JP2013129542A - Method for producing epitaxially grown thin film of metal organic material - Google Patents
Method for producing epitaxially grown thin film of metal organic material Download PDFInfo
- Publication number
- JP2013129542A JP2013129542A JP2011277860A JP2011277860A JP2013129542A JP 2013129542 A JP2013129542 A JP 2013129542A JP 2011277860 A JP2011277860 A JP 2011277860A JP 2011277860 A JP2011277860 A JP 2011277860A JP 2013129542 A JP2013129542 A JP 2013129542A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- vacuum
- metal
- combustion
- wafer substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 239000013212 metal-organic material Substances 0.000 title claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000002485 combustion reaction Methods 0.000 claims abstract description 17
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 238000000859 sublimation Methods 0.000 claims abstract description 8
- 230000008022 sublimation Effects 0.000 claims abstract description 8
- 238000000746 purification Methods 0.000 claims abstract description 4
- 238000000407 epitaxy Methods 0.000 claims description 26
- 239000002253 acid Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 12
- 229910002601 GaN Inorganic materials 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 claims description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 239000005416 organic matter Substances 0.000 claims description 2
- 229910000489 osmium tetroxide Inorganic materials 0.000 claims description 2
- 239000012285 osmium tetroxide Substances 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims 1
- 230000002378 acidificating effect Effects 0.000 abstract 4
- 235000012431 wafers Nutrition 0.000 description 20
- 238000000927 vapour-phase epitaxy Methods 0.000 description 6
- 230000005260 alpha ray Effects 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- -1 ethyl compound Chemical class 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000004943 liquid phase epitaxy Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003852 thin film production method Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明はエピタキシー法に関し、特にウエハ上に用いられ、均一な結晶体構造を形成する金属有機物のエピタキシー薄膜製造方法に関する。 The present invention relates to an epitaxy method, and more particularly to a method for producing an epitaxy thin film of a metal organic material that is used on a wafer and forms a uniform crystal structure.
現在、ウエハ上に用いられているエピタキシー薄膜製造方法は、製造プロセスの違いによりおおよそ、液晶エピタキシー法(Liquid Phase Epitaxy、LEP)、有機金属気相エピタキシー法(Metal-organic Chemical Vapor Deposition、MOCVD)、分子線エピタキシー法(Molecular Beam Epitaxy、MBE)に分けられる。
液晶エピタキシー法は、一般的な発光ダイオードに用いられる。分子線エピタキシー法は、極薄で、しかも純度が高く、平坦なエピタキシー薄膜を比較的容易に成長させることができるが、生産能力が低く、エピタキシー薄膜の成長速度が遅い。有機金属気相エピタキシー法は、分子線エピタキシー法同様、エピタキシー薄膜の純度が高く、平坦であるという特性を備える他に、生産能力が高く、エピタキシー薄膜の成長速度も分子線エピタキシー法より速いため、現在では多くのプロセスで、有機金属気相エピタキシー法が使用されている。
Currently, epitaxy thin film production methods used on wafers are roughly divided by liquid crystal epitaxy (Liquid Phase Epitaxy, LEP), metal organic vapor phase epitaxy (Metal-organic Chemical Vapor Deposition, MOCVD), It is divided into molecular beam epitaxy (MBE).
The liquid crystal epitaxy method is used for general light emitting diodes. In the molecular beam epitaxy method, a flat epitaxy thin film that is extremely thin and high in purity can be grown relatively easily, but the production capacity is low and the growth rate of the epitaxy thin film is slow. In addition to the high purity and flatness of the epitaxy thin film, as well as the molecular beam epitaxy method, the metalorganic vapor phase epitaxy method has high production capacity and the growth rate of the epitaxy thin film is faster than the molecular beam epitaxy method. Currently, metalorganic vapor phase epitaxy is used in many processes.
従来の有機金属気相エピタキシー法では、先ず、ガリウム砒素(GaAs)基板を成長炉に入れる。さらに、メチル或いはエチル化合物(III、II族金属元素のアルキル化合物)の蒸気と、水素化物或いはアルキル化物(非金属V、或いはVI族元素)ガスを注入する。次に、高温でサーモ反応(Thermo Solution)を発生させ、III-V、或いはII-VI族化合物を生成し、ガリウム砒素基板上に沈積させ、厚みがわずかに数ミクロン(1mm=1000ミクロン)の化合物を半導体のエピタキシャル層に成膜させる。該外延層を備えるガリウム砒素基板は、通常、エピタキシャルウエハと呼ばれる。これを、チップに加工し、通電すると、非常にピュアな赤色、黄色、青色などの単色を発する。 In the conventional metal organic vapor phase epitaxy method, first, a gallium arsenide (GaAs) substrate is placed in a growth furnace. Further, a vapor of a methyl or ethyl compound (group III or group II metal element alkyl compound) and a hydride or alkylated (nonmetal group V or group VI element) gas are injected. Next, a thermo reaction is generated at a high temperature to generate a III-V or II-VI group compound, which is deposited on a gallium arsenide substrate and has a thickness of only a few microns (1 mm = 1000 microns). The compound is deposited on a semiconductor epitaxial layer. The gallium arsenide substrate provided with the outer extension layer is usually called an epitaxial wafer. When this is processed into a chip and energized, a very pure single color such as red, yellow or blue is emitted.
しかし、従来の有機金属気相エピタキシー法では、均一なエピタキシー薄膜(III-V、或いはII-VI族化合物沈積)の過程において、製造プロセスパラメータのコントロールが容易でなく、しかも生成後のエピタキシー薄膜は、厚みの調整及び研磨などのチップ加工を必ず経なければならない。すなわち、従来の有機金属気相エピタキシー法は、温度、圧力、反応物の濃度などの管理に対して、反応物の種類と比率に従い、違ったパラメータ制御を行い、安定した状態で、成膜成分と結晶相などの品質の管理を維持しなければならない。しかも、エピタキシー薄膜の生成後は、エピタキシー薄膜の厚みを調整するため、数百ナノ(1ミクロン=1000ナノ)まで研磨加工しなければ、使用可能な、真に発光する厚みを達成することはできない。よって、製造プロセスに時間がかかり(一枚のエピタキシー薄膜成長に一週間)、結晶相の制御が容易でなく、歩留が低いため生産能力も非常に低くなり、しかも必要な設備が工場に占める面積も極めて大きいため、投入資金も莫大で、コストを引き下げ、生産効率を高めることができない。 However, in the conventional metal organic vapor phase epitaxy method, in the process of uniform epitaxy thin film (III-V or II-VI group compound deposition), it is not easy to control the manufacturing process parameters. In addition, chip processing such as thickness adjustment and polishing must be performed. In other words, the conventional metal organic vapor phase epitaxy method controls the temperature, pressure, concentration of reactants, etc. according to the types and ratios of reactants, controls different parameters, and stabilizes the deposition components. And the quality control of crystal phase etc. must be maintained. In addition, after the formation of the epitaxy thin film, the thickness of the epitaxy thin film is adjusted. Therefore, unless it is polished to several hundred nanometers (1 micron = 1000 nanometers), a usable true light emitting thickness cannot be achieved. . Therefore, the manufacturing process takes a long time (one week for the growth of one epitaxial thin film), the crystal phase is not easy to control, the yield is low, the production capacity is very low, and the necessary equipment occupies the factory. Since the area is extremely large, the amount of investment is enormous, making it impossible to reduce costs and increase production efficiency.
本発明の目的は、体積が小さい設備で、短時間に、ウエハ上に均一な結晶体構造を形成でき、歩留が高く、生産能力と品質を高めることができ、しかも設備面積とコストを効果的に低下させることができる金属有機物のエピタキシー薄膜製造方法を提供することである。 The object of the present invention is to form a uniform crystal structure on a wafer in a short time with equipment having a small volume, high yield, high production capacity and quality, and effective equipment area and cost. It is an object to provide a method of manufacturing an organic thin film of an organic metal substance that can be lowered.
上述目的を実現するために、本発明は下記の金属有機物のエピタキシー薄膜製造方法を提供する。
金属有機物のエピタキシー薄膜製造方法は、ウエハ基板とα線を予め設置する密閉空間内で、真空ステップ、燃焼ステップ、形成ステップを行い、
該真空ステップでは、該密閉空間を真空にし、超真空環境を維持し、
該燃焼ステップでは、該真空過程において、強酸物質を該密閉空間内に吸入し、該密閉空間に対して、高圧を加え、真空放電原理により、強酸物質を瞬間的に燃焼させ、瞬間化学温度は少なくとも1100度を達成し、
該形成ステップでは、該瞬間燃焼を一定時間持続させ、熱昇華により、該強酸物質を純化し、完全な気体とし、
これにより、該強酸物質は、超真空と高圧環境下で放電を始め、高圧電位差により、熱昇華純化により形成した気体の分子の電子と原子核を、ウエハ基板を通して、その内の電子を分け、結晶体を生じ質量を獲得し、順番に均一に、該ウエハ基板上に埋め入れられ、エピタキシー薄膜が形成される。
In order to achieve the above-mentioned object, the present invention provides the following method for producing an epitaxial thin film of a metal organic material.
In the method for producing an organic metal thin film, a vacuum step, a combustion step, and a formation step are performed in a sealed space in which a wafer substrate and α-rays are previously installed.
In the vacuum step, the sealed space is evacuated to maintain an ultra-vacuum environment,
In the combustion step, in the vacuum process, a strong acid substance is sucked into the sealed space, a high pressure is applied to the sealed space, and the strong acid substance is burned instantaneously according to a vacuum discharge principle. Achieve at least 1100 degrees,
In the forming step, the instantaneous combustion is continued for a certain time, and the strong acid substance is purified by thermal sublimation to form a complete gas,
As a result, the strong acid substance begins to discharge in an ultra-vacuum and high-pressure environment. Due to the high-voltage potential difference, electrons and nuclei of gas molecules formed by thermal sublimation purification are separated through the wafer substrate, and the crystals therein are separated. A body is created and gains mass and is sequentially and evenly embedded on the wafer substrate to form an epitaxy film.
本発明の金属有機物のエピタキシー薄膜製造方法は、体積が小さい設備で、短時間に、ウエハ上に均一な結晶体構造を形成でき、歩留が高く、生産能力と品質を高めることができ、しかも設備面積とコストを効果的に低下させることができる。 The method for producing a metal organic epitaxy thin film of the present invention is capable of forming a uniform crystal structure on a wafer in a short time with a small volume equipment, high yield, high production capacity and quality, and Equipment area and cost can be reduced effectively.
図1に示すように、本発明金属有機物のエピタキシー薄膜製造方法1は、密閉空間2内に、ウエハ基板3とα線4を予め設置する。
密閉空間2の体積は非常に小さく、一般の作業机上に置けるほどである。ウエハ基板3は、有機金属を採用する。例えば、酸化アルミニウム、窒化アルミニウム、砒化アルミニウム、窒化ガリウムなどのシリコン元素結晶棒である。本実施例では、2インチ窒化ガリウムのシリコン元素結晶棒を採用する。α線4は、2個のプラス電荷を帯び、他の物質と非常に容易に電離でき、負極を備えるウエハ基板3と相対させて設置する。密閉空間2内では、真空ステップ5、燃焼ステップ6、形成ステップ7を行い、エピタキシー薄膜を製造する。図1に合わせて図2に示すように、真空ステップ5では、密閉空間2を真空にし、マイナス2気圧8により、超真空環境を維持する。
As shown in FIG. 1, in the method 1 for producing a metal organic matter epitaxy thin film of the present invention, a
The volume of the sealed space 2 is very small and can be placed on a general work desk. The
燃焼ステップ6では、上記した真空過程において、強酸物質60を密閉空間2内に吸入する。強酸物質60は、四酸化オスミウム(OsO4)を採用する。その特性は、無色で、揮発性を備え、常温下で昇華し易い。密閉空間2に対して、14万ボルトの、10 mAの高圧を加え、真空放電原理により、強酸物質60(OsO4)を瞬間的に燃焼させ、瞬間化学温度は少なくとも1100度を達成する。
In the
形成ステップ7では、上記した瞬間燃焼を16秒持続させ(4インチのウエハを採用するなら、瞬間燃焼は30秒持続させる)、熱昇華により、強酸物質60(OsO4)を純化し、完全な気体とする。これにより、強酸物質60(OsO4)は、超真空と高圧環境下で放電を始め、高圧電位差により、熱昇華純化により形成した気体の分子の電子と原子核を、ウエハ基板3を通して、その内の電子を分ける。すなわち、超真空下で、α線4(正極)とウエハ基板3(負極)は、強酸物質60(OsO4)のオスミウム(Os)気体原子を解離させる。オスミウムイオン(Os +)が加速され衝突後、結晶体61を生じ質量を獲得し、順番に均一に、ウエハ基板上に埋め入れられ、エピタキシー薄膜が形成される。
In the formation step 7, the above-mentioned instantaneous combustion is continued for 16 seconds (if a 4-inch wafer is used, the instantaneous combustion is continued for 30 seconds), and the strong acid substance 60 (O s O 4 ) is purified by thermal sublimation, Complete gas. As a result, the strong acid substance 60 (O s O 4 ) starts to discharge in an ultra-vacuum and high-pressure environment, and the electrons and atomic nuclei of the gas molecules formed by thermal sublimation purification by the high-pressure potential difference are passed through the
上記したように、本発明の長所と達成される効果の、従来法との差異は、以下の通りである。
1.本発明は、超真空燃焼、放電により、エピタキシー薄膜をウエハ基板上に均一に埋め入れるため、成長方式によりゆっくりとエピタキシー薄膜を形成し、カッティング、研磨などの加工過程を必要とする従来法に比べ、製造プロセスにおいて明らかに優れている。
2.本発明に必要な設備は体積が小さいため、工場全体の面積を費やして設置する必要がある従来の設備に比べ、その差は極めて大きい。
3.本発明は、短時間内、均一な結晶体構造を形成することができ、短時間(2インチのウエハ1枚に16秒)でエピタキシー薄膜を完成させることができ、形成に一週間かかる従来法に比べ、飛躍的に効率を高めることができる。
4.本発明は製造プロセスにおいて、高圧真空放電により、α線4(正極)とウエハ基板3(負極)を均一に安定させ、ウエハ基板3電子を分け、製造プロセスの不良品率が低い(約30%)ため、不良品率が高い(約60%)従来の製造プロセスに比べ、製造効率を効果的に高めることができる。
As described above, the advantages of the present invention and the effects achieved are as follows.
1. In the present invention, the epitaxial thin film is uniformly embedded on the wafer substrate by ultra-vacuum combustion and electric discharge, so that the epitaxial thin film is slowly formed by the growth method and compared with the conventional method that requires processing processes such as cutting and polishing. Obviously better in the manufacturing process.
2. Since the equipment required for the present invention is small in volume, the difference is very large as compared with the conventional equipment that needs to be installed by consuming the whole area of the factory.
3. The present invention can form a uniform crystal structure within a short time, can complete an epitaxy thin film in a short time (16 seconds per 2 inch wafer), and takes a week to form. Compared with, efficiency can be dramatically improved.
Four. In the manufacturing process, the α ray 4 (positive electrode) and the wafer substrate 3 (negative electrode) are uniformly stabilized by high-pressure vacuum discharge in the manufacturing process, the
以上述べたことは、本発明の実施例にすぎず、本発明の実施の範囲を限定するものではなく、本発明の特許請求の範囲に基づきなし得る同等の変化と修飾は、いずれも本発明の権利のカバーする範囲内に属するものとする。 The above description is only an example of the present invention, and does not limit the scope of the present invention. Any equivalent changes and modifications that can be made based on the scope of the claims of the present invention are all described in the present invention. Shall belong to the scope covered by the rights.
1 金属有機物のエピタキシー薄膜製造方法
2 密閉空間
3 ウエハ基板
4 α線
5 真空ステップ
6 燃焼ステップ
7 形成ステップ
60 強酸物質
61 結晶体
8 マイナス2気圧
DESCRIPTION OF SYMBOLS 1 Epitaxy thin film manufacturing method of metal organic substance 2 Sealed
Claims (6)
前記真空ステップでは、前記密閉空間を真空にし、超真空環境を維持し、
前記燃焼ステップでは、前記真空過程において、強酸物質を前記密閉空間内に吸入し、前記密閉空間に対して、高圧を加え、真空放電原理により、強酸物質を瞬間的に燃焼させ、瞬間化学温度は少なくとも1100度を達成し、
前記形成ステップでは、前記瞬間燃焼を一定時間持続させ、熱昇華により、前記強酸物質を純化し、完全な気体とし、
これにより、前記強酸物質は、超真空と高圧環境下で放電を始め、高圧電位差により、熱昇華純化により形成した気体の分子の電子と原子核を、ウエハ基板を通して、その内の電子を分け、結晶体を生じ質量を獲得し、順番に均一に、前記ウエハ基板上に埋め入れられ、エピタキシー薄膜が形成されることを特徴とする金属有機物のエピタキシー薄膜製造方法。 In the method for producing an organic metal thin film, a vacuum step, a combustion step, and a formation step are performed in a sealed space in which a wafer substrate and α-rays are previously installed.
In the vacuum step, the sealed space is evacuated to maintain a super vacuum environment,
In the combustion step, in the vacuum process, a strong acid substance is sucked into the sealed space, a high pressure is applied to the sealed space, and the strong acid substance is instantaneously burned according to a vacuum discharge principle, and an instantaneous chemical temperature is Achieve at least 1100 degrees,
In the forming step, the instantaneous combustion is continued for a certain time, and the strong acid substance is purified by thermal sublimation to form a complete gas,
As a result, the strong acid substance begins to discharge in an ultra-vacuum and high-pressure environment, and due to the high-voltage potential difference, gas molecules electrons and nuclei formed by thermal sublimation purification are separated through the wafer substrate, and the crystals therein are separated. A method for producing an epitaxy thin film of a metal organic material, characterized in that a body is obtained, mass is obtained, and the wafer substrate is sequentially and uniformly embedded to form an epitaxy thin film.
例えば、酸化アルミニウム、窒化アルミニウム、砒化アルミニウム、窒化ガリウムなどのシリコン元素結晶棒であることを特徴とする、金属有機物のエピタキシー薄膜製造方法。 The method of manufacturing an organic thin film of an organic metal material according to claim 1, wherein the wafer substrate employs an organic metal,
For example, an epitaxial thin film manufacturing method of a metal organic material, which is a silicon element crystal rod such as aluminum oxide, aluminum nitride, aluminum arsenide, and gallium nitride.
前記ウエハが2インチなら、瞬間燃焼は16秒持続させ、
前記ウエハが4インチなら、瞬間燃焼は30秒持続させることを特徴とする、金属有機物のエピタキシー薄膜製造方法。 The method of manufacturing a metal organic matter epitaxy thin film according to claim 1, wherein a duration of instantaneous combustion in the forming step is determined according to a size of a wafer,
If the wafer is 2 inches, the instantaneous burn lasts 16 seconds,
If the wafer is 4 inches, the instantaneous burning is continued for 30 seconds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011277860A JP2013129542A (en) | 2011-12-20 | 2011-12-20 | Method for producing epitaxially grown thin film of metal organic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011277860A JP2013129542A (en) | 2011-12-20 | 2011-12-20 | Method for producing epitaxially grown thin film of metal organic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013129542A true JP2013129542A (en) | 2013-07-04 |
Family
ID=48907435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011277860A Pending JP2013129542A (en) | 2011-12-20 | 2011-12-20 | Method for producing epitaxially grown thin film of metal organic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013129542A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004087814A (en) * | 2002-08-27 | 2004-03-18 | Japan Science & Technology Corp | Method and apparatus for manufacturing integrated circuit device on oxide substrate |
-
2011
- 2011-12-20 JP JP2011277860A patent/JP2013129542A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004087814A (en) * | 2002-08-27 | 2004-03-18 | Japan Science & Technology Corp | Method and apparatus for manufacturing integrated circuit device on oxide substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6692568B2 (en) | Method and apparatus for producing MIIIN columns and MIIIN materials grown thereon | |
US7723154B1 (en) | Methods of forming zinc oxide based II-VI compound semiconductor layers with shallow acceptor conductivities | |
US20080152903A1 (en) | System and Process for High-Density, Low-Energy Plasma Enhanced Vapor Phase Epitaxy | |
JP6450675B2 (en) | Method for forming a multilayer substrate structure | |
US10358742B2 (en) | Ga2O3-based crystal film, and crystal multilayer structure | |
CN107492490B (en) | Film forming method for semiconductor device, film forming method for aluminum nitride, and electronic apparatus | |
JP7319227B2 (en) | BASE SUBSTRATE FOR III-V COMPOUND CRYSTAL AND METHOD FOR MANUFACTURING THE SAME | |
JP2020050963A (en) | Gallium nitride based film and method for producing the same | |
KR102657362B1 (en) | Systems and methods for increasing group III nitride semiconductor growth rates and reducing ion flux damage | |
US20170365466A1 (en) | Film forming method and aluminum nitride film forming method for semiconductor apparatus | |
CN117690780B (en) | Method for preparing aluminum nitride single crystal composite substrate | |
JP2013129542A (en) | Method for producing epitaxially grown thin film of metal organic material | |
TW201312788A (en) | Gas phase growth method and method for producing substrate for light-emitting element | |
CN110295348A (en) | It is a kind of that HfO is prepared using Pulsed laser molecular beam epitaxy2The method of film | |
US20230039342A1 (en) | Heteroepitaxial growth method of compound semiconductor materials on multi-oriented semiconductor substrates and devices | |
TWI556285B (en) | Method for epitaxial growing germanium film on silicon substrate | |
JP6609764B2 (en) | Method for producing p-type zinc oxide film | |
TW201323648A (en) | Metal organic epitaxial film manufacturing method | |
CN103276443B (en) | A kind of apparatus and method preparing crystalline epitaxial film fast | |
JPS5957997A (en) | Manufacture of film of gallium nitride single crystal | |
JP2007049032A (en) | Oxide crystal growth apparatus and manufacturing method using the same | |
Jha et al. | Electrical properties of dc sputtered InAs thin films | |
TW202430673A (en) | Deposition of aln on a silicon substrate and gan semiconductor transition layer structure | |
WO2016058369A1 (en) | Method for manufacturing nitride light emitting diode | |
CN103147069A (en) | Manufacturing method for metalorganic epitaxial thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140128 |