JP2013130421A - Oscillation sensor - Google Patents

Oscillation sensor Download PDF

Info

Publication number
JP2013130421A
JP2013130421A JP2011278522A JP2011278522A JP2013130421A JP 2013130421 A JP2013130421 A JP 2013130421A JP 2011278522 A JP2011278522 A JP 2011278522A JP 2011278522 A JP2011278522 A JP 2011278522A JP 2013130421 A JP2013130421 A JP 2013130421A
Authority
JP
Japan
Prior art keywords
electrode
movable
electrodes
vibration sensor
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011278522A
Other languages
Japanese (ja)
Other versions
JP5718218B2 (en
Inventor
Toshishige Shimamura
俊重 島村
Hiroki Morimura
浩季 森村
Mitsuru Harada
充 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011278522A priority Critical patent/JP5718218B2/en
Publication of JP2013130421A publication Critical patent/JP2013130421A/en
Application granted granted Critical
Publication of JP5718218B2 publication Critical patent/JP5718218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a capacitance change that occurs in a movable structure by oscillation, equal to or greater than 100 femto Farad, without thickening the movable structure.SOLUTION: An oscillation sensor comprises a fixed electrode which is comprised of a plurality of band-like electrodes formed on a support substrate, and a movable electrode which is supported through a strut and a spring to the support substrate and is comprised of a plurality of electrodes confronted with the band-like electrodes of the fixed electrode. In accordance with oscillation from the outside, the movable electrode is made movable in an in-plane direction of the fixed electrode, and in accordance with displacement of a crossing area of the fixed electrode and the movable electrode, electrostatic capacitance is displaced. The plurality of band-like electrodes of the fixed electrode are electrically connected with each other alternately and connected to a sensor circuit part as two differential outputs.

Description

本発明は、可動構造体に発生する容量変化によって振動を検出する振動センサに関する。   The present invention relates to a vibration sensor that detects vibration by a change in capacitance generated in a movable structure.

図5は、振動検知を行うセンサノードシステムの構成例を示す(特許文献1,2)。
図5において、センサノードシステムは、センサノード50と受信装置60で構成される。センサノード50で検知した振動検知データは、無線電波を介して受信装置60に送信される。無線電波は、比較的微弱な無線信号であり、数十cmから数十m離れた距離を通信できる。
FIG. 5 shows a configuration example of a sensor node system that performs vibration detection (Patent Documents 1 and 2).
In FIG. 5, the sensor node system includes a sensor node 50 and a receiving device 60. The vibration detection data detected by the sensor node 50 is transmitted to the receiving device 60 via a radio wave. A radio wave is a relatively weak radio signal and can communicate over a distance of several tens of centimeters to several tens of meters.

センサノード50は、振動センサ51、センサ回路部52、A/D変換部53、制御部54、メモリ部55、無線部56、および電源部57により構成され、電源部57から各ブロックへ電力が供給される。電源部57は、例えば振動エネルギーを電気エネルギーに変換する発電機構や2次電池等で構成されており、長時間の動作が可能になっている。
振動センサ51で得られた差動の電圧信号は、センサ回路部52で差動検出された後、後段のA/D変換部53でA/D変換され、制御部54でデータ処理された振動検知データがメモリ部55に保存される。その後、振動検知データは制御部54の処理により、所定のタイミングでメモリ部55から読み出され、無線部56から無線電波により受信装置60へ送信される。
The sensor node 50 includes a vibration sensor 51, a sensor circuit unit 52, an A / D conversion unit 53, a control unit 54, a memory unit 55, a wireless unit 56, and a power supply unit 57. Power is supplied from the power supply unit 57 to each block. Supplied. The power supply unit 57 includes, for example, a power generation mechanism that converts vibration energy into electric energy, a secondary battery, and the like, and can operate for a long time.
The differential voltage signal obtained by the vibration sensor 51 is differentially detected by the sensor circuit unit 52, then A / D converted by the A / D conversion unit 53 in the subsequent stage, and data processed by the control unit 54 Detection data is stored in the memory unit 55. Thereafter, the vibration detection data is read from the memory unit 55 at a predetermined timing by the processing of the control unit 54 and transmitted from the wireless unit 56 to the receiving device 60 by wireless radio waves.

図6は、従来の振動センサ51の構成例を示す。
図6において、振動センサ51は、MEMS(Micro Electro Mechanical System )プロセスによりシリコンチップ上に構成された微細な櫛歯構造からなり、2つの固定電極51P,51Nの間で、バネを介して支柱に支持された可動電極51Mが振動する構成である。本構成により、可動電極51Mと固定電極51Pとの間に可変容量CPが形成され、可動電極51Mと固定電極51Nとの間に可変容量CNが形成される。2つの可変容量CP,CNの静電容量は、差動で変化する。
FIG. 6 shows a configuration example of a conventional vibration sensor 51.
In FIG. 6, the vibration sensor 51 has a fine comb-tooth structure formed on a silicon chip by a MEMS (Micro Electro Mechanical System) process, and is supported between two fixed electrodes 51P and 51N via a spring. The supported movable electrode 51M vibrates. With this configuration, a variable capacitor CP is formed between the movable electrode 51M and the fixed electrode 51P, and a variable capacitor CN is formed between the movable electrode 51M and the fixed electrode 51N. The capacitances of the two variable capacitors CP and CN change differentially.

図7は、従来のセンサ回路部52の構成例を示す。
図7において、センサ回路部52は、入力端子が電源電位VDDに接続され、出力端子が振動センサ51の一方の差動出力端子に接続されたダイオードD1と、入力端子がダイオードD1の出力端子および振動センサ51の一方の差動出力端子に接続され、出力端子が振動センサ51の他方の差動出力端子に接続されたダイオードD2と、入力端子がダイオードD2の出力端子および振動センサ51の他方の差動出力端子に接続され、出力端子がセンサ回路52の出力端子OUTに接続されたダイオードD3と、センサ回路部52の出力端子OUTと接地電位との間に接続された容量素子C1と、初期化時に出力端子OUTの電圧を接地電位にする初期化スイッチSWとを備える。
FIG. 7 shows a configuration example of a conventional sensor circuit unit 52.
In FIG. 7, the sensor circuit unit 52 has a diode D1 whose input terminal is connected to the power supply potential VDD and whose output terminal is connected to one differential output terminal of the vibration sensor 51, and whose input terminal is the output terminal of the diode D1. The diode D2 is connected to one differential output terminal of the vibration sensor 51, the output terminal is connected to the other differential output terminal of the vibration sensor 51, and the input terminal is the output terminal of the diode D2 and the other of the vibration sensor 51. A diode D3 connected to the differential output terminal, the output terminal of which is connected to the output terminal OUT of the sensor circuit 52; a capacitive element C1 connected between the output terminal OUT of the sensor circuit unit 52 and the ground potential; And an initialization switch SW for setting the voltage of the output terminal OUT to the ground potential.

図8は、センサ回路部52およびセンサノード50の動作例を示す。
図8において、時刻T0以前のセンサノード50の初期化時に図示しない制御回路から初期化端子RSTに与えられる初期化信号により初期化スイッチSWがオン状態となり、容量素子C1の電荷が放電される。その後、制御回路は初期化スイッチSWをオフ状態にし、センサ回路部52は入力待ちの状態となる。
FIG. 8 shows an operation example of the sensor circuit unit 52 and the sensor node 50.
In FIG. 8, when the sensor node 50 is initialized before time T0, the initialization switch SW is turned on by an initialization signal supplied from a control circuit (not shown) to the initialization terminal RST, and the charge of the capacitive element C1 is discharged. Thereafter, the control circuit turns off the initialization switch SW, and the sensor circuit unit 52 waits for input.

時刻T0においてセンサノード50に振動が加えられると、振動センサ51の2つの可変容量CP,CNの静電容量は、差動で変化する。このとき、可変容量CPの可動電極51Mは振動に応じて固定電極51Pに近づいたり固定電極51Pから遠ざかったりするので、可変容量CPの静電容量は増加と減少を交互に繰り返すことになる。したがって、振動センサ51の一方の差動出力端子から出力される検知信号BPは、図8(A) に示すように増加と減少を交互に繰り返す信号となる。同様に、振動センサ51の他方の差動出力端子から出力される検知信号BNも、図8(B) に示すように増加と減少を交互に繰り返す信号となる。上記のとおり、可変容量CP,CNの静電容量は差動で変化するので、検知信号BPとBNの位相は 180°異なる。   When vibration is applied to the sensor node 50 at time T0, the capacitances of the two variable capacitors CP and CN of the vibration sensor 51 change in a differential manner. At this time, the movable electrode 51M of the variable capacitor CP approaches the fixed electrode 51P or moves away from the fixed electrode 51P in response to the vibration, so that the capacitance of the variable capacitor CP repeats increasing and decreasing alternately. Therefore, the detection signal BP output from one differential output terminal of the vibration sensor 51 is a signal that alternately repeats increasing and decreasing as shown in FIG. Similarly, the detection signal BN output from the other differential output terminal of the vibration sensor 51 is a signal that alternately repeats increasing and decreasing as shown in FIG. As described above, since the capacitances of the variable capacitors CP and CN change differentially, the phases of the detection signals BP and BN differ by 180 °.

検知信号BPがHighで検知信号BNがLowのとき、ダイオードD1およびダイオードD3はオフ状態となり、検知信号BPがLowで検知信号BNがHighのとき、ダイオードD1およびダイオードD3はオン状態となる。一方、検知信号BPがHighで検知信号BNがLowのときダイオードD2はオン状態となり、検知信号BPがLowで検知信号BNがHighのときダイオードD2はオフ状態となる。このように、検知信号BP,BNによりダイオードD1とダイオードD3の組と、ダイオードD2とが交互にオン状態を繰り返し、容量素子C1に徐々に電荷が蓄積され、センサ回路部52の出力信号SOの電圧が上昇する(図8(C) )。   When the detection signal BP is High and the detection signal BN is Low, the diode D1 and the diode D3 are turned off. When the detection signal BP is Low and the detection signal BN is High, the diode D1 and the diode D3 are turned on. On the other hand, when the detection signal BP is High and the detection signal BN is Low, the diode D2 is turned on, and when the detection signal BP is Low and the detection signal BN is High, the diode D2 is turned off. In this manner, the pair of the diode D1 and the diode D3 and the diode D2 are alternately turned on by the detection signals BP and BN, and electric charges are gradually accumulated in the capacitive element C1, and the output signal SO of the sensor circuit unit 52 is The voltage rises (FIG. 8 (C)).

図5に示すセンサノード50のA/D変換部53は、センサ回路部52の出力信号SOを閾値処理し、図8(D) に示すような制御信号を出力する。図8(C) 、図8(D) の例では、時刻T0からΔT1後の時刻T1においてセンサ回路部52の出力信号SOが閾値以上となるので、A/D変換部53から出力される制御信号がHighとなる。   The A / D converter 53 of the sensor node 50 shown in FIG. 5 performs threshold processing on the output signal SO of the sensor circuit 52 and outputs a control signal as shown in FIG. In the example of FIGS. 8C and 8D, the output signal SO of the sensor circuit unit 52 becomes equal to or greater than the threshold at time T1 after ΔT1 from time T0, so that the control output from the A / D conversion unit 53 is performed. The signal becomes High.

以上のように、振動センサ51の出力に応じて、ダイオードD1とダイオードD3の組と、ダイオードD2とが交互にオン状態を繰り返すようにすることで、電源電位VDDから接地電位に流れる直流電流をダイオードのリーク電流程度(サブマイクロアンペア以下)に低減することができる。したがって、このような振動センサ51およびセンサ回路部52を用いれば、振動センサ51およびセンサ回路部52を搭載するセンサノード50の消費電力をナノワットレベルの極限まで低減することができる。   As described above, the pair of the diode D1 and the diode D3 and the diode D2 are alternately turned on according to the output of the vibration sensor 51, so that the direct current flowing from the power supply potential VDD to the ground potential can be reduced. The leakage current can be reduced to about the diode leakage current (sub-microamperes or less). Therefore, if such a vibration sensor 51 and sensor circuit unit 52 are used, the power consumption of the sensor node 50 on which the vibration sensor 51 and sensor circuit unit 52 are mounted can be reduced to the nanowatt level limit.

特開2010−281761号公報JP 2010-281761 A 特開2011−160612号公報JP 2011-160612 A

振動センサ51は、図6に示すように、可動電極51Mが固定電極51P,51N間で振動する構成である。ここで、可動電極51Mはバネを介して支柱に接続され、固定電極51P,51Nとの間に振動に依存した容量変化が生じる。図7のセンサ回路部52を用いて振動を検出する場合、可動電極51Mと固定電極51P,51Nからなる可動構造体に生じる容量変化は、 100フェムトファラッド以上を確保する必要がある。   As shown in FIG. 6, the vibration sensor 51 is configured such that the movable electrode 51M vibrates between the fixed electrodes 51P and 51N. Here, the movable electrode 51M is connected to the support via a spring, and a capacitance change depending on vibration occurs between the fixed electrodes 51P and 51N. When vibration is detected using the sensor circuit unit 52 of FIG. 7, it is necessary to secure 100 femtofarads or more for the capacitance change generated in the movable structure including the movable electrode 51M and the fixed electrodes 51P and 51N.

ここで、可動電極51Mの大きさをミリメートルレベルとし、可動電極51Mと固定電極51P,51Nの最少となる距離が10μmと仮定すると、振動の大きさに対して 100フェムトファラッド以上の容量変化を確保するためには、可動構造体の厚さを数 100μm以上にする必要がある。しかし、可動構造体をメッキプロセスで形成する場合、厚さを確保するのに莫大な処理時間(例えば 100時間以上)を必要とし、製造コストが上昇する問題があった。   Here, assuming that the size of the movable electrode 51M is a millimeter level and the minimum distance between the movable electrode 51M and the fixed electrodes 51P and 51N is 10 μm, a capacitance change of 100 femtofarads or more is secured with respect to the magnitude of vibration. In order to achieve this, the thickness of the movable structure needs to be several hundred μm or more. However, when the movable structure is formed by a plating process, a huge processing time (for example, 100 hours or more) is required to secure the thickness, which raises a problem of an increase in manufacturing cost.

本発明は、可動構造体を厚くすることなく、振動により可動構造体に生じる容量変化を 100フェムトファラッド以上に大きくすることができる振動センサを提供することを目的とする。   An object of the present invention is to provide a vibration sensor that can increase the capacitance change caused by vibration to 100 femtofarads or more without increasing the thickness of the movable structure.

本発明の振動センサは、支持基板上に形成された複数の帯状の電極からなる固定電極と、支持基板に支柱とバネを介して支持され、固定電極の帯状の電極と対向する複数の電極からなる可動電極とを備え、外部からの振動に応じて可動電極が固定電極の面内方向に可動し、固定電極と可動電極の交差面積の変位により静電容量が変位する構成であり、固定電極の複数の帯状の電極が交互に電気的に接続され、2つの差動出力としてセンサ回路部に接続される構成である。   The vibration sensor according to the present invention includes a fixed electrode formed of a plurality of strip-shaped electrodes formed on a support substrate, and a plurality of electrodes that are supported on the support substrate via struts and springs and that are opposed to the strip-shaped electrodes of the fixed electrode. The movable electrode is movable in the in-plane direction of the fixed electrode in response to external vibration, and the capacitance is displaced by the displacement of the crossing area of the fixed electrode and the movable electrode. The plurality of strip-like electrodes are electrically connected alternately and connected to the sensor circuit unit as two differential outputs.

本発明の振動センサにおいて、可動電極は、固定電極の配列方向と直角に少なくとも1組のバネと支柱で支持基板に支持される構成である。   In the vibration sensor of the present invention, the movable electrode is configured to be supported on the support substrate by at least one pair of springs and support columns perpendicular to the arrangement direction of the fixed electrodes.

本発明の振動センサにおいて、可動電極は、固定電極の配列方向と直角に1組のバネと支柱で支持基板に支持される構成であり、固定電極の複数の帯状の電極は、可動電極が支柱を起点に円弧状に可動する軌跡に沿って配置される。   In the vibration sensor of the present invention, the movable electrode is configured to be supported on the support substrate by a pair of springs and support columns perpendicular to the arrangement direction of the fixed electrodes. Is arranged along a trajectory that moves in a circular arc shape.

本発明の振動センサにおいて、バネは、幅に対して支持基板の垂直方向の高さを大きくした構成である。   In the vibration sensor of the present invention, the spring has a configuration in which the height of the support substrate in the vertical direction is increased with respect to the width.

以上説明したように、本発明の振動センサを用いれば、固定電極と可動電極を対向させ、近接させて可動できるようにしたので、可動構造体を厚くしなくても、可動構造体に生じる容量変化を 100フェムトファラッド以上にすることができる。したがって、振動センサのサイズを小さくした上で製造コストの上昇を抑制することができる。   As described above, if the vibration sensor of the present invention is used, the fixed electrode and the movable electrode are made to face each other and move close to each other, so that the capacitance generated in the movable structure can be achieved without increasing the thickness of the movable structure. Changes can be over 100 femtofarads. Therefore, an increase in manufacturing cost can be suppressed while reducing the size of the vibration sensor.

また、本発明の振動センサを用いることで、振動検知の機能を備えるセンサノードのサイズをサブセンチメートル以下に小型化することができる。そのため、センサノードの小型化が達成され、いままでサイズの制約で埋め込むことができなかった物や人の部分にも埋め込むことができる。   In addition, by using the vibration sensor of the present invention, the size of a sensor node having a vibration detection function can be reduced to a sub-centimeter or less. Therefore, downsizing of the sensor node is achieved, and the sensor node can be embedded in a part of a person or a person that could not be embedded due to size restrictions.

本発明の振動センサの実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of the vibration sensor of this invention. 本発明の振動センサの実施例1の回路構成例を示す図である。It is a figure which shows the circuit structural example of Example 1 of the vibration sensor of this invention. 本発明の振動センサの実施例2の構成を示す図である。It is a figure which shows the structure of Example 2 of the vibration sensor of this invention. 実施例2の振動センサに用いられるバネ4の立体構成例を示す図である。It is a figure which shows the three-dimensional structural example of the spring 4 used for the vibration sensor of Example 2. FIG. 振動検知を行うセンサノードシステムの構成例を示す図である。It is a figure which shows the structural example of the sensor node system which performs a vibration detection. 従来の振動センサ51の構成例を示す図である。It is a figure which shows the structural example of the conventional vibration sensor 51. FIG. 従来のセンサ回路52の構成例を示す図である。It is a figure which shows the structural example of the conventional sensor circuit. センサ回路52およびセンサノード50の動作例を示す図である。FIG. 6 is a diagram illustrating an operation example of a sensor circuit 52 and a sensor node 50.

図1は、本発明の振動センサの実施例1の構成を示す。
図1において、実施例1の振動センサは、支持基板(図示せず)にパターンニングした複数の帯状の電極からなる固定電極1と、支持基板に支柱3とバネ4を介して支持された可動電極2により構成される。
FIG. 1 shows a configuration of a vibration sensor according to a first embodiment of the present invention.
In FIG. 1, the vibration sensor of Example 1 is a movable electrode supported by a support substrate via a support 3 and a spring 4, and a fixed electrode 1 composed of a plurality of strip electrodes patterned on a support substrate (not shown). It is constituted by the electrode 2.

可動電極2は、図1(A) に静止時の状態として示すように、固定電極1の複数の帯状の電極と1つおきに対向する複数の帯状の電極が電気的に一体構造になっている。可動電極2は、ここでは4組の支柱3とバネ4で支持されて固定電極1と平行に配置され、可動電極2の振動によってバネ4が撓み、固定電極1の面内方向(紙面左右方向)に可動するようになっている。すなわち、可動電極2の4隅に、振動方向と直角に4本のバネ4が2本ずつ対向する位置に取り付けられる。バネ4は、対向する位置に2本または6本以上であってもよい。図1(B) は振動により可動電極2の位置が変位した状態を示す。このような構成により、固定電極1と可動電極2の交差面積の変化に応じてその間の静電容量が変化する。   As shown in FIG. 1 (A) as a stationary state, the movable electrode 2 has a plurality of strip-like electrodes of the fixed electrode 1 and every other strip-like electrode opposed to each other in an electrically integrated structure. Yes. Here, the movable electrode 2 is supported by four sets of support columns 3 and springs 4 and is arranged in parallel with the fixed electrode 1. The spring 4 is deflected by the vibration of the movable electrode 2, and the in-plane direction of the fixed electrode 1 (the left-right direction in the drawing) ) To move. That is, the four springs 4 are attached to the four corners of the movable electrode 2 at a position opposed to the four springs 4 at right angles to the vibration direction. Two or more springs 4 may be provided at opposing positions. FIG. 1B shows a state in which the position of the movable electrode 2 is displaced by vibration. With this configuration, the capacitance between the fixed electrode 1 and the movable electrode 2 changes according to the change in the crossing area.

図2は、本発明の振動センサの実施例1の回路構成例を示す。
図2において、固定電極1の複数の帯状の電極は交互に電気的に接続され、2つの差動出力端子を介して図7に示す構成と同様のセンサ回路部52に接続される。センサ回路部52は、電源VDDと出力端子OUTとの間に縦続に接続されたダイオードD1,D2,D3と、容量素子C1と、初期化時に出力端子OUTの電圧を接地電位にする初期化スイッチSWを備え、振動センサの2つの差動出力端子はダイオードD2のアノードとカソードに接続される。可動電極2の複数の帯状の電極は電気的に接続され、図1に示す支柱3およびバネ4を介して接地される。センサ回路52の動作は、図7および図8を用いて説明した従来回路と同様である。
FIG. 2 shows a circuit configuration example of the first embodiment of the vibration sensor of the present invention.
In FIG. 2, the plurality of strip-shaped electrodes of the fixed electrode 1 are electrically connected alternately, and are connected to a sensor circuit unit 52 having the same configuration as that shown in FIG. 7 via two differential output terminals. The sensor circuit unit 52 includes diodes D1, D2, and D3 connected in cascade between the power supply VDD and the output terminal OUT, a capacitor C1, and an initialization switch that sets the voltage of the output terminal OUT to the ground potential at the time of initialization. SW includes two differential output terminals of the vibration sensor connected to the anode and the cathode of the diode D2. The plurality of strip-like electrodes of the movable electrode 2 are electrically connected and grounded via the support column 3 and the spring 4 shown in FIG. The operation of the sensor circuit 52 is the same as that of the conventional circuit described with reference to FIGS.

本構成により、固定電極1と可動電極2を厚くすることなく、振動により生じる容量変化を 100フェムトファラッド以上に大きくすることができる。   With this configuration, the capacitance change caused by vibration can be increased to 100 femtofarads or more without increasing the thickness of the fixed electrode 1 and the movable electrode 2.

図3は、本発明の振動センサの実施例2の構成を示す。
図3において、実施例2の振動センサは、支持基板(図示せず)にパターンニングした複数の帯状の電極からなる固定電極1と、支持基板に支柱3と1本のバネ4を介して支持された可動電極2により構成される。
FIG. 3 shows a configuration of a vibration sensor according to a second embodiment of the present invention.
In FIG. 3, the vibration sensor of Example 2 is supported by a fixed electrode 1 composed of a plurality of strip-like electrodes patterned on a support substrate (not shown), and a support substrate 3 via a column 3 and a single spring 4. It is comprised by the movable electrode 2 made.

可動電極2は、固定電極1の複数の帯状の電極と1つおきに対向する複数の帯状の電極が電気的に一体構造になっているが、ここでは切欠き部に結合された1本のバネ4と支柱3を介して支持基板に支持される。可動電極2の振動によってバネ4が撓み、支柱3を起点に可動電極2が円弧方向にかつ固定電極1の面内方向で可動するようになっている。   In the movable electrode 2, a plurality of strip-shaped electrodes opposed to every other strip-shaped electrode of the fixed electrode 1 have an electrically integrated structure. Here, one movable electrode 2 coupled to the notch is used. It is supported on the support substrate via the spring 4 and the column 3. The spring 4 is bent by the vibration of the movable electrode 2, and the movable electrode 2 is movable in the arc direction and in the in-plane direction of the fixed electrode 1 starting from the column 3.

図4は、実施例2の振動センサに用いられるバネ4の立体構成例を示す。
図4において、支持基板を水平面とした場合に、バネ幅Wに対してバネ高さTを大きくする。これにより、可動電極2の垂直方向の変位を抑制することができ、可動電極2と固定電極1を近接させることができる。なお、本バネ4を実施例1の振動センサに用いることにより、実施例1の振動センサにおいても可動電極2と固定電極1を近接させることができる。
FIG. 4 shows a three-dimensional configuration example of the spring 4 used in the vibration sensor of the second embodiment.
In FIG. 4, when the support substrate is a horizontal plane, the spring height T is increased with respect to the spring width W. Thereby, the displacement of the movable electrode 2 in the vertical direction can be suppressed, and the movable electrode 2 and the fixed electrode 1 can be brought close to each other. By using the spring 4 for the vibration sensor of the first embodiment, the movable electrode 2 and the fixed electrode 1 can be brought close to each other in the vibration sensor of the first embodiment.

実施例2の振動センサは、実施例1と比べて、可動電極2が1本のバネ4で支持される構成であるので、振動センサ全体のバネ定数を小さくすることができ、共振周波数を下げることができる。一般に、環境に生じる振動の周波数は 100Hz程度であり、実施例2の振動センサを用いることにより、環境に生じる振動の多くを検出できるようになる。   Since the vibration sensor of the second embodiment has a configuration in which the movable electrode 2 is supported by one spring 4 as compared with the first embodiment, the spring constant of the entire vibration sensor can be reduced and the resonance frequency is lowered. be able to. In general, the frequency of vibration generated in the environment is about 100 Hz. By using the vibration sensor of the second embodiment, most of vibration generated in the environment can be detected.

実施例2の可動電極2は、支柱3を起点に円弧方向に振動するが、その振動軌跡に合せて固定電極1を円弧状に配置してもよい。これにより、固定電極1と可動電極2の交差面積の変化量を大きくすることができ、当該振動センサに生じる容量変化を大きくすることができる。   The movable electrode 2 of the second embodiment vibrates in the arc direction starting from the support column 3, but the fixed electrode 1 may be arranged in an arc shape in accordance with the vibration locus. Thereby, the change amount of the crossing area of the fixed electrode 1 and the movable electrode 2 can be increased, and the capacitance change generated in the vibration sensor can be increased.

実施例1〜実施例3の振動センサを図5に示す振動センサ51として用い、当該振動センサ51とセンサ回路52を図2に示すように接続することにより、発電素子からの微小な電流を容量素子に充電したエネルギーで動作させることができるセンサノードを実現することができる。また、当該センサノードにおいて、振動検知に要する消費電力はサブナノワットレベルに低減できるので、センサノードの動作時間を増加させることができる。   The vibration sensor of the first to third embodiments is used as the vibration sensor 51 shown in FIG. 5, and the vibration sensor 51 and the sensor circuit 52 are connected as shown in FIG. A sensor node that can be operated with energy charged in the element can be realized. In the sensor node, the power consumption required for vibration detection can be reduced to the sub-nanowatt level, so that the operation time of the sensor node can be increased.

1 固定電極
2 可動電極
3 支柱
4 バネ
50 センサノード
51 振動センサ
52 センサ回路部
53 A/D変換部
54 制御部
55 メモリ部
56 無線部
57 電源部
60 受信装置
DESCRIPTION OF SYMBOLS 1 Fixed electrode 2 Movable electrode 3 Support | pillar 4 Spring 50 Sensor node 51 Vibration sensor 52 Sensor circuit part 53 A / D conversion part 54 Control part 55 Memory part 56 Radio | wireless part 57 Power supply part 60 Receiver

Claims (4)

支持基板上に形成された複数の帯状の電極からなる固定電極と、
前記支持基板に支柱とバネを介して支持され、前記固定電極の帯状の電極と対向する複数の電極からなる可動電極と
を備え、外部からの振動に応じて前記可動電極が前記固定電極の面内方向に可動し、前記固定電極と前記可動電極の交差面積の変位により静電容量が変位する構成であり、
前記固定電極の複数の帯状の電極が交互に電気的に接続され、2つの差動出力としてセンサ回路部に接続される構成である
ことを特徴とする振動センサ。
A fixed electrode comprising a plurality of strip-shaped electrodes formed on a support substrate;
A movable electrode comprising a plurality of electrodes that are supported by the support substrate via struts and springs and are opposed to the band-like electrode of the fixed electrode, and the movable electrode is arranged on the surface of the fixed electrode in response to vibration from the outside. It is movable inward, and the capacitance is displaced by the displacement of the crossing area of the fixed electrode and the movable electrode.
A vibration sensor characterized in that a plurality of strip-like electrodes of the fixed electrode are alternately electrically connected and connected to a sensor circuit unit as two differential outputs.
請求項1に記載の振動センサにおいて、
前記可動電極は、前記固定電極の配列方向と直角に少なくとも1組のバネと支柱で前記支持基板に支持される構成である
ことを特徴とする振動センサ。
The vibration sensor according to claim 1,
The movable sensor is configured to be supported on the support substrate by at least one pair of springs and support columns perpendicular to the arrangement direction of the fixed electrodes.
請求項1に記載の振動センサにおいて、
前記可動電極は、前記固定電極の配列方向と直角に1組のバネと支柱で前記支持基板に支持される構成であり、
前記固定電極の複数の帯状の電極は、前記可動電極が前記支柱を起点に円弧状に可動する軌跡に沿って配置される
ことを特徴とする振動センサ。
The vibration sensor according to claim 1,
The movable electrode is configured to be supported on the support substrate by a pair of springs and support columns perpendicular to the arrangement direction of the fixed electrodes.
The vibration sensor, wherein the plurality of strip-like electrodes of the fixed electrode are arranged along a trajectory in which the movable electrode moves in an arc shape starting from the support column.
請求項1に記載の振動センサにおいて、
前記バネは、幅に対して前記支持基板の垂直方向の高さを大きくした構成である
ことを特徴とする振動センサ。
The vibration sensor according to claim 1,
The vibration sensor is characterized in that the height of the support substrate in the vertical direction is larger than the width.
JP2011278522A 2011-12-20 2011-12-20 Vibration sensor Expired - Fee Related JP5718218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278522A JP5718218B2 (en) 2011-12-20 2011-12-20 Vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278522A JP5718218B2 (en) 2011-12-20 2011-12-20 Vibration sensor

Publications (2)

Publication Number Publication Date
JP2013130421A true JP2013130421A (en) 2013-07-04
JP5718218B2 JP5718218B2 (en) 2015-05-13

Family

ID=48908101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278522A Expired - Fee Related JP5718218B2 (en) 2011-12-20 2011-12-20 Vibration sensor

Country Status (1)

Country Link
JP (1) JP5718218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036969A (en) * 2015-08-07 2017-02-16 富士通株式会社 Electronic device and vibration detection sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302632A (en) * 2008-06-10 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Sensor node chip, sensor node system, and receiver
WO2010023766A1 (en) * 2008-09-01 2010-03-04 パイオニア株式会社 Displacement sensor
JP2011160612A (en) * 2010-02-03 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> Power generation sensor element and sensor node

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302632A (en) * 2008-06-10 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Sensor node chip, sensor node system, and receiver
WO2010023766A1 (en) * 2008-09-01 2010-03-04 パイオニア株式会社 Displacement sensor
JP2011160612A (en) * 2010-02-03 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> Power generation sensor element and sensor node

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036969A (en) * 2015-08-07 2017-02-16 富士通株式会社 Electronic device and vibration detection sensor

Also Published As

Publication number Publication date
JP5718218B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5284993B2 (en) Power generation sensor element and sensor node
JP6230137B2 (en) Vibration power generation element
Wang et al. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme
US8653717B2 (en) Vibration power generator, vibration power generating device, and electronic device and communication device having vibration power generating device mounted thereon
JP4663035B2 (en) Vibration power generator, vibration power generation device, and communication device equipped with vibration power generation device
Lee et al. Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect
US20180081467A1 (en) Pressure detection apparatus and intelligent terminal
US9664704B2 (en) Drive and compensation circuit for capacitive MEMs structures
US20150001991A1 (en) Method of energy harvesting using built-in potential difference of metal-to-metal junctions and device thereof
CN102959851B (en) Vibration power generator, vibration power generating device, and communication device and electric apparatus equipped with vibration power generating device
KR20150021850A (en) Micro electro mechanical systems am modulator and magnetic field sensor having the same
CN113423050B (en) MEMS system
JP5718218B2 (en) Vibration sensor
US11036026B2 (en) Apparatus and method controlling position of camera module with a single coil
CN103051754A (en) Mobile terminal and charging method
CN202512136U (en) Capacitive acceleration sensor
CN111879303B (en) Capacitive MEMS gyroscope and method for accelerating oscillation starting speed thereof
WO2018041077A1 (en) Fingerprint sensor and terminal device
JP5718217B2 (en) Vibration sensor node
KR101531100B1 (en) Microphone
JP5611934B2 (en) Sensor circuit
CN202257533U (en) Control circuit of touch panel
KR101776667B1 (en) Pressure detecting device using frame of a display module
US20200005010A1 (en) Cell structure and operation method for fingerprint sensor employing pseudo-direct scheme
KR20190080237A (en) Microphone of fet-response type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R150 Certificate of patent or registration of utility model

Ref document number: 5718218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees