JP5860281B2 - Spot welding equipment - Google Patents

Spot welding equipment Download PDF

Info

Publication number
JP5860281B2
JP5860281B2 JP2011284804A JP2011284804A JP5860281B2 JP 5860281 B2 JP5860281 B2 JP 5860281B2 JP 2011284804 A JP2011284804 A JP 2011284804A JP 2011284804 A JP2011284804 A JP 2011284804A JP 5860281 B2 JP5860281 B2 JP 5860281B2
Authority
JP
Japan
Prior art keywords
sub
pressurizing
welded
pressure
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011284804A
Other languages
Japanese (ja)
Other versions
JP2013132662A (en
Inventor
健輔 坂井
健輔 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2011284804A priority Critical patent/JP5860281B2/en
Publication of JP2013132662A publication Critical patent/JP2013132662A/en
Application granted granted Critical
Publication of JP5860281B2 publication Critical patent/JP5860281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、被溶接部材をスポット溶接するスポット溶接装置に関し、特に剛性の異なる板材を重ね合わせた板組の被溶接部材をスポット溶接するスポット溶接装置に関する。   The present invention relates to a spot welding apparatus that spot welds a member to be welded, and more particularly to a spot welding apparatus that spot welds a member to be welded in a plate set in which plate members having different rigidity are overlapped.

一般に、重ね合わされた鋼板等の板材の接合には、一対の溶接電極間で挟み加圧力を与えながら両電極間に大電流を一定時間通電するスポット溶接が広く行われている。   In general, spot welding in which a large current is applied between a pair of welding electrodes and a large amount of current is applied for a certain period of time is widely used for joining plate members such as stacked steel plates.

スポット溶接にあたり、両溶接電極による加圧力及び通電時間が一定の場合には、ナゲット径は電流の増加に従って徐々に増加するが、電流値が過大になると発熱量が多くなり板材間に溶融金属が飛散する散りの発生原因となる。即ち、接合部における板厚の減少と共に強度低下の要因となる。反対に電流が過少の場合にはナゲットが小さくなり十分な接合強度が得られない。また、加圧力が小さいと板材間の接触面積が少なくなり、電流密度が高くなり過熱による散り発生原因となる。一方、加圧力が大き過ぎると接合部の接触面積が大きくなり電流密度が低下して発熱量が減少し、ナゲットが小さくなり溶接強度が低下する。   In spot welding, when the applied pressure and energization time by both welding electrodes are constant, the nugget diameter gradually increases as the current increases, but if the current value is excessive, the amount of heat generation increases and molten metal is present between the plate materials. Causes scattering. That is, it causes a reduction in strength as the plate thickness decreases at the joint. On the other hand, when the current is too small, the nugget becomes small and sufficient bonding strength cannot be obtained. In addition, when the applied pressure is small, the contact area between the plate materials is reduced, the current density is increased, and scattering due to overheating is caused. On the other hand, if the applied pressure is too large, the contact area of the joint is increased, the current density is reduced, the heat generation is reduced, the nugget is reduced, and the welding strength is reduced.

ここで、図6に示すように、剛性の低い薄板101、この薄板101より剛性が高い第1厚板102及び第2厚板103の3枚を重ね合わせた被溶接部材100をスポット溶接する場合には、各板材101、102、103の間に隙間がなく密着した状態では、可動側電極111と固定側電極112により被溶接部材100を加圧して電源113により通電すると、可動側電極111と固定側電極112間の通電経路における電流密度がほぼ均一となり薄板101から第2厚板103に亘って良好なナゲットが形成されて溶接強度を得ることができる。   Here, as shown in FIG. 6, spot welding is performed on a member to be welded 100 in which three sheets of a thin plate 101 having low rigidity and a first thick plate 102 and a second thick plate 103 having higher rigidity than the thin plate 101 are overlapped. In the state where the plate members 101, 102, and 103 are in close contact with each other, when the member to be welded 100 is pressed by the movable side electrode 111 and the fixed side electrode 112 and energized by the power source 113, the movable side electrode 111 and The current density in the energization path between the fixed side electrodes 112 is substantially uniform, and a good nugget is formed from the thin plate 101 to the second thick plate 103, so that welding strength can be obtained.

しかし、実際には、可動側電極111と固定側電極112によって被溶接部材100を加圧したときに、剛性の低い薄板101と第1厚板102が上方に撓んで、薄板101と第1厚板102の間及び第1厚板102と第2厚板103との間に隙間が生じる。この場合、可動側電極111と薄板101間の接触面積は薄板101の撓みにより大きくなるのに対して、薄板101と第1厚板102間及び第1厚板102と第2厚板103間の接合部の接触面積はより小さくなる。   However, actually, when the member to be welded 100 is pressed by the movable side electrode 111 and the fixed side electrode 112, the thin plate 101 and the first thick plate 102 having low rigidity bend upward, and the thin plate 101 and the first thickness are bent. A gap is generated between the plates 102 and between the first thick plate 102 and the second thick plate 103. In this case, the contact area between the movable electrode 111 and the thin plate 101 is increased by the bending of the thin plate 101, whereas between the thin plate 101 and the first thick plate 102 and between the first thick plate 102 and the second thick plate 103. The contact area of the joint becomes smaller.

このため、可動側電極111と固定側電極112間の電流密度が薄板101側に対して第2厚板103側が高くなり、薄板101と第1厚板102間よりも第1厚板102と第2厚板103間の方が局部的な発熱量が多くなる。その結果、図6(a)に示すように、先ず第1厚板102と第2厚板103との接合部にナゲットNが形成され、次第にナゲットNが大きくなりやがて図6(b)のように薄板101と第1厚板102間が溶着される。しかし、この薄板101と第1厚板102との間の溶け込み量は小さく溶接強度が不安定で、薄板101の剥離が懸念され、かつ溶接品質にバラツキがある。この不具合は、特に第1厚板102及び第2厚板103が厚いほど第1厚板102と薄板101との間にナゲットNが到達しにくく、顕著である。   For this reason, the current density between the movable side electrode 111 and the fixed side electrode 112 is higher on the second thick plate 103 side than on the thin plate 101 side, and the first thick plate 102 and the first thick plate 102 are larger than between the thin plate 101 and the first thick plate 102. The amount of heat generated locally between the two thick plates 103 increases. As a result, as shown in FIG. 6A, first, a nugget N is formed at the joint between the first thick plate 102 and the second thick plate 103, and then the nugget N gradually increases as shown in FIG. 6B. The thin plate 101 and the first thick plate 102 are welded together. However, the amount of penetration between the thin plate 101 and the first thick plate 102 is small, the welding strength is unstable, the peeling of the thin plate 101 is a concern, and the welding quality varies. This problem is particularly noticeable because the nugget N is less likely to reach between the first thick plate 102 and the thin plate 101 as the first thick plate 102 and the second thick plate 103 are thicker.

この対策として、例えば特許文献1に開示されたスポット溶接装置がある。このスポット溶接装置は、図7に示すように、溶接ロボット115の手首部116にスポット溶接装置120が搭載され、溶接ロボット115は、クランパ118によって支持された被溶接部材100の各打点位置にスポット溶接ガン120を移動し、被溶接部材100のスポット溶接を行う。   As a countermeasure, for example, there is a spot welding apparatus disclosed in Patent Document 1. As shown in FIG. 7, in this spot welding apparatus, a spot welding apparatus 120 is mounted on a wrist portion 116 of a welding robot 115, and the welding robot 115 is spotted at each hit point position of a member to be welded 100 supported by a clamper 118. The welding gun 120 is moved and spot welding of the member to be welded 100 is performed.

スポット溶接装置120は、手首部116に取り付けられたガン支持ブラケット117に固定されたリニアガイド121によって上下動自在に支持されたベース部122を備え、ベース部122に下方に延びる固定アーム123が設けられ、固定アーム123の下端先端に固定側電極124が設けられる。また、ベース部122の上端に加圧アクチュエータ126が搭載され、加圧アクチュエータ126により上下動するロッド127の下端に可動側電極125が取り付けられる。ガン支持ブラケット117の上端にサーボモータ128が搭載され、サーボモータ128の作動によりボールねじ機構を介してベース部122が上下動する。   The spot welding device 120 includes a base portion 122 supported by a linear guide 121 fixed to a gun support bracket 117 attached to the wrist portion 116 so as to be movable up and down, and a fixed arm 123 extending downward is provided on the base portion 122. The fixed side electrode 124 is provided at the lower end tip of the fixed arm 123. A pressure actuator 126 is mounted on the upper end of the base portion 122, and the movable electrode 125 is attached to the lower end of the rod 127 that moves up and down by the pressure actuator 126. A servo motor 128 is mounted on the upper end of the gun support bracket 117, and the operation of the servo motor 128 causes the base portion 122 to move up and down via a ball screw mechanism.

ここで、図示しないコントローラに予め記憶されているティーチングデータに従って、薄板101側に位置する可動側電極125による加圧力FUを固定側電極124による加圧力FLよりも小さくする(FU<FL)。   Here, in accordance with teaching data stored in advance in a controller (not shown), the pressure FU applied by the movable electrode 125 located on the thin plate 101 side is made smaller than the pressure FL applied by the fixed electrode 124 (FU <FL).

このように可動側電極125による加圧力FUを固定側電極124による加圧力FLより小さくするために、先ず、サーボモータ128によりベース部122を上昇させて固定側電極124を被溶接部材100の下面に当接させると共に、加圧アクチュエータ126により可動側電極125を下降させて被溶接部材100の上面に当接させて加圧する。次に、サーボモータ128によりベース部122を押し上げる。このベース部122の押し上げにより、固定側電極124の加圧力FLがベース部122の押し上げ分だけ増加し、可動側電極125による加圧力FUが固定側電極124による加圧力FLより小さくなる。   In order to make the pressure FU applied by the movable electrode 125 smaller than the pressure FL applied by the fixed electrode 124 in this way, first, the base portion 122 is raised by the servo motor 128 to connect the fixed electrode 124 to the lower surface of the member 100 to be welded. The movable side electrode 125 is lowered by the pressure actuator 126 and is brought into contact with the upper surface of the member to be welded 100 for pressurization. Next, the base portion 122 is pushed up by the servo motor 128. As the base portion 122 is pushed up, the pressing force FL of the fixed side electrode 124 is increased by the pushing amount of the base portion 122, and the pressing force FU by the movable side electrode 125 becomes smaller than the pressing force FL by the fixed side electrode 124.

その結果、可動側電極125と固定側電極124との間に通電したときに、薄板101と第1厚板102の接合部における電流密度が高くなり発熱量が第1厚板102と第2厚板103の接合部における発熱量に対して相対的に増加する。これにより、薄板101から第2厚板103に亘って偏りのない良好なナゲットが生成されて溶接強度を確保できる。   As a result, when the movable side electrode 125 and the fixed side electrode 124 are energized, the current density at the joint between the thin plate 101 and the first thick plate 102 is increased, and the amount of heat generated is the first thick plate 102 and the second thickness. It increases relative to the amount of heat generated at the joint of the plate 103. Thereby, a good nugget with no bias is generated from the thin plate 101 to the second thick plate 103, and the welding strength can be ensured.

特開2003−251469号公報JP 2003-251469 A

上記特許文献1によると、固定側電極124の加圧力FLより可動側電極125側の加圧力FUを小さくすることで、相対的に薄板101と第1厚板102間の電流密度が高くなり、薄板101と第1厚板102の接合部における発熱量が確保でき、溶け込み量が増大して溶接強度が増加する。   According to Patent Document 1, the current density between the thin plate 101 and the first thick plate 102 is relatively increased by making the applied pressure FU on the movable side electrode 125 side smaller than the applied pressure FL of the fixed side electrode 124. The amount of heat generated at the joint between the thin plate 101 and the first thick plate 102 can be secured, the amount of penetration increases, and the welding strength increases.

しかし、クランパ118によりクランプ保持された被溶接部材100を固定側電極124と可動側電極125によって挟持加圧した状態でベース部122を移動して固定側電極124の加圧力FLより可動側電極125による加圧力FUを小さくするには、被溶接部材100をクランプ保持するクランパ118に大きな負荷が要求される。一方、クランパ118による被溶接部材100のクランプ位置と溶接位置が離間した状態では、被溶接部材100が撓み変形して固定側電極124による加圧力FLと可動側電極125による加圧力FUにバラツキが生じて安定した薄板101と第1厚板102との間の接触抵抗及び第1厚板102と第2厚板103との間の接触抵抗の確保が困難であり、接合部における電流密度にバラツキが生じてスポット溶接の品質低下が懸念される。   However, the member to be welded 100 clamped and held by the clamper 118 is moved between the fixed side electrode 124 and the movable side electrode 125 while the base part 122 is moved and the movable side electrode 125 is moved by the pressure FL of the fixed side electrode 124. In order to reduce the applied pressure FU caused by the above, a large load is required for the clamper 118 that clamps and holds the member to be welded 100. On the other hand, in a state where the clamp position of the member 100 to be welded by the clamper 118 and the welding position are separated from each other, the member 100 to be welded is bent and deformed, and the applied pressure FL by the fixed electrode 124 and the applied pressure FU by the movable electrode 125 vary. The stable contact resistance between the thin plate 101 and the first thick plate 102 and the contact resistance between the first thick plate 102 and the second thick plate 103 is difficult to secure, and the current density at the joint varies. There is a concern about the deterioration of the quality of spot welding.

従って、かかる点に鑑みてなされた本発明の目的は、剛性の異なる板材を重ね合わせた板組の被溶接部材をスポット溶接するにあたり、優れた溶接品質が得られるスポット溶接装置を提供することにある。   Accordingly, an object of the present invention made in view of such a point is to provide a spot welding apparatus capable of obtaining excellent welding quality when spot-welding a member to be welded in a plate assembly in which plate members having different rigidity are overlapped. is there.

上記目的を達成する請求項1に記載のスポット溶接装置の発明は、第1溶接電極と、被溶接部材に当接して前記第1溶接電極と協働して前記被溶接部材を挟持する第2溶接電極を被溶接部材に当接して加圧力を付与する加圧位置と被溶接部材から離反する退避位置に移動せしめる加圧アクチュエータと、副加圧部を前記被溶接部材に当接して副加圧力を付与する副加圧位置と被溶接部材から離反する退避位置に移動せしめる副加圧アクチュエータとを有し、加圧アクチュエータによって前記第1溶接電極及び第2溶接電極により前記被溶接部材を挟持加圧すると共に副加圧アクチュエータによって副加圧力を付与して前記第1溶接電極及び第2溶接電極に通電して被溶接部材を溶接するスポット溶接装置であって、副加圧部から被溶接部材に付与される実副加圧力を検出する副加圧検出手段を有し、前記副加圧部が前記被溶接部材に当接して副加圧力を付与した作動状態において、前記副加圧検出手段により検知された実副加圧力と予め設定された設定副加圧力によって副加圧力が設定副加圧力になるように副加圧アクチュエータを制御する溶接制御手段を備えたことを特徴とする。   The invention of the spot welding apparatus according to claim 1, which achieves the above object, includes a first welding electrode and a second welding electrode that abuts the member to be welded and clamps the member to be welded in cooperation with the first welding electrode. A pressure actuator for moving the welding electrode to the welded member to apply pressure and a retracting position for moving the welding electrode away from the member to be welded, and a sub-pressurizing unit abutting the welded member to make a secondary application A sub-pressurizing position that applies pressure and a sub-pressurizing actuator that moves to a retracted position away from the member to be welded, and the member to be welded is sandwiched between the first welding electrode and the second welding electrode by the pressure actuator. A spot welding apparatus that pressurizes and applies a sub-pressurizing force by a sub-pressurizing actuator to energize the first welding electrode and the second welding electrode to weld a member to be welded. In Sub-pressurization detecting means for detecting the actual sub-pressurizing force applied, and in the operating state in which the sub-pressurizing portion is in contact with the member to be welded to apply the sub-pressurizing force, Welding control means is provided for controlling the sub-pressurizing actuator so that the sub-pressurizing force becomes the set sub-pressurizing force by the detected actual sub-pressing force and the preset sub-pressing force set in advance.

これによると、第1溶接電極及び第2溶接電極によって加圧力が付与された被溶接部材に副加圧アクチュエータにより副加圧部から副加圧力を付与して第1溶接電極と第2溶接電極による加圧力を制御して被溶接部材をスポット溶接するにあたり、副加圧検出手段により副加圧部から被溶接部材に付与する実際の副加圧力を検出し、副加圧検出手段により検知された実副加圧力と予め設定された設定副加圧力によって副加圧力を設定副加圧力になるように、即ち実副加圧力と設定副加圧力との差が減少するように副加圧アクチュエータを制御することで、副加圧アクチュエータ等の内部機械的損失等による影響が回避されて予め設定した高精度の副加圧力が付与され、剛性の異なる板材を重ねた被溶接部材に対する優れた溶接品質が得られる。   According to this, the first welding electrode and the second welding electrode are obtained by applying the sub-pressurizing force from the sub-pressurizing portion to the member to be welded to which the pressing force is applied by the first welding electrode and the second welding electrode by the sub-pressurizing actuator. In spot welding of the welded member by controlling the applied pressure, the secondary pressure detection means detects the actual secondary pressure applied to the welded member from the secondary pressurization part and is detected by the secondary pressure detection means. The sub-pressurization actuator so that the sub-pressurization force becomes the set sub-pressurization force by the actual sub-pressurization force and the preset set sub-pressurization force, that is, the difference between the actual sub-pressurization force and the set sub-pressurization force is reduced. By controlling the above, the influence of internal mechanical loss etc. of the sub-pressurization actuator etc. is avoided, the preset high-precision sub-pressurizing force is applied, and excellent welding to the member to be welded on which plate materials with different rigidity are stacked Quality is obtained

請求項2に記載の発明は、請求項1に記載のスポット溶接装置において、副加圧力検出手段は、前記副加圧部と副加圧アクチュエータとの間に介在するロードセルであることを特徴とする。   According to a second aspect of the present invention, in the spot welding apparatus according to the first aspect, the auxiliary pressure detection means is a load cell interposed between the auxiliary pressure unit and the auxiliary pressure actuator. To do.

これによると、副加圧力部による副加圧力を検出する副加圧検出手段が、副加圧部と副加圧アクチュエータとの間に介在するロードセルによって構成できると共に副加圧アクチュエータに影響されることなく副加圧部の実副加圧力がロードセルによって検出できる。   According to this, the sub-pressurization detecting means for detecting the sub-pressurizing force by the sub-pressurizing unit can be constituted by a load cell interposed between the sub-pressurizing unit and the sub-pressurizing actuator and is influenced by the sub-pressurizing actuator. Without this, the actual sub-pressurizing force of the sub-pressurizing unit can be detected by the load cell.

請求項3に記載の発明は、請求項1または2に記載のスポット溶接装置において、前記副加圧アクチュエータは、サーボモータを有し、該サーボモータは供給されるモータ電流に対応する副加圧力を副加圧部に付与すると共に、溶接制御手段は、前記副加圧検出手段により検知された実副加圧力と予め設定された設定副加圧力によってサーボモータによる副加圧力が設定副加圧力になるようにモータ電流を制御することを特徴とする。   According to a third aspect of the present invention, in the spot welding apparatus according to the first or second aspect, the sub-pressurizing actuator has a servo motor, and the servo motor corresponds to a sub-pressurizing force corresponding to the supplied motor current. Is applied to the sub-pressurizing section, and the welding control means sets the sub-pressurizing force by the servo motor based on the actual sub-pressing force detected by the sub-pressurizing detecting means and the preset sub-pressing force set in advance. The motor current is controlled so that

これによると、サードモータに供給するモータ電流を、溶接制御手段によって副加圧検出手段により検知された実副加圧力と設定副加圧力に基づいてサーボモータによる副加圧力が設定副加圧力になるように制御することで、予め設定した高精度の副加圧力が被溶接部材に付与され被溶接部材に対する優れた溶接品質が得られる。   According to this, the motor current supplied to the third motor is changed from the sub-pressurizing force by the servo motor to the set sub-pressing force based on the actual sub-pressing force detected by the sub-pressurization detecting unit and the set sub-pressing force by the welding control unit. By controlling so as to be, a preset high-precision sub-pressurizing force is applied to the member to be welded, and excellent welding quality for the member to be welded is obtained.

本発明によると、第1溶接電極及び第2溶接電極によって加圧力が付与された被溶接部材に副加圧アクチュエータにより副加圧部から副加圧力が付与して第1溶接電極と第2溶接電極による加圧力を制御して被溶接部材をスポット溶接するにあたり、副加圧検出手段により副加圧部から被溶接部材に付与する実際の副加圧力を検出し、副加圧検出手段により検知された実副加圧力と予め設定された設定副加圧力によって副加圧力が設定副加圧力になるように副加圧アクチュエータを制御することで、副加圧アクチュエータ等の内部機械的損失等による影響されることなく予め設定した高精度の副加圧力が付与され、剛性の異なる板材を重ねた被溶接部材に対する優れた溶接品質が得られる。   According to the present invention, the first welding electrode and the second welding are applied to the member to be welded to which the pressurizing force is applied by the first welding electrode and the second welding electrode by the subpressurizing actuator from the subpressurizing portion. In spot welding of the welded member by controlling the pressure applied by the electrode, the secondary pressure detection means detects the actual secondary pressure applied to the welded member from the secondary pressure part, and the secondary pressure detection means detects it. By controlling the sub-pressurization actuator so that the sub-pressurization force becomes the set sub-pressurization force by the actual sub-pressurization force and the preset sub-pressurization force, due to internal mechanical loss etc. of the sub-pressurization actuator etc. A preset high-precision sub-pressurizing force is applied without being affected, and excellent welding quality can be obtained for a member to be welded in which plate materials having different rigidity are stacked.

一実施の形態におけるスポット溶接装置の構成図である。It is a lineblock diagram of a spot welding device in one embodiment. 図1のA部拡大図である。It is the A section enlarged view of FIG. ロードセルの配置構造説明図であり、(a)は図1のB部拡大図、(b)は(a)のC−C線断面図である。FIG. 2 is an explanatory diagram of a load cell arrangement structure, in which (a) is an enlarged view of a portion B in FIG. 1 and (b) is a cross-sectional view taken along the line CC in (a). 作動概要説明図である。It is an operation | movement outline explanatory drawing. ロードセルの配置構造説明図であり、(a)は要部斜視図、(b)は(a)のD−D線断面図である。It is arrangement | positioning structure explanatory drawing of a load cell, (a) is a principal part perspective view, (b) is the DD sectional view taken on the line of (a). 従来のスポット溶接の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the conventional spot welding. 従来のスポット溶接の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the conventional spot welding.

本発明の一実施の形態について、図1乃至図5を参照して説明する。図1はスポット溶接装置の構成図、図2は図1のA部拡大斜視図、図3はロードセルの配置構造説明図であり、同図(a)は図1のB部拡大図、(b)は(a)のC−C線断面図、図4は模式的に示す作動概要説明図である。   An embodiment of the present invention will be described with reference to FIGS. 1 is a configuration diagram of a spot welding apparatus, FIG. 2 is an enlarged perspective view of part A in FIG. 1, FIG. 3 is an explanatory view of an arrangement structure of a load cell, FIG. 1 (a) is an enlarged view of part B in FIG. ) Is a cross-sectional view taken along the line CC of FIG. 4A, and FIG.

スポット溶接装置1の説明に先立って、被溶接部材100について説明する。被溶接部材100は、図2に示すように、重ね合わされた2枚の厚板の一方に薄板を重ね合わせた、下から順に剛性の低い薄板101、薄板101より板厚が大きく剛性が高い第1厚板102及び第2厚板103が重ね合わされた3枚重ねの板組によって構成される。   Prior to the description of the spot welding apparatus 1, the member to be welded 100 will be described. As shown in FIG. 2, the welded member 100 is a thin plate 101 having a lower rigidity in order from the bottom, in which a thin plate is superposed on one of two stacked thick plates, and the thickness is larger than the thin plate 101 and has a higher rigidity. The first thick plate 102 and the second thick plate 103 are composed of a three-layered plate set.

スポット溶接装置1は、図示しない溶接ロボットの手首部にイコライザユニットを介して取り付けられる矩形のベース部3及びベース部3の両側から下方に折曲して対向する一対の側部4を有するコ字状の支持ブラケット2を有し、支持ブラケット2に固定アーム10、加圧アクチュエータ20、副加圧付与手段30及び溶接トランス50が取り付け支持される。   The spot welding apparatus 1 has a rectangular base portion 3 attached to a wrist portion of a welding robot (not shown) via an equalizer unit, and a pair of side portions 4 bent downward from both sides of the base portion 3 and opposed to each other. The fixed arm 10, the pressure actuator 20, the sub-pressurizing application means 30, and the welding transformer 50 are attached to and supported by the support bracket 2.

固定アーム10は、支持ブラケット2の両側部4に基端が結合されて下方に延在する固定アーム本体11及び固定アーム本体11の先端にL字状に折曲する電極保持部12が形成され、電極保持部12に第1溶接電極である固定側電極15が、その頂端15aを上方にして装着される。   The fixed arm 10 is formed with a fixed arm main body 11 extending at a base end thereof coupled to both side portions 4 of the support bracket 2 and an electrode holding portion 12 bent in an L shape at the distal end of the fixed arm main body 11. The fixed electrode 15 as the first welding electrode is attached to the electrode holding portion 12 with the top end 15a facing upward.

加圧アクチュエータ20は、サーボモータ21及びボールネジ送り機構等によって構成された直動部22を有し、サーボモータ21の作動によって直動部22のロッドが昇降往復動する。直動部22のロッドの下端に電極アーム23が設けられ、電極アーム23の先端に固定アーム10に設けられた固定側電極15と同軸上、即ち中心軸線L上に固定側電極15と対向する第2溶接電極である可動側電極25が設けられる。これにより加圧アクチュエータ20のサーボモータ21の作動により可動側電極25が被溶接部材100を固定側電極15と協働して挟持すると共に加圧力を付与する加圧位置と、固定側電極15から上方に離反する退避位置との間で中心軸線Lに沿って移動する。   The pressurizing actuator 20 has a linear motion part 22 composed of a servo motor 21 and a ball screw feed mechanism, and the rod of the linear motion part 22 moves up and down by the operation of the servo motor 21. An electrode arm 23 is provided at the lower end of the rod of the linear motion portion 22, and is coaxial with the fixed side electrode 15 provided on the fixed arm 10 at the tip of the electrode arm 23, that is, faces the fixed side electrode 15 on the central axis L. A movable electrode 25 that is a second welding electrode is provided. Accordingly, the movable side electrode 25 cooperates with the fixed side electrode 15 by the operation of the servo motor 21 of the pressure actuator 20, and the pressurizing position where the pressing force is applied and the fixed side electrode 15. It moves along the central axis L between the retracted position that separates upward.

この可動側電極25と固定側電極15による加圧力はサーボモータ21の回転トルクによって決定され、サーボモータ21の回転トルクを制御することで要望の加圧力が得られる。即ち、サーボモータ21による可動側電極25の下降動で被溶接部材100が可動側電極25と固定側電極15との間に挟まれると、サーボモータ21の負荷が増大してサーボモータ21に流れるモータ電流が上昇する。そして要望の設定加圧力に合わせて設定した設定電流値にモータ電流が上昇したところで、後述する溶接制御手段となる溶接コントローラ51によりモータ電流のそれ以上の上昇を規制することで被溶接部材100を設定加圧力で加圧することができる。   The applied pressure by the movable side electrode 25 and the fixed side electrode 15 is determined by the rotational torque of the servo motor 21, and the desired applied pressure can be obtained by controlling the rotational torque of the servo motor 21. That is, when the member to be welded 100 is sandwiched between the movable side electrode 25 and the fixed side electrode 15 by the downward movement of the movable side electrode 25 by the servo motor 21, the load on the servo motor 21 increases and flows to the servo motor 21. Motor current rises. Then, when the motor current rises to the set current value set in accordance with the desired set pressing force, the welding controller 51 serving as a welding control means to be described later regulates the further increase in the motor current to control the member to be welded 100. Pressurization can be performed with a set pressure.

副加圧付与手段30は、支持ブラケット2の両側部4に両端が結合されたコ字状の取付ブラケット5に設けられた基板6に取り付けられるサーボモータ32及びボールネジ送り機構等によって構成された直動部33を備えた副加圧付与アクチュエータ31を有し、サーボモータ32の作動によって直動部33のロッド34が昇降往復動し、ロッド34の先端に副加圧検出手段であるロードセル40を介在して可動軸35が設けられる。   The sub-pressurizing application means 30 is a straight motor constituted by a servo motor 32 attached to a substrate 6 provided on a U-shaped attachment bracket 5 having both ends coupled to both side portions 4 of the support bracket 2 and a ball screw feed mechanism. The actuator 34 has a sub-pressurizing application actuator 31 having a moving portion 33, and the rod 34 of the linear motion portion 33 moves up and down by the operation of the servo motor 32, and a load cell 40 that is a sub-pressure detecting means is attached to the tip of the rod 34. A movable shaft 35 is provided.

可動軸35は先端に対向配置された一対の副可動軸35a、35bを備え、この副可動軸35a、35bの先端に副加圧付与アーム36が設けられる。副加圧付与アーム36は、副可動軸35a、35bの先端に基端部が結合されて略水平方向に延在する基端アーム部37と、基端アーム部37の先端部に基端部が結合されて固定側電極15の軸心方向、即ち中心軸線L方向に沿って下方に延在するアーム部38によって構成され、アーム部38の先端部に副加圧部39が設けられる。   The movable shaft 35 includes a pair of sub movable shafts 35a and 35b arranged to face the tip, and a sub pressure applying arm 36 is provided at the tip of the sub movable shafts 35a and 35b. The sub-pressurizing application arm 36 includes a base end arm portion 37 extending in a substantially horizontal direction with base end portions coupled to the front ends of the sub movable shafts 35 a and 35 b, and a base end portion at the front end portion of the base end arm portion 37. Are coupled to each other, and the arm portion 38 extends downward in the axial direction of the fixed electrode 15, that is, in the direction of the central axis L. A sub-pressurizing portion 39 is provided at the tip of the arm portion 38.

副加圧部39は、基端部がアーム部38の下部取付フランジ部38Aにボルトによって結合されて中心軸線L方向に向かって延在する矩形板状であって、先端に中心軸線Lと同軸で固定側電極15の貫通を許容する断面半円弧状、即ち半割り筒状の当接部39aが設けられる。   The sub-pressurizing portion 39 has a rectangular plate shape whose base end portion is coupled to the lower mounting flange portion 38A of the arm portion 38 by a bolt and extends in the direction of the central axis L, and is coaxial with the central axis L at the tip. Thus, a contact part 39a having a semicircular cross section that allows the fixed electrode 15 to pass therethrough, that is, a half cylinder, is provided.

図3にロードセル40の配置構造を示す。図3(a)は図1のB部拡大図、(b)は(a)のC−C線断面図である。   FIG. 3 shows an arrangement structure of the load cell 40. 3A is an enlarged view of a portion B in FIG. 1, and FIG. 3B is a cross-sectional view taken along the line CC in FIG.

ロードセル40は上面40a及び下面40bを有する円柱状であって、上面40aの中央部に中心軸線Lと同軸上に突出するねじ軸状、即ちボルト状の上側軸41Aが設けられ、下面40bの中央部に中心軸線Lと同軸上に突出するねじ軸状の下側軸41Bが設けられる。   The load cell 40 has a cylindrical shape having an upper surface 40a and a lower surface 40b, and is provided with a screw shaft shape, that is, a bolt-shaped upper shaft 41A that projects coaxially with the central axis L at the center portion of the upper surface 40a. A lower shaft 41B having a screw shaft shape that projects coaxially with the central axis L is provided at the portion.

一方、直動部33のロッド34の下端にロードセル40に設けられた上側軸41Aの挿入を許容する円筒状の軸収容部42が形成されると共にロッド34の先端に上側軸41Aが螺合するねじ孔43aが形成された固定用ナット43が設けられる。また可動軸35の上端にロードセル40の下側軸41Bが挿入する軸収容部44が形成されると共に可動軸35の先端に下側軸41Bが螺合するねじ孔45aが形成された固定用ナット45が設けられる。   On the other hand, a cylindrical shaft accommodating portion 42 that allows insertion of the upper shaft 41A provided in the load cell 40 is formed at the lower end of the rod 34 of the linear motion portion 33, and the upper shaft 41A is screwed into the tip of the rod 34. A fixing nut 43 having a screw hole 43a is provided. A fixing nut in which a shaft accommodating portion 44 into which the lower shaft 41B of the load cell 40 is inserted is formed at the upper end of the movable shaft 35, and a screw hole 45a into which the lower shaft 41B is screwed into the distal end of the movable shaft 35. 45 is provided.

このロッド34に設けられた固定用ナット43及び可動軸35に設けられた固定用ナット45にそれぞれロードセル40に設けられた上側軸41Aと下側軸41Bが螺合締結してロッド34と可動軸35との間にロードセル40が配置される。   The upper shaft 41A and the lower shaft 41B provided on the load cell 40 are screwed and fastened to the fixing nut 43 provided on the rod 34 and the fixing nut 45 provided on the movable shaft 35, respectively. A load cell 40 is arranged between

このように構成された副加圧付与アーム36は、サーボモータ32の作動によって固定側電極15と可動側電極25とによって挟持された被溶接部材100に下方から副加圧部39の当接部39aが当接して副加圧力fを付与する副加圧位置と、副加圧部39の当接部39aが固定側電極15の頂端15aより下方となり被溶接部材100から離反する退避位置との間で中心軸線Lに沿って移動する。   The sub-pressurizing application arm 36 configured in this way is a contact portion of the sub-pressurizing unit 39 from below on the member to be welded 100 sandwiched between the fixed side electrode 15 and the movable side electrode 25 by the operation of the servo motor 32. A sub-pressurizing position where 39a abuts to apply the sub-pressurizing force f, and a retreat position where the abutting portion 39a of the sub-pressurizing portion 39 is below the top end 15a of the fixed electrode 15 and separates from the welded member 100. Move along the central axis L.

この副加圧部39による副加圧力はサーボモータ32の回転トルクを制御することで要望の副加圧力が得られる。即ち、サーボモータ32による副加圧部39の上昇動で被溶接部材100に副加圧部39が当接すると、サーボモータ32の負荷が増大してサーボモータ32に流れるモータ電流が上昇する。そして溶接コントローラ51によりロードセル40により検知された実際の加圧力、いわゆる実副加圧力と予め設定された要望の設定副加圧力との差が減少するようにモータ電流をフィードバック制御する。   The sub-pressurizing force by the sub-pressurizing unit 39 can be obtained by controlling the rotational torque of the servo motor 32. That is, when the sub-pressurizing unit 39 comes into contact with the member to be welded 100 by the upward movement of the sub-pressurizing unit 39 by the servomotor 32, the load on the servomotor 32 increases and the motor current flowing through the servomotor 32 increases. Then, the motor current is feedback-controlled so that the difference between the actual applied pressure detected by the load cell 40 by the welding controller 51, that is, the so-called actual auxiliary applied pressure and a preset desired auxiliary applied pressure is reduced.

即ち、サーボモータ32の作動により副加圧部39を退避位置から当接部39aが被溶接部材100に当接する副加圧位置に移動させ、更にサーボモータ32を作動させて副加圧部39が被溶接部材100に圧接して副加圧力が生じると、実際に副加圧部39により被溶接部材100に付与する副加圧力の反力、いわゆる実副加圧力を可動軸35によってロードセル40に入力する。ここでロードセル40は加圧力の増加量に比例した電荷を発生するものであり、その出力電圧の変化を実副加圧力として測定し、その出力電圧変化を副加圧力検出信号として溶接コントローラ51によってサーボモータ32に供給するモータ電流を制御することで副加圧部39から被溶接部材100に付与する副加圧力が調整できる。具体的にはロードセル40によって検出された実副加圧力が予め設定された設定加圧力より小さいときには溶接コントローラ51によりサーボモータ32に流れるモータ電流を増加してサーボモータ32の回転トルクを増加して副加圧部39による副加圧力fを増加し、実副加圧力が設定副加圧力より大きいときにはサーボモータ32に流れるモータ電流を減少してサーボモータ32の回転トルクを減少して副加圧部39による副加圧力fを減少する。   That is, the operation of the servo motor 32 moves the auxiliary pressure portion 39 from the retracted position to the auxiliary pressure position where the contact portion 39a contacts the welded member 100, and further activates the servo motor 32 to activate the auxiliary pressure portion 39. When the secondary pressurizing force is applied to the member to be welded 100 and a secondary pressurizing force is generated, a reaction force of the secondary pressurizing force that is actually applied to the welded member 100 by the secondary pressurizing unit 39, a so-called actual secondary pressurizing force is applied to the load cell 40 by the movable shaft 35. To enter. Here, the load cell 40 generates an electric charge proportional to the amount of increase in the applied pressure, and the change in the output voltage is measured as an actual auxiliary pressure, and the change in the output voltage is measured by the welding controller 51 as the auxiliary pressure detection signal. By controlling the motor current supplied to the servomotor 32, the sub-pressurizing force applied to the welded member 100 from the sub-pressurizing unit 39 can be adjusted. Specifically, when the actual auxiliary pressure detected by the load cell 40 is smaller than a preset set pressure, the motor current flowing to the servo motor 32 is increased by the welding controller 51 to increase the rotational torque of the servo motor 32. The sub-pressurizing unit 39 increases the sub-pressurizing force f, and when the actual sub-pressurizing force is larger than the set sub-pressurizing force, the motor current flowing to the servomotor 32 is decreased to reduce the rotational torque of the servomotor 32 and to subpressurize. The auxiliary pressure f by the portion 39 is decreased.

電源となる溶接トランス50の一方の出力端子がバスバ及び固定アーム10等を介して固定側電極15に通電可能に接続され、他方の出力端子がバスバ及び電極アーム23等を介して可動側電極25に通電可能に接続される。   One output terminal of the welding transformer 50 serving as a power source is connected to the fixed side electrode 15 through the bus bar and the fixed arm 10 so as to be energized, and the other output terminal is connected to the movable side electrode 25 through the bus bar and the electrode arm 23 and the like. Is connected to be energized.

また、溶接コントローラ51を備え、溶接コントローラ51にはスポット溶接装置1の作動プログラム及び作動プログラムに設定された各作動行程に基づいて加圧アクチュエータ20を制御する加圧制御部52と副加圧アクチュエータ31を制御する副加圧制御部53が含まれる。また、溶接コントローラ51はロードセル40からの副加圧力検出信号と予め設定された副加圧力を比較してサーボモータ32を制御する。即ちロードセル40によって検出された副加圧力に従ってサーボモータ32に流れるモータ電流を制御することで副加圧力を予め設定された副加圧力となるように制御できる。   Further, the welding controller 51 is provided. The welding controller 51 includes an operation program for the spot welding apparatus 1 and a pressurization control unit 52 that controls the pressurization actuator 20 based on each operation stroke set in the operation program, and a sub-pressurization actuator. A sub-pressurization control unit 53 for controlling 31 is included. Further, the welding controller 51 controls the servo motor 32 by comparing the sub pressure detection signal from the load cell 40 with a preset sub pressure. That is, by controlling the motor current flowing through the servo motor 32 according to the sub pressure detected by the load cell 40, the sub pressure can be controlled to be a preset sub pressure.

また、図示しない溶接ロボットコントローラには、溶接ロボットのティーチングデータが格納され、ティーチングデータには、被溶接部材100の各溶接打点位置を順次スポット溶接するための作動プログラム及び各溶接打点、即ち溶接位置におけるスポット溶接装置1の位置及び姿勢が含まれる。図示しない溶接コントローラには溶接装置1の作動プログラム及び加圧アクチュエータ20、制御加圧付与手段30、溶接トランス50の作動制御が含まれる。   A welding robot controller (not shown) stores teaching data of the welding robot, and the teaching data includes an operation program for sequentially spot welding the welding spot positions of the member to be welded 100 and each welding spot, that is, the welding position. The position and attitude of the spot welding apparatus 1 in FIG. A welding controller (not shown) includes an operation program for the welding apparatus 1 and a pressure actuator 20, a control pressure applying means 30, and an operation control for the welding transformer 50.

次に、スポット溶接装置1の作動を図4の作動概要説明図を参照して説明する。   Next, the operation of the spot welding apparatus 1 will be described with reference to the operation outline explanatory diagram of FIG.

被溶接部材100のスポット溶接にあたり、予め設定されたプログラムに従い、可動側電極25が固定側電極15から離反した退避位置でかつ副加圧付与手段30の副加圧部39が退避位置に保持された状態で、ロボットコントローラは溶接ロボットを作動して、図4(a)に示すように被溶接部材100の溶接位置となる打点位置に固定側電極15の頂端15aを当接してスポット溶接装置1を位置決めする。   In spot welding of the member to be welded 100, according to a preset program, the movable side electrode 25 is at the retracted position where it is separated from the fixed side electrode 15, and the sub-pressurizing portion 39 of the sub-pressurizing application means 30 is held at the retracted position. In this state, the robot controller operates the welding robot to bring the top end 15a of the fixed side electrode 15 into contact with the striking position as the welding position of the member to be welded 100 as shown in FIG. Positioning.

このスポット溶接1が溶接位置に位置決めされた状態では、図4(a)に示すように固定側電極15の頂端15aが被溶接部材100の薄板101に下方から当接する一方、可動側電極25の頂端25aが第2厚板103と隙間を有して対向し、副加圧部39の当接部39aが薄板101と隙間を有して対向する。   In a state where the spot weld 1 is positioned at the welding position, the top end 15a of the fixed side electrode 15 abuts on the thin plate 101 of the member to be welded 100 from below as shown in FIG. The top end 25a is opposed to the second thick plate 103 with a gap, and the contact portion 39a of the sub-pressing portion 39 is opposed to the thin plate 101 with a gap.

次に、図4(b)に示すように、固定側電極15が被溶接部材100の薄板101に当接した状態で、加圧アクチュエータ20のサーボモータ21の作動により可動側電極25を退避位置から固定側電極15に接近する加圧位置方向に移動させて第2厚板103に上方から当接させる。更にサーボモータ21を所定トルクに達するまで作動して可動側電極25を第2厚板103に圧接させる。即ち、サーボモータ21の負荷が増大してサーボモータ21に流れるモータ電流が設定加圧力に合わせて設定した設定電流値に上昇したところで、モータ電流のそれ以上の上昇を規制する。これにより加圧アクチュエータ20の加圧力が可動側電極25と固定アーム10を介して固定側電極15とに作用し、可動側電極25と固定側電極15とで被溶接部材100の溶接部を挟持すると共に加圧する。   Next, as shown in FIG. 4B, the movable side electrode 25 is retracted by the operation of the servo motor 21 of the pressure actuator 20 with the fixed side electrode 15 in contact with the thin plate 101 of the member to be welded 100. From the upper side, the second thick plate 103 is brought into contact with the second thick plate 103 by moving in the direction of the pressurizing position approaching the fixed side electrode 15. Further, the servo motor 21 is operated until a predetermined torque is reached, and the movable electrode 25 is pressed against the second thick plate 103. That is, when the load of the servo motor 21 increases and the motor current flowing through the servo motor 21 rises to the set current value set in accordance with the set pressure, further increase of the motor current is restricted. As a result, the pressure applied by the pressure actuator 20 acts on the fixed side electrode 15 via the movable side electrode 25 and the fixed arm 10, and the movable side electrode 25 and the fixed side electrode 15 hold the welded portion of the member to be welded 100. And pressurize.

一方、副加圧付与手段30のサーボモータ32の作動による副加圧部39を退避位置から当接部39aが被溶接部材100の薄板101に固定側電極15に隣接して当接する副加圧位置に移動させる。更に、サーボモータ32を作動させて副加圧部39を薄板101に圧接する副加圧力fを増加付与する。ここで、副加圧部39が被溶接部材100に圧接して副加圧力fが生じると、その副加圧力fの反力により副加圧部39及び副加圧付与アーム36を介して可動軸35から実副加圧力に相当する加圧力がロードセル40に入力される。ロードセル40は加圧力の増加量に比例した電荷を発生するものであり、その出力電圧の変化を実副加圧力として測定し、その出力電圧変化を副加圧力検出信号としてサーボモータ32を制御することで副加圧部39から被溶接部材100に付与する副加圧力fを制御する。即ち、ロードセル40によって検知された実副加圧力が予め設定された設定副加圧力より小さいときには溶接コントローラ51によりサーボモータ32に流れるモータ電流を増加してサーボモータ32の回転トルクを増加して副加圧部39による副加圧力fを増加し、実副加圧力が設定副加圧力より大きいときにはサーボモータ32に流れるモータ電流を減少してサーボモータ32の回転トルクを減少して副加圧部39による副加圧力fを減少する。この副加圧力fは副加圧部39の反力をロードセル40により直接的に検知してサーボモータ32を制御して設定され、サーボモータ32や直動部のボールねじ機構等の機械的抵抗、即ち内部機械的損失等に影響されることなく予め設定した高精度の副加圧力が付与される。   On the other hand, the sub-pressurizing portion 39 by the operation of the servo motor 32 of the sub-pressurizing application means 30 is brought into contact with the thin plate 101 of the member to be welded 100 adjacent to the fixed electrode 15 from the retracted position. Move to position. Further, the servo motor 32 is operated to increase the sub-pressurizing force f that presses the sub-pressurizing portion 39 against the thin plate 101. Here, when the sub-pressurizing part 39 is pressed against the member 100 to be welded and a sub-pressurizing force f is generated, the sub-pressurizing part 39 is movable via the sub-pressurizing part 39 and the sub-pressurizing application arm 36 by the reaction force of the sub-pressurizing force f. A pressing force corresponding to the actual sub pressing force is input from the shaft 35 to the load cell 40. The load cell 40 generates a charge proportional to the amount of increase in the applied pressure, measures the change in the output voltage as an actual auxiliary pressure, and controls the servo motor 32 using the output voltage change as the auxiliary pressure detection signal. Thus, the sub-pressurizing force f applied to the welded member 100 from the sub-pressurizing unit 39 is controlled. That is, when the actual auxiliary pressure detected by the load cell 40 is smaller than the preset auxiliary pressure, the welding controller 51 increases the motor current flowing through the servo motor 32 to increase the rotational torque of the servo motor 32 and increase the auxiliary torque. When the sub-pressing force f by the pressurizing unit 39 is increased and the actual sub-pressing force is larger than the set sub-pressing force, the motor current flowing through the servo motor 32 is decreased to reduce the rotational torque of the servo motor 32 and the sub-pressurizing unit. The auxiliary pressure f by 39 is decreased. The auxiliary pressure f is set by directly detecting the reaction force of the auxiliary pressure unit 39 by the load cell 40 and controlling the servo motor 32. The mechanical resistance of the servo motor 32 and the ball screw mechanism of the linear motion unit or the like is set. That is, a preset high-precision sub-pressurizing force is applied without being affected by internal mechanical loss or the like.

このように固定側電極15と可動側電極25によって被溶接部材100を挟持加圧し、副加圧部38により固定側電極15に隣接して薄板101に下方から副加圧力fを付与した状態では、図5(c)に示すように、可動側電極25による加圧力FUが被溶接部材100の第2厚板103に上方から付与され、固定側電極15による加圧力FLと副加圧部39による副加圧力fが隣接して薄板101に付与される。   In this state, the member 100 to be welded is sandwiched and pressed by the fixed side electrode 15 and the movable side electrode 25, and the sub-pressurizing portion 38 is applied to the thin plate 101 adjacent to the fixed side electrode 15 from the lower side. As shown in FIG. 5 (c), a pressing force FU by the movable side electrode 25 is applied to the second thick plate 103 of the member to be welded 100 from above, and the pressing force FL by the fixed side electrode 15 and the sub pressurizing part 39. Is applied to the thin plate 101 adjacently.

この場合、加圧アクチュエータ20による加圧力が電極アーム23等を介して可動側電極25に作用し、かつ可動側電極25に対向して固定アーム10を介して固定側電極15に作用する一方、副加圧付与手段30においてサーボモータ32による付勢力が副加圧付与アーム35等を介して副加圧部39に作用し、第2厚板103に上方から作用する可動側電極25による加圧力FUと薄板101に下方から作用する固定側電極15による加圧力FL及び副加圧部39による副加圧力fの総和が等しくなる(FU=FL+f)。   In this case, the pressure applied by the pressure actuator 20 acts on the movable side electrode 25 via the electrode arm 23 and the like, and acts on the fixed side electrode 15 via the fixed arm 10 so as to face the movable side electrode 25. In the auxiliary pressure applying means 30, the urging force of the servo motor 32 acts on the auxiliary pressure applying portion 39 via the auxiliary pressure applying arm 35 and the like, and the applied pressure by the movable side electrode 25 acting on the second thick plate 103 from above. The sum of the pressing force FL by the fixed side electrode 15 acting on the thin plate 101 from below and the sub pressing force f by the sub pressurizing unit 39 is equal (FU = FL + f).

これにより、被溶接部材100は、第2厚板103側に上方から作用する可動側電極25の加圧力FUと、薄板101側に下方から作用する固定側電極15の加圧力FL及び副加圧部39の副加圧力fとによって安定した状態で挟持保持される。   As a result, the member to be welded 100 has a pressing force FU of the movable side electrode 25 acting on the second thick plate 103 side from above, and a pressing force FL and a sub-pressing force of the fixed side electrode 15 acting on the thin plate 101 side from below. It is held and held in a stable state by the auxiliary pressure f of the portion 39.

一方、被溶接部材100の溶接部には、可動側電極25から第2厚板103に加圧力FUが付与され、薄板101に固定側電極15の加圧力FLが付与されると共に副加圧部39から副加圧力fが付与されることから、固定側電極15から薄板101に作用する加圧力FLは、可動側電極25の加圧力FUから副加圧部39の副加圧力fを減じた加圧力が付与される(FL=FU−f)。   On the other hand, a pressure FU is applied to the second thick plate 103 from the movable side electrode 25 and a pressure FL of the fixed side electrode 15 is applied to the thin plate 101 to the welded portion of the member 100 to be welded, and a sub-pressurization unit. Since the auxiliary pressure f is applied from 39, the applied pressure FL acting on the thin plate 101 from the fixed electrode 15 is obtained by subtracting the auxiliary pressure f of the auxiliary pressure unit 39 from the applied pressure FU of the movable electrode 25. A pressing force is applied (FL = FU−f).

このように薄板101側に作用する固定側電極15からの加圧力FLを第2厚板103側に作用する可動側電極25の加圧力FUより小さく(FL<FU)することで、薄板101と第1厚板102の接合部における接触圧力が、第1厚板102と第2厚板103間の溶接部における接触圧力より小さくなり、相対的に薄板101と第1厚板102間の接触抵抗が大きくなると共に、第1厚板102と第2厚板103間の接触抵抗が小さくなる。   In this way, the pressing force FL from the fixed electrode 15 acting on the thin plate 101 side is made smaller (FL <FU) than the pressing force FU of the movable electrode 25 acting on the second thick plate 103 side, so that the thin plate 101 and The contact pressure at the joint of the first thick plate 102 is smaller than the contact pressure at the weld between the first thick plate 102 and the second thick plate 103, and the contact resistance between the thin plate 101 and the first thick plate 102 is relatively large. Increases and the contact resistance between the first thick plate 102 and the second thick plate 103 decreases.

次に、可動側電極25と固定側電極15及び副加圧部39とで被溶接部材100を挟持加圧して薄板101側に位置する固定側電極15の加圧力FLを第2厚板103側に位置する可動側電極25の加圧力FUより小さくした状態で、溶接トランス50から可動側電極25と固定側電極15とに所定時間通電して溶接する。   Next, the member 100 to be welded is sandwiched and pressed by the movable side electrode 25, the fixed side electrode 15 and the sub-pressurizing portion 39, and the pressing force FL of the fixed side electrode 15 located on the thin plate 101 side is changed to the second thick plate 103 side. In a state where the pressure is less than the pressure FU of the movable side electrode 25 positioned at the position, the welding transformer 50 is energized and welded to the movable side electrode 25 and the fixed side electrode 15 for a predetermined time.

この可動側電極25と固定側電極15に通電したときに、相対的に薄板101と第1厚板102間の接合部における接触抵抗が大きく電流密度が高くなると共に、第1厚板102と第2厚板103間の接触抵抗が小さく保持される。これにより、薄板101と第1厚板102の接合部における発熱量が第1厚板102と第2厚板103の接合部における発熱量に対して相対的に増加して、薄板101から第2厚板103に亘って電流密度の偏りのない良好なナゲットが形成され、薄板101の溶接強度が確保できる。   When the movable side electrode 25 and the fixed side electrode 15 are energized, the contact resistance at the joint between the thin plate 101 and the first thick plate 102 is relatively large and the current density is increased. The contact resistance between the two thick plates 103 is kept small. As a result, the amount of heat generated at the joint between the thin plate 101 and the first thick plate 102 is relatively increased with respect to the amount of heat generated at the joint between the first thick plate 102 and the second thick plate 103, and the second from the thin plate 101. A good nugget with no uneven current density is formed over the thick plate 103, and the welding strength of the thin plate 101 can be ensured.

しかる後、可動側電極25と固定側電極15への通電を終了し、加圧アクチュエータ20のサーボモータ21の作動により可動側電極25を加圧位置から退避位置に移動させて固定側電極15と可動側電極25とによる被溶接部材100の挟持を開放し、かつ副加圧アクチュエータ31のサーボモータ32の作動により副加圧部39を副加圧位置から退避位置に退避させる。次に、作動プログラムに従い溶接ロボットを作動して、スポット溶接装置1を被溶接部材100の打点位置から退避させ、次の被溶接部材100の打点位置に移動する。   Thereafter, the energization of the movable side electrode 25 and the fixed side electrode 15 is terminated, and the operation of the servo motor 21 of the pressure actuator 20 moves the movable side electrode 25 from the pressure position to the retracted position. The clamping of the member 100 to be welded by the movable electrode 25 is released, and the sub-pressurizing unit 39 is retracted from the sub-pressurizing position to the retracted position by the operation of the servo motor 32 of the sub-pressurizing actuator 31. Next, the welding robot is operated according to the operation program, and the spot welding apparatus 1 is retracted from the spot position of the welded member 100 and moved to the spot position of the next welded member 100.

このように構成された本実施の形態によると、固定側電極15及び可動側電極25によって加圧力が付与された被溶接部材100に副加圧アクチュエータ31により副加圧部39から副加圧力fを付与して固定側電極15と固定側電極25による加圧力FL、FUを制御して被溶接部材100をスポット溶接するにあたり、副加圧アクチュエータ31と副加圧部39との間に配置されたロードセル40により副加圧部39から被溶接部材100に付与する実際の副加圧力を検出し、ロードセル40により検知された実副加圧力と予め設定された設定副加圧力を比較して副加圧アクチュエータ31による副加圧力を設定副加圧力になるように制御することで、副加圧アクチュエータ31等の内部機械的損失等による影響がなく、予め設定した高精度の副加圧力fが付与され、剛性の異なる板材を重ねた被溶接部材に対する優れた溶接品質が得られる。   According to the present embodiment configured as described above, the sub-pressurizing portion 39 applies the sub-pressurizing force f to the welded member 100 to which the pressurizing force is applied by the fixed-side electrode 15 and the movable-side electrode 25. Is applied between the sub-pressurizing actuator 31 and the sub-pressurizing portion 39 when spot welding the member 100 to be welded by controlling the applied pressures FL and FU by the fixed-side electrode 15 and the fixed-side electrode 25. The actual sub-pressurizing force applied to the welded member 100 from the sub-pressurizing unit 39 is detected by the load cell 40, and the actual sub-pressing force detected by the load cell 40 is compared with the preset sub-pressing force. By controlling the sub pressurizing force by the pressurizing actuator 31 to be the set subpressing force, there is no influence by internal mechanical loss of the sub pressurizing actuator 31 and the like, and a preset high pressure is applied. Each time sub-pressure f is applied to, excellent weld quality with respect to the welding member of repeated different plate rigidity is obtained.

なお、本発明は上記実施の形態に限定されることなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上記実施の形態における直動部33のロッド34と可動軸35との間に配置されるロードセル40の取付構造の他の例を図5を参照して説明する。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of invention. For example, another example of the mounting structure of the load cell 40 disposed between the rod 34 of the linear motion portion 33 and the movable shaft 35 in the above embodiment will be described with reference to FIG.

図5(a)は概要を示す斜視図であり、(b)は(a)のD−D線断面図である。円柱状のロードセル40の上面40a及び下面40bに板状で複数の取付孔46Aaが穿孔された上側フランジ46A及び複数の取付孔46Baが穿孔された下側フランジ46Bが設けられる。   Fig.5 (a) is a perspective view which shows an outline | summary, (b) is the DD sectional view taken on the line of (a). An upper flange 46A in which a plurality of mounting holes 46Aa are perforated and a lower flange 46B in which a plurality of mounting holes 46Ba are perforated are provided on the upper surface 40a and the lower surface 40b of the cylindrical load cell 40.

一方、直動部33のロッド34の下端に板状で複数の取付孔47aが形成された上側取付フランジ47が設けられ、可動軸36の上端に板状で複数の取付孔48aが形成された下側取付フランジ48が設けられる。   On the other hand, an upper mounting flange 47 in which a plurality of mounting holes 47a are formed in a plate shape is provided at the lower end of the rod 34 of the linear motion portion 33, and a plurality of mounting holes 48a are formed in a plate shape in the upper end of the movable shaft 36. A lower mounting flange 48 is provided.

このロッド34に設けられた上側取付フランジ47にロードセル40に設けられた上側フランジ46Aを重合して互いの取付孔47a、46Aaに挿入するボルト49a及びナット49bにより締結する。同様に可動軸36に設けられた下側取付フランジ48にロードセル40に設けた下側フランジ46Bを重合して互いの取付孔48a、46Baに挿入するボルト49a及びナット49bにより締結する。このようにしてロッド34と可動軸36との間に配置されたロードセル40は、副加圧部39からの反力、即ち実副加圧力は可動軸36に設けられた下側取付フランジ48及び下側フランジ46Bを介してロードセル40に入力される。   The upper flange 46A provided on the load cell 40 is superposed on the upper attachment flange 47 provided on the rod 34 and fastened by bolts 49a and nuts 49b inserted into the attachment holes 47a and 46Aa. Similarly, a lower flange 46B provided on the load cell 40 is overlapped with a lower attachment flange 48 provided on the movable shaft 36 and fastened by a bolt 49a and a nut 49b inserted into the attachment holes 48a and 46Ba. In this way, the load cell 40 disposed between the rod 34 and the movable shaft 36 has a reaction force from the sub-pressurizing unit 39, that is, an actual sub-pressurizing force, and a lower mounting flange 48 provided on the movable shaft 36 and Input to the load cell 40 via the lower flange 46B.

また、例えば上記実施の形態では直動部33のロッド34と可動軸35との間にロードセル40を配置したが、副加圧部39による実副加圧力を検知可能な他の位置、例えば副加圧部39と副加圧付与アーム36との間に配置することができる。また、ロードセル40に代えて他の荷重計等の副加圧検出手段を用いることもできる。   Further, for example, in the above embodiment, the load cell 40 is disposed between the rod 34 of the linear motion portion 33 and the movable shaft 35. It can be disposed between the pressure unit 39 and the sub-pressure applying arm 36. Moreover, it can replace with the load cell 40 and subloading detection means, such as another load cell, can also be used.

1 スポット溶接装置
10 固定アーム
15 固定側電極(第1溶接電極)
20 加圧アクチュエータ
21 サーボモータ
22 直動部
23 電極アーム
25 可動側電極(第2溶接電極)
30 副加圧付与手段
31 副加圧付与アクチュエータ
32 サーボモータ
33 直動部
34 ロッド
35 可動軸
36 副加圧付与アーム
39 副加圧部
40 ロードセル(副加圧検出手段)
51 溶接コントローラ(溶接制御手段)
DESCRIPTION OF SYMBOLS 1 Spot welding apparatus 10 Fixed arm 15 Fixed side electrode (1st welding electrode)
20 Pressurizing Actuator 21 Servo Motor 22 Linear Motion Part 23 Electrode Arm 25 Movable Side Electrode (Second Welding Electrode)
30 Sub-pressure applying means 31 Sub-pressure applying actuator 32 Servo motor 33 Linear motion part 34 Rod 35 Movable shaft 36 Sub-pressure applying arm 39 Sub-pressure part 40 Load cell (sub-pressure detecting means)
51 Welding controller (welding control means)

Claims (3)

第1溶接電極と、
被溶接部材に当接して前記第1溶接電極と協働して前記被溶接部材を挟持する第2溶接電極を被溶接部材に当接して加圧力を付与する加圧位置と被溶接部材から離反する退避位置に移動せしめる加圧アクチュエータと、
副加圧部を前記被溶接部材に当接して副加圧力を付与する副加圧位置と被溶接部材から離反する退避位置に移動せしめる副加圧アクチュエータとを有し、
加圧アクチュエータによって前記第1溶接電極及び第2溶接電極により前記被溶接部材を挟持加圧すると共に副加圧アクチュエータによって副加圧力を付与して前記第1溶接電極及び第2溶接電極に通電して被溶接部材を溶接するスポット溶接装置であって、
副加圧部から被溶接部材に付与される実副加圧力を検出する副加圧検出手段を有し、
前記副加圧部が前記被溶接部材に当接して副加圧力を付与した作動状態において、前記副加圧検出手段により検知された実副加圧力と予め設定された設定副加圧力によって副加圧力が設定副加圧力になるように副加圧アクチュエータを制御する溶接制御手段を備えたことを特徴とするスポット溶接装置。
A first welding electrode;
A pressurizing position where the second welding electrode which contacts the member to be welded and cooperates with the first welding electrode to clamp the member to be welded contacts the member to be welded to apply pressure is separated from the member to be welded. A pressure actuator that is moved to a retracted position,
A sub-pressurizing portion that abuts the sub-pressurizing portion on the member to be welded to apply a sub-pressurizing force, and a sub-pressurizing actuator that moves the sub-pressurizing portion to a retracted position away from the member to be welded.
The member to be welded is clamped and pressed by the first welding electrode and the second welding electrode by the pressurizing actuator, and the first welding electrode and the second welding electrode are energized by applying the sub-pressurizing force by the sub-pressurizing actuator. A spot welding apparatus for welding a member to be welded,
Having a sub-pressurization detecting means for detecting an actual sub-pressurizing force applied to the member to be welded from the sub-pressurizing portion;
In an operating state in which the sub-pressurizing unit is in contact with the member to be welded and a sub-pressurizing force is applied, a sub-pressurizing force is detected by an actual sub-pressing force detected by the sub-pressurizing detecting means and a preset sub-pressurizing force. A spot welding apparatus comprising welding control means for controlling a sub-pressurizing actuator so that the pressure becomes a set sub-pressurizing force.
副加圧検出手段は、前記副加圧部と副加圧アクチュエータとの間に介在するロードセルであることを特徴とする請求項1に記載のスポット溶接装置。   The spot welding apparatus according to claim 1, wherein the sub-pressurization detecting means is a load cell interposed between the sub-pressurization unit and the sub-pressurization actuator. 前記副加圧アクチュエータは、サーボモータを有し、該サーボモータは供給されるモータ電流に対応する副加圧力を副加圧部に付与すると共に、
溶接制御手段は、前記副加圧検出手段により検知された実副加圧力と予め設定された設定副加圧力によってサーボモータによる副加圧力が設定副加圧力になるようにモータ電流を制御することを特徴とする請求項1または2に記載のスポット溶接装置。
The sub-pressurizing actuator has a servo motor, and the servo motor applies a sub-pressurizing force corresponding to the supplied motor current to the sub-pressurizing unit,
The welding control means controls the motor current so that the sub pressure applied by the servo motor becomes the set sub pressure by the actual sub pressure detected by the sub pressure detection means and a preset set sub pressure. The spot welding apparatus according to claim 1 or 2, wherein
JP2011284804A 2011-12-27 2011-12-27 Spot welding equipment Active JP5860281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284804A JP5860281B2 (en) 2011-12-27 2011-12-27 Spot welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284804A JP5860281B2 (en) 2011-12-27 2011-12-27 Spot welding equipment

Publications (2)

Publication Number Publication Date
JP2013132662A JP2013132662A (en) 2013-07-08
JP5860281B2 true JP5860281B2 (en) 2016-02-16

Family

ID=48909737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284804A Active JP5860281B2 (en) 2011-12-27 2011-12-27 Spot welding equipment

Country Status (1)

Country Link
JP (1) JP5860281B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557069B (en) * 2015-06-26 2022-03-02 Honda Motor Co Ltd Spot welding method and device
CN109317807A (en) * 2018-12-03 2019-02-12 镇江米青机电有限公司 A kind of orthodontic bracket welding energization clamping device
CN111889865A (en) * 2020-08-19 2020-11-06 南京莱迪新能源科技有限公司 Automatic butt-welding equipment for lithium battery production line
CN115055798B (en) * 2022-07-15 2024-04-09 广州松兴电气股份有限公司 Servo pressurizing mechanism for projection welding process and projection welding equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291060A (en) * 1998-04-07 1999-10-26 Seiwa Seisakusho:Kk Resistance welding method and its device
JP4583616B2 (en) * 2001-01-25 2010-11-17 本田技研工業株式会社 Method and apparatus for controlling welding robot
JP2004042074A (en) * 2002-07-10 2004-02-12 Miyachi Technos Corp Joining device
US8445809B2 (en) * 2005-08-05 2013-05-21 Chrysler Group Llc Method and apparatus for resistance spot welding
JP5411792B2 (en) * 2009-06-05 2014-02-12 本田技研工業株式会社 Resistance welding method and apparatus
JP5872226B2 (en) * 2011-09-28 2016-03-01 富士重工業株式会社 Spot welding equipment
JP5498463B2 (en) * 2011-10-13 2014-05-21 富士重工業株式会社 Pressure control method for spot welding equipment
JP5922926B2 (en) * 2011-12-27 2016-05-24 富士重工業株式会社 Pressure control method for spot welding equipment
JP5965146B2 (en) * 2011-12-27 2016-08-03 富士重工業株式会社 Anomaly detection method for spot welding equipment
JP5965145B2 (en) * 2011-12-27 2016-08-03 富士重工業株式会社 Actuation control method for spot welding equipment

Also Published As

Publication number Publication date
JP2013132662A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5758667B2 (en) Spot welding equipment
US8993918B2 (en) Spot-welding method and spot-welding device
JP5498463B2 (en) Pressure control method for spot welding equipment
JP5369150B2 (en) Spot welding equipment
US9108265B2 (en) Spot welding apparatus
JP5369149B2 (en) Spot welding equipment
JP2011194464A (en) Method and device for spot welding
JP5860281B2 (en) Spot welding equipment
JP3847402B2 (en) Resistance welding method
JP3894544B2 (en) Spot welding method
JP5969747B2 (en) Spot welding equipment
JP7255119B2 (en) Indirect spot welding device and welding method
JP2013094846A (en) Spot welding device
JP5643359B2 (en) Spot welding equipment
JP5965145B2 (en) Actuation control method for spot welding equipment
JP5872226B2 (en) Spot welding equipment
JP5922926B2 (en) Pressure control method for spot welding equipment
JP5965146B2 (en) Anomaly detection method for spot welding equipment
JP5254484B2 (en) Spot welding equipment
JP6049512B2 (en) Spot welding method and spot welding apparatus
JP5986388B2 (en) Spot welding equipment
JP6009750B2 (en) Spot welding equipment
JP5580913B2 (en) Spot welding equipment
JP2013086178A (en) Spot welder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5860281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250