JP2013129542A - Method for producing epitaxially grown thin film of metal organic material - Google Patents

Method for producing epitaxially grown thin film of metal organic material Download PDF

Info

Publication number
JP2013129542A
JP2013129542A JP2011277860A JP2011277860A JP2013129542A JP 2013129542 A JP2013129542 A JP 2013129542A JP 2011277860 A JP2011277860 A JP 2011277860A JP 2011277860 A JP2011277860 A JP 2011277860A JP 2013129542 A JP2013129542 A JP 2013129542A
Authority
JP
Japan
Prior art keywords
thin film
vacuum
metal
combustion
wafer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011277860A
Other languages
Japanese (ja)
Inventor
Yi-Cai Zhou
義才 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011277860A priority Critical patent/JP2013129542A/en
Publication of JP2013129542A publication Critical patent/JP2013129542A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an epitaxially grown thin film of a metal-organic material whereby a uniform crystalline structure is formed on a wafer.SOLUTION: The method 1 for forming an epitaxially grown thin film includes performing a vacuum step, a combustion step, and a formation step in a closed space 2 in which a wafer substrate 3 and alpha rays 4 are previously set, wherein the vacuum step comprises evacuating the closed space 2 to maintain it in an ultra-high vacuum environment, the combustion step comprises sucking a strongly acidic substance 60 into the closed space 2 in the evacuation course to apply a high pressure to the closed space 2 to instantaneously combust the strongly acidic substance 60 by the principle of vacuum discharge and to thereby generate an instantaneous chemical temperature of at least 1,100 degrees, and the formation step comprises allowing the instantaneous combustion to continue for a definite period of time to purify the strongly acidic substance 60 by thermal sublimation into a perfect gas, whereupon the strongly acidic substance 60 begins discharge by the use of the high potential difference, and whereupon the electrons and nuclei of molecules of the gas formed by the thermal sublimation purification are passed through the wafer substrate 3 to separate the electrons among them to yield a crystalline body 61 to gain mass and the nuclei are in turn and uniformly embedded in the wafer substrate 3 to form an epitaxially grown thin film.

Description

本発明はエピタキシー法に関し、特にウエハ上に用いられ、均一な結晶体構造を形成する金属有機物のエピタキシー薄膜製造方法に関する。   The present invention relates to an epitaxy method, and more particularly to a method for producing an epitaxy thin film of a metal organic material that is used on a wafer and forms a uniform crystal structure.

現在、ウエハ上に用いられているエピタキシー薄膜製造方法は、製造プロセスの違いによりおおよそ、液晶エピタキシー法(Liquid Phase Epitaxy、LEP)、有機金属気相エピタキシー法(Metal-organic Chemical Vapor Deposition、MOCVD)、分子線エピタキシー法(Molecular Beam Epitaxy、MBE)に分けられる。
液晶エピタキシー法は、一般的な発光ダイオードに用いられる。分子線エピタキシー法は、極薄で、しかも純度が高く、平坦なエピタキシー薄膜を比較的容易に成長させることができるが、生産能力が低く、エピタキシー薄膜の成長速度が遅い。有機金属気相エピタキシー法は、分子線エピタキシー法同様、エピタキシー薄膜の純度が高く、平坦であるという特性を備える他に、生産能力が高く、エピタキシー薄膜の成長速度も分子線エピタキシー法より速いため、現在では多くのプロセスで、有機金属気相エピタキシー法が使用されている。
Currently, epitaxy thin film production methods used on wafers are roughly divided by liquid crystal epitaxy (Liquid Phase Epitaxy, LEP), metal organic vapor phase epitaxy (Metal-organic Chemical Vapor Deposition, MOCVD), It is divided into molecular beam epitaxy (MBE).
The liquid crystal epitaxy method is used for general light emitting diodes. In the molecular beam epitaxy method, a flat epitaxy thin film that is extremely thin and high in purity can be grown relatively easily, but the production capacity is low and the growth rate of the epitaxy thin film is slow. In addition to the high purity and flatness of the epitaxy thin film, as well as the molecular beam epitaxy method, the metalorganic vapor phase epitaxy method has high production capacity and the growth rate of the epitaxy thin film is faster than the molecular beam epitaxy method. Currently, metalorganic vapor phase epitaxy is used in many processes.

従来の有機金属気相エピタキシー法では、先ず、ガリウム砒素(GaAs)基板を成長炉に入れる。さらに、メチル或いはエチル化合物(III、II族金属元素のアルキル化合物)の蒸気と、水素化物或いはアルキル化物(非金属V、或いはVI族元素)ガスを注入する。次に、高温でサーモ反応(Thermo Solution)を発生させ、III-V、或いはII-VI族化合物を生成し、ガリウム砒素基板上に沈積させ、厚みがわずかに数ミクロン(1mm=1000ミクロン)の化合物を半導体のエピタキシャル層に成膜させる。該外延層を備えるガリウム砒素基板は、通常、エピタキシャルウエハと呼ばれる。これを、チップに加工し、通電すると、非常にピュアな赤色、黄色、青色などの単色を発する。   In the conventional metal organic vapor phase epitaxy method, first, a gallium arsenide (GaAs) substrate is placed in a growth furnace. Further, a vapor of a methyl or ethyl compound (group III or group II metal element alkyl compound) and a hydride or alkylated (nonmetal group V or group VI element) gas are injected. Next, a thermo reaction is generated at a high temperature to generate a III-V or II-VI group compound, which is deposited on a gallium arsenide substrate and has a thickness of only a few microns (1 mm = 1000 microns). The compound is deposited on a semiconductor epitaxial layer. The gallium arsenide substrate provided with the outer extension layer is usually called an epitaxial wafer. When this is processed into a chip and energized, a very pure single color such as red, yellow or blue is emitted.

しかし、従来の有機金属気相エピタキシー法では、均一なエピタキシー薄膜(III-V、或いはII-VI族化合物沈積)の過程において、製造プロセスパラメータのコントロールが容易でなく、しかも生成後のエピタキシー薄膜は、厚みの調整及び研磨などのチップ加工を必ず経なければならない。すなわち、従来の有機金属気相エピタキシー法は、温度、圧力、反応物の濃度などの管理に対して、反応物の種類と比率に従い、違ったパラメータ制御を行い、安定した状態で、成膜成分と結晶相などの品質の管理を維持しなければならない。しかも、エピタキシー薄膜の生成後は、エピタキシー薄膜の厚みを調整するため、数百ナノ(1ミクロン=1000ナノ)まで研磨加工しなければ、使用可能な、真に発光する厚みを達成することはできない。よって、製造プロセスに時間がかかり(一枚のエピタキシー薄膜成長に一週間)、結晶相の制御が容易でなく、歩留が低いため生産能力も非常に低くなり、しかも必要な設備が工場に占める面積も極めて大きいため、投入資金も莫大で、コストを引き下げ、生産効率を高めることができない。   However, in the conventional metal organic vapor phase epitaxy method, in the process of uniform epitaxy thin film (III-V or II-VI group compound deposition), it is not easy to control the manufacturing process parameters. In addition, chip processing such as thickness adjustment and polishing must be performed. In other words, the conventional metal organic vapor phase epitaxy method controls the temperature, pressure, concentration of reactants, etc. according to the types and ratios of reactants, controls different parameters, and stabilizes the deposition components. And the quality control of crystal phase etc. must be maintained. In addition, after the formation of the epitaxy thin film, the thickness of the epitaxy thin film is adjusted. Therefore, unless it is polished to several hundred nanometers (1 micron = 1000 nanometers), a usable true light emitting thickness cannot be achieved. . Therefore, the manufacturing process takes a long time (one week for the growth of one epitaxial thin film), the crystal phase is not easy to control, the yield is low, the production capacity is very low, and the necessary equipment occupies the factory. Since the area is extremely large, the amount of investment is enormous, making it impossible to reduce costs and increase production efficiency.

本発明の目的は、体積が小さい設備で、短時間に、ウエハ上に均一な結晶体構造を形成でき、歩留が高く、生産能力と品質を高めることができ、しかも設備面積とコストを効果的に低下させることができる金属有機物のエピタキシー薄膜製造方法を提供することである。   The object of the present invention is to form a uniform crystal structure on a wafer in a short time with equipment having a small volume, high yield, high production capacity and quality, and effective equipment area and cost. It is an object to provide a method of manufacturing an organic thin film of an organic metal substance that can be lowered.

上述目的を実現するために、本発明は下記の金属有機物のエピタキシー薄膜製造方法を提供する。
金属有機物のエピタキシー薄膜製造方法は、ウエハ基板とα線を予め設置する密閉空間内で、真空ステップ、燃焼ステップ、形成ステップを行い、
該真空ステップでは、該密閉空間を真空にし、超真空環境を維持し、
該燃焼ステップでは、該真空過程において、強酸物質を該密閉空間内に吸入し、該密閉空間に対して、高圧を加え、真空放電原理により、強酸物質を瞬間的に燃焼させ、瞬間化学温度は少なくとも1100度を達成し、
該形成ステップでは、該瞬間燃焼を一定時間持続させ、熱昇華により、該強酸物質を純化し、完全な気体とし、
これにより、該強酸物質は、超真空と高圧環境下で放電を始め、高圧電位差により、熱昇華純化により形成した気体の分子の電子と原子核を、ウエハ基板を通して、その内の電子を分け、結晶体を生じ質量を獲得し、順番に均一に、該ウエハ基板上に埋め入れられ、エピタキシー薄膜が形成される。
In order to achieve the above-mentioned object, the present invention provides the following method for producing an epitaxial thin film of a metal organic material.
In the method for producing an organic metal thin film, a vacuum step, a combustion step, and a formation step are performed in a sealed space in which a wafer substrate and α-rays are previously installed.
In the vacuum step, the sealed space is evacuated to maintain an ultra-vacuum environment,
In the combustion step, in the vacuum process, a strong acid substance is sucked into the sealed space, a high pressure is applied to the sealed space, and the strong acid substance is burned instantaneously according to a vacuum discharge principle. Achieve at least 1100 degrees,
In the forming step, the instantaneous combustion is continued for a certain time, and the strong acid substance is purified by thermal sublimation to form a complete gas,
As a result, the strong acid substance begins to discharge in an ultra-vacuum and high-pressure environment. Due to the high-voltage potential difference, electrons and nuclei of gas molecules formed by thermal sublimation purification are separated through the wafer substrate, and the crystals therein are separated. A body is created and gains mass and is sequentially and evenly embedded on the wafer substrate to form an epitaxy film.

本発明の金属有機物のエピタキシー薄膜製造方法は、体積が小さい設備で、短時間に、ウエハ上に均一な結晶体構造を形成でき、歩留が高く、生産能力と品質を高めることができ、しかも設備面積とコストを効果的に低下させることができる。   The method for producing a metal organic epitaxy thin film of the present invention is capable of forming a uniform crystal structure on a wafer in a short time with a small volume equipment, high yield, high production capacity and quality, and Equipment area and cost can be reduced effectively.

本発明金属有機物のエピタキシー薄膜製造方法のブロックチャートである。It is a block chart of the epitaxy thin film manufacturing method of this invention metal organic substance. 本発明金属有機物のエピタキシー薄膜製造方法の実施例模式図である。It is an Example schematic diagram of the epitaxy thin film manufacturing method of this invention metal organic substance.

図1に示すように、本発明金属有機物のエピタキシー薄膜製造方法1は、密閉空間2内に、ウエハ基板3とα線4を予め設置する。
密閉空間2の体積は非常に小さく、一般の作業机上に置けるほどである。ウエハ基板3は、有機金属を採用する。例えば、酸化アルミニウム、窒化アルミニウム、砒化アルミニウム、窒化ガリウムなどのシリコン元素結晶棒である。本実施例では、2インチ窒化ガリウムのシリコン元素結晶棒を採用する。α線4は、2個のプラス電荷を帯び、他の物質と非常に容易に電離でき、負極を備えるウエハ基板3と相対させて設置する。密閉空間2内では、真空ステップ5、燃焼ステップ6、形成ステップ7を行い、エピタキシー薄膜を製造する。図1に合わせて図2に示すように、真空ステップ5では、密閉空間2を真空にし、マイナス2気圧8により、超真空環境を維持する。
As shown in FIG. 1, in the method 1 for producing a metal organic matter epitaxy thin film of the present invention, a wafer substrate 3 and α rays 4 are previously installed in a sealed space 2.
The volume of the sealed space 2 is very small and can be placed on a general work desk. The wafer substrate 3 employs an organic metal. For example, silicon element crystal rods such as aluminum oxide, aluminum nitride, aluminum arsenide, and gallium nitride. In this embodiment, a silicon element crystal rod of 2 inch gallium nitride is employed. The α-ray 4 has two positive charges, can be very easily ionized with other substances, and is placed opposite to the wafer substrate 3 having the negative electrode. In the sealed space 2, a vacuum step 5, a combustion step 6, and a formation step 7 are performed to manufacture an epitaxy thin film. As shown in FIG. 2 in accordance with FIG. 1, in the vacuum step 5, the sealed space 2 is evacuated and an ultra-vacuum environment is maintained by minus 2 atmospheric pressure 8.

燃焼ステップ6では、上記した真空過程において、強酸物質60を密閉空間2内に吸入する。強酸物質60は、四酸化オスミウム(OsO4)を採用する。その特性は、無色で、揮発性を備え、常温下で昇華し易い。密閉空間2に対して、14万ボルトの、10 mAの高圧を加え、真空放電原理により、強酸物質60(OsO4)を瞬間的に燃焼させ、瞬間化学温度は少なくとも1100度を達成する。 In the combustion step 6, the strong acid substance 60 is sucked into the sealed space 2 in the vacuum process described above. The strong acid material 60 employs osmium tetroxide (O s O 4 ). Its characteristics are colorless, volatile, and easy to sublime at room temperature. A high pressure of 10 mA, 140,000 volts, is applied to the enclosed space 2, and the strong acid substance 60 (O s O 4 ) is instantaneously combusted according to the vacuum discharge principle, and the instantaneous chemical temperature is at least 1100 degrees. .

形成ステップ7では、上記した瞬間燃焼を16秒持続させ(4インチのウエハを採用するなら、瞬間燃焼は30秒持続させる)、熱昇華により、強酸物質60(OsO4)を純化し、完全な気体とする。これにより、強酸物質60(OsO4)は、超真空と高圧環境下で放電を始め、高圧電位差により、熱昇華純化により形成した気体の分子の電子と原子核を、ウエハ基板3を通して、その内の電子を分ける。すなわち、超真空下で、α線4(正極)とウエハ基板3(負極)は、強酸物質60(OsO4)のオスミウム(Os)気体原子を解離させる。オスミウムイオン(Os +)が加速され衝突後、結晶体61を生じ質量を獲得し、順番に均一に、ウエハ基板上に埋め入れられ、エピタキシー薄膜が形成される。 In the formation step 7, the above-mentioned instantaneous combustion is continued for 16 seconds (if a 4-inch wafer is used, the instantaneous combustion is continued for 30 seconds), and the strong acid substance 60 (O s O 4 ) is purified by thermal sublimation, Complete gas. As a result, the strong acid substance 60 (O s O 4 ) starts to discharge in an ultra-vacuum and high-pressure environment, and the electrons and atomic nuclei of the gas molecules formed by thermal sublimation purification by the high-pressure potential difference are passed through the wafer substrate 3. Separate the electrons inside. In other words, the α-ray 4 (positive electrode) and the wafer substrate 3 (negative electrode) dissociate osmium (O s ) gas atoms of the strong acid substance 60 (O s O 4 ) under an ultra vacuum. After the osmium ions (O s + ) are accelerated and collided, a crystal 61 is generated to acquire mass, and are sequentially and uniformly embedded on the wafer substrate to form an epitaxy thin film.

上記したように、本発明の長所と達成される効果の、従来法との差異は、以下の通りである。
1.本発明は、超真空燃焼、放電により、エピタキシー薄膜をウエハ基板上に均一に埋め入れるため、成長方式によりゆっくりとエピタキシー薄膜を形成し、カッティング、研磨などの加工過程を必要とする従来法に比べ、製造プロセスにおいて明らかに優れている。
2.本発明に必要な設備は体積が小さいため、工場全体の面積を費やして設置する必要がある従来の設備に比べ、その差は極めて大きい。
3.本発明は、短時間内、均一な結晶体構造を形成することができ、短時間(2インチのウエハ1枚に16秒)でエピタキシー薄膜を完成させることができ、形成に一週間かかる従来法に比べ、飛躍的に効率を高めることができる。
4.本発明は製造プロセスにおいて、高圧真空放電により、α線4(正極)とウエハ基板3(負極)を均一に安定させ、ウエハ基板3電子を分け、製造プロセスの不良品率が低い(約30%)ため、不良品率が高い(約60%)従来の製造プロセスに比べ、製造効率を効果的に高めることができる。
As described above, the advantages of the present invention and the effects achieved are as follows.
1. In the present invention, the epitaxial thin film is uniformly embedded on the wafer substrate by ultra-vacuum combustion and electric discharge, so that the epitaxial thin film is slowly formed by the growth method and compared with the conventional method that requires processing processes such as cutting and polishing. Obviously better in the manufacturing process.
2. Since the equipment required for the present invention is small in volume, the difference is very large as compared with the conventional equipment that needs to be installed by consuming the whole area of the factory.
3. The present invention can form a uniform crystal structure within a short time, can complete an epitaxy thin film in a short time (16 seconds per 2 inch wafer), and takes a week to form. Compared with, efficiency can be dramatically improved.
Four. In the manufacturing process, the α ray 4 (positive electrode) and the wafer substrate 3 (negative electrode) are uniformly stabilized by high-pressure vacuum discharge in the manufacturing process, the wafer substrate 3 electrons are separated, and the defective rate of the manufacturing process is low (about 30%) Therefore, compared with the conventional manufacturing process with a high defective product rate (about 60%), the manufacturing efficiency can be effectively increased.

以上述べたことは、本発明の実施例にすぎず、本発明の実施の範囲を限定するものではなく、本発明の特許請求の範囲に基づきなし得る同等の変化と修飾は、いずれも本発明の権利のカバーする範囲内に属するものとする。   The above description is only an example of the present invention, and does not limit the scope of the present invention. Any equivalent changes and modifications that can be made based on the scope of the claims of the present invention are all described in the present invention. Shall belong to the scope covered by the rights.

1 金属有機物のエピタキシー薄膜製造方法
2 密閉空間
3 ウエハ基板
4 α線
5 真空ステップ
6 燃焼ステップ
7 形成ステップ
60 強酸物質
61 結晶体
8 マイナス2気圧
DESCRIPTION OF SYMBOLS 1 Epitaxy thin film manufacturing method of metal organic substance 2 Sealed space 3 Wafer substrate 4 Alpha ray 5 Vacuum step 6 Combustion step 7 Formation step 60 Strong acid substance 61 Crystalline 8 Minus 2 atmosphere

Claims (6)

金属有機物のエピタキシー薄膜製造方法は、ウエハ基板とα線を予め設置する密閉空間内で、真空ステップ、燃焼ステップ、形成ステップを行い、
前記真空ステップでは、前記密閉空間を真空にし、超真空環境を維持し、
前記燃焼ステップでは、前記真空過程において、強酸物質を前記密閉空間内に吸入し、前記密閉空間に対して、高圧を加え、真空放電原理により、強酸物質を瞬間的に燃焼させ、瞬間化学温度は少なくとも1100度を達成し、
前記形成ステップでは、前記瞬間燃焼を一定時間持続させ、熱昇華により、前記強酸物質を純化し、完全な気体とし、
これにより、前記強酸物質は、超真空と高圧環境下で放電を始め、高圧電位差により、熱昇華純化により形成した気体の分子の電子と原子核を、ウエハ基板を通して、その内の電子を分け、結晶体を生じ質量を獲得し、順番に均一に、前記ウエハ基板上に埋め入れられ、エピタキシー薄膜が形成されることを特徴とする金属有機物のエピタキシー薄膜製造方法。
In the method for producing an organic metal thin film, a vacuum step, a combustion step, and a formation step are performed in a sealed space in which a wafer substrate and α-rays are previously installed.
In the vacuum step, the sealed space is evacuated to maintain a super vacuum environment,
In the combustion step, in the vacuum process, a strong acid substance is sucked into the sealed space, a high pressure is applied to the sealed space, and the strong acid substance is instantaneously burned according to a vacuum discharge principle, and an instantaneous chemical temperature is Achieve at least 1100 degrees,
In the forming step, the instantaneous combustion is continued for a certain time, and the strong acid substance is purified by thermal sublimation to form a complete gas,
As a result, the strong acid substance begins to discharge in an ultra-vacuum and high-pressure environment, and due to the high-voltage potential difference, gas molecules electrons and nuclei formed by thermal sublimation purification are separated through the wafer substrate, and the crystals therein are separated. A method for producing an epitaxy thin film of a metal organic material, characterized in that a body is obtained, mass is obtained, and the wafer substrate is sequentially and uniformly embedded to form an epitaxy thin film.
請求項1記載の金属有機物のエピタキシー薄膜製造方法において、前記ウエハ基板は、有機金属を採用し、
例えば、酸化アルミニウム、窒化アルミニウム、砒化アルミニウム、窒化ガリウムなどのシリコン元素結晶棒であることを特徴とする、金属有機物のエピタキシー薄膜製造方法。
The method of manufacturing an organic thin film of an organic metal material according to claim 1, wherein the wafer substrate employs an organic metal,
For example, an epitaxial thin film manufacturing method of a metal organic material, which is a silicon element crystal rod such as aluminum oxide, aluminum nitride, aluminum arsenide, and gallium nitride.
請求項1記載の金属有機物のエピタキシー薄膜製造方法において、前記真空ステップの超真空環境は、マイナス2気圧であることを特徴とする、金属有機物のエピタキシー薄膜製造方法。   2. The method for producing an organic thin film of metal organic material according to claim 1, wherein an ultra-vacuum environment of the vacuum step is minus 2 atm. 請求項1記載の金属有機物のエピタキシー薄膜製造方法において、前記強酸物質は、四酸化オスミウム(OsO4)を採用することを特徴とする、金属有機物のエピタキシー薄膜製造方法。 In epitaxy thin film manufacturing method of the metal organic material according to claim 1, wherein the strong acid substance is characterized by employing the osmium tetroxide (O s O 4), epitaxy thin film manufacturing method of the metal-organic. 請求項1記載の金属有機物のエピタキシー薄膜製造方法において、前記燃焼ステップ中で加える高圧は、14万ボルト、10 mAであることを特徴とする、金属有機物のエピタキシー薄膜製造方法。   2. The method for producing an organic thin film of metal organic material according to claim 1, wherein the high pressure applied during the combustion step is 140,000 volts and 10 mA. 請求項1記載の金属有機物のエピタキシー薄膜製造方法において、前記形成ステップにおける瞬間燃焼の持続時間は、ウエハのサイズに応じて決め、
前記ウエハが2インチなら、瞬間燃焼は16秒持続させ、
前記ウエハが4インチなら、瞬間燃焼は30秒持続させることを特徴とする、金属有機物のエピタキシー薄膜製造方法。
The method of manufacturing a metal organic matter epitaxy thin film according to claim 1, wherein a duration of instantaneous combustion in the forming step is determined according to a size of a wafer,
If the wafer is 2 inches, the instantaneous burn lasts 16 seconds,
If the wafer is 4 inches, the instantaneous burning is continued for 30 seconds.
JP2011277860A 2011-12-20 2011-12-20 Method for producing epitaxially grown thin film of metal organic material Pending JP2013129542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277860A JP2013129542A (en) 2011-12-20 2011-12-20 Method for producing epitaxially grown thin film of metal organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277860A JP2013129542A (en) 2011-12-20 2011-12-20 Method for producing epitaxially grown thin film of metal organic material

Publications (1)

Publication Number Publication Date
JP2013129542A true JP2013129542A (en) 2013-07-04

Family

ID=48907435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277860A Pending JP2013129542A (en) 2011-12-20 2011-12-20 Method for producing epitaxially grown thin film of metal organic material

Country Status (1)

Country Link
JP (1) JP2013129542A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087814A (en) * 2002-08-27 2004-03-18 Japan Science & Technology Corp Method and apparatus for manufacturing integrated circuit device onto oxide substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087814A (en) * 2002-08-27 2004-03-18 Japan Science & Technology Corp Method and apparatus for manufacturing integrated circuit device onto oxide substrate

Similar Documents

Publication Publication Date Title
US6692568B2 (en) Method and apparatus for producing MIIIN columns and MIIIN materials grown thereon
US7723154B1 (en) Methods of forming zinc oxide based II-VI compound semiconductor layers with shallow acceptor conductivities
AU2006224282A1 (en) System and process for high-density,low-energy plasma enhanced vapor phase epitaxy
JP6450675B2 (en) Method for forming a multilayer substrate structure
CN107492490B (en) Film forming method for semiconductor device, film forming method for aluminum nitride, and electronic apparatus
US10358742B2 (en) Ga2O3-based crystal film, and crystal multilayer structure
JP2020050963A (en) Gallium nitride-based film and production method thereof
JP7319227B2 (en) BASE SUBSTRATE FOR III-V COMPOUND CRYSTAL AND METHOD FOR MANUFACTURING THE SAME
KR20090029271A (en) Method for producing zinc oxide semiconductor crystal
US7829376B1 (en) Methods of forming zinc oxide based II-VI compound semiconductor layers with shallow acceptor conductivities
US20170365466A1 (en) Film forming method and aluminum nitride film forming method for semiconductor apparatus
KR102657362B1 (en) Systems and methods for increasing group III nitride semiconductor growth rates and reducing ion flux damage
JP4780757B2 (en) Molecular beam epitaxy (MBE) growth apparatus for zinc oxide crystal and manufacturing method using the same
JP2013129542A (en) Method for producing epitaxially grown thin film of metal organic material
TWI556285B (en) Method for epitaxial growing germanium film on silicon substrate
TW201312788A (en) Vapor phase epitaxy method and light emitting element substrate manufacturing method
CN117690780B (en) Preparation method of aluminum nitride single crystal composite substrate
US11600496B2 (en) In-situ p-type activation of III-nitride films grown via metal organic chemical vapor deposition
JP2006140397A (en) Nitride-based compound semiconductor manufacturing apparatus
TW201323648A (en) Metal organic epitaxial film manufacturing method
CN103276443B (en) A kind of apparatus and method preparing crystalline epitaxial film fast
US20230039342A1 (en) Heteroepitaxial growth method of compound semiconductor materials on multi-oriented semiconductor substrates and devices
WO2015174517A1 (en) Method for manufacturing p-type zinc oxide film
WO2016058369A1 (en) Method for manufacturing nitride light emitting diode
Jha et al. Electrical properties of dc sputtered InAs thin films

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128