick plate is relatively increased and the contact resistance between the both thick plates is controlled to be relatively small. A nugget extending from the thin plate side to both thick plates is formed, so that the welding strength of the thin plate can be secured and excellent welding quality can be obtained.

請求項2に記載の発明は、請求項1に記載のスポット溶接装置の加圧制御方法において、前記被溶接部材に副加圧部を当接して副加圧アクチュエータによる副加圧力を付与する一部所定時間は通電時間内の初期範囲に設定されたことを特徴とする。   According to a second aspect of the present invention, in the pressurization control method for the spot welding apparatus according to the first aspect, a sub-pressurizing portion is brought into contact with the member to be welded to apply a sub-pressurizing force by a sub-pressurizing actuator. The predetermined time is set to an initial range within the energization time.

これによると、第1溶接電極と第2溶接電極によって被溶接部材を挟持加圧すると共に所定時間通電して被溶接部材を溶接する通電時間の初期範囲に所定時間だけ副加圧部により副加圧力を付与して固定側電極と可動側電極による加圧力を制御することで剛性の異なる板材を重ねた被溶接部材に対する溶接品質が向上する。例えば、2枚の厚板の一方に薄板を重ね合わせた3枚重ねの板組によって構成され被溶接部材を第1溶接電極及び第2溶接電極によって加圧力で挟持加圧すると共に副加圧部によって副加圧力を付与することで、相対的に薄板と厚板間の接触抵抗が大きくなると共に両厚板間の接触抵抗が小さくなるように制御され、薄板から両厚板に亘って電流密度の偏りがなく、薄板側から両厚保板に亘るナゲットが形成され薄板の溶接強度が確保できる。一方、この溶接の経過に伴い両厚板の接合部及び接合部周囲が加熱されて軟化して両厚板間の加圧力が低下してナゲットの成長が抑制され、副加圧部による副加圧力の解除により第1溶接電極と第2溶接電極による加圧が増加し、両厚板間の接触面積が確保されてナゲットの生成が促進されて両厚板の間における十分なナゲットの径が確保され、優れた溶接品質が得られる。   According to this, the member to be welded is sandwiched and pressed by the first welding electrode and the second welding electrode and energized for a predetermined time, and the sub-pressurizing unit applies the sub-pressurizing force only for a predetermined time to the initial range of the energizing time. By controlling the pressure applied by the fixed side electrode and the movable side electrode, the welding quality with respect to the member to be welded on which the plate materials having different rigidity are stacked is improved. For example, the member to be welded is composed of a three-layered plate assembly in which a thin plate is superposed on one of two thick plates, and a member to be welded is sandwiched and pressurized by a first welding electrode and a second welding electrode and applied by a sub-pressurizing unit. By applying the sub-pressing force, the contact resistance between the thin plate and the thick plate is relatively increased and the contact resistance between the two thick plates is controlled to be relatively small. There is no bias, and a nugget extending from the thin plate side to both thickness holding plates is formed, and the welding strength of the thin plate can be ensured. On the other hand, as the welding progresses, the joints of the two thick plates and the surroundings of the joints are heated and softened, the pressurizing force between the two thick plates is reduced, and the nugget growth is suppressed. By releasing the pressure, the pressurization by the first welding electrode and the second welding electrode is increased, the contact area between the two thick plates is secured, the generation of the nugget is promoted, and a sufficient nugget diameter between the two thick plates is secured. Excellent welding quality can be obtained.

請求項3に記載の発明は、請求項1に記載のスポット溶接装置の加圧制御方法において、前記被溶接部材に副加圧部を当接して副加圧アクチュエータによる副加圧力を付与する一部所定時間は通電時間内の後期範囲に設定されたことを特徴とする。   According to a third aspect of the present invention, in the pressurization control method for the spot welding apparatus according to the first aspect, a sub-pressurizing portion is brought into contact with the member to be welded to apply a sub-pressurizing force by a sub-pressurizing actuator. The predetermined time is set in a later period within the energization time.

これによると、第1溶接電極と第2溶接電極によって被溶接部材を挟持加圧すると共に第1溶接電極と第2溶接電極との間に所定時間通電して被溶接部材を溶接する通電時間の後期範囲に所定時間だけ副加圧部により副加圧力を付与して固定側電極と可動側電極による加圧力を制御することで剛性の異なる板材を重ねた被溶接部材に対する溶接品質が向上する。例えば、2枚の厚板の一方に薄板を重ね合わせた3枚重ねの板組によって構成され被溶接部材を第1溶接電極と第2溶接電極による比較的大きな加圧力で挟持加圧することで両厚板の間に十分なナゲットを生成して両厚板の溶接強度を確保し、かつ副加圧部により副加圧力を付与することで、薄板と厚板の接合部におけるナゲットの生成が促進されて優れた溶接品質が得られる。   According to this, the latter part of the energization time which clamps and presses a to-be-welded member with the 1st welding electrode and the 2nd welding electrode, energizes for a predetermined time between the 1st welding electrode and the 2nd welding electrode, and welds the to-be-welded member. By applying the sub-pressurizing force to the range by the sub-pressurizing portion for a predetermined time and controlling the pressurizing force by the fixed side electrode and the movable side electrode, the welding quality for the member to be welded on which the plate materials having different rigidity are overlapped is improved. For example, the member to be welded is formed by a three-layered plate assembly in which a thin plate is superposed on one of two thick plates, and both members are sandwiched and pressurized by a relatively large pressure applied by a first welding electrode and a second welding electrode. By generating sufficient nugget between the thick plates to ensure the welding strength of both thick plates, and by applying the sub-pressurizing force by the sub-pressurizing part, the generation of nuggets at the junction between the thin plate and the thick plate is promoted Excellent welding quality can be obtained.

本発明によると、加圧アクチュエータにより第1溶接電極と第2溶接電極とで被溶接部材を予め設定された加圧力で挟持加圧して第1溶接電極と第2溶接電極に所定時間通電する通電時間内の一部所定時間において被溶接部材に副加圧部を当接して副加圧アクチュエータによる副加圧力を付与することで、均等な第1溶接電極と第2溶接電極による加圧力付加による溶接特性によるスポット溶接と、副加圧部による副加圧力により第1溶接電極と第2溶接電極の加圧力が制御された溶接特性のスポット溶接が連続的に得られ、互いの溶接特性が補完されて優れた溶接品質が得られる。   According to the present invention, the first welding electrode and the second welding electrode are energized for a predetermined time by sandwiching and pressurizing the member to be welded with the first welding electrode and the second welding electrode with a preset pressure. By applying the additional pressure by the uniform first welding electrode and the second welding electrode by abutting the auxiliary pressure member on the member to be welded and applying the auxiliary pressure force by the auxiliary pressure actuator at a predetermined time within the time. Spot welding with welding characteristics, and spot welding with welding characteristics in which the pressurizing force of the first welding electrode and the second welding electrode is controlled by the sub-pressurizing force by the sub-pressurizing part, are continuously obtained, complementing each other's welding characteristics Excellent welding quality can be obtained.

第1実施の形態におけるスポット溶接装置の構成図である。It is a block diagram of the spot welding apparatus in 1st Embodiment. 図1のA矢視図である。It is A arrow directional view of FIG. 図1のB部拡大斜視図である。It is the B section enlarged perspective view of FIG. 溶接作動サイクルにおけるタイムチャートである。It is a time chart in a welding operation cycle. 作動概要説明図である。It is an operation | movement outline explanatory drawing. 作動概要説明図である。It is an operation | movement outline explanatory drawing. 第2実施の形態における溶接作動サイクルにおけるタイムチャートである。It is a time chart in the welding operation cycle in 2nd Embodiment. 作動概要説明図である。It is an operation | movement outline explanatory drawing. 作動概要説明図である。It is an operation | movement outline explanatory drawing. 従来のスポット溶接の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the conventional spot welding. 従来のスポット溶接の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the conventional spot welding. スポット溶接装置の概要説明図である。It is outline | summary explanatory drawing of a spot welding apparatus.

(第1実施の形態)
本発明に係るスポット溶接装置の加圧制御方法の第1実施の形態について、図1乃至図6を参照して説明する。図1はスポット溶接装置の構成図、図2は図1のA矢視図、図3は図1のA部拡大斜視図、図4は作動プログラムデータの説明図、図5及び図6は作動概要説明図である。
(First embodiment)
A first embodiment of a pressure control method for a spot welding apparatus according to the present invention will be described with reference to FIGS. 1 is a configuration diagram of a spot welding apparatus, FIG. 2 is a view as seen from an arrow A in FIG. 1, FIG. 3 is an enlarged perspective view of part A in FIG. 1, FIG. 4 is an explanatory diagram of operation program data, and FIGS. FIG.

スポット溶接装置1の説明に先立って、被溶接部材100について説明する。被溶接部材100は、図3に示すように、重ね合わされた2枚の厚板の一方に薄板を重ね合わせた、下から順に剛性の低い薄板101、薄板101より板厚が大きく剛性が高い第1厚板102及び第2厚板103が重ね合わされた3枚重ねの板組によって構成される。   Prior to the description of the spot welding apparatus 1, the member to be welded 100 will be described. As shown in FIG. 3, the member to be welded 100 is a thin plate 101 having a lower rigidity in order from the bottom, in which a thin plate is superposed on one of two stacked thick plates, and the thickness is larger and higher than the thin plate 101. The first thick plate 102 and the second thick plate 103 are composed of a three-layered plate set.

スポット溶接装置1は、図1乃至図3に示すように図示しない溶接ロボットの手首部にイコライザユニットを介して取り付けられるベース部3及びベース部3の両側から対向して延在する側部4、5を備えた支持ブラケット2を有する。支持ブラケット2の対向する側部4、5に固定アーム10が取り付けられ、側部4、5の先端部4a、5aにブラケット6を介して加圧アクチュエータ20が取り付けられる。更に、両側部4、5の間に副加圧付与手段30の副加圧アクチュエータ31及び溶接トランス40が取り付け支持される。   As shown in FIGS. 1 to 3, the spot welding apparatus 1 includes a base portion 3 attached to a wrist portion of a welding robot (not shown) via an equalizer unit, and side portions 4 extending opposite from both sides of the base portion 3, A support bracket 2 with 5. The fixed arm 10 is attached to the opposite side portions 4 and 5 of the support bracket 2, and the pressure actuator 20 is attached to the front end portions 4 a and 5 a of the side portions 4 and 5 via the bracket 6. Further, the auxiliary pressure actuator 31 of the auxiliary pressure applying means 30 and the welding transformer 40 are attached and supported between the side portions 4 and 5.

固定アーム10は、支持ブラケット2の両側部4、5に基端が結合されて下方に延在する固定アーム本体11及び固定アーム本体11の先端からL字状に折曲する電極保持部12によって形成され、電極保持部12に第1溶接電極である固定側電極15が、その頂端15aを上方にして装着される。   The fixed arm 10 includes a fixed arm body 11 having a base end coupled to both side portions 4 and 5 of the support bracket 2 and extending downward, and an electrode holding portion 12 bent in an L shape from the distal end of the fixed arm body 11. The fixed electrode 15 that is formed and that is the first welding electrode is mounted on the electrode holding portion 12 with the top end 15a facing upward.

加圧アクチュエータ20は、モータハウジング内において回転自在に収容される中空ロータを有する中空モータによって構成されるサーボモータ21を備え、中空ロータに装着されるボールネジ及びボールネジに螺合するロッド23を備えた直動部22を有し、サーボモータ21の作動によって直動部22のロッド23が昇降往復動する。直動部22のロッド23の下端に電極アーム24が設けられ、電極アーム24の先端に固定アーム10に設けられた固定側電極15の頂端15aと同軸上、即ち中心軸線L上に固定側電極15と対向して第2溶接電極である可動側電極25が設けられる。   The pressure actuator 20 includes a servo motor 21 configured by a hollow motor having a hollow rotor that is rotatably accommodated in a motor housing, and includes a ball screw mounted on the hollow rotor and a rod 23 that is screwed to the ball screw. It has a linear motion part 22, and the rod 23 of the linear motion part 22 reciprocates up and down by the operation of the servo motor 21. An electrode arm 24 is provided at the lower end of the rod 23 of the linear motion portion 22, and the fixed side electrode is coaxial with the top end 15 a of the fixed side electrode 15 provided on the fixed arm 10 at the tip of the electrode arm 24, that is, on the central axis L. A movable side electrode 25 which is a second welding electrode is provided opposite to 15.

これにより加圧アクチュエータ20のサーボモータ21の作動により可動側電極25は固定側電極15から離反する退避位置と、被溶接部材100を固定側電極15と協働して挟持すると共に加圧力を付与する加圧位置との間で中心軸線Lに沿って移動する。この被溶接部材100に対する固定側電極15と可動側電極25による加圧力F、即ち固定側電極15による加圧力FL及び可動側電極25による加圧力FUはサーボモータ21の回転トルクによって決定され、サーボモータ21の回転トルクを制御することで所望の加圧力が得られる。   Thus, the movable side electrode 25 is moved away from the fixed side electrode 15 by the operation of the servo motor 21 of the pressurizing actuator 20, and the member to be welded 100 is clamped in cooperation with the fixed side electrode 15, and pressure is applied. It moves along the central axis L between the pressurizing position. The pressure F applied to the welded member 100 by the fixed side electrode 15 and the movable side electrode 25, that is, the pressure FL by the fixed side electrode 15 and the pressure FU by the movable side electrode 25 are determined by the rotational torque of the servo motor 21. A desired pressure can be obtained by controlling the rotational torque of the motor 21.

副加圧付与手段30は、支持ブラケット2の両側部4、5間に支持部材7を介して保持される副加圧アクチュエータ31及び先端に副加圧部38が設けられた副加圧付与アーム35を有する。副加圧アクチュエータ31は、モータハウジング内において回転自在に収容される中空ロータを有する中空モータによって構成されたサーボモータ32を備え、中空ロータに装着されるボールネジ及びボールネジに螺合するロッド34を備えた直動部33を有し、サーボモータ32の作動によって直動部33のロッド34が昇降往復動する。この直動部33のロッド34に副加圧付与アーム35が設けられる。   The sub-pressurizing application means 30 includes a sub-pressurizing actuator 31 that is held between the side portions 4 and 5 of the support bracket 2 via the support member 7 and a sub-pressurizing application arm provided with a sub-pressurizing unit 38 at the tip. 35. The sub-pressurizing actuator 31 includes a servo motor 32 configured by a hollow motor having a hollow rotor that is rotatably accommodated in a motor housing, and includes a ball screw mounted on the hollow rotor and a rod 34 screwed to the ball screw. The rod 34 of the linear motion portion 33 is reciprocated up and down by the operation of the servo motor 32. A sub-pressure applying arm 35 is provided on the rod 34 of the linear motion portion 33.

副加圧付与アーム35は、ロッド34の先端に基端部が結合されて固定アーム10と電極アーム24との間で下方に延在して先端から中心軸線L方向に折曲する先端部37を有するアーム部36によって構成され、アーム部36の先端部37に副加圧部保持部材38が設けられる。   The auxiliary pressure applying arm 35 has a proximal end portion coupled to the distal end of the rod 34, extends downward between the fixed arm 10 and the electrode arm 24, and bends in the direction of the central axis L from the distal end. The auxiliary pressure member holding member 38 is provided at the distal end portion 37 of the arm portion 36.

副加圧部保持部材38は、基端部38Aがアーム部36の先端部37に結合されて中心軸線L方向に向かって延在する矩形板状であって、先端に中心軸線Lと同軸で先端39aが上方に突出して固定側電極15の貫通を許容する断面半円弧状、即ち半割り筒状の副加圧部39が設けられる。   The auxiliary pressure member holding member 38 has a rectangular plate shape in which the base end portion 38A is coupled to the distal end portion 37 of the arm portion 36 and extends in the direction of the central axis L, and is coaxial with the central axis L at the distal end. A sub-pressurizing portion 39 having a semicircular arc shape, that is, a half-cylindrical cylinder shape, is provided in which the tip 39a protrudes upward to allow the fixed side electrode 15 to pass therethrough.

このように構成された副加圧付与アーム35は、サーボモータ32の作動によって副加圧付与アーム35の先端に設けた副加圧部39の先端39aが固定側電極15の頂端15aより下方となり被溶接部材100から離反する退避位置と、固定側電極15と可動側電極25とによって挟持された被溶接部材100に下方から当接して副加圧力を付与する副加圧位置との間で中心軸線Lに沿って移動する。この副加圧力はサーボモータ32の回転トルクによって決定され、サーボモータ32の回転トルクを制御することで要望の副加圧力fが得られる。   In the sub-pressure applying arm 35 configured as described above, the tip 39 a of the sub-pressing portion 39 provided at the tip of the sub-pressure applying arm 35 by the operation of the servo motor 32 is lower than the top end 15 a of the fixed side electrode 15. Centered between a retracted position that is separated from the member to be welded 100 and a sub-pressurizing position that abuts the member to be welded 100 sandwiched between the fixed side electrode 15 and the movable side electrode 25 from below and applies a sub-pressurizing force. It moves along the axis L. This auxiliary pressure is determined by the rotational torque of the servo motor 32, and the desired auxiliary pressure f is obtained by controlling the rotational torque of the servo motor 32.

電源となる溶接トランス40の一方の出力端子がバスバ及び固定アーム10等を介して固定側電極15に通電可能に接続され、他方の出力端子がバスバ及び電極アーム24等を介して可動側電極25に通電可能に接続される。   One output terminal of the welding transformer 40 serving as a power source is connected to the fixed side electrode 15 via the bus bar and the fixed arm 10 and the like, and the other output terminal is connected to the movable side electrode 25 via the bus bar and the electrode arm 24 and the like. Is connected to be energized.

また、溶接コントローラ41を備え、溶接コントローラ41にはスポット溶接装置1の作動プログラム及び作動プログラムに設定された各作動行程に基づいて加圧アクチュエータ20を制御する加圧制御部42と副加圧アクチュエータ31を制御する副加圧制御部43が含まれる。   Further, the welding controller 41 is provided. The welding controller 41 includes an operation program for the spot welding apparatus 1 and a pressurization control unit 42 that controls the pressurization actuator 20 based on each operation stroke set in the operation program, and a sub-pressurization actuator. A sub-pressurizing control unit 43 for controlling 31 is included.

この溶接コントローラ41は作動プログラムデータとして溶接作動サイクルを有する。溶接作動サイクルとして、可動側電極25と固定側電極15によって被溶接部材100を加圧する加圧開始工程S11と、加圧状態を保持する加圧保持工程S12と、加圧を解除する加圧解除工程S13と、副加圧部39によって被溶接部材100を副加圧する副加圧開始工程S21と、副加圧状態を保持する副加圧保持工程S22と、副加圧を解除する副加圧解除工程S23と、可動側電極25と固定側電極15とに通電する通電開始工程S31と、通電を保持する通電保持工程S32と、通電を終了する通電終了工程S33とを有する。この溶接作動サイクルにおけるタイムチャートを図4に示す。   The welding controller 41 has a welding operation cycle as operation program data. As a welding operation cycle, a pressurization start step S11 for pressurizing the member 100 to be welded by the movable side electrode 25 and the fixed side electrode 15, a pressurization holding step S12 for maintaining the pressurization state, and a pressure release for releasing the pressurization Step S13, sub-pressurization start step S21 for sub-pressurizing the member 100 to be welded by the sub-pressurization unit 39, sub-pressurization holding step S22 for retaining the sub-pressurization state, and sub-pressurization for releasing the sub-pressurization It has cancellation | release process S23, the electricity supply start process S31 which supplies with electricity to the movable side electrode 25, and the fixed side electrode 15, the electricity supply holding process S32 which hold | maintains electricity supply, and the electricity supply completion | finish process S33 which complete | finishes electricity supply. The time chart in this welding operation cycle is shown in FIG.

また、溶接コントローラ41には、予め設定された加圧力Fで固定側電極15と可動側電極25により被溶接部材100を加圧するときのサーボモータ21の回転トルク、即ち加圧設定回転トルク及び予め設定された副加圧力fで副加圧部39により被溶接部材100を副加圧するときのサーボモータ32の回転トルク、即ち副加圧設定回転トルクが設定される。   In addition, the welding controller 41 receives the rotation torque of the servomotor 21 when pressurizing the member 100 to be welded by the fixed side electrode 15 and the movable side electrode 25 with the preset pressure F, that is, the pressure setting rotation torque and the preset value. The rotational torque of the servo motor 32 when the sub-pressurizing unit 39 sub-pressurizes the welded member 100 with the set sub-pressurizing force f, that is, the sub-pressurizing set rotational torque is set.

加圧開始工程S11においてはサーボモータ21を予め設定された加圧設定回転トルクに達するまで作動させて被溶接部材100を固定側電極15と可動側電極25によって所定の加圧力Fにより挟持加圧し、続く加圧保持工程S12でサーボモータ21を設定回転トルクを保持した状態に保持する。加圧解除工程S13ではサーボモータ21の作動により可動側電極25を加圧位置から退避位置に移動する。ここで、加圧保持工程S12における加圧力Fは、被溶接部材100を加圧する固定側電極15の加圧力と可動側電極25の加圧力の総計の加圧力であり、溶接時に要求される最適な固定側電極15の加圧力FLと可動側電極25の加圧力FUの総計の加圧力(F=FL+FU)であり、予め実験やシミュレーション等で設定することが好ましい。   In the pressurization start step S11, the servo motor 21 is operated until reaching a preset pressurization setting rotational torque, and the member to be welded 100 is sandwiched and pressed by the fixed electrode 15 and the movable electrode 25 with a predetermined pressure F. In the subsequent pressurizing and holding step S12, the servo motor 21 is held in a state where the set rotational torque is held. In the pressurization releasing step S13, the movable side electrode 25 is moved from the pressurizing position to the retracted position by the operation of the servo motor 21. Here, the pressurizing force F in the pressurizing and holding step S12 is the sum of the pressurizing force of the fixed side electrode 15 and the pressurizing force of the movable side electrode 25 that pressurize the member to be welded 100, and is the optimum required during welding. This is the total applied pressure (F = FL + FU) of the applied pressure FL of the fixed electrode 15 and the applied pressure FU of the movable electrode 25, and is preferably set in advance through experiments, simulations, or the like.

副加圧開始工程S21においてはサーボモータ32を予め設定された副加圧設定回転トルクに達するまで作動させて被溶接部材100を副加圧部39によって所定の副加圧力fにより加圧し、続く副加圧保持工程S22でサーボモータ32を設定回転トルクを保持した状態に保持する。副加圧解除工程S23ではサーボモータ32を作動させて副加圧部39を副加圧位置から被溶接部材100から離れる退避位置に移動する。予め実験やシミュレーション等で設定することが好ましい。ここで、固定側電極15と可動側電極25で被溶接部材100に加圧力Fを付加した状態で副加圧力fを付与すると、被溶接部材100に上方から作用する可動側電極25による加圧力FUと被溶接部材100に下方から作用する固定側電極15による加圧力FL及び副加圧部39による副加圧力fの総和が等しくなる(FU=FL+f)。換言すると、固定側電極15から被溶接部材100に作用する加圧力FLは、可動側電極25による加圧力FUから副加圧部39による副加圧力fを減じた加圧力が付与される(FL=FU−f)。このように被溶接部材100に作用する固定側電極15からの加圧力FLを被溶接部材100に作用する可動側電極25の加圧力FUより小さく(FL<FU)制御する。   In the sub-pressurization start step S21, the servo motor 32 is operated until a preset sub-pressurization set rotational torque is reached, and the member to be welded 100 is pressurized by the sub-pressurization unit 39 with a predetermined sub-pressurizing force f. In the sub pressure holding step S22, the servo motor 32 is held in a state where the set rotational torque is held. In the sub pressure release step S23, the servo motor 32 is operated to move the sub pressure portion 39 from the sub pressure position to a retracted position away from the member to be welded 100. It is preferable to set in advance through experiments, simulations, or the like. Here, when the auxiliary pressure f is applied in a state where the pressing force F is applied to the member to be welded 100 by the fixed side electrode 15 and the movable side electrode 25, the pressing force by the movable side electrode 25 acting on the member to be welded 100 from above. The sum of the pressing force FL by the fixed electrode 15 acting on the welded member 100 from below and the sub-pressing force f by the sub-pressurizing unit 39 becomes equal (FU = FL + f). In other words, the pressurizing force FL that acts on the member to be welded 100 from the fixed electrode 15 is applied by subtracting the subpressurizing force f by the subpressurizing unit 39 from the pressurizing force FU by the movable electrode 25 (FL). = FU-f). Thus, the applied pressure FL from the fixed electrode 15 acting on the member to be welded 100 is controlled to be smaller than the applied pressure FU of the movable electrode 25 acting on the member to be welded 100 (FL <FU).

通電開始工程S31では固定側電極15及び可動側電極25間の通電を開始し、通電保持工程S32では固定側電極15及び可動側電極25間の通電状態を保持し、通電終了工程S33で通電を停止する。   In the energization start step S31, energization between the fixed side electrode 15 and the movable side electrode 25 is started. In the energization holding step S32, the energization state between the fixed side electrode 15 and the movable side electrode 25 is maintained, and energization is performed in the energization end step S33. Stop.

また、図示しない溶接ロボットコントローラには、溶接ロボットのティーチングデータが格納され、ティーチングデータには、被溶接部材100の各溶接打点位置を順次スポット溶接するための作動プログラム及び各溶接打点、即ち溶接位置におけるスポット溶接装置1の位置及び姿勢が含まれる。   A welding robot controller (not shown) stores teaching data of the welding robot, and the teaching data includes an operation program for sequentially spot welding the welding spot positions of the member to be welded 100 and each welding spot, that is, the welding position. The position and attitude of the spot welding apparatus 1 in FIG.

次ぎに、スポット溶接装置1の作動を図4に示す溶接作動サイクルにおけるタイムチャート及び図5、図6の作動概要説明図を参照して説明する。   Next, the operation of the spot welding apparatus 1 will be described with reference to the time chart in the welding operation cycle shown in FIG. 4 and the operation outline explanatory diagrams of FIGS.

被溶接部材100のスポット溶接にあたり、予め設定されたプログラムに従い、図1に示すように可動側電極25が固定側電極15から離反した退避位置でかつ副加圧付与手段30の副加圧部39が退避位置に保持された状態で、ロボットコントローラは溶接ロボットを作動し、図5(a)に示すように被溶接部材100の溶接位置となる打点位置に固定側電極15の頂端15aを当接してスポット溶接装置1を溶接位置に位置決めする。   In spot welding of the member to be welded 100, according to a preset program, as shown in FIG. 1, the movable side electrode 25 is at a retracted position away from the fixed side electrode 15, and the auxiliary pressure applying unit 39 of the auxiliary pressure applying means 30. Is held at the retracted position, the robot controller operates the welding robot, and the top end 15a of the fixed-side electrode 15 is brought into contact with the striking position as the welding position of the welded member 100 as shown in FIG. Then, the spot welding apparatus 1 is positioned at the welding position.

このスポット溶接装置1を溶接位置に位置決めした状態では、図5(a)に示すようにスポット溶接装置1の固定側電極15の頂端15aが被溶接部材100の薄板101に下方から当接する一方、可動側電極25の頂端25aが第2厚板103と隙間を有して対向して、副加圧部39の先端39aが薄板101と隙間を有して対向する。   In the state where the spot welding device 1 is positioned at the welding position, the top end 15a of the fixed electrode 15 of the spot welding device 1 abuts on the thin plate 101 of the member to be welded 100 from below as shown in FIG. The top end 25a of the movable electrode 25 is opposed to the second thick plate 103 with a gap, and the tip 39a of the sub-pressing portion 39 is opposed to the thin plate 101 with a gap.

次に、固定側電極15が被溶接部材100の薄板101に当接した状態で、加圧工程S11において加圧アクチュエータ20のサーボモータ21の作動により可動側電極25を退避位置から固定側電極15に接近する加圧位置に移動させて図5(b)のように第2厚板103に上方から当接させると共に加圧アクチュエータ20のサーボモータ21を加圧設定回転トルクに達するまで作動して可動側電極25と固定側電極15との間で被溶接部材100を加圧力Fで挟持加圧する。更に続く加圧保持工程S12においてサーボモータ21を停止して該位置に保持して可動側電極25と固定側電極15との間で被溶接部材100を加圧力Fで挟持加圧した状態を保持する。   Next, in a state where the fixed side electrode 15 is in contact with the thin plate 101 of the member to be welded 100, the movable side electrode 25 is moved from the retracted position by the operation of the servo motor 21 of the pressure actuator 20 in the pressurizing step S11. As shown in FIG. 5B, the second thick plate 103 is brought into contact with the second thick plate 103 from above and the servo motor 21 of the pressure actuator 20 is operated until the pressure setting rotational torque is reached. The member to be welded 100 is sandwiched and pressurized with the applied pressure F between the movable side electrode 25 and the fixed side electrode 15. In the subsequent pressurizing and holding step S12, the servo motor 21 is stopped and held in this position, and the state in which the member to be welded 100 is sandwiched and pressed between the movable side electrode 25 and the fixed side electrode 15 by the pressing force F is held. To do.

可動側電極25と固定側電極15との間で被溶接部材100を加圧力Fで加圧保持した加圧保持工程S12の初期段階において通電開始工程S31で溶接トランス40から可動側電極25と固定側電極15との間に通電すると共に通電保持工程S32において可動側電極25と固定側電極15との間の通電状態を予め設定された所定時間保持する。   In the initial stage of the pressurizing and holding step S12 in which the member to be welded 100 is pressed and held with the applied pressure F between the movable side electrode 25 and the fixed side electrode 15, the welding side transformer 40 and the movable side electrode 25 are fixed in the energization start step S31. Energization is performed between the side electrode 15 and the energization state between the movable side electrode 25 and the fixed side electrode 15 is retained for a predetermined time in a current retention step S32.

通電保持工程S32の開始に連動或いは開始直後における副加圧開始工程S21において副加圧アクチュエータ31のサーボモータ32を、副加圧設定回転トルクに達するまで作動する。これにより副加圧部39が退避位置から副加圧位置に移動して図5(c)に示すように可動側電極25と固定側電極15との間で挟持加圧された状態の被溶接部材100の薄板101に固定側電極15に隣接して下方から副加圧部39の先端39aが圧接して副加圧力fを付与すると共に副加圧保持工程S22でサーボモータ32を通電時間内の初期範囲の所定時間に亘り停止状態に維持して副加圧部39により副加圧力fを付与保持した後、副加圧解除工程S23においてサーボモータ32を作動させて図5(d)に示すように副加圧部39を被溶接部材100から離れる退避位置に移動する。   The servo motor 32 of the sub-pressurization actuator 31 is operated until reaching the sub-pressurization setting rotational torque in the sub-pressurization start step S21 immediately after the start of the energization holding step S32. As a result, the sub-pressurizing portion 39 moves from the retracted position to the sub-pressurizing position and is welded in a state in which it is sandwiched and pressed between the movable electrode 25 and the fixed electrode 15 as shown in FIG. The tip 39a of the sub-pressurizing unit 39 is brought into pressure contact with the thin plate 101 of the member 100 from below to apply the sub-pressurizing force f from below, and the servo motor 32 is energized within the sub-pressurizing and holding step S22. After maintaining the sub-pressurization section 39 to apply and hold the sub-pressurizing force f for a predetermined time in the initial range, the servo-motor 32 is operated in the sub-pressurization releasing step S23, and FIG. As shown, the sub-pressurizing unit 39 is moved to a retracted position away from the welded member 100.

この副加圧保持工程S22において固定側電極15の加圧力FLと可動側電極25の加圧力FUで加圧された被溶接部材100に固定側電極15に隣接して副加圧部39による副加圧力fを付与した状態では、第2厚板103に上方から作用する可動側電極25による加圧力FUと薄板101に下方から作用する固定側電極15による加圧力FL及び副加圧部39による副加圧力fの総和が等しくなる(FU=FL+f)。換言すると、固定側電極15から薄板101に作用する加圧力FLは、可動側電極25による加圧力FUから副加圧部39による副加圧力fを減じた加圧力が付与される(FL=FU−f)。   In this sub-pressurizing and holding step S22, the sub-pressurizing section 39 adjoins the member to be welded 100 that has been pressed with the pressing force FL of the fixed-side electrode 15 and the pressing force FU of the movable-side electrode 25, adjacent to the fixed-side electrode 15. In a state where the pressing force f is applied, the pressing force FU by the movable side electrode 25 acting on the second thick plate 103 from above, the pressing force FL by the fixed side electrode 15 acting on the thin plate 101 from below, and the sub pressurizing unit 39. The total sum of the sub pressures f becomes equal (FU = FL + f). In other words, the applied pressure FL acting on the thin plate 101 from the fixed side electrode 15 is applied by adding the applied pressure FU by the movable side electrode 25 to the sub applied pressure f by the auxiliary pressurizing unit 39 (FL = FU). -F).

このように薄板101側に作用する固定側電極15からの加圧力FLを第2厚板103側に作用する可動側電極25の加圧力FUより小さく(FL<FU)制御することで、薄板101と第1厚板102の接合部における接触圧力が、第1厚板102と第2厚板103間の溶接部における接触圧力より小さくなり、相対的に薄板101と第1厚板102間の接触抵抗が大きくなると共に、第1厚板102と第2厚板103間の接触抵抗が小さくなる。   Thus, the thin plate 101 is controlled by controlling the pressure FL from the fixed side electrode 15 acting on the thin plate 101 side smaller than the pressure FU of the movable side electrode 25 acting on the second thick plate 103 side (FL <FU). The contact pressure between the first thick plate 102 and the first thick plate 102 is smaller than the contact pressure at the welded portion between the first thick plate 102 and the second thick plate 103, and the contact between the thin plate 101 and the first thick plate 102 is relatively small. As the resistance increases, the contact resistance between the first thick plate 102 and the second thick plate 103 decreases.

この可動側電極25と固定側電極15及び副加圧部39とで被溶接部材100を挟持加圧して薄板101側に位置する固定側電極15の加圧力FLを第2厚板103側に位置する可動側電極25の加圧力FUより小さくした状態で、可動側電極25と固定側電極15との間に所定時間通電されることで、相対的に薄板101と第1厚板102間の接合部における接触抵抗が大きく電流密度が高くなると共に、第1厚板102と第2厚板103間の接触抵抗が小さく保持される。これにより、薄板101と第1厚板102の接合部における発熱量が第1厚板102と第2厚板103の接合部における発熱量に対して相対的に増加して、薄板101から第2厚板103に亘って電流密度の偏りがなく、図6(a)に示すような薄板101側から第2圧板103に比較的円柱状のナゲットNが形成され、薄板101の溶接強度が確保できる。   The movable electrode 25, the fixed electrode 15, and the sub-pressurizing unit 39 sandwich and press the member to be welded 100 so that the pressing force FL of the fixed electrode 15 positioned on the thin plate 101 side is positioned on the second thick plate 103 side. In a state where the applied pressure FU of the movable side electrode 25 is smaller than that of the movable side electrode 25, current is passed between the movable side electrode 25 and the fixed side electrode 15 for a predetermined time, thereby relatively joining the thin plate 101 and the first thick plate 102. The contact resistance at the portion is large and the current density is high, and the contact resistance between the first thick plate 102 and the second thick plate 103 is kept small. As a result, the amount of heat generated at the joint between the thin plate 101 and the first thick plate 102 is relatively increased with respect to the amount of heat generated at the joint between the first thick plate 102 and the second thick plate 103, and the second from the thin plate 101. There is no bias in current density over the thick plate 103, and a relatively cylindrical nugget N is formed on the second pressure plate 103 from the thin plate 101 side as shown in FIG. 6A, so that the welding strength of the thin plate 101 can be ensured. .

この溶接の経過に伴い第1圧板102と第2厚板103との接合部及び接合部周囲が加熱されて軟化して第1厚板102と第2厚板103との加圧力が低下して第1厚板102と第2厚板103との間におけるナゲットNの成長が抑制される。ここで、副加圧解除工程S23においてサーボモータ32を作動させて図5(d)に示すように副加圧部39を副加圧位置から被溶接部材100から離れる退避位置に移動する。副加圧部39による副加圧力fの付与が解除された被溶接部材100には、サーボモータ21の設定回転トルクを保持した状態の固定側電極15と可動側電極25によって所定の加圧力Fによる挟持加圧、即ち固定電極15の加圧力FLと可動側電極25の加圧力FUに増加し、第1厚板102と第2厚板103との間の接触面積が確保されてナゲットNの生成が促進されて第1厚板102と第2厚板103との間における十分なナゲットNの径が確保され、図6(b)に示すように薄板101と第1厚板102との接合部から第1厚板102と第2厚板103との接合部に移行するに従って漸次拡径する径のナゲットNが生成されて第1厚板102と第2厚板103の溶接強度が得られる。   As the welding progresses, the joint between the first pressure plate 102 and the second thick plate 103 and the periphery of the joint are heated and softened, and the applied pressure between the first thick plate 102 and the second thick plate 103 decreases. The growth of the nugget N between the first thick plate 102 and the second thick plate 103 is suppressed. Here, the servo motor 32 is operated in the sub-pressurization releasing step S23 to move the sub-pressurization part 39 from the sub-pressurization position to the retracted position away from the welded member 100 as shown in FIG. A predetermined pressure F is applied to the member to be welded 100 from which the application of the sub-pressurizing force f by the sub-pressurizing unit 39 is released by the fixed-side electrode 15 and the movable-side electrode 25 in a state where the set rotational torque of the servomotor 21 is maintained. Is increased to the pressing force FL of the fixed electrode 15 and the pressing force FU of the movable electrode 25, and the contact area between the first thick plate 102 and the second thick plate 103 is ensured, and the nugget N The generation is promoted to secure a sufficient diameter of the nugget N between the first thick plate 102 and the second thick plate 103, and the thin plate 101 and the first thick plate 102 are joined as shown in FIG. The nugget N having a diameter that gradually increases as the transition from the first portion to the joining portion of the first thick plate 102 and the second thick plate 103 is generated, and the welding strength of the first thick plate 102 and the second thick plate 103 is obtained. .

しかる後、通電終了工程S33において可動側電極25と固定側電極15への通電を終了し、加圧解除工程S13において加圧アクチュエータ20のサーボモータ21の作動により可動側電極25を加圧位置から退避位置に移動させて図5(e)に示すように固定側電極15と可動側電極25とによる被溶接部材100の挟持を開放する。   Thereafter, the energization of the movable side electrode 25 and the fixed side electrode 15 is terminated in the energization end step S33, and the movable side electrode 25 is moved from the pressurization position by the operation of the servo motor 21 of the pressure actuator 20 in the pressure release step S13. As shown in FIG. 5E, the member to be welded 100 is held between the fixed side electrode 15 and the movable side electrode 25 as shown in FIG.

次に、作動プログラムに従い溶接ロボットを作動して、スポット溶接装置1を被溶接部材100の打点位置から退避させ、次の被溶接部材100の打点位置に移動する。   Next, the welding robot is operated according to the operation program, and the spot welding apparatus 1 is retracted from the spot position of the welded member 100 and moved to the spot position of the next welded member 100.

このように構成された本実施の形態によると、固定側電極15と可動側電極25により被溶接部材100を挟持加圧して通電する溶接開始乃至溶接開始直後、即ち通電時間の初期範囲に所定時間に亘り副加圧部39により副加圧力fを付与することで、薄板101側に作用する固定側電極15からの加圧力FLが第2厚板103側に作用する可動側電極25の加圧力FUより小さくなり、薄板101と第1厚板102間の接合部における接触抵抗が大きく電流密度が高くなると共に、第1厚板102と第2厚板103間の接触抵抗が小さく保持されて薄板101から第2厚板103に亘って電流密度の偏りがなく、薄板101側から第2圧板103に比較的円柱状のナゲットNが形成され、薄板101の溶接強度が確保され、しかる後、副加圧部39による副加圧力fの付与を解除することで固定側電極15と可動側電極25によって加圧力Fが増加して第1厚板102と第2厚板103と間の接触面積が確保されてナゲットNの生成が促進され、第1厚板102と第2厚板103との間における十分なナゲットNの径が確保されて薄板101と第1厚板102との接合部から第1厚板102と第2厚板103との接合部に移行するに従って漸次拡径する径のナゲットNが生成されて第1厚板102と第2厚板103の溶接強度が得られる。   According to the present embodiment configured as described above, the welding target 100 is sandwiched and pressed by the fixed electrode 15 and the movable electrode 25 to start energization or immediately after the start of welding, that is, in the initial range of energization time for a predetermined time. By applying the sub-pressurizing force f by the sub-pressurizing unit 39, the pressing force FL from the fixed-side electrode 15 acting on the thin plate 101 side is applied to the movable plate electrode 25 acting on the second thick plate 103 side. The contact resistance between the thin plate 101 and the first thick plate 102 is large and the current density is increased, and the contact resistance between the first thick plate 102 and the second thick plate 103 is kept small. There is no bias in current density from 101 to the second thick plate 103, a relatively cylindrical nugget N is formed on the second pressure plate 103 from the thin plate 101 side, and the welding strength of the thin plate 101 is ensured. Addition By canceling the application of the sub-pressing force f by the portion 39, the pressing force F is increased by the fixed electrode 15 and the movable electrode 25, and the contact area between the first thick plate 102 and the second thick plate 103 is secured. Generation of the nugget N is promoted, a sufficient diameter of the nugget N between the first thick plate 102 and the second thick plate 103 is ensured, and the first thickness from the joint portion of the thin plate 101 and the first thick plate 102 is secured. A nugget N having a diameter that gradually increases as the transition to the joint between the plate 102 and the second thick plate 103 is generated, and the welding strength of the first thick plate 102 and the second thick plate 103 is obtained.

従って、固定側電極15と可動側電極25によって被溶接部材100を挟持加圧すると共に固定電極15と可動側電極25との間に所定時間通電して被溶接部材100を溶接する通電時間内の初期範囲に所定時間だけ副加圧部39により副加圧力fを付与して固定側電極15と可動側電極25による加圧力FL、FUを制御することで剛性の異なる板材を重ねた被溶接部材100に対する溶接品質が向上する。即ち、均等な固定電極15と可動側電極25による加圧力Fの付加による溶接特性によるスポット溶接と、副加圧部39による副加圧力fにより固定側電極15の加圧力FLと可動側電極25の加圧力FUが制御された溶接特性のスポット溶接が連続的に得られ、互いの溶接特性が補完されて優れた溶接品質が得られる。   Accordingly, the member to be welded 100 is sandwiched and pressurized by the fixed side electrode 15 and the movable side electrode 25, and the initial period within the energization time for welding the member to be welded 100 by energizing the fixed member 15 and the movable side electrode 25 for a predetermined time. A member to be welded 100 in which plate materials having different rigidity are overlapped by applying a sub-pressurizing force f by the sub-pressurizing unit 39 to the range for a predetermined time and controlling the pressing forces FL and FU by the fixed side electrode 15 and the movable side electrode 25. This improves the welding quality against. That is, the spot welding based on the welding characteristics by applying the pressing force F by the uniform fixed electrode 15 and the movable side electrode 25 and the pressing force FL of the fixed side electrode 15 and the moving side electrode 25 by the sub pressing force f by the sub pressurizing unit 39. Spot welding with a welding characteristic in which the pressure FU is controlled is continuously obtained, and the welding characteristics of each other are complemented to obtain excellent welding quality.

(第2実施の形態)
本発明に係るスポット溶接装置の加圧制御方法の第2実施の形態について、図7乃至図9を参照して説明する。本実施の形態は作動プログラムが第1実施の形態と異なり、他の構成は第1実施の形態と同様であり、対応する符号を付することで該部の詳細な説明は省略する。
(Second Embodiment)
A second embodiment of the pressure control method for a spot welding apparatus according to the present invention will be described with reference to FIGS. The present embodiment is different from the first embodiment in the operation program, and other configurations are the same as those in the first embodiment, and detailed descriptions of the parts are omitted by attaching corresponding reference numerals.

図7に溶接作動サイクルにおけるタイムチャートを示すように、溶接作動サイクルとして、可動側電極25と固定側電極15により被溶接部材100を加圧する加圧開始工程S111と、加圧状態を保持する加圧保持工程S112と、加圧を解除する加圧解除工程S113と、副加圧部39によって被溶接部材100を副加圧する副加圧開始工程S121と、副加圧状態を保持する副加圧保持工程S122と、副加圧を解除する副加圧解除工程S123と、可動側電極25と固定側電極15とに通電する通電開始工程S131と、通電を保持する通電保持工程S132と、通電を終了する通電終了工程S133とを有する。   As shown in the time chart of the welding operation cycle in FIG. 7, as the welding operation cycle, a pressurization start step S111 in which the member to be welded 100 is pressed by the movable side electrode 25 and the fixed side electrode 15, and the pressurizing state is maintained. Pressure holding step S112, pressure releasing step S113 for releasing pressure, sub-pressurizing start step S121 for sub-pressurizing the member to be welded 100 by the sub-pressurizing unit 39, and sub-pressurizing for maintaining the sub-pressurized state Holding step S122, sub-pressurization releasing step S123 for releasing the sub-pressurization, energization start step S131 for energizing the movable side electrode 25 and the fixed side electrode 15, an energization holding step S132 for retaining energization, and energization And an energization end step S133 to be ended.

スポット溶接装置1の作動を図7に示す溶接作動サイクルにおけるタイムチャート及び図8、図9の作動概要説明図を参照して説明する。   The operation of the spot welding apparatus 1 will be described with reference to the time chart in the welding operation cycle shown in FIG. 7 and the operation outline explanatory diagrams of FIGS.

被溶接部材100のスポット溶接にあたり、予め設定されたプログラムに従い、図8(a)に示すように被溶接部材100の溶接位置となる打点位置に固定側電極15の頂端15aを当接してスポット溶接装置1を溶接位置に位置決めする。   In spot welding of the member to be welded 100, according to a preset program, as shown in FIG. 8A, the top end 15a of the fixed side electrode 15 is brought into contact with the spot position as the welding position of the member to be welded 100, and spot welding is performed. The device 1 is positioned at the welding position.

次に、加圧工程S111において加圧アクチュエータ20のサーボモータ21の作動により可動側電極25を固定側電極15に接近する加圧位置に移動させて図8(b)のように第2厚板103に上方から当接させると共に加圧力アクチュエータ20のサーボモータ21を加圧設定回転トルクに達するまで作動して可動側電極25と固定側電極15との間で被溶接部材100を加圧力Fで挟持加圧し、続く加圧保持工程S112において可動側電極25と固定側電極15との間で被溶接部材100を加圧力Fで挟持加圧した状態を保持する。   Next, in the pressurizing step S111, the movable side electrode 25 is moved to the pressurizing position approaching the fixed side electrode 15 by the operation of the servo motor 21 of the pressurizing actuator 20, and the second thick plate as shown in FIG. The contact member 103 is contacted from above and the servo motor 21 of the pressurizing actuator 20 is operated until the pressurizing set rotational torque is reached, so that the member to be welded 100 is applied with the pressurizing force F between the movable side electrode 25 and the fixed side electrode 15. The state in which the member to be welded 100 is sandwiched and pressurized with the applied pressure F is held between the movable electrode 25 and the fixed electrode 15 in the subsequent pressurization and holding step S112.

可動側電極25と固定側電極15との間で被溶接部材100を加圧力Fで加圧保持した加圧保持工程S111の初期段階において通電開始工程S131で可動側電極25と固定側電極15との間に通電すると共に通電保持工程S132において予め設定された通電時間に亘り可動側電極25と固定側電極15との間に通電状態に保持する。   In the initial stage of the pressurization and holding step S111 in which the member to be welded 100 is pressed and held with the applied pressure F between the movable side electrode 25 and the fixed side electrode 15, the movable side electrode 25 and the fixed side electrode 15 are In the energization holding step S132, the energized state is maintained between the movable side electrode 25 and the fixed side electrode 15 for a preset energizing time.

この可動側電極25と固定側電極15によって被溶接部材100を加圧したときに、剛性の低い薄板101と第1厚板102が下方に撓んで、薄板101と第1厚板102の間及び第1厚板102と第2厚板103との間に隙間が生じ、固定側電極15と可動側電極25間の電流密度が薄板101側に対して第2厚板103側が高くなり、図9(a)に模式的に示すように第1厚板102と第2厚板103との接合部にナゲットNが形成され、次第にナゲットNが大きくなりやがて薄板101と第1厚板102間が溶着される。この溶接の経過に伴い第1圧板102と第2厚板103及び第1厚板102と薄板101との接合部及び接合部周囲が加熱されて軟化し、加圧力が低下してナゲットNの生成が抑制される。   When the member to be welded 100 is pressurized by the movable side electrode 25 and the fixed side electrode 15, the thin plate 101 and the first thick plate 102 having low rigidity are bent downward, and between the thin plate 101 and the first thick plate 102 and A gap is generated between the first thick plate 102 and the second thick plate 103, and the current density between the fixed side electrode 15 and the movable side electrode 25 is higher on the second thick plate 103 side than on the thin plate 101 side. As schematically shown in (a), a nugget N is formed at the joint between the first thick plate 102 and the second thick plate 103, and the nugget N gradually increases until the thin plate 101 and the first thick plate 102 are welded. Is done. As the welding progresses, the joint between the first pressure plate 102 and the second thick plate 103 and between the first thick plate 102 and the thin plate 101 and the periphery of the joint are heated and softened, and the pressurizing force is lowered to generate the nugget N. Is suppressed.

しかる後、即ち通電の後期における副加圧開始工程S121において副加圧アクチュエータ31のサーボモータ32を、副加圧設定回転トルクに達するまで作動する。これにより図8(c)に示すように可動側電極25と固定側電極15との間で挟持加圧された状態の被溶接部材100の薄板101に固定側電極15に隣接して下方から副加圧部39が圧接して副加圧力fを付与すると共に副加圧保持工程S122で通電時間内の所定時間に亘り停止状態に保持して副加圧部39により副加圧力fを付与保持した後、副加圧解除工程S123においてサーボモータ32を作動させて図8(d)に示すように副加圧部39を副加圧位置から被溶接部材100から離れる退避位置に移動する。   Thereafter, in the sub-pressurization start step S121 in the latter stage of energization, the servo motor 32 of the sub-pressurization actuator 31 is operated until the sub-pressurization setting rotational torque is reached. As a result, as shown in FIG. 8C, the thin plate 101 of the member to be welded 100 is sandwiched and pressed between the movable side electrode 25 and the fixed side electrode 15 so as to be adjacent to the fixed side electrode 15 from below. The pressurizing unit 39 is pressed to apply the sub-pressurizing force f, and is held in a stopped state for a predetermined time within the energizing time in the sub-pressurizing and holding step S122, and the sub-pressurizing unit 39 applies and holds the sub-pressurizing force f. Thereafter, the servo motor 32 is operated in the sub-pressurization releasing step S123 to move the sub-pressurization unit 39 from the sub-pressurization position to the retracted position away from the welded member 100 as shown in FIG.

この副加圧保持工程S122において固定側電極15の加圧力FLと可動側電極25の加圧力FUで加圧された被溶接部材100に副加圧部39による副加圧力fを付与した状態では、固定側電極15から薄板101に作用する加圧力FLが可動側電極25による加圧力FUから副加圧部39による副加圧力fを減じた加圧力が付与される(FL=FU−f)。即ち薄板101側に作用する固定側電極15からの加圧力FLを第2厚板103側に作用する可動側電極25の加圧力FUより小さく(FL<FU)制御することで、薄板101と第1厚板102の接合部における接触圧力が、第1厚板102と第2厚板103間の溶接部における接触圧力より小さくなり、相対的に薄板101と第1厚板102間の接合部における接触抵抗が大きく電流密度が高くなり薄板101と第1厚板102の接合部におけるナゲットNの生成が促され、図9(b)に示すように薄板101と第1厚板102との接合部から第1厚板102と第2厚板103との接合部に移行するに従って漸次拡径する径のナゲットNが生成されて第1厚板102と第2厚板103の溶接強度が得られる。   In the sub-pressurizing and holding step S122, in the state where the sub-pressurizing portion 39 applies the sub-pressurizing force f to the member 100 to be welded that has been pressed with the pressing force FL of the fixed electrode 15 and the pressing force FU of the movable electrode 25. The applied pressure FL acting on the thin plate 101 from the fixed side electrode 15 is applied by subtracting the auxiliary pressure f by the auxiliary pressure unit 39 from the pressure FU by the movable electrode 25 (FL = FU−f). . That is, by controlling the applied pressure FL from the fixed side electrode 15 acting on the thin plate 101 side to be smaller than the applied force FU of the movable side electrode 25 acting on the second thick plate 103 side (FL <FU), the thin plate 101 and the first plate 101 are controlled. The contact pressure at the joint portion of the first thick plate 102 is smaller than the contact pressure at the weld portion between the first thick plate 102 and the second thick plate 103, and relatively at the joint portion between the thin plate 101 and the first thick plate 102. The contact resistance is large and the current density is increased, so that the generation of nugget N at the joint between the thin plate 101 and the first thick plate 102 is promoted, and the joint between the thin plate 101 and the first thick plate 102 as shown in FIG. From the first thick plate 102 and the second thick plate 103, a nugget N having a diameter that gradually increases as the transition is made to the joining portion of the first thick plate 102 and the second thick plate 103 is generated.

しかる後、通電終了工程S133において可動側電極25と固定側電極15への通電を終了し、加圧解除工程S113において加圧アクチュエータ20のサーボモータ21の作動により可動側電極25を加圧位置から退避位置に移動させて図8(d)に示すように固定側電極15と可動側電極25とによる被溶接部材100の挟持を開放する。次に、作動プログラムに従い溶接ロボットを作動して、スポット溶接装置1を被溶接部材100の打点位置から退避させ、次の被溶接部材100の打点位置に移動する。   Thereafter, the energization to the movable side electrode 25 and the fixed side electrode 15 is terminated in the energization end step S133, and the movable side electrode 25 is moved from the pressurization position by the operation of the servo motor 21 of the pressure actuator 20 in the pressure release step S113. As shown in FIG. 8D, the member to be welded 100 is held between the fixed side electrode 15 and the movable side electrode 25 as shown in FIG. Next, the welding robot is operated according to the operation program, and the spot welding apparatus 1 is retracted from the spot position of the welded member 100 and moved to the spot position of the next welded member 100.

このように構成された本実施の形態によると、固定側電極15と可動側電極25により被溶接部材100を挟持加圧して通電する初期段階では固定側電極15と可動側電極25による比較的大きな加圧力Fで挟持加圧することで第1厚板102と第2厚板103との間に十分なナゲットNを生成して第1厚板102と第2厚板103との溶接強度を確保し、後期段階では所定時間に亘り副加圧39により副加圧力fを付与することで、薄板101と第1厚板102の接合部におけるナゲットNの生成が促進されて薄板101と第1厚板102との接合部から第1厚板102と第2厚板103との接合部に移行するに従って漸次拡径する径のナゲットNが生成されて第1厚板102と第2厚板103の溶接強度が得られる。   According to the present embodiment configured as described above, the fixed side electrode 15 and the movable side electrode 25 are relatively large in the initial stage in which the member to be welded 100 is sandwiched and pressurized by the fixed side electrode 15 and the movable side electrode 25 and energized. By sandwiching and pressing with the applied pressure F, sufficient nugget N is generated between the first thick plate 102 and the second thick plate 103 to ensure the welding strength between the first thick plate 102 and the second thick plate 103. In the later stage, by applying the sub-pressurizing force f by the sub-pressurization 39 for a predetermined time, the generation of the nugget N at the junction between the thin plate 101 and the first thick plate 102 is promoted, and the thin plate 101 and the first thick plate The nugget N having a diameter that gradually increases as the transition from the joint with 102 to the joint between the first thick plate 102 and the second thick plate 103 is generated, and the first thick plate 102 and the second thick plate 103 are welded. Strength is obtained.

従って、固定側電極15と可動側電極25によって被溶接部材100を挟持加圧すると共に固定側電極15と可動側電極25との間に所定時間通電して被溶接部材100を溶接する通電時間内の後期範囲に所定時間だけ副加圧部39により副加圧力fを付与して固定側電極15と可動側電極25による加圧力FL、FUを制御することで剛性の異なる板材を重ねた被溶接部材100に対する溶接品質が向上する。   Accordingly, the member to be welded 100 is sandwiched and pressurized by the fixed side electrode 15 and the movable side electrode 25, and energized for a predetermined time between the fixed side electrode 15 and the movable side electrode 25 to weld the member to be welded 100. A member to be welded in which plate materials having different rigidity are stacked by applying a sub-pressurizing force f by the sub-pressurizing unit 39 to the latter range for a predetermined time and controlling the pressing forces FL and FU by the fixed side electrode 15 and the movable side electrode 25. The welding quality with respect to 100 is improved.

なお、本発明は上記実施の形態に限定されることなく発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上記実施の形態では、固定側電極15と可動側電極25によって被溶接部材100を挟持加圧すると共に固定側電極15と可動側電極25との間に所定時間通電して被溶接部材100を溶接する通電時間内の初期或いは後期範囲の所定時間に副加圧部39により副加圧力fを付与して固定側電極15と可動側電極25による加圧力Fを制御したが、通電時間内の初期及び後期を除く中間範囲に所定時間に亘り副加圧部39により副加圧力fを付与することもできる。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention. For example, in the embodiment described above, the member to be welded 100 is sandwiched and pressurized by the fixed side electrode 15 and the movable side electrode 25, and the member to be welded 100 is energized for a predetermined time between the fixed side electrode 15 and the movable side electrode 25. The sub-pressurizing portion 39 applied the sub-pressurizing force f at a predetermined time within the energizing time to be welded for a predetermined time to control the pressurizing force F by the fixed side electrode 15 and the movable side electrode 25. The auxiliary pressurizing force 39 can be applied to the intermediate range excluding the initial period and the latter period by the auxiliary pressure unit 39 over a predetermined time.

1 スポット溶接装置
15 固定側電極(第1溶接電極)
20 加圧アクチュエータ
25 可動側電極(第2溶接電極)
30 副加圧付与手段
31 副加圧アクチュエータ
39 副加圧部
100 被溶接部材
101 薄板
102 第1厚板
103 第2厚板
F 加圧力
f 副加圧力
N ナゲット
1 Spot Welding Device 15 Fixed Electrode (First Welding Electrode)
20 Pressure actuator 25 Movable electrode (second welding electrode)
30 Sub-pressurizing application means 31 Sub-pressurizing actuator 39 Sub-pressurizing part 100 Member to be welded 101 Thin plate 102 First thick plate 103 Second thick plate F Pressurizing force f Subpressing pressure N Nugget

Claims (3)

第1溶接電極と、
該第1電極と協働して被溶接部材を挟持する第2溶接電極に加圧力を付与する加圧アクチュエータと、
副加圧部を前記被溶接部材に当接して副加圧力を付与する副加圧アクチュエータとを有し、
前記第1溶接電極及び第2溶接電極によって前記被溶接部材を予め設定された加圧力で挟持加圧すると共に前記第1溶接電極と第2溶接電極との間で通電し、かつ副加圧部によって予め設定された副加圧力を付与して溶接するスポット溶接装置の加圧制御方法であって、
前記加圧アクチュエータにより第1溶接電極と第2溶接電極とで前記被溶接部材を予め設定された加圧力で挟持加圧して第1溶接電極と第2溶接電極に所定時間通電する通電時間内の一部所定時間において被溶接部材に副加圧部を当接して副加圧アクチュエータによる副加圧力を付与することを特徴とするスポット溶接装置の加圧制御方法。
A first welding electrode;
A pressure actuator that applies pressure to the second welding electrode that sandwiches the member to be welded in cooperation with the first electrode;
A sub-pressurizing actuator that abuts the sub-pressurizing portion on the member to be welded and applies a sub-pressurizing force;
The member to be welded is sandwiched and pressed with a preset pressure by the first welding electrode and the second welding electrode, and energized between the first welding electrode and the second welding electrode. A pressurization control method for a spot welding apparatus for welding by applying a preset sub-pressing force,
Within the energization time in which the first welding electrode and the second welding electrode are sandwiched and pressed by the pressurizing actuator by the first welding electrode and the second welding electrode with a preset pressure, and the first welding electrode and the second welding electrode are energized for a predetermined time. A pressurizing control method for a spot welding apparatus, wherein a subpressurizing part is brought into contact with a member to be welded for a predetermined time to apply a subpressing force by a subpressurizing actuator.
前記被溶接部材に副加圧部を当接して副加圧アクチュエータによる副加圧力を付与する一部所定時間は通電時間内の初期範囲に設定されたことを特徴とする請求項1に記載のスポット溶接装置の加圧制御方法。   The partial predetermined time for applying a sub-pressurizing force by a sub-pressurizing actuator by abutting a sub-pressurizing portion on the member to be welded is set to an initial range within an energizing time. A pressure control method for a spot welding apparatus. 前記被溶接部材に副加圧部を当接して副加圧アクチュエータによる副加圧力を付与する一部所定時間は通電時間内の後期範囲に設定されたことを特徴とする請求項1に記載のスポット溶接装置の加圧制御方法。   The partial predetermined time for applying a sub-pressurizing force by a sub-pressurizing actuator by abutting a sub-pressurizing portion to the welded member is set to a late range within an energization time. A pressure control method for a spot welding apparatus.
JP2011284788A 2011-12-27 2011-12-27 Pressure control method for spot welding equipment Active JP5922926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284788A JP5922926B2 (en) 2011-12-27 2011-12-27 Pressure control method for spot welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284788A JP5922926B2 (en) 2011-12-27 2011-12-27 Pressure control method for spot welding equipment

Publications (2)

Publication Number Publication Date
JP2013132660A true JP2013132660A (en) 2013-07-08
JP5922926B2 JP5922926B2 (en) 2016-05-24

Family

ID=48909735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284788A Active JP5922926B2 (en) 2011-12-27 2011-12-27 Pressure control method for spot welding equipment

Country Status (1)

Country Link
JP (1) JP5922926B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132662A (en) * 2011-12-27 2013-07-08 Fuji Heavy Ind Ltd Spot welding apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732160A (en) * 1993-07-22 1995-02-03 Nissan Motor Co Ltd Spot welding equipment
EP1657018A1 (en) * 2004-11-10 2006-05-17 Serra Soldadura, S.A. Automatic compensation method and apparatus for welding clamp
JP2010240740A (en) * 2009-03-17 2010-10-28 Jfe Steel Corp Method of manufacturing resistance spot welded joint
JP2011011259A (en) * 2009-06-05 2011-01-20 Honda Motor Co Ltd Resistance welding method and equipment therefor
JP2012076125A (en) * 2010-10-01 2012-04-19 Honda Motor Co Ltd Spot welding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732160A (en) * 1993-07-22 1995-02-03 Nissan Motor Co Ltd Spot welding equipment
EP1657018A1 (en) * 2004-11-10 2006-05-17 Serra Soldadura, S.A. Automatic compensation method and apparatus for welding clamp
JP2010240740A (en) * 2009-03-17 2010-10-28 Jfe Steel Corp Method of manufacturing resistance spot welded joint
JP2011011259A (en) * 2009-06-05 2011-01-20 Honda Motor Co Ltd Resistance welding method and equipment therefor
JP2012076125A (en) * 2010-10-01 2012-04-19 Honda Motor Co Ltd Spot welding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132662A (en) * 2011-12-27 2013-07-08 Fuji Heavy Ind Ltd Spot welding apparatus

Also Published As

Publication number Publication date
JP5922926B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5498463B2 (en) Pressure control method for spot welding equipment
JP5758667B2 (en) Spot welding equipment
US8993918B2 (en) Spot-welding method and spot-welding device
JP5513460B2 (en) Spot welding equipment
JP2011194464A (en) Method and device for spot welding
JP5369149B2 (en) Spot welding equipment
JP5369150B2 (en) Spot welding equipment
JP5427746B2 (en) Spot welding equipment
JP5519457B2 (en) Spot welding method and apparatus
JP5922926B2 (en) Pressure control method for spot welding equipment
JP5860281B2 (en) Spot welding equipment
US7060929B2 (en) Sheet-to-tube resistance spot welding using servo gun
JP5643359B2 (en) Spot welding equipment
KR20170102114A (en) Laser welding device for connecting of heterogeneous material
JP7255119B2 (en) Indirect spot welding device and welding method
JP5969747B2 (en) Spot welding equipment
JP5986388B2 (en) Spot welding equipment
JP5965145B2 (en) Actuation control method for spot welding equipment
JP5254484B2 (en) Spot welding equipment
JP5965146B2 (en) Anomaly detection method for spot welding equipment
JP5872226B2 (en) Spot welding equipment
WO2021002211A1 (en) Joining system, and method for operating same
JP2014076491A (en) Spot welding method and device for the same
JP5580913B2 (en) Spot welding equipment
JP2023117072A (en) Spot welding method and spot welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160415

R150 Certificate of patent or registration of utility model

Ref document number: 5922926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250