JP2013131514A - Solid electrolytic capacitor and method for manufacturing the same - Google Patents

Solid electrolytic capacitor and method for manufacturing the same Download PDF

Info

Publication number
JP2013131514A
JP2013131514A JP2011277914A JP2011277914A JP2013131514A JP 2013131514 A JP2013131514 A JP 2013131514A JP 2011277914 A JP2011277914 A JP 2011277914A JP 2011277914 A JP2011277914 A JP 2011277914A JP 2013131514 A JP2013131514 A JP 2013131514A
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer layer
solid electrolytic
electrolytic capacitor
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011277914A
Other languages
Japanese (ja)
Other versions
JP5910060B2 (en
Inventor
Kazunori Naradani
一徳 奈良谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2011277914A priority Critical patent/JP5910060B2/en
Publication of JP2013131514A publication Critical patent/JP2013131514A/en
Application granted granted Critical
Publication of JP5910060B2 publication Critical patent/JP5910060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which can be improved in ESR characteristics under a high-temperature atmosphere and ESR characteristics during reflow.SOLUTION: The solid electrolytic capacitor includes a dielectric oxide film formed on a surface of an anode body having an expanded layer, a first conductive polymer layer formed on the oxide film, a second conductive polymer layer formed on the first conductive polymer layer, and a cathode conductor layer formed on the second conductive polymer layer. A mixed solution obtained by dispersing a conductive polymer compound in a solution containing water, ethylene glycol, and a nitro compound is applied to the first conductive polymer layer and then is dried to form the second conductive polymer layer.

Description

本発明は、導電性高分子化合物を固体電解質とする固体電解コンデンサ及びその製造方法に関する。   The present invention relates to a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte and a method for manufacturing the same.

従来より、導電性高分子を固体電解質として用いた固体電解コンデンサが知られているが、近年、導電性高分子の層を2層形成するものが提案されている。この種の固体電解コンデンサは、化学酸化重合や電解酸化重合に伴い作製された従来の導電性高分子の欠点を補う目的で、例えば、内側に化学重合による第1の導電性高分子層を形成し、さらにその外側に導電性高分子化合物の懸濁水溶液を浸漬・乾燥することによる第2の導電性高分子層を形成するものである(特許文献1参照)。   Conventionally, a solid electrolytic capacitor using a conductive polymer as a solid electrolyte is known. Recently, a capacitor in which two layers of a conductive polymer are formed has been proposed. This type of solid electrolytic capacitor is formed by, for example, forming a first conductive polymer layer by chemical polymerization on the inside in order to compensate for the drawbacks of conventional conductive polymers produced by chemical oxidation polymerization or electrolytic oxidation polymerization. Further, a second conductive polymer layer is formed by immersing and drying an aqueous suspension of the conductive polymer compound on the outside (see Patent Document 1).

しかしながら、前記の固体電解コンデンサでは、素子外表面に形成される導電性高分子層を一定の厚さとするため、第2の導電性高分子層を形成する際に導電性高分子化合物の懸濁水溶液の粘度を高くする場合がある。この場合、導電性高分子化合物の懸濁水溶液がエッチングピット内に十分に浸透しないため、第1の導電性高分子層と第2の導電性高分子層の間の接続状態が悪くなり、ESRを低減することができないという問題が生じていた。   However, in the above solid electrolytic capacitor, the conductive polymer layer formed on the outer surface of the element has a constant thickness. Therefore, when the second conductive polymer layer is formed, the conductive polymer compound is suspended. The viscosity of the aqueous solution may be increased. In this case, since the aqueous suspension of the conductive polymer compound does not sufficiently penetrate into the etching pit, the connection state between the first conductive polymer layer and the second conductive polymer layer is deteriorated, and ESR. There was a problem that it was not possible to reduce this.

そこで、前記の問題を解決するため、グリコール系溶媒を添加した導電性高分子化合物の分散液を塗布して外側の導電性高分子層を形成して固体電解コンデンサを作製する方法が提案されている。この方法では、グリコール系溶媒を分散液に添加することで、下地の高分子層との密着性が向上し、ESRの上昇を抑制する(特許文献2参照)。   In order to solve the above problems, a method for producing a solid electrolytic capacitor by applying a dispersion of a conductive polymer compound to which a glycol solvent is added to form an outer conductive polymer layer has been proposed. Yes. In this method, by adding a glycol-based solvent to the dispersion, adhesion with the underlying polymer layer is improved, and an increase in ESR is suppressed (see Patent Document 2).

特開平11−121281号公報Japanese Patent Laid-Open No. 11-121281 特開平2007−299856号公報Japanese Patent Laid-Open No. 2007-299856

現在、導電性高分子を固体電解質として用いた固体電解コンデンサでは、初期ESR特性だけでなく、高温雰囲気下でのESR特性、リフロー時のESR特性の改善が要望されている。しかしながら、前述した固体電解コンデンサでは、これらの特性が必ずしも十分とは言えなかった。   Currently, solid electrolytic capacitors using a conductive polymer as a solid electrolyte are required to improve not only initial ESR characteristics but also ESR characteristics in a high temperature atmosphere and ESR characteristics during reflow. However, the above-described solid electrolytic capacitor is not always satisfactory in these characteristics.

本発明は、前記のような課題を解消するためになされたものであって、その目的は、高温雰囲気下でのESR特性、リフロー時のESR特性を改善可能な固体電解コンデンサ及びその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and its object is to provide a solid electrolytic capacitor capable of improving ESR characteristics under a high temperature atmosphere and ESR characteristics during reflow, and a method for manufacturing the same. It is to provide.

本発明者は、前記課題を解決すべく固体電解コンデンサについて鋭意検討を重ねた結果、水、エチレングリコール及びニトロ化合物を含む溶液に導電性高分子化合物を分散した混合溶液を用いて導電性高分子層を形成することにより、高温雰囲気下及びリフロー時のESRを低減できることを見出し、本発明を完成させた。   As a result of intensive studies on solid electrolytic capacitors to solve the above-mentioned problems, the present inventors have found that a conductive polymer using a mixed solution in which a conductive polymer compound is dispersed in a solution containing water, ethylene glycol and a nitro compound. By forming the layer, it was found that ESR under high-temperature atmosphere and reflow can be reduced, and the present invention has been completed.

すなわち、本発明は、拡面化層を有する陽極体の表面に形成された誘電体酸化皮膜と、前記酸化皮膜上に形成された導電性高分子層と、この導電性高分子層上に形成された陰極体と、を備えた固体電解コンデンサにおいて、前記導電性高分子層が、少なくともエチレングリコール及びニトロ化合物を含む溶液に導電性高分子化合物が分散された混合溶液を用いて得られたことを特徴とする。   That is, the present invention provides a dielectric oxide film formed on the surface of an anode body having a surface-enlarging layer, a conductive polymer layer formed on the oxide film, and formed on the conductive polymer layer. In the solid electrolytic capacitor comprising the cathode body, the conductive polymer layer is obtained using a mixed solution in which the conductive polymer compound is dispersed in a solution containing at least ethylene glycol and a nitro compound. It is characterized by.

また、本発明は、拡面化層を有する陽極体の表面に誘電体酸化皮膜を形成する工程と、前記酸化皮膜上に導電性高分子層を形成する工程と、前記導電性高分子層上に陰極体を形成する工程と、を備えた固体電解コンデンサの製造方法において、前記導電性高分子層を形成する工程は、水、エチレングリコール及びニトロ化合物を含む溶液に導電性高分子化合物を分散した混合溶液を用いて形成することを特徴とする。   The present invention also includes a step of forming a dielectric oxide film on the surface of an anode body having a surface-enlarging layer, a step of forming a conductive polymer layer on the oxide film, and a step on the conductive polymer layer. Forming a cathode body on a solid electrolytic capacitor, wherein the step of forming the conductive polymer layer comprises dispersing the conductive polymer compound in a solution containing water, ethylene glycol, and a nitro compound. It is characterized by forming using the mixed solution.

本発明によれば、高温雰囲気下でのESR特性、リフロー時のESR特性を改善可能な固体電解コンデンサ及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solid electrolytic capacitor which can improve the ESR characteristic in a high temperature atmosphere and the ESR characteristic at the time of reflow, and its manufacturing method can be provided.

以下、本発明に係る固体電解コンデンサについて、その製造方法の一例に従って順に説明する。   Hereinafter, the solid electrolytic capacitor according to the present invention will be described in order according to an example of the manufacturing method.

(誘電体酸化皮膜の形成)
まず、10×10mm等の大きさを有する平板状のアルミニウムエッチド箔(陽極体)の表面に、例えば、アジピン酸アンモニウム水溶液中で5V、30分間程度の化成処理を行うことにより、アルミニウム誘電体酸化皮膜を形成する。次に、この陽極体を所定の化成液に浸漬し、電圧印加して修復化成を行う。
(Formation of dielectric oxide film)
First, a surface of a flat aluminum etched foil (anode body) having a size of 10 × 10 mm or the like is subjected to a chemical conversion treatment, for example, in an aqueous solution of ammonium adipate at 5 V for about 30 minutes, thereby producing an aluminum dielectric. An oxide film is formed. Next, this anode body is immersed in a predetermined chemical conversion solution, and a voltage is applied to perform restoration conversion.

修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、コンデンサ素子を化成液に浸漬し、電圧印加して修復化成する時間は、5〜120分が望ましい。   As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. Further, it is desirable that the time for repairing and forming by immersing the capacitor element in the chemical liquid and applying voltage is 5 to 120 minutes.

(第1の導電性高分子層の形成)
次に、アルミニウム誘電体酸化皮膜上に、導電性高分子化合物を分散させた分散液を例えば5回塗布した後、150℃で60分間加熱することで第1の導電性高分子層を形成する。
(Formation of first conductive polymer layer)
Next, a dispersion liquid in which a conductive polymer compound is dispersed is applied, for example, five times on the aluminum dielectric oxide film, and then heated at 150 ° C. for 60 minutes to form a first conductive polymer layer. .

導電性高分子化合物を分散させた分散液としては、例えば、ポリ−(3,4−エチレンジオキシチオフェン)(以下、PEDOTという)からなる導電性高分子化合物の粉末とポリスチレンスルホン酸からなるドーパントの固形分を混合したものを溶媒の水に溶解したものを用いることができる。また、導電性高分子化合物の濃度は、水溶液に対して1〜10%とすることができる。なお、導電性高分子化合物の分散液の溶媒は、導電性高分子化合物が溶解するものであれば水以外でも良い。   Examples of the dispersion in which the conductive polymer compound is dispersed include, for example, a conductive polymer compound powder made of poly- (3,4-ethylenedioxythiophene) (hereinafter referred to as PEDOT) and a dopant made of polystyrene sulfonic acid. A solution in which a solid content is mixed in a solvent water can be used. Moreover, the density | concentration of a conductive polymer compound can be 1-10% with respect to aqueous solution. In addition, the solvent of the dispersion liquid of the conductive polymer compound may be other than water as long as the conductive polymer compound can be dissolved.

(第2の導電性高分子層の形成)
次いで、前記導電性高分子化合物と同一又は異なる導電性高分子化合物を分散させた分散液とエチレングリコールとニトロ化合物とからなる混合溶液を第1の導電性高分子層上に、例えば5回塗布した後、150℃で60分間加熱することで第2の導電性高分子層を形成する。
(Formation of second conductive polymer layer)
Next, a mixed solution composed of a dispersion in which the same or different conductive polymer compound as the conductive polymer compound is dispersed and ethylene glycol and a nitro compound is applied on the first conductive polymer layer, for example, five times. After that, the second conductive polymer layer is formed by heating at 150 ° C. for 60 minutes.

導電性高分子化合物を分散させた分散液としては、第1の導電性高分子層を形成する際に用いた分散液と同様に、水溶液に対して1〜10%の濃度のPEDOTからなる導電性高分子化合物を含んだ分散液を用いることができる。この分散液に対して、さらにエチレングリコール及びニトロ化合物を添加する。添加量としては、後述する実施例の結果から明らかなように、混合溶液全体を100重量部とした場合、分散液50重量部、エチレングリコール35〜49重量部、ニトロ化合物1以上15重量部未満とすることが好ましい。   As the dispersion liquid in which the conductive polymer compound is dispersed, a conductive material composed of PEDOT having a concentration of 1 to 10% with respect to the aqueous solution is used in the same manner as the dispersion liquid used for forming the first conductive polymer layer. A dispersion containing a functional polymer compound can be used. Ethylene glycol and a nitro compound are further added to this dispersion. As is apparent from the results of Examples described later, the amount added is 50 parts by weight of the dispersion, 35 to 49 parts by weight of ethylene glycol, and 1 to less than 15 parts by weight of the nitro compound when the entire mixed solution is 100 parts by weight. It is preferable that

また、ニトロ化合物としては、脂肪族ニトロ化合物や芳香族ニトロ化合物が挙げられ、なかでも後述する実施例の結果から明らかなように、m−ニトロフェノール(mNPh)、p−ニトロフェノール(pNPh)又はm−ニトロアセトフェノン(mNAc)が好ましい。   Moreover, examples of the nitro compound include aliphatic nitro compounds and aromatic nitro compounds. Among these, as is apparent from the results of Examples described later, m-nitrophenol (mNPh), p-nitrophenol (pNPh) or m-Nitroacetophenone (mNAc) is preferred.

前記のような割合の混合溶液を用いて第2の導電性高分子層を形成すると、乾燥後の第2の導電性高分子層全体におけるニトロ化合物の含有量は、重量比率で導電性高分子を1とした場合にニトロ化合物が10未満の範囲となる。   When the second conductive polymer layer is formed using the mixed solution in the above ratio, the content of the nitro compound in the entire second conductive polymer layer after drying is determined by the weight ratio of the conductive polymer. When 1 is 1, the range of nitro compounds is less than 10.

(陰極導電体層の形成)
さらに、この第2の導電性高分子層の上にカーボン層を塗布して150℃で30分間乾燥し、次いで、銀ペースト層を塗布して180℃で60分間乾燥することにより陰極導電体層を形成する。
(Formation of cathode conductor layer)
Furthermore, a carbon layer is applied on the second conductive polymer layer and dried at 150 ° C. for 30 minutes, and then a silver paste layer is applied and dried at 180 ° C. for 60 minutes to thereby form a cathode conductor layer. Form.

なお、前記第1の導電性高分子層は、導電性高分子化合物を分散させた分散液を誘電体酸化皮膜上に塗布・乾燥して形成したが、従来のように、誘電体酸化皮膜が形成された陽極体を酸化剤(p−トルエンスルホン酸第二鉄)と3,4−エチレンジオキシチオフェン(エタノール溶液)に浸漬し、60℃で30分間、150℃で60分間の加熱重合を行うことにより形成することもできる。   The first conductive polymer layer is formed by applying and drying a dispersion liquid in which a conductive polymer compound is dispersed on a dielectric oxide film. The formed anode body is immersed in an oxidizing agent (ferric toluene sulfonate) and 3,4-ethylenedioxythiophene (ethanol solution), and subjected to heat polymerization at 60 ° C. for 30 minutes and at 150 ° C. for 60 minutes. It can also be formed by performing.

(作用・効果)
水、エチレングリコール及びニトロ化合物を含む溶液に導電性高分子化合物を分散した混合溶液を用いて、導電性高分子層を形成することで、得られた固体電解コンデンサのESR特性が改善され、さらに高温下でのESR特性も良好であった。この理由は、混合溶液に含まれるエチレングリコールが導電性高分子化合物の配向性を向上させて良好な導電性高分子層を形成することでき、さらには、この配向性が向上した導電性高分子層に取り込まれたニトロ化合物がこの導電性高分子層の熱劣化を抑制し、高温化でのESR特性を改善せしめているものと推定される。なお、2層からなる導電性高分子層を用い、水、エチレングリコール及びニトロ化合物を含む溶液に導電性高分子化合物を分散した混合溶液を用いて形成した導電性高分子層を外側に形成することが、熱劣化の抑制や高温化でのESR特性の改善により効果的であると考えられる。
(Action / Effect)
By forming a conductive polymer layer using a mixed solution in which a conductive polymer compound is dispersed in a solution containing water, ethylene glycol, and a nitro compound, the ESR characteristics of the obtained solid electrolytic capacitor are improved. ESR characteristics at high temperatures were also good. This is because ethylene glycol contained in the mixed solution can improve the orientation of the conductive polymer compound to form a good conductive polymer layer, and further, the conductive polymer with improved orientation. It is presumed that the nitro compound incorporated in the layer suppresses the thermal deterioration of the conductive polymer layer and improves the ESR characteristics at high temperatures. In addition, a conductive polymer layer formed by using a mixed polymer solution in which a conductive polymer compound is dispersed in a solution containing water, ethylene glycol, and a nitro compound is formed on the outside using a two-layer conductive polymer layer. This is considered to be more effective in suppressing thermal degradation and improving ESR characteristics at higher temperatures.

以下、本発明の効果につき、実施例により実証する。
[実験例1](各種添加剤の検討)
大きさが10×10mmの平板状のアルミニウムエッチド箔を、アジピン酸アンモニウム水溶液中で5V、30分間化成し、その表面にアルミニウム誘電体酸化皮膜を形成した。続いて、リン酸二水素アンモニウム水溶液に浸漬し、電圧印加して40分間修復化成を行った。次に、PEDOTからなる導電性高分子化合物の粉末とポリスチレンスルホン酸からなるドーパントの固形分とを水に混合し、水溶液に対して導電性高分子化合物を3%の濃度とした分散液を作製した。この分散液をアルミニウム誘電体酸化皮膜上に5回塗布後、150℃で60分間加熱することで第1の導電性高分子層を形成した。
Hereinafter, the effect of the present invention will be demonstrated by examples.
[Experiment 1] (Examination of various additives)
A flat aluminum etched foil having a size of 10 × 10 mm was formed in an aqueous solution of ammonium adipate at 5 V for 30 minutes to form an aluminum dielectric oxide film on the surface. Subsequently, it was immersed in an aqueous solution of ammonium dihydrogen phosphate, and restoration was performed for 40 minutes by applying a voltage. Next, a conductive polymer compound powder made of PEDOT and a solid content of a dopant made of polystyrene sulfonic acid are mixed with water to produce a dispersion liquid having a concentration of 3% of the conductive polymer compound in the aqueous solution. did. The dispersion was applied five times on the aluminum dielectric oxide film, and then heated at 150 ° C. for 60 minutes to form a first conductive polymer layer.

次いで、水溶液に対して導電性高分子化合物を3%の濃度とした前記分散液を用いて、この分散液50重量部、エチレングリコール50重量部とした混合溶液(従来例1)、分散液50重量部、水49重量部、p-ニトロフェノール(pNPh)1重量部とした混合溶液(従来例2)、分散液50重量部、エチレングリコール49重量部、p-ニトロフェノール(pNPh)1重量部とした混合溶液(実施例1)、分散液50重量部、エチレングリコール49重量部、m-ニトロアセトフェノン(mNAc)1重量部とした混合溶液(実施例2)、分散液50重量部、エチレングリコール49重量部、m-ニトロフェノール(mNPh)1重量部とした混合溶液(実施例3)、分散液50重量部、エチレングリコール49重量部、p-アミノフェノール(pAmPh)1重量部とした混合溶液(比較例1)をそれぞれ第1の導電性高分子層の上に1回塗布し、150℃で60分間加熱することで第2の導電性高分子層を形成した。さらに、この第2の導電性高分子層の上にカーボン層を塗布して150℃で30分間乾燥し、次いで銀ペースト層を塗布して180℃で60分間乾燥することにより陰極導電体層を形成した。   Next, using the above dispersion having a conductive polymer compound concentration of 3% with respect to the aqueous solution, a mixed solution (conventional example 1) containing 50 parts by weight of this dispersion and 50 parts by weight of ethylene glycol, dispersion 50 Part by weight, 49 parts by weight of water, 1 part by weight of p-nitrophenol (pNPh) mixed solution (conventional example 2), 50 parts by weight of dispersion, 49 parts by weight of ethylene glycol, 1 part by weight of p-nitrophenol (pNPh) Mixed solution (Example 1), dispersion 50 parts by weight, ethylene glycol 49 parts by weight, m-nitroacetophenone (mNAc) 1 part by weight, mixed solution (Example 2), dispersion 50 parts by weight, ethylene glycol 49 parts by weight, mixed solution (Example 3) containing 1 part by weight of m-nitrophenol (mNPh), 50 parts by weight of dispersion, 49 parts by weight of ethylene glycol, p-aminopheno A mixed solution (Comparative Example 1) containing 1 part by weight of p (pAmPh) was applied once on the first conductive polymer layer and heated at 150 ° C. for 60 minutes to thereby form the second conductive polymer. A layer was formed. Further, a carbon layer is applied on the second conductive polymer layer and dried at 150 ° C. for 30 minutes, and then a silver paste layer is applied and dried at 180 ° C. for 60 minutes to form a cathode conductor layer. Formed.

このようにして作製した従来例1、2、実施例1乃至3及び比較例1の固体電解コンデンサについて、初期容量、リフロー後のESR(100kHz)及び170℃66時間後のESR(100kHz)を測定した。測定結果を表1に示す。

Figure 2013131514
For the solid electrolytic capacitors of Conventional Examples 1 and 2 and Examples 1 to 3 and Comparative Example 1 thus manufactured, the initial capacity, ESR after reflow (100 kHz), and ESR (100 kHz) after 170 hours at 170 ° C. were measured. did. The measurement results are shown in Table 1.
Figure 2013131514

表1の結果より、実施例1乃至3では従来例1及び2と比較してリフロー実施後のESRを低減できることが確認できた。また、170℃66時間後のESRも、実施例1乃至3では従来例1及び2と比較してESRの上昇が抑えられている。これに対して、比較例1では、従来例1及び2と比較して初期容量が低下し、且つ170℃66時間後のESRも大幅に悪化していた。これより、p-ニトロフェノール(pNPh)、m-ニトロアセトフェノン(mNAc)又はm-ニトロフェノール(mNPh)の添加は、リフロー後及び170℃66時間後のESRの低減に効果があることが判明した。   From the results of Table 1, it was confirmed that Examples 1 to 3 can reduce ESR after reflow compared to Conventional Examples 1 and 2. Further, ESR after 66 hours at 170 ° C. is also suppressed in Examples 1 to 3 as compared with Conventional Examples 1 and 2. On the other hand, in Comparative Example 1, the initial capacity was reduced as compared with Conventional Examples 1 and 2, and ESR after 170 hours at 170 ° C. was greatly deteriorated. From this, it was found that the addition of p-nitrophenol (pNPh), m-nitroacetophenone (mNAc) or m-nitrophenol (mNPh) was effective in reducing ESR after reflow and after 170 hours at 170 ° C. .

[実験例2](添加溶媒の比較)
実施例1と同様に第2の導電性高分子層を形成するための混合溶液として、分散液50重量部、エチレングリコール49重量部、p-ニトロフェノール(pNPh)1重量部として固体電解コンデンサを作成した(実施例4)。また第2の導電性高分子層を形成するための混合溶液として、分散液50重量部、ジエチレングリコール49重量部、p-ニトロフェノール(pNPh)1重量部としたもの(比較例2)、分散液50重量部、グリセリン49重量部、p-ニトロフェノール(pNPh)1重量部としたもの(比較例3)を用いた以外は、実施例1と同様の方法で固体電解コンデンサを作製した。これらの固体電解コンデンサについて、リフロー後のESR(100kHz)及び170℃66時間後のESR(100kHz)を測定した結果を表2に示す。

Figure 2013131514
[Experimental example 2] (Comparison of added solvents)
As in Example 1, as a mixed solution for forming the second conductive polymer layer, a solid electrolytic capacitor was prepared using 50 parts by weight of the dispersion, 49 parts by weight of ethylene glycol, and 1 part by weight of p-nitrophenol (pNPh). Created (Example 4). Further, as a mixed solution for forming the second conductive polymer layer, a dispersion solution of 50 parts by weight, diethylene glycol 49 parts by weight, p-nitrophenol (pNPh) 1 part by weight (Comparative Example 2), dispersion liquid A solid electrolytic capacitor was produced in the same manner as in Example 1 except that 50 parts by weight, 49 parts by weight of glycerin and 1 part by weight of p-nitrophenol (pNPh) were used (Comparative Example 3). Table 2 shows the results of measuring ESR (100 kHz) after reflow and ESR (100 kHz) after 170 hours at 170 ° C. for these solid electrolytic capacitors.
Figure 2013131514

表2の結果より、実施例4と比較して、比較例2及び3では170℃66時間後のESRが増大した。これより、添加溶媒としては、エチレングリコールが好ましいことが判明した。   From the results in Table 2, the ESR after 66 hours at 170 ° C. increased in Comparative Examples 2 and 3 as compared with Example 4. From this, it was found that ethylene glycol is preferable as the additive solvent.

[実験例3](p-ニトロフェノールの添加量の変更)
従来例1と同様に第2の導電性高分子層を形成するための混合溶液として、分散液50重量部、エチレングリコール50重量部として固体電解コンデンサを作成した(従来例3)。実施例1と同様に第2の導電性高分子層を形成するための混合溶液として、分散液50重量部、エチレングリコール49重量部、p-ニトロフェノール(pNPh)1重量部として固体電解コンデンサを作成した(実施例5)。また、第2の導電性高分子層を形成するための混合溶液として、分散液50重量部、エチレングリコール45重量部、p-ニトロフェノール(pNPh)5重量部としたもの(実施例6)、分散液50重量部、エチレングリコール40重量部、p-ニトロフェノール(pNPh)10重量部としたもの(実施例7)、分散液50重量部、エチレングリコール35重量部、p-ニトロフェノール(pNPh)15重量部としたもの(比較例4)を用いた以外は、実施例1と同様の方法で固体電解コンデンサを作製した。これらの固体電解コンデンサについて、初期容量、リフロー後のESR(100kHz)及び170℃66時間後のESR(100kHz)を測定した結果を表3に示す。

Figure 2013131514
[Experimental Example 3] (Change in the amount of p-nitrophenol added)
As in Conventional Example 1, a solid electrolytic capacitor was prepared as a mixed solution for forming the second conductive polymer layer by using 50 parts by weight of the dispersion and 50 parts by weight of ethylene glycol (Conventional Example 3). As in Example 1, as a mixed solution for forming the second conductive polymer layer, a solid electrolytic capacitor was prepared using 50 parts by weight of the dispersion, 49 parts by weight of ethylene glycol, and 1 part by weight of p-nitrophenol (pNPh). Created (Example 5). Further, as a mixed solution for forming the second conductive polymer layer, a dispersion solution of 50 parts by weight, ethylene glycol 45 parts by weight, p-nitrophenol (pNPh) 5 parts by weight (Example 6), 50 parts by weight of dispersion, 40 parts by weight of ethylene glycol, 10 parts by weight of p-nitrophenol (pNPh) (Example 7), 50 parts by weight of dispersion, 35 parts by weight of ethylene glycol, p-nitrophenol (pNPh) A solid electrolytic capacitor was produced in the same manner as in Example 1 except that 15 parts by weight (Comparative Example 4) was used. Table 3 shows the results of measuring the initial capacity, ESR after reflow (100 kHz), and ESR (100 kHz) after 170 hours at 170 ° C. for these solid electrolytic capacitors.
Figure 2013131514

表3の結果より、実施例5〜7ではリフロー後のESR及び170℃66時間後のESR共に良好であった。これに対して、従来例3ではリフロー後のESRは良好であるものの、170℃66時間後のESRは大幅に悪化した。また、比較例4ではリフロー後のESR及び170℃66時間後のESRは共に悪化していた。これより、p-ニトロフェノールの添加量は、1重量部以上15重量部未満が好ましいと考えられる。またこれらの導電性高分子層を分析したところ、導電性高分子層に含まれる導電性高分子とp−ニトロフェノールとの重量比率は導電性高分子を1とした場合にp−ニトロフェノールが10未満、特に7以下が好ましいことが分かった。   From the results of Table 3, in Examples 5 to 7, both ESR after reflow and ESR after 170 hours at 170 ° C. were good. In contrast, in Conventional Example 3, the ESR after reflow was good, but the ESR after 170 hours at 170 ° C. was greatly deteriorated. In Comparative Example 4, both the ESR after reflow and the ESR after 170 hours at 170 ° C. were deteriorated. From this, it is considered that the addition amount of p-nitrophenol is preferably 1 part by weight or more and less than 15 parts by weight. Further, when these conductive polymer layers were analyzed, the weight ratio of the conductive polymer and p-nitrophenol contained in the conductive polymer layer was determined as follows. It has been found that less than 10, particularly 7 or less is preferable.

Claims (8)

拡面化層を有する陽極体の表面に形成された誘電体酸化皮膜と、前記酸化皮膜上に形成された導電性高分子層と、この導電性高分子層上に形成された陰極体と、を備えた固体電解コンデンサにおいて、
前記導電性高分子層が、少なくともエチレングリコール及びニトロ化合物を含む溶液に導電性高分子化合物が分散された混合溶液を用いて得られたことを特徴とする固体電解コンデンサ。
A dielectric oxide film formed on the surface of an anode body having a surface-enlarging layer; a conductive polymer layer formed on the oxide film; a cathode body formed on the conductive polymer layer; In a solid electrolytic capacitor with
A solid electrolytic capacitor, wherein the conductive polymer layer is obtained using a mixed solution in which a conductive polymer compound is dispersed in a solution containing at least ethylene glycol and a nitro compound.
前記導電性高分子層における前記導電性高分子化合物と前記ニトロ化合物との重量割合が、前記導電性高分子化合物の量を1とした場合に、前記ニトロ化合物の量が10未満であることを特徴とする請求項1記載の固体電解コンデンサ。   The weight ratio of the conductive polymer compound and the nitro compound in the conductive polymer layer is such that the amount of the nitro compound is less than 10 when the amount of the conductive polymer compound is 1. The solid electrolytic capacitor according to claim 1. 前記ニトロ化合物は、m−ニトロフェノール、p−ニトロフェノール又はm−ニトロアセトフェノンであることを特徴とする請求項1又は2記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the nitro compound is m-nitrophenol, p-nitrophenol, or m-nitroacetophenone. 前記導電性高分子層は、前記酸化皮膜上に形成された第1の導電性高分子層とその外側に形成された第2の導電性高分子層とを備え、前記第2の導電性高分子層が前記混合溶液を用いて形成されていることを特徴とする請求項1乃至3のいずれか1項記載の固体電解コンデンサ。   The conductive polymer layer includes a first conductive polymer layer formed on the oxide film and a second conductive polymer layer formed on the outside thereof, and the second conductive polymer layer. The solid electrolytic capacitor according to claim 1, wherein a molecular layer is formed using the mixed solution. 拡面化層を有する陽極体の表面に誘電体酸化皮膜を形成する工程と、
前記酸化皮膜上に導電性高分子層を形成する工程と、
前記導電性高分子層上に陰極体を形成する工程と、
を備えた固体電解コンデンサの製造方法において、
前記導電性高分子層を形成する工程は、水、エチレングリコール及びニトロ化合物を含む溶液に導電性高分子化合物を分散した混合溶液を用いて形成することを特徴とする固体電解コンデンサの製造方法。
Forming a dielectric oxide film on the surface of the anode body having a surface-enlarging layer;
Forming a conductive polymer layer on the oxide film;
Forming a cathode body on the conductive polymer layer;
In a method for producing a solid electrolytic capacitor comprising:
The step of forming the conductive polymer layer is formed using a mixed solution in which a conductive polymer compound is dispersed in a solution containing water, ethylene glycol and a nitro compound.
前記ニトロ化合物は、混合溶液全体を100重量部とした場合、1重量部以上15重量部未満であることを特徴とする請求項5記載の固体電解コンデンサの製造方法。   6. The method for producing a solid electrolytic capacitor according to claim 5, wherein the nitro compound is 1 part by weight or more and less than 15 parts by weight when the entire mixed solution is 100 parts by weight. 前記ニトロ化合物は、m−ニトロフェノール、p−ニトロフェノール又はm−ニトロアセトフェノンであることを特徴とする請求項5又は6記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 5 or 6, wherein the nitro compound is m-nitrophenol, p-nitrophenol or m-nitroacetophenone. 前記導電性高分子層を形成する工程は、前記酸化皮膜上に第1の導電性高分子層を形成する工程と、前記第1の導電性高分子層上に第2の導電性高分子層を形成する工程とを備え、前記第2の導電性高分子層を形成する工程は、前記混合溶液を前記第1の導電性高分子層に適用して形成することを特徴とする請求項5乃至7のいずれか1項記載の固体電解コンデンサの製造方法。   The step of forming the conductive polymer layer includes a step of forming a first conductive polymer layer on the oxide film, and a second conductive polymer layer on the first conductive polymer layer. The step of forming the second conductive polymer layer includes forming the second conductive polymer layer by applying the mixed solution to the first conductive polymer layer. The method for producing a solid electrolytic capacitor according to any one of claims 1 to 7.
JP2011277914A 2011-12-20 2011-12-20 Solid electrolytic capacitor and manufacturing method thereof Active JP5910060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277914A JP5910060B2 (en) 2011-12-20 2011-12-20 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277914A JP5910060B2 (en) 2011-12-20 2011-12-20 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013131514A true JP2013131514A (en) 2013-07-04
JP5910060B2 JP5910060B2 (en) 2016-04-27

Family

ID=48908874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277914A Active JP5910060B2 (en) 2011-12-20 2011-12-20 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5910060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383845A (en) * 2018-12-28 2020-07-07 松下知识产权经营株式会社 Electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155964A (en) * 1999-09-14 2001-06-08 Matsushita Electric Ind Co Ltd Manufacturing methods for precursor of conductive composition, the conductive composition, and solid electrolytic capacitor
JP2010087014A (en) * 2008-09-29 2010-04-15 Nippon Chemicon Corp Solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155964A (en) * 1999-09-14 2001-06-08 Matsushita Electric Ind Co Ltd Manufacturing methods for precursor of conductive composition, the conductive composition, and solid electrolytic capacitor
JP2010087014A (en) * 2008-09-29 2010-04-15 Nippon Chemicon Corp Solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383845A (en) * 2018-12-28 2020-07-07 松下知识产权经营株式会社 Electrolytic capacitor
CN111383845B (en) * 2018-12-28 2023-01-24 松下知识产权经营株式会社 Electrolytic capacitor

Also Published As

Publication number Publication date
JP5910060B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP4737775B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6745580B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4730908B2 (en) Solid electrolytic capacitor
JP6610264B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6827689B2 (en) Solid electrolytic capacitors and their manufacturing methods
JPWO2012137969A1 (en) Conductive polymer solution, conductive polymer material and method for producing the same, and solid electrolytic capacitor
WO2017017947A1 (en) Electrolytic capacitor
JP7226593B2 (en) solid electrolytic capacitor
JP5828588B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008251629A (en) Manufacturing process of solid-state electrolytic capacitor
JP2011138814A (en) Electrolytic capacitor and method of manufacturing the same
JP2007123315A (en) Manufacturing method of redox capacitor electrode, redox capacitor electrode obtained thereby and redox capacitor
JP5910060B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010087014A (en) Solid electrolytic capacitor
TW201405606A (en) Electrolyte mixture for electrolytic capacitor, composition for conductive polymer synthesis and conductive polymer solid electrolytic capacitor formed by using the same
JP5354085B2 (en) Solid electrolytic capacitor
JP2008288342A (en) Method of forming electrolyte for electrolytic capacitor
JP2021022753A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2007299856A (en) Solid electrolytic capacitor
JP2017017182A (en) Solid electrolytic capacitor and manufacturing method for the same
JP4797784B2 (en) Solid electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP6795054B2 (en) Solid electrolytic capacitors and their manufacturing methods
JP4849257B2 (en) Solid electrolyte and solid electrolytic capacitor using the same
JP4795331B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150