JP2013132121A - Power reception device and obstacle detection method - Google Patents

Power reception device and obstacle detection method Download PDF

Info

Publication number
JP2013132121A
JP2013132121A JP2011279580A JP2011279580A JP2013132121A JP 2013132121 A JP2013132121 A JP 2013132121A JP 2011279580 A JP2011279580 A JP 2011279580A JP 2011279580 A JP2011279580 A JP 2011279580A JP 2013132121 A JP2013132121 A JP 2013132121A
Authority
JP
Japan
Prior art keywords
power supply
power
vehicle
obstacle
supply efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011279580A
Other languages
Japanese (ja)
Inventor
Akihiro Morimoto
明宏 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011279580A priority Critical patent/JP2013132121A/en
Publication of JP2013132121A publication Critical patent/JP2013132121A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power reception device which detects an obstacle between a power supply device and the power reception device before completing entrance, and to provide obstacle detection means.SOLUTION: A vehicle side control unit 154 reads the power supply efficiency variation pattern, in a state where there is no obstacle, stored in a power supply efficiency variation pattern storage unit 153, calculates the value, obtained by subtracting a sampled power supply efficiency kfrom the power supply efficiency kpof a power supply efficiency variation pattern thus read, as an error Δof power supply efficiency, every time when the power supply efficiency kis sampled, performs threshold determination of the total sum Δof the error Δthus calculated and a predetermined threshold Δprepared previously for each sampling number, and determines that an obstacle is detected at the timing when the total sum Δof error exceeds the threshold Δ.

Description

本発明は、地上側に設けられた給電装置から電磁誘導を利用して給電される電力を非接触で受電する、車輌に設けられた受電装置及び受電装置における障害物検知方法に関する。   The present invention relates to a power receiving device provided in a vehicle and an obstacle detection method in the power receiving device for receiving electric power fed from a power feeding device provided on the ground side using electromagnetic induction in a contactless manner.

従来、マイクロ波を用いて、車輌に搭載された蓄電池を充電するエネルギー供給技術が知られている。このエネルギー供給技術では、駐車場等の地面に設置された給電装置のマイクロ波電源から電力がマグネトロンに供給され、マグネトロンによりマイクロ波が生成される。各マグネトロンから発生したマイクロ波は、各送電アンテナを介して車輌の底面に配置されている受電装置へ送られる。受電装置にて受信されたマイクロ波は、電力に変換されるとともに整流され、直流電力に変換された後に、蓄電池へ供給される。   Conventionally, an energy supply technique for charging a storage battery mounted on a vehicle using a microwave is known. In this energy supply technology, electric power is supplied to a magnetron from a microwave power source of a power supply device installed on the ground such as a parking lot, and a microwave is generated by the magnetron. Microwaves generated from each magnetron are sent to a power receiving device disposed on the bottom surface of the vehicle via each power transmission antenna. Microwaves received by the power receiving device are converted into electric power, rectified, converted into DC power, and then supplied to the storage battery.

一方、このようなエネルギー供給技術では、マイクロ波の給電側と受電側との間に障害物が介在した場合、この障害物によりマイクロ波の伝送効率が低下し、さらに、障害物が人または動物等の生き物である場合、生き物がマイクロ波による影響を受けるという課題がある。   On the other hand, in such an energy supply technology, when an obstacle is interposed between the microwave feeding side and the power receiving side, the microwave transmission efficiency is reduced due to the obstacle, and further, the obstacle is human or animal. In the case of creatures such as, there is a problem that creatures are affected by microwaves.

このような課題を解決する方法として、給電側と受電側との間の障害物の有無を検出し、障害物がないことを確認してからマイクロ波の送電を開始するものが知られている(例えば、特許文献1参照)。   As a method for solving such a problem, there is known a method for detecting the presence or absence of an obstacle between the power feeding side and the power receiving side, and starting microwave transmission after confirming that there is no obstacle. (For example, refer to Patent Document 1).

特許文献1には、給電側と受電側との間の障害物を検知する方法として、給電装置から送出されたマイクロ波の反射波の受電レベルに基づいて障害物を検知する方法が記載されている。   Patent Document 1 describes a method for detecting an obstacle based on a power reception level of a reflected wave of a microwave transmitted from a power supply device as a method for detecting an obstacle between a power supply side and a power reception side. Yes.

特開2007−267578号公報JP 2007-267578 A

しかしながら、上述した特許文献1に開示の障害物検知方法では、地上側に設けられた給電装置上部に受電装置が位置するように、車輌を一度駐車場等に入庫して初めて、障害物を検知することができるようになるため、障害物を検知するまでに時間を要するという問題がある。また、障害物が検知された場合には、車輌の移動、障害物の除去を行った後、再度車輌を入庫しなければならず、ユーザの手間が多い。   However, in the obstacle detection method disclosed in Patent Document 1 described above, an obstacle is detected only after the vehicle is once stored in a parking lot or the like so that the power receiving device is located above the power supply device provided on the ground side. Therefore, there is a problem that it takes time to detect an obstacle. In addition, when an obstacle is detected, the vehicle must be moved in again after the vehicle is moved and the obstacle is removed, which is troublesome for the user.

本発明の目的は、入庫を完了する前に給電装置と受電装置との間の障害物を検知する受電装置及び障害物検知方法を提供することである。   An object of the present invention is to provide a power receiving device and an obstacle detecting method for detecting an obstacle between a power feeding device and a power receiving device before completing warehousing.

本発明の受電装置は、車輌の外部に設けられた給電装置から電磁誘導を利用して給電される電力を非接触で受電する、車輌に設けられた受電装置であって、前記給電装置と前記受電装置との間に障害物のない状態における前記給電装置に対する前記受電装置の位置に応じて変動する給電効率のパターンを、前記車輌の進入経路ごとに予め給電効率変動パターンとして記憶する記憶手段と、前記給電装置に対する前記車輛の進入経路を検出する進入経路検出手段と、検出された前記進入経路のいずれの位置に前記給電装置が存在するかを検出する位置検出手段と、前記車輛の移動に伴い給電効率kを算出し、検出された前記進入経路に対応する給電効率のパターンを前記記憶手段から読み出し、読み出した給電効率のパターンのうち検出された前記位置に対応する給電効率kpから前記給電効率kを減算した値を給電効率の誤差Δとし、前記誤差Δの総和Δallと、サンプリング番号i毎に定められた所定の閾値Δthiとの閾値判定を行い、前記閾値判定の結果に基づいて、障害物の検知を判断する制御手段と、を具備する構成を採る。 A power receiving device according to the present invention is a power receiving device provided in a vehicle that receives power fed from an electric power feeding device provided outside a vehicle using electromagnetic induction in a non-contact manner. Storage means for storing a power supply efficiency pattern that varies according to a position of the power receiving device with respect to the power supply device in a state where there is no obstacle between the power receiving device and a power supply efficiency variation pattern for each approach path of the vehicle; An approach route detecting means for detecting an approach route of the vehicle with respect to the power feeding device, a position detecting means for detecting in which position of the detected approach route the power feeding device exists, and movement of the vehicle with calculates the power supply efficiency k i, it reads patterns of feed efficiency corresponding to said detected approach path from the storage means, is detected among the patterns of the read power supply efficiency Said a value obtained by subtracting the power supply efficiency k i from the feed efficiency kp i corresponding to the position and the error delta i of feed efficiency, and total delta all of the error delta i, predetermined threshold value set for each sampling number i And a control unit that performs threshold determination with Δthi and determines detection of an obstacle based on a result of the threshold determination.

本発明の障害物検知方法は、車輌の外部に設けられた給電装置から電磁誘導を利用して給電される電力を非接触で受電する、車輌に設けられた受電装置における障害物検知方法であって、前記給電装置に対する前記車輌の進入経路を検出し、検出された前記進入経路のいずれの位置に前記給電装置が存在するかを検出し、前記車輌の移動に伴い給電効率kをサンプリングし、前記給電装置と前記受電装置との間に障害物のない状態における前記給電装置に対する前記受電装置の位置に応じて変動する給電効率のパターンが、前記車輌の進入経路ごとに予め定められ、検出された前記進入経路に対応する給電効率のパターンのうち、検出された前記位置に対応する給電効率kpから前記給電効率kを減算した値を給電効率の誤差Δとして前記サンプリングのたびに算出し、算出された前記誤差Δの総和Δallと、サンプリング番号i毎に定められた所定の閾値Δthiとの閾値判定を行い、前記閾値判定の結果に基づいて、障害物の検知を判断するようにした。 The obstacle detection method of the present invention is an obstacle detection method in a power receiving device provided in a vehicle, which receives electric power fed from a power feeding device provided outside the vehicle using electromagnetic induction in a contactless manner. Te detects the approach route of the vehicle with respect to the feeding device, wherein the detecting whether the power supply apparatus is present in any position of the detected the approach path, sampling the power supply efficiency k i along with the movement of the vehicle A pattern of power supply efficiency that fluctuates depending on the position of the power receiving device with respect to the power feeding device in a state where there is no obstacle between the power feeding device and the power receiving device is determined in advance for each approach path of the vehicle, and is detected. of pattern of feed efficiency corresponding to the approach path, which is a value obtained by subtracting the power supply efficiency k i from the feed efficiency kp i corresponding to said detected position and error delta i of power supply efficiency Calculated for each of the sampling Te, the sum delta all of said calculated error delta i, performs a threshold determination that the predetermined threshold delta thi determined for each sampling number i, based on a result of the threshold determination Judgment of obstacle detection.

本発明によれば入庫を完了する前に給電装置と受電装置との間の障害物を検知することができる。   According to the present invention, an obstacle between the power feeding device and the power receiving device can be detected before the warehousing is completed.

本発明の一実施の形態に係る充電システムの構成を示すブロック図The block diagram which shows the structure of the charging system which concerns on one embodiment of this invention 進入経路に応じた給電効率変動パターンの説明に供する図Diagram for explaining power supply efficiency fluctuation pattern according to approach route 給電部の給電コイルと受電部の受電コイルとの位置関係に応じた給電効率の説明に供する図The figure used for description of the power feeding efficiency according to the positional relationship between the power feeding coil of the power feeding unit and the power receiving coil of the power receiving unit 給電効率変動パターン作成方法の説明に供する図Diagram for explaining the method of creating the power supply efficiency fluctuation pattern 障害物がある場合の給電効率の変動パターンを示す図Diagram showing fluctuation pattern of power supply efficiency when there is an obstacle 誤差の説明に供する図Diagram for explaining error 車輌側制御部における障害物検出方法の手順を示すフロー図Flow chart showing the procedure of the obstacle detection method in the vehicle side control unit

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(一実施の形態)
図1は、本発明の一実施の形態に係る充電システム100の構成を示すブロック図である。充電システム100は、給電装置120、車輌130、受電装置150及び蓄電池170を有する。
(One embodiment)
FIG. 1 is a block diagram showing a configuration of a charging system 100 according to an embodiment of the present invention. The charging system 100 includes a power feeding device 120, a vehicle 130, a power receiving device 150, and a storage battery 170.

給電装置120は、給電部121が地表gから露出するように、地面上に設置もしくは地中に埋設される。給電装置120は、例えば、駐車スペース等に設けられ、車輌130の駐車中に受電装置150に対して給電する。なお、給電装置120の詳細については後述する。   The power feeding device 120 is installed on the ground or buried in the ground so that the power feeding unit 121 is exposed from the ground surface g. For example, the power supply device 120 is provided in a parking space or the like, and supplies power to the power receiving device 150 while the vehicle 130 is parked. Details of the power feeding device 120 will be described later.

車輌130は、受電装置150及び蓄電池170を有し、蓄電池170を動力源として走行する。車輌130は、例えば、HEV(Hybrid Electric Vehicle)またはPEV(Plug-in Electric Vehicle)、EV(Electric Vehicle)といった蓄電池170の電力で走行する自動車である。   The vehicle 130 includes a power receiving device 150 and a storage battery 170, and travels using the storage battery 170 as a power source. The vehicle 130 is, for example, an automobile that travels with the electric power of the storage battery 170 such as HEV (Hybrid Electric Vehicle), PEV (Plug-in Electric Vehicle), or EV (Electric Vehicle).

受電装置150は、給電装置120から給電される電力を蓄電池170に供給する。なお、受電装置150の詳細については後述する。   The power receiving device 150 supplies the power supplied from the power supply device 120 to the storage battery 170. Note that details of the power receiving device 150 will be described later.

蓄電池170は、受電装置150により供給される電力を蓄える。   The storage battery 170 stores the power supplied by the power receiving device 150.

給電装置120は、給電部121と、給電側制御部122と、給電側通信部123とを有する。   The power feeding device 120 includes a power feeding unit 121, a power feeding side control unit 122, and a power feeding side communication unit 123.

給電部121は、受電部157に給電する際に非接触状態で受電部157と対向し、給電部121の筐体の一部となる給電面121aを有する。給電面121aは、磁界により加熱されない部材で形成される。給電部121は、受電部157と対向する円形の給電コイル(1次コイル)を用いた電磁誘導により、受電部157に給電する。この給電は、例えば、電磁誘導方式、または、磁気共鳴方式にて行われる。   The power supply unit 121 has a power supply surface 121 a that faces the power reception unit 157 in a non-contact state when supplying power to the power reception unit 157 and serves as a part of the housing of the power supply unit 121. The power feeding surface 121a is formed of a member that is not heated by a magnetic field. The power feeding unit 121 feeds power to the power receiving unit 157 by electromagnetic induction using a circular power feeding coil (primary coil) facing the power receiving unit 157. This power supply is performed by, for example, an electromagnetic induction method or a magnetic resonance method.

給電側制御部122は、給電側通信部123から入力された給電開始信号に従って、給電部121に対して給電を開始するよう制御する。このとき、給電側制御部122は、給電電力値を給電側通信部123に出力する。また、給電側制御部122は、給電側通信部123から入力された給電停止信号に従って、給電部121に対して給電を停止するように制御する。   The power supply side control unit 122 controls the power supply unit 121 to start power supply in accordance with the power supply start signal input from the power supply side communication unit 123. At this time, the power feeding side control unit 122 outputs the power feeding power value to the power feeding side communication unit 123. The power supply side control unit 122 controls the power supply unit 121 to stop power supply in accordance with the power supply stop signal input from the power supply side communication unit 123.

給電側通信部123は、車輌側通信部156からの給電開始信号または給電停止信号を受信する。給電側通信部123は、受信した給電開始信号または給電停止信号を給電側制御部122に出力する。また、給電側通信部123は、給電側制御部122から入力された給電電力値を車輌側通信部156に送信する。   The power supply side communication unit 123 receives a power supply start signal or a power supply stop signal from the vehicle side communication unit 156. The power supply side communication unit 123 outputs the received power supply start signal or power supply stop signal to the power supply side control unit 122. In addition, the power supply side communication unit 123 transmits the power supply power value input from the power supply side control unit 122 to the vehicle side communication unit 156.

受電装置150は、進入経路検出部151と、位置検出部152、給電効率変動パターン記憶部153と、車輌側制御部154と、表示部155、車輌側通信部156と、受電部157とを有する。   The power receiving apparatus 150 includes an approach route detection unit 151, a position detection unit 152, a power supply efficiency variation pattern storage unit 153, a vehicle side control unit 154, a display unit 155, a vehicle side communication unit 156, and a power reception unit 157. .

進入経路検出部151は、車輛の給電装置に対する移動経路を検出し、検出した移動経路を車輌側制御部154に出力する。この「進入経路」とは、具体的には、車輛の進行方向を含む直線と、給電装置が備える給電コイルの中心との位置関係を表すものである。   The approach route detection unit 151 detects a movement route for the vehicle power supply device, and outputs the detected movement route to the vehicle-side control unit 154. Specifically, the “entry route” represents a positional relationship between a straight line including the traveling direction of the vehicle and the center of the power feeding coil provided in the power feeding device.

位置検出部152は、進入経路検出部151が検出した進入経路のいずれの位置に給電装置があるかを検出し、検出した位置を車輌側制御部154に出力する。この「位置」とは、具体的には、給電装置120が、車輛の進行方向を含む直線上のいずれの位置にあるかを表すものである。   The position detection unit 152 detects which position of the approach route detected by the approach route detection unit 151 is the power feeding device, and outputs the detected position to the vehicle-side control unit 154. Specifically, the “position” indicates which position on the straight line including the traveling direction of the vehicle the power feeding device 120 is.

なお、進入経路検出部151、および、位置検出部152は、車輛130外部を撮像するカメラが、給電装置120の近傍に配置したマーカを読み取るなどして検出することにより実現可能である。   Note that the approach route detection unit 151 and the position detection unit 152 can be realized by a camera that images the outside of the vehicle 130 reading and detecting a marker disposed in the vicinity of the power feeding device 120.

給電効率変動パターン記憶部153は、給電装置120の給電面121aに対する車輌130の受電コイルの位置と、障害物のない状態における給電効率kpとの対応関係を示す変動パターンを、進入経路ごとに記憶している。 Power supply efficiency variation pattern storage unit 153, the position of the power receiving coil of the vehicle 130 with respect to the feeding surface 121a of the power supply device 120, a variation pattern representing a correspondence relationship between the power supply efficiency kp i in the absence of obstacles, each approach path I remember it.

ここで、進入経路に応じた給電効率変動パターンについて図2を用いて説明する。図2を参照するに、車輛130の進行方向を含む直線に対する、給電装置120が備える給電コイルの中心を通る垂線の長さが同じなら、給電効率変動パターンは同じになる。すなわち、進入経路Aと進入経路Bは同じ給電効率変動パターンになる。なお、進入経路Cは、進入経路A及び進入経路Bと垂線の長さが異なるので、進入経路Cの給電効率変動パターンも進入経路A及び進入経路Bの給電効率変動パターンとは異なる。そこで、給電効率変動パターンは、垂線の長さごとに記憶することで記憶容量を削減することが可能となる。   Here, the power supply efficiency fluctuation pattern according to the approach route will be described with reference to FIG. Referring to FIG. 2, if the lengths of the perpendiculars passing through the center of the power feeding coil included in power feeding device 120 with respect to the straight line including the traveling direction of vehicle 130 are the same, the power feeding efficiency variation patterns are the same. That is, the approach route A and the approach route B have the same power supply efficiency fluctuation pattern. The approach route C differs from the approach route A and the approach route B in the length of the perpendicular, so that the power feeding efficiency variation pattern of the approach route C is also different from the power feeding efficiency variation pattern of the approach route A and the approach route B. Therefore, the storage capacity can be reduced by storing the power supply efficiency variation pattern for each length of the perpendicular.

このように、給電効率変動パターン記憶部153が記憶する車輌130の受電コイルの位置は、車輛130の進行方向を含む直線と垂線の交点から給電コイルの中心までの距離表すことができる。   Thus, the position of the power receiving coil of the vehicle 130 stored in the power feeding efficiency variation pattern storage unit 153 can be expressed as the distance from the intersection of the straight line and the perpendicular including the traveling direction of the vehicle 130 to the center of the power feeding coil.

車輌側制御部154は、進入経路検出部151が検出した進入経路に対応する給電効率変動パターンを給電効率変動パターン記憶部153から読み出す。また、車輌側制御部154は、車輛130の移動に伴い受電部157から入力された受電電力値と、車輌側通信部156から入力された給電電力値とから給電効率kを算出し、読み出した給電効率のパターンのうち位置検出部152が検出した進入経路上の位置に対応する給電効率kpから給電効率kを減算した値の絶対値を給電効率の誤差Δとして算出する。また、車輌側制御部154は、誤差Δのiが増える毎に誤差の総和Δallを算出し、算出したΔallとサンプリング番号毎に予め用意された所定の閾値Δthiとの閾値判定を行う。閾値判定の結果、ΔallがΔthi以上であれば、車輌側制御部154は、障害物を検知したと判断し、車輌側通信部156及び受電部157に対して、受電停止に伴う各種処理を開始するように制御する。 The vehicle-side control unit 154 reads the power supply efficiency variation pattern corresponding to the approach route detected by the approach route detection unit 151 from the power supply efficiency variation pattern storage unit 153. Further, the vehicle-side control unit 154 calculates the power supply efficiency k i from the received power value input from the power receiving unit 157 and the supplied power value input from the vehicle-side communication unit 156 as the vehicle 130 moves, and reads out the power supply efficiency k i. The absolute value of the value obtained by subtracting the power supply efficiency k i from the power supply efficiency kp i corresponding to the position on the approach path detected by the position detection unit 152 in the power supply efficiency pattern is calculated as the error Δ i of the power supply efficiency. In addition, the vehicle-side control unit 154 calculates a total sum Δ all of errors every time i of the error Δ i increases, and performs a threshold determination between the calculated Δ all and a predetermined threshold Δ thi prepared in advance for each sampling number. Do. If Δ all is equal to or greater than Δ thi as a result of the threshold determination, the vehicle-side control unit 154 determines that an obstacle has been detected, and the vehicle-side communication unit 156 and the power receiving unit 157 perform various processes associated with stopping power reception. Control to start.

また、車輌側制御部154は、表示部155から受電開始指示が入力された場合に、車輌側通信部156及び受電部157に対して、受電に伴う各種処理を開始するように制御する。車輌側制御部154は、表示部155から受電停止指示が入力された場合に、車輌側通信部156及び受電部157に対して、受電停止に伴う各種処理を開始するように制御する。   In addition, when a power reception start instruction is input from the display unit 155, the vehicle side control unit 154 controls the vehicle side communication unit 156 and the power reception unit 157 to start various processes associated with power reception. The vehicle-side control unit 154 controls the vehicle-side communication unit 156 and the power reception unit 157 to start various processes associated with power reception stop when a power reception stop instruction is input from the display unit 155.

表示部155は、受電開始または受電停止のユーザからの指示を受け付けるメニュー画面を表示する。表示部155は、メニュー画面において受電開始または受電停止の指示をユーザから受けた際に、ユーザの指示に応じて受電開始指示または受電停止指示を車輌側制御部154に出力する。   Display unit 155 displays a menu screen that accepts an instruction from a user who starts or stops receiving power. When receiving a power reception start or power reception stop instruction from the user on the menu screen, the display unit 155 outputs a power reception start instruction or a power reception stop instruction to the vehicle-side control unit 154 according to the user instruction.

車輌側通信部156は、車輌側制御部154の制御に従って、受電開始信号または受電停止信号を生成し、生成した受電開始信号または受電停止信号を給電側通信部123に送信する。また、車輌側通信部156は、給電側通信部123から入力された給電電力値を車輌側制御部154に通知する。   The vehicle side communication unit 156 generates a power reception start signal or a power reception stop signal according to the control of the vehicle side control unit 154, and transmits the generated power reception start signal or power reception stop signal to the power supply side communication unit 123. Further, the vehicle side communication unit 156 notifies the vehicle side control unit 154 of the power supply power value input from the power supply side communication unit 123.

受電部157は、車輌130の底面に設けられた円形の受電コイル(2次コイル)を備え、電磁誘導を利用して蓄電池170を充電する際に、受電コイルが給電部121の給電面121aと非接触状態で対向する。受電部157は、車輌側制御部154の制御に従って、給電部121から給電された電力を蓄電池170に供給すると共に、受電電力値を車輌側制御部154に出力する。   The power reception unit 157 includes a circular power reception coil (secondary coil) provided on the bottom surface of the vehicle 130, and when the storage battery 170 is charged using electromagnetic induction, the power reception coil is connected to the power supply surface 121 a of the power supply unit 121. Opposes in a non-contact state. The power receiving unit 157 supplies the power supplied from the power supply unit 121 to the storage battery 170 and outputs the received power value to the vehicle side control unit 154 according to the control of the vehicle side control unit 154.

ここで、給電部121の給電コイルと受電部157の受電コイルとの位置関係に応じた給電効率について図3を用いて説明する。図3は、給電コイルを真上から見たとき、給電コイルの中心を0とし、車輌130の幅方向に対応するx軸、車輌130の長さ方向に対応するy軸を定義している。このとき、給電効率に応じて原点0を中心とする3つの同心円が形成され、半径aの円内は70%以上、半径b(>a)の円内は65%以上、半径c(>b)の円内は60%以上の給電効率となることを示している。すなわち、給電コイルの中心と受電コイルの中心と距離が近いほど給電効率は高く、この距離が遠いほど給電効率は低くなる。   Here, the power supply efficiency according to the positional relationship between the power supply coil of the power supply unit 121 and the power reception coil of the power reception unit 157 will be described with reference to FIG. 3. FIG. 3 defines an x-axis corresponding to the width direction of the vehicle 130 and a y-axis corresponding to the length direction of the vehicle 130 with the center of the power supply coil set to 0 when the power supply coil is viewed from directly above. At this time, three concentric circles with the origin 0 as the center are formed according to the power feeding efficiency, the circle with the radius a is 70% or more, the circle with the radius b (> a) is 65% or more, and the radius c (> b ) Indicates that the power supply efficiency is 60% or more. That is, the closer the distance between the center of the power feeding coil and the center of the power receiving coil is, the higher the power feeding efficiency is, and the longer the distance is, the lower the power feeding efficiency is.

このような前提のもと、給電効率変動パターン記憶部153に記憶させる給電効率変動パターンの作成方法について図4を用いて説明する。ここでは、給電コイルと受電コイルとの間に障害物がない状態も前提としている。図4(a)は、給電コイルの中心と受電コイルの中心とが一致するように、車輌130が移動する進入経路を示している。図4(b)は、給電コイルの中心と受電コイルの中心とがずれるように、車輌が移動する進入経路を示している。   Based on such a premise, a method for creating a power feeding efficiency fluctuation pattern to be stored in the power feeding efficiency fluctuation pattern storage unit 153 will be described with reference to FIG. Here, it is also assumed that there is no obstacle between the feeding coil and the receiving coil. FIG. 4A shows an approach path along which the vehicle 130 moves so that the center of the power feeding coil and the center of the power receiving coil coincide with each other. FIG. 4B shows an approach path along which the vehicle moves so that the center of the power feeding coil and the center of the power receiving coil are shifted.

車輌130の移動に伴い、給電コイルの中心と受電コイルの中心とが近づくに従って、給電効率は0から進入経路毎に異なる最大値をとる。この様子を示したのが図4(c)である。図4(c)において、実線で示した曲線が図4(a)に示した進入経路における給電効率の変動パターンを示し、点線で示した曲線が図4(b)に示した進入経路における給電効率の変動パターンを示している。なお、図4(c)において、y軸の負方向の曲線を示していないのは、車輌130が輪留め等により停止することを想定している。   As the vehicle 130 moves, as the center of the power feeding coil and the center of the power receiving coil get closer, the power feeding efficiency takes a maximum value that varies from 0 for each approach route. This is shown in FIG. 4 (c). In FIG. 4C, the curve shown by the solid line shows the fluctuation pattern of the power supply efficiency in the approach route shown in FIG. 4A, and the curve shown by the dotted line shows the power supply in the approach route shown in FIG. 4B. The variation pattern of efficiency is shown. In FIG. 4C, the negative curve of the y-axis is not shown because it is assumed that the vehicle 130 stops due to a ring stop or the like.

次に、障害物がある場合の給電効率の変動パターンについて図5を用いて説明する。図5において、点線で示した曲線は、ある進入経路Aにおける障害物がない状態の給電効率の変動パターン(予め記憶された給電効率変動パターン)を示し、実線で示した曲線は、進入経路Aにおける障害物がある状態の給電効率の変動パターンを示している。この図から分かるように、障害物がある状態では、障害物がない状態と比べ、給電効率が劣化する。これは、給電コイルから放射される電力エネルギーが障害物によって吸収又は反射され、受電コイルに到達するエネルギーが低下するためである。この劣化した度合いを誤差として算出する様子を図6に示す。   Next, the fluctuation pattern of the power supply efficiency when there is an obstacle will be described with reference to FIG. In FIG. 5, a curve indicated by a dotted line indicates a fluctuation pattern of the power supply efficiency in a state where there is no obstacle in a certain approach route A (a power supply efficiency fluctuation pattern stored in advance), and a curve indicated by a solid line indicates the approach route A. The fluctuation pattern of the power supply efficiency in the state where there is an obstacle is shown. As can be seen from this figure, in the state where there is an obstacle, the power supply efficiency is deteriorated compared to the state where there is no obstacle. This is because the power energy radiated from the power feeding coil is absorbed or reflected by the obstacle, and the energy reaching the power receiving coil is reduced. FIG. 6 shows how the degree of deterioration is calculated as an error.

図6では、給電効率kを車輛130の移動に伴い一定のタイミングでサンプリング(算出)し、サンプリング番号iを0〜8とする。給電効率kをサンプリングするたびに、既知の給電効率kpとサンプリングした給電効率kとの誤差Δを求め、誤差Δを累積加算する。図6の例では、i=0〜4では、誤差が生じておらず、i=5〜8において、誤差が生じていることが分かる。 In FIG. 6, the power feeding efficiency k i is sampled (calculated) at a fixed timing as the vehicle 130 moves, and the sampling number i is set to 0-8. Each time the power supply efficiency k i is sampled, an error Δ i between the known power supply efficiency kp i and the sampled power supply efficiency k i is obtained, and the error Δ i is cumulatively added. In the example of FIG. 6, it can be seen that no error occurs when i = 0-4, and an error occurs when i = 5-8.

次に、上述した車輌側制御部154における障害物検出方法について、図7を用いて説明する。図7において、車輌130の移動(例えば、後進)に伴い、受電コイルの中心と給電コイルの中心とが所定の距離内となった場合、車輌側制御部154では、以下のステップ(以下、「ST」と省略する)201以降の予備的な給電処理を開始する。   Next, the obstacle detection method in the vehicle side control unit 154 described above will be described with reference to FIG. In FIG. 7, when the center of the power receiving coil and the center of the power feeding coil are within a predetermined distance as the vehicle 130 moves (for example, reverse), the vehicle-side control unit 154 performs the following steps (hereinafter, “ The preliminary power supply process after 201 is started.

ST201では、進入経路検出部151が検出した進入経路に応じた給電効率変動パターンを給電効率変動パターン記憶部153から読み出し、ST202では、車輌側通信部156及び受電部157に対して、受電に伴う各種処理を開始するように制御し、受電部157から通知された受電電力値と、車輌側通信部156から入力された給電電力値とから給電効率kを算出する。 In ST201, a power feeding efficiency variation pattern corresponding to the approach route detected by the approach route detecting unit 151 is read from the power feeding efficiency variation pattern storage unit 153. In ST202, the vehicle side communication unit 156 and the power receiving unit 157 are accompanied by power reception. It was controlled to start various processes to calculate the power supply efficiency k i from the received power value notified from the power receiving unit 157, and has been supplied power value input from the vehicle-side communication unit 156.

ST203では、読み出した給電効率のパターンのうち位置検出部152が検出した進入経路上の位置に対応する給電効率kpから給電効率kを減算した値の絶対値を給電効率の誤差Δとして算出し、ST204では、m=0に設定する。 In ST 203, the absolute value of the read values the position detection unit 152 is obtained by subtracting the power supply efficiency k i from the feed efficiency kp i corresponding to the position on the approach path detected among the patterns of the power supply efficiency as an error delta i of power supply efficiency In step ST204, m = 0 is set.

ST205では、誤差の総和Δallを次式(1)に従って算出する。

Figure 2013132121
In ST205, she calculates the sum delta all errors according the following equation (1).
Figure 2013132121

ST206では、誤差の総和Δallと所定の閾値Δthiとの閾値判定を行い、Δallが閾値Δthi未満であれば、ST207に移行し、Δallが閾値Δthi以上であれば、ST210に移行する。 In ST 206, performs threshold determination of the total delta all with a predetermined threshold delta thi error, if delta all is less than the threshold delta thi, the process proceeds to ST207, if the delta all threshold delta thi above, ST210 Transition.

ST207では、m=M(Mはiの取り得る最大値)であるか否かを判定し、m=Mではない場合、ST208においてmをインクリメントし、ST205に戻る。一方、m=Mである場合、ST209において、障害物を未検知と判断し、処理を終了する。   In ST207, it is determined whether m = M (M is the maximum value i can take). If m = M is not satisfied, m is incremented in ST208, and the process returns to ST205. On the other hand, if m = M, it is determined in ST209 that an obstacle has not been detected, and the process ends.

ST210では、障害物を検知したと判断し、ST211では、車輌側通信部156及び受電部157に対して、受電停止に伴う各種処理を開始するように制御する。   In ST210, it is determined that an obstacle has been detected. In ST211, the vehicle-side communication unit 156 and the power reception unit 157 are controlled to start various processes associated with the stop of power reception.

このように、車輌側制御部154が給電効率kをサンプリングするたびに、給電効率の誤差の総和Δallを算出し、算出した誤差の総和Δallと所定の閾値Δthiとの閾値判定を行い、誤差の総和Δallが閾値Δthiを超えたタイミングで障害物を検知したと判断できるので、ユーザは車輌の入庫を完了する前に障害物を除去できるので、ユーザの手間を省くことができる。 In this way, each time the vehicle-side control unit 154 samples the power supply efficiency k i , the power supply efficiency error sum Δ all is calculated, and the threshold judgment between the calculated error sum Δ all and the predetermined threshold value Δ thi is performed. Since it can be determined that the obstacle has been detected at the timing when the sum of errors Δ all exceeds the threshold value Δ thi , the user can remove the obstacle before completing the warehousing of the vehicle. it can.

なお、車輌側制御部154は、障害物検知後、一定時間毎に給電をリトライし、障害物が除去できたか判定し、障害物を検知しなくなれば、給電を行うようにしてもよい。   Note that the vehicle-side control unit 154 may retry power supply every predetermined time after detecting an obstacle, determine whether the obstacle has been removed, and perform power supply if no obstacle is detected.

このように、本実施の形態によれば、障害物がない状態で予め取得された給電効率kpから、サンプリングされた給電効率kを減算した値を給電効率の誤差Δとして給電効率kをサンプリングするたびに算出し、算出した誤差Δの総和Δallと、サンプリング番号毎に予め用意された所定の閾値Δthiとの閾値判定を行い、誤差の総和Δallが閾値Δthiを超えたタイミングで障害物を検知したと判断することにより、入庫を完了する前に給電装置と受電装置との間の障害物を検知することができる。 As described above, according to the present embodiment, the value obtained by subtracting the sampled power supply efficiency k i from the power supply efficiency kp i acquired in advance in the absence of an obstacle is used as the power supply efficiency error Δ i and the power supply efficiency k calculating a i each time the sampling, the total delta all the calculated error delta i, performs a threshold determination of the previously prepared predetermined threshold delta thi every sampling number, total delta all errors threshold delta thi By determining that the obstacle has been detected at the timing exceeding, it is possible to detect the obstacle between the power feeding device and the power receiving device before completing the warehousing.

なお、本実施の形態では、給電効率変動パターンが予め記憶されているものとして説明したが、本発明はこれに限らず、障害物がない状態でサンプリングした給電効率を給電効率変動パターンとして蓄積するようにしてもよい。   In the present embodiment, the power supply efficiency fluctuation pattern is described as being stored in advance. However, the present invention is not limited to this, and the power supply efficiency sampled without an obstacle is stored as the power supply efficiency fluctuation pattern. You may do it.

また、本実施の形態では、障害物を検知した場合には、警告を発するようにしてもよい。また、給電を再開する場合にも、警告を発するようにしてもよい。警告としては、例えば、音声や音波などが挙げられる。   In the present embodiment, a warning may be issued when an obstacle is detected. Also, a warning may be issued when power supply is resumed. Examples of warnings include voice and sound waves.

本発明にかかる受電装置及び障害物検知方法は、車輌充電システム等に適用することができる。   The power receiving device and the obstacle detection method according to the present invention can be applied to a vehicle charging system and the like.

100 充電システム
120 給電装置
121 給電部
121a 給電面
122 給電側制御部
123 給電側通信部
130 車輌
150 受電装置
151 進入経路検出部
152 位置検出部
153 給電効率変動パターン記憶部
154 車輌側制御部
155 表示部
156 車輌側通信部
157 受電部
170 蓄電池
DESCRIPTION OF SYMBOLS 100 Charging system 120 Power supply apparatus 121 Power supply part 121a Power supply surface 122 Power supply side control part 123 Power supply side communication part 130 Vehicle 150 Power receiving apparatus 151 Approach route detection part 152 Position detection part 153 Power supply efficiency fluctuation pattern storage part 154 Vehicle side control part 155 Display Unit 156 vehicle side communication unit 157 power receiving unit 170 storage battery

Claims (4)

車輌の外部に設けられた給電装置から電磁誘導を利用して給電される電力を非接触で受電する、車輌に設けられた受電装置であって、
前記給電装置と前記受電装置との間に障害物のない状態における前記給電装置に対する前記受電装置の位置に応じて変動する給電効率のパターンを、前記車輌の進入経路ごとに予め給電効率変動パターンとして記憶する記憶手段と、
前記給電装置に対する前記車輛の進入経路を検出する進入経路検出手段と、
検出された前記進入経路のいずれの位置に前記給電装置が存在するかを検出する位置検出手段と、
前記車輛の移動に伴い給電効率kを算出し、検出された前記進入経路に対応する給電効率のパターンを前記記憶手段から読み出し、読み出した給電効率のパターンのうち検出された前記位置に対応する給電効率kpから前記給電効率kを減算した値を給電効率の誤差Δとし、前記誤差Δの総和Δallと、サンプリング番号i毎に定められた所定の閾値Δthiとの閾値判定を行い、前記閾値判定の結果に基づいて、障害物の検知を判断する制御手段と、
を具備する受電装置。
A power receiving device provided in a vehicle that receives power fed from a power feeding device provided outside the vehicle using electromagnetic induction in a contactless manner,
A power feeding efficiency pattern that varies according to the position of the power receiving device with respect to the power feeding device in a state where there is no obstacle between the power feeding device and the power receiving device is previously set as a power feeding efficiency variation pattern for each approach path of the vehicle. Storage means for storing;
An approach route detecting means for detecting an approach route of the vehicle with respect to the power supply device;
Position detecting means for detecting at which position of the detected approach route the power feeding device is present;
Calculates a power supply efficiency k i with the movement of the vehicle, reads the pattern of the power supply efficiency corresponding to the detected the approach path from the storage means, corresponding to said detected position of the pattern of the read power supply efficiency the value obtained by subtracting the feed efficiency k i from power supply efficiency kp i and error delta i of the feed efficiency, the threshold determination of the error delta i sum delta all of, a predetermined threshold delta thi determined for each sampling number i Control means for determining the detection of an obstacle based on the result of the threshold determination,
A power receiving apparatus comprising:
前記制御手段は、前記誤差の総和Δallが前記閾値Δthiを超えた場合、障害物を検知したと判断する請求項1に記載の受電装置。 2. The power receiving device according to claim 1, wherein the control unit determines that an obstacle has been detected when the total sum Δ all of the errors exceeds the threshold value Δ thi . 前記制御手段は、サンプリング番号iの取り得る値が最大のとき、前記誤差の総和Δallが前記閾値Δthi未満の場合、障害物を未検知と判断する請求項1に記載の受電装置。 2. The power receiving device according to claim 1, wherein when the sampling number i can take a maximum value, the control unit determines that an obstacle has not been detected when the total sum Δ all of the errors is less than the threshold value Δ thi . 車輌の外部に設けられた給電装置から電磁誘導を利用して給電される電力を非接触で受電する、車輌に設けられた受電装置における障害物検知方法であって、
前記給電装置に対する前記車輌の進入経路を検出し、
検出された前記進入経路のいずれの位置に前記給電装置が存在するかを検出し、
前記車輌の移動に伴い給電効率kをサンプリングし、
前記給電装置と前記受電装置との間に障害物のない状態における前記給電装置に対する前記受電装置の位置に応じて変動する給電効率のパターンが、前記車輌の進入経路ごとに予め定められ、検出された前記進入経路に対応する給電効率のパターンのうち、検出された前記位置に対応する給電効率kpから前記給電効率kを減算した値を給電効率の誤差Δとして前記サンプリングのたびに算出し、
算出された前記誤差Δの総和Δallと、サンプリング番号i毎に定められた所定の閾値Δthiとの閾値判定を行い、
前記閾値判定の結果に基づいて、障害物の検知を判断する、
障害物検知方法。
A method for detecting an obstacle in a power receiving device provided in a vehicle, wherein the power supplied from a power feeding device provided outside the vehicle using electromagnetic induction is received in a non-contact manner.
Detecting the approach path of the vehicle with respect to the power feeding device,
Detecting at which position of the detected approach route the power feeding device is present;
Sampling the power supply efficiency k i with the movement of the vehicle,
A pattern of power supply efficiency that varies depending on the position of the power receiving device with respect to the power supply device in a state where there is no obstacle between the power supply device and the power receiving device is predetermined and detected for each approach path of the vehicle. The value obtained by subtracting the power supply efficiency k i from the power supply efficiency kp i corresponding to the detected position among the power supply efficiency patterns corresponding to the approach route is calculated for each sampling as the error Δ i of the power supply efficiency. And
The sum delta all of the calculated the error delta i, a threshold decision with a predetermined threshold value delta thi determined for each sampling number i is performed,
Determining the detection of an obstacle based on the result of the threshold determination;
Obstacle detection method.
JP2011279580A 2011-12-21 2011-12-21 Power reception device and obstacle detection method Pending JP2013132121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279580A JP2013132121A (en) 2011-12-21 2011-12-21 Power reception device and obstacle detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279580A JP2013132121A (en) 2011-12-21 2011-12-21 Power reception device and obstacle detection method

Publications (1)

Publication Number Publication Date
JP2013132121A true JP2013132121A (en) 2013-07-04

Family

ID=48909292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279580A Pending JP2013132121A (en) 2011-12-21 2011-12-21 Power reception device and obstacle detection method

Country Status (1)

Country Link
JP (1) JP2013132121A (en)

Similar Documents

Publication Publication Date Title
US10173540B2 (en) Contactless power transmission device
EP3207402B1 (en) Systems, methods, and apparatus for living object protection in wireless power transfer applications
JP5359093B2 (en) Mobile charging device and mobile charging method
US9088173B2 (en) Control apparatus, control method of supply apparatus, and supply system
EP3287311B1 (en) Contactless charging system, charging station, and contactless charged vehicle, having access control
US10576833B2 (en) Vehicle charger positioning method and charger assembly
EP3072728B1 (en) Non-contact charging system and pairing method for non-contact charging system
JP6427873B2 (en) Parking assistance device and system
CN107078548B (en) System, method and apparatus for controlling the amount of charge provided to a charge receiving element in a series-tuned resonant system
JP2014113039A (en) Installation method of transmission unit and reception unit, installation of reception unit, and installation method of transmission unit
JP2017532930A (en) Device, system and method for dynamic electric vehicle charging using position sensing
JP2011160515A (en) Radio charging apparatus for vehicle
US20160033288A1 (en) Vehicle power-supplying system
WO2013084492A1 (en) Vehicle guidance device and vehicle guidance method
JP2012035789A (en) Noncontact power supply system of vehicle
JP2013236524A (en) Non-contact power feeding system
KR20160129040A (en) Contactless electricity supply system and contactless electricity reception device
WO2013065283A1 (en) Non-contact charging apparatus
JP2013027116A (en) Power supply device
JP2015104161A (en) Non-contact power transmission device and non-contact power transmission system
JP2014183715A (en) Power receiver
KR101716102B1 (en) Wireless power supply system and wireless power reception device
JP2016041009A (en) Power transmission apparatus
CN108928247B (en) Contactless electrical power transmission system
WO2013118368A1 (en) Charging station and relative position control method