JP2013131338A - Deterioration evaluation method of positive electrode active material and lithium ion secondary battery - Google Patents

Deterioration evaluation method of positive electrode active material and lithium ion secondary battery Download PDF

Info

Publication number
JP2013131338A
JP2013131338A JP2011278801A JP2011278801A JP2013131338A JP 2013131338 A JP2013131338 A JP 2013131338A JP 2011278801 A JP2011278801 A JP 2011278801A JP 2011278801 A JP2011278801 A JP 2011278801A JP 2013131338 A JP2013131338 A JP 2013131338A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
intensity
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011278801A
Other languages
Japanese (ja)
Inventor
Mitsuru Sakano
充 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011278801A priority Critical patent/JP2013131338A/en
Publication of JP2013131338A publication Critical patent/JP2013131338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration evaluation method of a positive electrode active material in the relationship with change of the crystal structure thereof, and to provide a deterioration evaluation method of a lithium ion secondary battery.SOLUTION: The deterioration evaluation method of a positive electrode active material consisting of LiNiMO(M is at least one kind of element selected from an element group of Mn, Co, Cr, Al, Mg, Ti and B) and used for the electrode plate 4 of a lithium ion secondary battery 1 includes a step measuring two peaks of first intensity A and second intensity B which are observed by irradiating the positive electrode active material with a soft X-ray RT that is rendered monochromatic to energy resolution of E/ΔE≥2000 while changing the energy, and performing XANES measurement for the Ni-Labsorption end, a step for calculating the absorption intensity ratio B/A, and a step for calculating the rate of change in the intensity ratio C from the initial absorption intensity ratio B/Aand the absorption intensity ratio B/A according to formula (1). C(%)=(B/A)/(B/A)×100 ... (1).

Description

本発明は、正極活物質及びリチウムイオン二次電池の劣化評価方法、特に、軟X線を用いた正極活物質及びリチウムイオン二次電池の劣化評価方法に関する。   The present invention relates to a method for evaluating deterioration of a positive electrode active material and a lithium ion secondary battery, and more particularly, to a method for evaluating deterioration of a positive electrode active material and a lithium ion secondary battery using soft X-rays.

リチウムイオン二次電池は、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車などの車両や、ノートパソコンなど家庭用電気機器やインパクトドライバなどの工業機器など他方面に使用されている。
このようなリチウムイオン二次電池(以下、単に電池ともいう。)の正極に用いる正極活物質には、例えば、特許文献1に記載のニッケル系リチウム複合酸化物であるLiNiy1-y2 (Mは、Mn,Co,Cr,Al,Mg,Ti及びBの元素群から選ばれる少なくとも一種の元素)が用いられる場合がある。
Lithium ion secondary batteries are used on the other side of vehicles such as hybrid vehicles, plug-in hybrid vehicles and electric vehicles, household electric devices such as notebook computers, and industrial devices such as impact drivers.
Examples of the positive electrode active material used for the positive electrode of such a lithium ion secondary battery (hereinafter also simply referred to as a battery) include, for example, LiNi y M 1-y O, which is a nickel-based lithium composite oxide described in Patent Document 1. 2 (M is at least one element selected from the group consisting of Mn, Co, Cr, Al, Mg, Ti and B) may be used.

この正極活物質は、Ni、MとOがNiO6、MO6の八面体構造をなして層状に連なり、層間にLiが挿入された層状構造を有する。そして、この正極活物質を用いたLiイオン二次電池では、層間のLiを脱離、挿入させることにより、電池の充放電を行う。 This positive electrode active material has a layered structure in which Ni, M, and O are layered in an octahedral structure of NiO 6 and MO 6 and Li is inserted between the layers. And in the Li ion secondary battery using this positive electrode active material, the battery is charged and discharged by removing and inserting Li between layers.

特開2003−346806号公報JP 2003-346806 A

ところで、電池を使用し続けると、電池の内部抵抗が上昇する劣化が生じることがある。その要因の1つとして、正極活物質の結晶構造が変化が考えられるが、これを適切に検知及び評価することができなかった。   By the way, if the battery is continuously used, the internal resistance of the battery may be deteriorated. As one of the factors, a change in the crystal structure of the positive electrode active material can be considered, but this could not be detected and evaluated appropriately.

本発明は、かかる問題点に鑑みてなされたものであって、正極活物質の結晶構造の変化との関係における、正極活物質の劣化評価方法、及び、リチウムイオン二次電池の劣化評価方法を提供することを目的とする。   The present invention has been made in view of such problems, and provides a method for evaluating the deterioration of a positive electrode active material and a method for evaluating the deterioration of a lithium ion secondary battery in relation to a change in the crystal structure of the positive electrode active material. The purpose is to provide.

その課題を解決するための一態様は、リチウムイオン二次電池の正極板に用いられた、LiNiy1-y2(Mは、Mn,Co,Cr,Al,Mg,Ti及びBの元素群から選ばれる少なくとも一種の元素)からなる正極活物質の劣化評価方法であって、エネルギー分解能E/ΔE≧2000に単色化された軟X線を、そのエネルギーを変化させつつ、上記正極活物質に照射して、Ni−L3吸収端についてのXANES測定を行った場合に観測される2つのピークの吸収強度(低エネルギー側ピークの吸収強度を第1強度A、高エネルギー側の吸収強度を第2強度Bとする。)を測定するステップと、上記第2強度Bを上記第1強度Aで除した、吸収強度比B/Aを算出するステップと、初期吸収強度比B0/A0及び上記吸収強度比B/Aとから、強度比変化率Cを下記式(1)により算出するステップと、を備える正極活物質の劣化評価方法である。
C(%)=(B/A)/(B0/A0)×100 …(1)
One aspect for solving the problem is that LiNi y M 1-y O 2 (M is Mn, Co, Cr, Al, Mg, Ti and B) used for the positive electrode plate of the lithium ion secondary battery. A method for evaluating the deterioration of a positive electrode active material comprising at least one element selected from the group of elements), wherein soft X-rays monochromatized with an energy resolution of E / ΔE ≧ 2000 change the energy of the positive electrode active material while changing its energy. Absorption intensity of two peaks observed when XANES measurement is performed on the Ni-L 3 absorption edge by irradiating the substance (the absorption intensity of the low energy side peak is the first intensity A, the absorption intensity of the high energy side Is defined as a second intensity B.), a step of calculating an absorption intensity ratio B / A obtained by dividing the second intensity B by the first intensity A, and an initial absorption intensity ratio B 0 / A 0 and the absorption intensity ratio B / From, calculating the intensity ratio change rate C by the following equation (1), a positive electrode active deterioration evaluation method for a substance with a.
C (%) = (B / A) / (B 0 / A 0 ) × 100 (1)

LiNiy1-y2からなる正極活物質を正極板に用いた電池を使用すると、正極活物質の結晶構造が徐々に変化し、これが、電池の内部抵抗の上昇劣化の要因の一つとなることが判ってきた。具体的には、様々に劣化させた電池の正極活物質について、軟X線をそのエネルギーを変化させつつ照射し、Ni−L3吸収端についてのXANES(X-ray Absorption Near Edge Structure)測定を行った場合に、軟X線のエネルギーが852eV付近に観測される吸収強度のピーク(このピークの吸収強度を第1強度Aとする。)と、854〜855eV付近に観測される吸収強度のピーク(このピークの吸収強度を第2強度Bとする。)が2つ観測される。第1強度Aと第2強度Bとの比(吸収強度比)の変化は、(Ni,M)O6のなす八面体構造の構造歪みの変化を示すと考えられる。
そして、この吸収強度比B/Aの初期からの変化について見ると、正極活物質の劣化に応じて、その大きさが変化することが判ってきた。
そこで、本発明の正極活物質の劣化評価方法では、吸収強度比B/Aを算出するステップと、強度比変化率Cを式(1)により算出するステップとを備えるものとした。
これにより、正極活物質の劣化(構造変化)、およびこれによる電池の内部抵抗の上昇について、適切に評価を行うことができる。
When a battery using a positive electrode active material made of LiNi y M 1-y O 2 as a positive electrode plate is used, the crystal structure of the positive electrode active material gradually changes, which is one of the causes of the deterioration of the internal resistance of the battery. It has been found that Specifically, the X-ray absorption near edge structure (XANES) measurement of the Ni-L 3 absorption edge is performed by irradiating soft X-rays with varying energy on the positive electrode active material of variously deteriorated batteries. When this is done, the peak of absorption intensity at which soft X-ray energy is observed near 852 eV (the absorption intensity of this peak is defined as the first intensity A) and the peak of absorption intensity observed at around 854 to 855 eV. Two (the absorption intensity of this peak is defined as the second intensity B) are observed. The change in the ratio (absorption intensity ratio) between the first intensity A and the second intensity B is considered to indicate a change in the structural distortion of the octahedral structure formed by (Ni, M) O 6 .
And when it sees about the change from the initial stage of this absorption intensity ratio B / A, it has become clear that the magnitude | size changes according to deterioration of a positive electrode active material.
Therefore, the method for evaluating deterioration of the positive electrode active material according to the present invention includes a step of calculating the absorption intensity ratio B / A and a step of calculating the intensity ratio change rate C by the equation (1).
Thereby, it can evaluate appropriately about deterioration (structure change) of a positive electrode active material, and the raise of the internal resistance of a battery by this.

なお、初期吸収強度比B0/A0としては、使用前の電池に用いている正極活物質について得た、吸収強度比A/Bを用いると良い。 As the initial absorption intensity ratio B 0 / A 0 , the absorption intensity ratio A / B obtained for the positive electrode active material used in the battery before use may be used.

さらに、上述の正極活物質の劣化評価方法であって、前記軟X線は、不等刻線間隔回折格子分光器(VLSPG)及びスリットにより単色化されてなる正極活物質の劣化評価方法とすると良い。   Further, in the above-described method for evaluating the deterioration of the positive electrode active material, the soft X-ray is a method for evaluating the deterioration of the positive electrode active material that is monochromatized by a non-uniform spacing grating spectrometer (VLSPG) and a slit. good.

不等刻線間隔回折格子分光器(VLSPG)及びスリットを用いることで、エネルギー分解能E/ΔE≧2000まで分解能を高くされ単色化された軟X線を、容易に得ることができる。   By using a non-uniformly spaced diffraction grating spectrometer (VLSPG) and a slit, it is possible to easily obtain a monochromatic soft X-ray with a high resolution up to energy resolution E / ΔE ≧ 2000.

他の態様は、LiNiy1-y2(Mは、Mn,Co,Cr,Al,Mg,Ti及びBの元素群から選ばれる少なくとも一種の元素)からなる正極活物質を正極板に用いたリチウムイオン二次電池の劣化評価方法であって、エネルギー分解能E/ΔE≧2000の単色化された軟X線を、そのエネルギーを変化させつつ、上記二次電池の上記正極活物質に照射して、Ni−L3吸収端についてのXANES測定を行った場合に観測される2つのピークの吸収強度(低エネルギー側ピークの吸収強度を第1強度A、高エネルギー側の吸収強度を第2強度Bとする。)を測定するステップと、上記第2強度Bを上記第1強度Aで除した、吸収強度比B/Aを算出するステップと、初期の吸収強度比B0/A0及び上記吸収強度比B/Aとから、強度比変化率Cを下記式(1)により算出するステップと、を備えるリチウムイオン二次電池の劣化評価方法である。
C(%)=(B/A)/(B0/A0)×100 …(1)
In another embodiment, a positive electrode active material made of LiNi y M 1-y O 2 (M is at least one element selected from the element group of Mn, Co, Cr, Al, Mg, Ti, and B) is used for the positive electrode plate. A method for evaluating deterioration of a lithium ion secondary battery used, wherein the positive electrode active material of the secondary battery is irradiated with monochromatic soft X-rays having energy resolution E / ΔE ≧ 2000 while changing the energy. Then, the absorption intensity of two peaks observed when XANES measurement is performed on the Ni-L 3 absorption edge (the absorption intensity of the low energy side peak is the first intensity A, and the absorption intensity of the high energy side is the second Intensity B.), calculating the absorption intensity ratio B / A obtained by dividing the second intensity B by the first intensity A, and the initial absorption intensity ratio B 0 / A 0 and From the absorption intensity ratio B / A, strong Calculating a ratio change rate C by the following equation (1), a deterioration evaluating method of a lithium ion secondary battery comprising a.
C (%) = (B / A) / (B 0 / A 0 ) × 100 (1)

前述したように、吸収強度比B/Aの初期からの変化について見ると、正極活物質の劣化に応じて、その大きさが変化することが判ってきた。
そこで、本発明の二次電池の劣化評価方法では、吸収強度比B/Aを算出するステップと、強度比変化率Cを式(1)により算出するステップとを備えるものとした。
これにより、正極活物質の構造変化に伴う電池の劣化(内部抵抗の上昇)について、適切に評価を行うことができる。
As described above, when the change from the initial stage of the absorption intensity ratio B / A is seen, it has been found that the magnitude thereof changes according to the deterioration of the positive electrode active material.
Accordingly, the secondary battery deterioration evaluation method of the present invention includes a step of calculating the absorption intensity ratio B / A and a step of calculating the intensity ratio change rate C by the equation (1).
Thereby, it can evaluate appropriately about the deterioration (increase of internal resistance) of the battery accompanying the structural change of a positive electrode active material.

さらに、上述のリチウムイオン二次電池の劣化評価方法であって、前記軟X線は、不等刻線間隔回折格子分光器(VLSPG)及びスリットにより単色化されてなるリチウムイオン二次電池の劣化評価方法とすると良い。   Furthermore, in the above-described method for evaluating deterioration of a lithium ion secondary battery, the soft X-ray is deteriorated in a lithium ion secondary battery that is monochromatized by a non-uniformly spaced grating spectrometer (VLSPG) and a slit. It should be an evaluation method.

不等刻線間隔回折格子分光器(VLSPG)及びスリットを用いることで、エネルギー分解能E/ΔE≧2000まで分解能を高くされ単色化された軟X線を、容易に得ることができる。   By using a non-uniformly spaced diffraction grating spectrometer (VLSPG) and a slit, it is possible to easily obtain a monochromatic soft X-ray with a high resolution up to energy resolution E / ΔE ≧ 2000.

実施形態にかかり、XANES測定を行う測定系を説明する説明図である。It is explanatory drawing explaining the measurement system concerning embodiment and performing a XANES measurement. 劣化試験を行っていない初期の試料1について、XANES測定による、活物質試料に照射した軟X線のエネルギーと吸収強度との関係を示すグラフである。It is a graph which shows the relationship between the energy and the absorption intensity | strength of the soft X-ray which irradiated the active material sample by the XANES measurement about the initial sample 1 which has not performed the deterioration test. 劣化試験を行った試料2,3,4について、XANES測定による、活物質試料に照射した軟X線のエネルギーと吸収強度との関係を示すグラフである。It is a graph which shows the relationship between the energy and the absorption intensity | strength of the soft X-ray which irradiated to the active material sample by XANES measurement about sample 2,3,4 which performed the deterioration test. 試料2〜4にかかり、強度比変化率と抵抗上昇率との関係を示すグラフである。It is a graph concerning samples 2 to 4 and showing the relationship between the intensity ratio change rate and the resistance increase rate. 実施形態に係り、評価に用いたリチウムイオン二次電池の透視図である。1 is a perspective view of a lithium ion secondary battery used for evaluation according to an embodiment. 実施形態に係り、評価に用いたリチウムイオン二次電池の正極板の斜視図である。1 is a perspective view of a positive electrode plate of a lithium ion secondary battery used for evaluation according to an embodiment.

(実施形態)
まず、実施形態にかかり、評価対象である電池1について図5、図6を参照しつつ説明する。
電池1は、捲回型の電極体2を電池ケース3に収納したリチウムイオン二次電池である。なお、この電池ケース3と電極体2との間には、樹脂からなり、箱状に折り曲げた、透明な絶縁フィルム(図示しない)が介在させてある。
(Embodiment)
First, a battery 1 that is an object of evaluation according to the embodiment will be described with reference to FIGS. 5 and 6.
The battery 1 is a lithium ion secondary battery in which a wound electrode body 2 is housed in a battery case 3. A transparent insulating film (not shown) made of resin and bent in a box shape is interposed between the battery case 3 and the electrode body 2.

電極体2は、帯状の正極板4及び負極板5を、帯状のセパレータ6を介して扁平形状に捲回してなる。なお、この電極体2の正極板4及び負極板5はそれぞれ、クランク状に屈曲した板状の正極集電部材7又は負極集電部材8と接合されている。また、多孔質状のポリエチレンからなるセパレータ6には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合有機溶媒に溶質(LiPF6)を添加してなる電解液(図示しない)が含浸されている。 The electrode body 2 is formed by winding a strip-like positive electrode plate 4 and a negative electrode plate 5 into a flat shape via a strip-like separator 6. The positive electrode plate 4 and the negative electrode plate 5 of the electrode body 2 are respectively joined to a plate-like positive electrode current collector member 7 or a negative electrode current collector member 8 bent in a crank shape. The separator 6 made of porous polyethylene is impregnated with an electrolyte solution (not shown) obtained by adding a solute (LiPF 6 ) to a mixed organic solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). Has been.

この電極体2のうち、負極板5は、薄板帯状で銅製の負極箔(図示しない)と、この負極銅箔の両主面にそれぞれ帯状に配置された2つの負極活物質層(図示しない)とを有している。   Among the electrode bodies 2, the negative electrode plate 5 is a thin strip-shaped copper negative electrode foil (not shown) and two negative electrode active material layers (not shown) arranged in a strip shape on both main surfaces of the negative electrode copper foil. And have.

また、薄板帯状の正極板4は、図6に示すように、帯状でアルミニウムからなる正極箔41と、この正極箔41の両主面41a上にそれぞれ形成された正極活物質層42とを有する。このうち、正極活物質層42は、LiNi1/3Co1/3Mn1/32からなるニッケル系のリチウム複合酸化物からなる正極活物質の粒子、アセチレンブラックからなる導電粒子、及び、樹脂製の結着剤(いずれも図示しない)からなる。 Further, as shown in FIG. 6, the thin strip-like positive electrode plate 4 has a strip-like positive electrode foil 41 made of aluminum, and positive electrode active material layers 42 respectively formed on both main surfaces 41 a of the positive electrode foil 41. . Among these, the positive electrode active material layer 42 includes positive electrode active material particles made of nickel-based lithium composite oxide made of LiNi 1/3 Co 1/3 Mn 1/3 O 2, conductive particles made of acetylene black, and It consists of a resin binder (both not shown).

次いで、電池1及び正極板4をなす正極活物質の評価について、図1〜図4を参照して説明する。先ず、初期充電のみ行った電池(試料1)を準備する。そのほか、この電池と同じ電池(試料2,3,4)を用意し、これらについて、SOC80%とした状態で、25℃,40℃,60℃の環境下で、それぞれ130日間保存した。試料2,3,4の電池について、保存前と保存後について抵抗を測定した。
さらにその後、試料1〜4の各電池を分解して、各試料1〜4にかかる正極活物質(活物質試料SP)を採取した。
なお、電池の抵抗測定は、60Aで10秒放電後の電圧降下により算出した。
また、各試料1〜4についての活物質試料SPは、電池をArグローブボックス内で解体後、EMC(メチルエチルカーボネート)にて洗浄して作製した。
Next, evaluation of the positive electrode active material forming the battery 1 and the positive electrode plate 4 will be described with reference to FIGS. First, a battery (sample 1) subjected to only initial charging is prepared. In addition, the same batteries (samples 2, 3, and 4) as this battery were prepared, and these were stored for 130 days in an environment of 25 ° C., 40 ° C., and 60 ° C. in an SOC of 80%. For the batteries of Samples 2, 3, and 4, the resistance was measured before and after storage.
Thereafter, the batteries of Samples 1 to 4 were disassembled, and the positive electrode active material (active material sample SP) for each of Samples 1 to 4 was collected.
In addition, the resistance measurement of the battery was calculated from the voltage drop after discharging at 60 A for 10 seconds.
Moreover, the active material sample SP about each sample 1-4 was produced by wash | cleaning with EMC (methyl ethyl carbonate) after disassembling a battery in Ar glove box.

次いで、XANES測定(XAFS測定)について、図1を参照して説明する。
まず、X線源11から放射された連続X線Rを、スリットSSをそれぞれ形成した2枚のスリット板12,13の間に、VLSPG(不等刻線間隔回折格子分光器)14を介在させて、単色化された軟X線RTを生成する。
なお、X線源11としては、Spring8、PhotonFactoryその他のシンクロトロン放射光施設を用いることができるほか、アルミニウム箔に電子線を照射して制動放射によってX線を発生させるものが挙げられる。
また、単色化された軟X線RTとしては、そのエネルギー分解能を、E/ΔE≧2000とする。このようにすることで、次述するNi−L3吸収端についてのXANES測定において、A,Bの2つのピークを観測することができる。
また、本実施形態では、VLSPG14及びスリット12,13を用いることで、エネルギー分解能E/ΔE≧2000まで分解能を高くされ単色化された軟X線を、容易に得ることができている。
Next, XANES measurement (XAFS measurement) will be described with reference to FIG.
First, a continuous X-ray R radiated from the X-ray source 11 is interposed between two slit plates 12 and 13 each having a slit SS, and a VLSPG (unequal line spacing grating spectrometer) 14 is interposed. Thus, a monochromatic soft X-ray RT is generated.
As the X-ray source 11, there can be used Spring 8, Photon Factory and other synchrotron radiation facilities, and an X-ray generated by bremsstrahlung by irradiating an aluminum foil with an electron beam.
In addition, the energy resolution of the monochromatic soft X-ray RT is set to E / ΔE ≧ 2000. By doing in this way, two peaks of A and B can be observed in the XANES measurement for the Ni-L 3 absorption edge described below.
Further, in the present embodiment, by using the VLSPG 14 and the slits 12 and 13, it is possible to easily obtain a monochromatic soft X-ray whose resolution is increased to energy resolution E / ΔE ≧ 2000.

この単色化された軟X線RTを、活物質試料SPに照射する。なお、活物質試料SPに生じた光電流は、電流計16を通じて接地電位に放電する。
このようにして得られた各試料1〜4に関する活物質試料SPのX線の吸収強度のうち、Ni−L3吸収端についてのXANES測定結果を、図2,図3のグラフに示す。これらのうち、図2には劣化試験を行っていない試料1の結果を、図3において、太線は25℃で130日保存した試料2の結果を、細線は40℃で130日保存した試料3を、一点鎖線は60℃で130日保存した試料4を示す。
The monochromatic soft X-ray RT is irradiated to the active material sample SP. The photocurrent generated in the active material sample SP is discharged to the ground potential through the ammeter 16.
The XANES measurement results for the Ni-L 3 absorption edge out of the X-ray absorption intensities of the active material samples SP relating to the samples 1 to 4 thus obtained are shown in the graphs of FIGS. Among these, FIG. 2 shows the result of Sample 1 that was not subjected to the degradation test, in FIG. 3, the thick line shows the result of Sample 2 stored at 25 ° C. for 130 days, and the thin line shows Sample 3 stored at 40 ° C. for 130 days. The one-dot chain line shows Sample 4 stored at 60 ° C. for 130 days.

図2,図3のグラフによれば、X線のエネルギーが852〜855eVの付近に吸収強度のピークが観測される。さらに詳しく見ると、各試料1〜4とも、2つのピークを有しており、その1つは、軟X線のエネルギーが852eV付近に観測される。また、これよりも高エネルギー側(図中右側)の854〜855eV付近にも、吸収強度のピークが観測される。そこで、低エネルギー側(852eV付近)のピークの吸収強度を第1強度A、高エネルギー側(854〜855eV付近)の吸収強度を第2強度Bとする。
すると、第1強度A及び第2強度Bの大きさも、ピークを示すX線のエネルギーの位置(吸収ピーク)も、正極活物質の劣化によって変化することが判る。
According to the graphs of FIGS. 2 and 3, a peak of absorption intensity is observed in the vicinity of X-ray energy of 852 to 855 eV. More specifically, each of the samples 1 to 4 has two peaks, one of which has soft X-ray energy observed in the vicinity of 852 eV. Further, an absorption intensity peak is also observed in the vicinity of 854 to 855 eV on the higher energy side (right side in the figure). Therefore, the absorption intensity of the peak on the low energy side (near 852 eV) is the first intensity A, and the absorption intensity on the high energy side (near 854 to 855 eV) is the second intensity B.
Then, it turns out that the magnitude | size of 1st intensity | strength A and 2nd intensity | strength B and the position (absorption peak) of the energy of the X-ray which shows a peak change with deterioration of a positive electrode active material.

そこで、各試料1〜4について、図3のグラフから、第1強度A及び第2強度Bを取得する。次いで、吸収強度比A/Bを算出する。さらに、初期(試料1)の吸収強度比A/Bを初期吸収強度比A0/B0と定義し、試料2,3,4にかかるピーク強度比A/Bを、初期吸収強度比A0/B0で除する式(1)により、強度変化率Cを算出する。
(C(%)=(B/A)/(B0/A0)×100) …(1)
Therefore, the first intensity A and the second intensity B are acquired from the graph of FIG. Next, the absorption intensity ratio A / B is calculated. Further, the initial absorption intensity ratio A / B (sample 1) is defined as the initial absorption intensity ratio A 0 / B 0, and the peak intensity ratio A / B applied to the samples 2, 3 and 4 is defined as the initial absorption intensity ratio A 0. The intensity change rate C is calculated by the equation (1) divided by / B 0 .
(C (%) = (B / A) / (B 0 / A 0 ) × 100) (1)

さらに、試料2,3,4の電池については、前述したように、保存前の電池の抵抗R0と保存後の電池Rとを測定してあるので、その抵抗変化率R/R0を算出した。
これらの結果を、表1に示す。加えて、強度比変化率Cと抵抗変化率R/R0との関係を、図4に示す。
Further, for the batteries of Samples 2, 3 and 4, as described above, the resistance R 0 of the battery before storage and the battery R after storage are measured, so the resistance change rate R / R 0 is calculated. did.
These results are shown in Table 1. In addition, the relationship between the intensity ratio change rate C and the resistance change rate R / R 0 is shown in FIG.

Figure 2013131338
Figure 2013131338

この表1及び図4の結果から、劣化させた試料2〜4の電池1については、高温で保存して、耐久による正極活物質の劣化を進行させるほど、抵抗変化率R/R0が増加する傾向が判る。このことから、強度変化率Cを電池の劣化(抵抗増加)あるいは正極活物質の劣化の指標として用い、適度の閾値を定めることで、正極活物質の劣化の評価が可能であることが判る。 From the results shown in Table 1 and FIG. 4, with respect to the deteriorated batteries 1 to 4 of the samples, the resistance change rate R / R 0 increases as the positive electrode active material deteriorates due to durability by storing at high temperature. The tendency to do is understood. From this, it is understood that the deterioration of the positive electrode active material can be evaluated by setting an appropriate threshold value using the strength change rate C as an index of battery deterioration (resistance increase) or positive electrode active material deterioration.

(変形形態)
上述の実施形態では、試料1〜4の電池1を用意し、これを分解して、活物質試料SPを作成し、XANES測定を行った。
しかし、本変形形態では、電池1をそのまま電池試料SPとしてXANES測定を行う。
即ち、図1に示す実施形態と同様の測定系を用いて、電池1内の正極板4に塗布された正極活物質について、直接XANES測定を行い、実施形態と同様に、強度変化率Cを、電池1(これに用いている正極活物質)の劣化評価の指標として用いる。
この場合には、電池1について非破壊で、その電池1(これに用いている正極活物質)の劣化を評価しうる利点がある。
なお、実施形態と同じく、VLSPG14及びスリット12,13を用いることで、エネルギー分解能E/ΔE≧2000まで分解能を高くされ単色化された軟X線を、容易に得ることができている。
(Deformation)
In the above-described embodiment, the batteries 1 of Samples 1 to 4 were prepared, disassembled to create the active material sample SP, and XANES measurement was performed.
However, in this modification, the XANES measurement is performed using the battery 1 as it is as the battery sample SP.
That is, using a measurement system similar to that of the embodiment shown in FIG. 1, the XANES measurement is directly performed on the positive electrode active material applied to the positive electrode plate 4 in the battery 1, and the intensity change rate C is obtained as in the embodiment. And used as an index for evaluating the deterioration of the battery 1 (the positive electrode active material used therein).
In this case, there is an advantage that the battery 1 is nondestructive and the deterioration of the battery 1 (the positive electrode active material used therein) can be evaluated.
Note that, similarly to the embodiment, by using the VLSPG 14 and the slits 12 and 13, it is possible to easily obtain monochromatic soft X-rays with high resolution up to energy resolution E / ΔE ≧ 2000.

以上において、本発明の正極活物質及び電池の劣化評価方法を、実施形態及び変形形態に即して説明した。しかし、本発明は実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施形態では、図5に示したように、扁平捲回型の電極体2を有する電池1について適用した例を示したが、円筒型、積層型など正極活物質を用いる電池であればいずれも適用することができる。
また、実施形態等では、正極活物質として、LiNi1/3Co1/3Mn1/32からなるニッケル系のリチウム複合酸化物を用いた例を示したが、LiNiy1-y2からなるニッケル系の層状構造を有するリチウム複合酸化物に適用することができる。
In the above, the positive electrode active material and the battery degradation evaluation method of the present invention have been described in accordance with the embodiment and the modification. However, the present invention is not limited to the embodiments and the like, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, as shown in FIG. 5, the example applied to the battery 1 having the flat wound electrode body 2 is shown. However, any battery using a positive electrode active material such as a cylindrical type or a laminated type may be used. Either can be applied.
In the embodiments and the like, an example in which a nickel-based lithium composite oxide composed of LiNi 1/3 Co 1/3 Mn 1/3 O 2 is used as the positive electrode active material has been described. However, LiNi y M 1-y The present invention can be applied to a lithium composite oxide having a nickel-based layered structure made of O 2 .

1 電池(二次電池)
4 正極板
11 X線源
R 連続X線
RT 単色化された軟X線
12,13 スリット板
SS スリット
14 VLSPG
SP 活物質試料、電池試料
1 battery (secondary battery)
4 Positive electrode plate 11 X-ray source R Continuous X-ray RT Monochromatic soft X-rays 12 and 13 Slit plate SS Slit 14 VLSPG
SP active material sample, battery sample

Claims (4)

リチウムイオン二次電池の正極板に用いられた、LiNiy1-y2 (Mは、Mn,Co,Cr,Al,Mg,Ti及びBの元素群から選ばれる少なくとも一種の元素)からなる正極活物質の劣化評価方法であって、
エネルギー分解能E/ΔE≧2000に単色化された軟X線を、そのエネルギーを変化させつつ、上記正極活物質に照射して、Ni−L3吸収端についてのXANES測定を行った場合に観測される2つのピークの吸収強度(低エネルギー側ピークの吸収強度を第1強度A、高エネルギー側ピークの吸収強度を第2強度Bとする。)を測定するステップと、
上記第2強度Bを上記第1強度Aで除した、吸収強度比B/Aを算出するステップと、
初期の吸収強度比B0/A0及び上記吸収強度比B/Aとから、強度比変化率Cを下記式(1)により算出するステップと、を備える
正極活物質の劣化評価方法。
C(%)=(B/A)/(B0/A0)×100 …(1)
From LiNi y M 1-y O 2 (M is at least one element selected from the group consisting of Mn, Co, Cr, Al, Mg, Ti and B) used for the positive electrode plate of the lithium ion secondary battery A method for evaluating deterioration of a positive electrode active material, comprising:
Observed when XANES measurement is performed on the Ni-L 3 absorption edge by irradiating the positive electrode active material while changing the energy of soft X-rays monochromatized to energy resolution E / ΔE ≧ 2000. Measuring the absorption intensity of the two peaks (the absorption intensity of the low energy side peak is the first intensity A, and the absorption intensity of the high energy side peak is the second intensity B);
Calculating an absorption intensity ratio B / A obtained by dividing the second intensity B by the first intensity A;
A method for evaluating the deterioration of the positive electrode active material, comprising: calculating an intensity ratio change rate C from the initial absorption intensity ratio B 0 / A 0 and the absorption intensity ratio B / A according to the following equation (1).
C (%) = (B / A) / (B 0 / A 0 ) × 100 (1)
請求項1に記載の正極活物質の劣化評価方法であって、
前記軟X線は、不等刻線間隔回折格子分光器(VLSPG)及びスリットにより単色化されてなる
正極活物質の劣化評価方法。
It is a deterioration evaluation method of the positive electrode active material according to claim 1,
The soft X-ray is a method for evaluating deterioration of a positive electrode active material, which is monochromatized by a non-uniformly spaced grating spectrometer (VLSPG) and a slit.
LiNiy1-y2 (Mは、Mn,Co,Cr,Al,Mg,Ti及びBの元素群から選ばれる少なくとも一種の元素)からなる正極活物質を正極板に用いたリチウムイオン二次電池の劣化評価方法であって、
エネルギー分解能E/ΔE≧2000に単色化された軟X線を、そのエネルギーを変化させつつ、上記二次電池の上記正極活物質に照射して、Ni−L3吸収端についてのXANES測定を行った場合に観測される2つのピークの吸収強度(低エネルギー側ピークの吸収強度を第1強度A、高エネルギー側ピークの吸収強度を第2強度Bとする。)を測定するステップと、
上記第2強度Bを上記第1強度Aで除した、吸収強度比B/Aを算出するステップと、
初期の吸収強度比B0/A0及び上記吸収強度比B/Aとから、強度比変化率Cを下記式(1)により算出するステップと、を備える
リチウムイオン二次電池の劣化評価方法。
C(%)=(B/A)/(B0/A0)×100 …(1)
Lithium ion 2 using a positive electrode active material made of LiNi y M 1-y O 2 (M is at least one element selected from the group consisting of Mn, Co, Cr, Al, Mg, Ti and B) for the positive electrode plate. A secondary battery deterioration evaluation method,
XANES measurement is performed on the Ni-L 3 absorption edge by irradiating the positive active material of the secondary battery with soft X-rays monochromatized to energy resolution E / ΔE ≧ 2000 while changing the energy. Measuring the absorption intensity of the two peaks observed in the case of the low-energy peak (the absorption intensity of the low energy side peak is the first intensity A, and the absorption intensity of the high energy side peak is the second intensity B);
Calculating an absorption intensity ratio B / A obtained by dividing the second intensity B by the first intensity A;
A method for evaluating deterioration of a lithium ion secondary battery, comprising: calculating an intensity ratio change rate C from the initial absorption intensity ratio B 0 / A 0 and the absorption intensity ratio B / A according to the following equation (1).
C (%) = (B / A) / (B 0 / A 0 ) × 100 (1)
請求項3に記載のリチウムイオン二次電池の劣化評価方法であって、
前記軟X線は、不等刻線間隔回折格子分光器(VLSPG)及びスリットにより単色化されてなる
リチウムイオン二次電池の劣化評価方法。
A method for evaluating deterioration of a lithium ion secondary battery according to claim 3,
The soft X-ray is a method for evaluating deterioration of a lithium ion secondary battery in which the soft X-rays are monochromatized by a non-uniformly spaced grating spectrometer (VLSPG) and a slit.
JP2011278801A 2011-12-20 2011-12-20 Deterioration evaluation method of positive electrode active material and lithium ion secondary battery Pending JP2013131338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278801A JP2013131338A (en) 2011-12-20 2011-12-20 Deterioration evaluation method of positive electrode active material and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278801A JP2013131338A (en) 2011-12-20 2011-12-20 Deterioration evaluation method of positive electrode active material and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2013131338A true JP2013131338A (en) 2013-07-04

Family

ID=48908746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278801A Pending JP2013131338A (en) 2011-12-20 2011-12-20 Deterioration evaluation method of positive electrode active material and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2013131338A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550754B1 (en) * 2013-10-25 2015-09-08 군산대학교산학협력단 In situ coin cell with slit for measuring x-ray diffraction, and holder therof
JP2016051642A (en) * 2014-09-01 2016-04-11 株式会社コベルコ科研 Evaluation method of battery and evaluation cell used therefor
JP2017004818A (en) * 2015-06-12 2017-01-05 株式会社Gsユアサ Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2017198548A (en) * 2016-04-27 2017-11-02 東洋ゴム工業株式会社 Analysis method for sulfur crosslinking form of polymeric material
JP2018036131A (en) * 2016-08-31 2018-03-08 株式会社日産アーク Method and system for estimating state of structural complex
EP3315982A1 (en) * 2016-10-31 2018-05-02 Samsung Electronics Co., Ltd. Mobile x-ray apparatus and method of operating the same
WO2021241899A1 (en) * 2020-05-27 2021-12-02 주식회사 엘지에너지솔루션 Method for diagnosing cause of degradation of lithium secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550754B1 (en) * 2013-10-25 2015-09-08 군산대학교산학협력단 In situ coin cell with slit for measuring x-ray diffraction, and holder therof
JP2016051642A (en) * 2014-09-01 2016-04-11 株式会社コベルコ科研 Evaluation method of battery and evaluation cell used therefor
JP2017004818A (en) * 2015-06-12 2017-01-05 株式会社Gsユアサ Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2017198548A (en) * 2016-04-27 2017-11-02 東洋ゴム工業株式会社 Analysis method for sulfur crosslinking form of polymeric material
JP2018036131A (en) * 2016-08-31 2018-03-08 株式会社日産アーク Method and system for estimating state of structural complex
EP3315982A1 (en) * 2016-10-31 2018-05-02 Samsung Electronics Co., Ltd. Mobile x-ray apparatus and method of operating the same
US10631817B2 (en) 2016-10-31 2020-04-28 Samsung Electronics Co., Ltd. Mobile X-ray apparatus and method of operating the same
WO2021241899A1 (en) * 2020-05-27 2021-12-02 주식회사 엘지에너지솔루션 Method for diagnosing cause of degradation of lithium secondary battery
US12013356B2 (en) 2020-05-27 2024-06-18 Lg Energy Solution, Ltd. Diagnosis of cause of degradation of lithium secondary battery

Similar Documents

Publication Publication Date Title
JP2013131338A (en) Deterioration evaluation method of positive electrode active material and lithium ion secondary battery
Song et al. A novel P3-type Na 2/3 Mg 1/3 Mn 2/3 O 2 as high capacity sodium-ion cathode using reversible oxygen redox
Hong et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides
Gilbert et al. Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: diagnostic studies of full cells and harvested electrodes
Chen et al. Effects of cell positive cans and separators on the performance of high-voltage Li-ion batteries
KR101606316B1 (en) Nonaqueous electrolyte secondary battery
Ji et al. Electrochemical behavior of suberonitrile as a high-potential electrolyte additive and Co-solvent for Li [Li0. 2Mn0. 56Ni0. 16Co0. 08] O2 cathode material
Li et al. Understanding the accumulated cycle capacity fade caused by the secondary particle fracture of LiNi 1-xy Co x Mn y O 2 cathode for lithium ion batteries
Quilty et al. elucidating cathode degradation mechanisms in LiNi0. 8Mn0. 1Co0. 1O2 (NMC811)/graphite cells under fast charge rates using operando synchrotron characterization
Bond et al. In Situ imaging of electrode thickness growth and electrolyte depletion in single-crystal vs polycrystalline LiNixMnyCozO2/graphite pouch cells using multi-scale computed tomography
Lee et al. Cycle life modeling and the capacity fading mechanisms in a graphite/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell
KR20150120870A (en) Nonaqueous electrolyte secondary battery and production method thereof
JP6032497B2 (en) Non-aqueous electrolyte secondary battery
Li et al. Unexpected voltage fade in LMR-NMC oxides cycled below the “activation” plateau
Wang et al. Does polarization increase lead to capacity fade?
JP2016122634A (en) Nonaqueous electrolyte secondary battery for x-ray diffraction measurement, and method of x-ray diffraction measurement
Chung et al. Formation of an SEI on a LiMn 2 O 4 cathode during room temperature charge–discharge cycling studied by soft X-ray absorption spectroscopy at the Fluorine K-edge
Liu et al. A study of vinylene carbonate and prop-1-ene-1, 3 sultone electrolyte additives using polycrystalline Li [Ni0. 6Mn0. 2Co0. 2] O2 in positive/positive symmetric cells
JP6081339B2 (en) Nonaqueous electrolyte secondary battery
JP2019061937A (en) Battery module
Hiroi et al. Adaptive Cation Pillar Effects Achieving High Capacity in Li‐Rich Layered Oxide, Li2MnO3‐LiMeO2 (Me= Ni, Co, Mn)
JP5327523B2 (en) Secondary battery
Ali et al. Quantification of charge compensation in lithium-and manganese-rich Li-ion cathode materials by x-ray spectroscopies
Hirose et al. Comparison of the structure and phase changes of carbon-coated SiO and Li-doped carbon-coated SiO during repeated charge–discharge cycling
JP6895083B2 (en) Non-aqueous secondary battery