JP2013129064A - Method for manufacturing fiber-reinforced resin material - Google Patents

Method for manufacturing fiber-reinforced resin material Download PDF

Info

Publication number
JP2013129064A
JP2013129064A JP2011278164A JP2011278164A JP2013129064A JP 2013129064 A JP2013129064 A JP 2013129064A JP 2011278164 A JP2011278164 A JP 2011278164A JP 2011278164 A JP2011278164 A JP 2011278164A JP 2013129064 A JP2013129064 A JP 2013129064A
Authority
JP
Japan
Prior art keywords
fiber
resin material
continuous fiber
resin
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011278164A
Other languages
Japanese (ja)
Inventor
Takashi Kurose
隆 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011278164A priority Critical patent/JP2013129064A/en
Publication of JP2013129064A publication Critical patent/JP2013129064A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a fiber-reinforced resin material which can effectively prevent the displacement of a continuous fiber-reinforced resin material arranged in a cavity in its manufacturing process when is charged with a non-continuous fiber-reinforced resin material regarding the method for manufacturing the fiber-reinforced resin material obtained by reinforcing part of the non-continuous fiber resin member using the continuous fiber-reinforced material.SOLUTION: In the method for manufacturing the fiber-reinforced resin material J, a movable member 4 is provided to protrude to a side of a lower mold 2 of the cavity in an upper mold 1 including a molding die 10, the continuous fiber-reinforced material J1 is housed in the cavity so that a protruding material 5 is disposed on the continuous fiber-reinforced material and the protruding material 5 is positioned to a position corresponding to the movable member 4, and the protruding material 5 and the continuous fiber-reinforced material J1 are embedded in the non-continuous fiber-reinforced material J2' while securing a non-movable posture of the continuous fiber-reinforced material J1 via the protruding material 5 by the movable member 4 by charging and press-molding the melting non-continuous fiber resin material J2'.

Description

本発明は、連続繊維補強材にて非連続繊維樹脂材の一部が部分的に補強されてなる繊維強化樹脂材の製造方法に関するものである。   The present invention relates to a method for producing a fiber reinforced resin material in which a part of a discontinuous fiber resin material is partially reinforced with a continuous fiber reinforcing material.

樹脂に強化用繊維材が混入されてなる繊維強化樹脂材(繊維強化プラスチック(FRP))は、軽量かつ高強度であることから、自動車産業や建設産業、航空産業など、様々な産業分野で使用されている。   Fiber reinforced resin material (fiber reinforced plastic (FRP)), which is made by mixing a reinforcing fiber material with resin, is lightweight and strong, so it is used in various industrial fields such as the automobile industry, construction industry, and aviation industry. Has been.

たとえば自動車産業においては、ピラーやロッカー、床下フロアなどの車両の骨格構造部材や、ドアアウターパネルやフードなどの意匠性が要求される非構造部材に上記繊維強化樹脂材が適用され、車両の強度保証を図りながらその軽量化を実現し、低燃費で環境フレンドリーな車両を製造する試みがおこなわれている。   For example, in the automobile industry, the above-mentioned fiber reinforced resin material is applied to vehicle skeletal structural members such as pillars, lockers, and underfloor floors, and non-structural members such as door outer panels and hoods that require design properties. Attempts have been made to reduce weight while guaranteeing and to produce low fuel consumption and environmentally friendly vehicles.

上記する骨格構造部材においては、炭素繊維やガラス繊維等の繊維材であって、長さが50mm以上の連続繊維が一定の配向をもって形成されてなる連続繊維材で骨格構造部材の全部を製造しようとするとコスト増となることから、50mm未満の繊維長の長繊維やさらに繊維長の短い短繊維がたとえばランダムに配向してなる樹脂部材(非連続繊維樹脂材)に対し、その一部を連続繊維補強材で補強して骨格構造部材を製造する試みがおこなわれている。また、非構造部材にあっては、繊維材が含有されていない樹脂部材(非連続繊維樹脂材)に対して、必要に応じてその一部を連続繊維補強材で補強することがおこなわれている。なお、このように部分的に補強材を配置することで繊維強化樹脂材を補強する技術が特許文献1に開示されている。   In the skeletal structure member described above, all of the skeletal structure member is manufactured with a continuous fiber material that is a fiber material such as carbon fiber or glass fiber, and is formed of continuous fibers having a length of 50 mm or more with a certain orientation. As this increases costs, a portion of continuous fibers (non-continuous fiber resin material) in which long fibers with a fiber length of less than 50 mm and short fibers with a shorter fiber length are randomly oriented, for example, are continuous. Attempts have been made to manufacture skeletal structural members by reinforcing them with fiber reinforcing materials. Moreover, in the non-structural member, a part of the resin member (non-continuous fiber resin material) containing no fiber material is reinforced with a continuous fiber reinforcing material as necessary. Yes. In addition, the technique which reinforces a fiber reinforced resin material by arrange | positioning a reinforcing material partially in this way is disclosed by patent document 1. FIG.

非連続繊維樹脂材の一部を連続繊維補強材で補強してなる繊維強化樹脂材のこれまでの製造方法では、成形型内に連続繊維補強材を載置し、次いでたとえば熱可塑性樹脂からなる溶融樹脂をキャビティにチャージし、溶融樹脂が硬化することによって、硬化してなる非連続繊維樹脂材の一部が連続繊維補強材で補強されてなる繊維強化樹脂材が成形されているのが一般的である。   In the conventional manufacturing method of a fiber reinforced resin material obtained by reinforcing a part of a non-continuous fiber resin material with a continuous fiber reinforcing material, the continuous fiber reinforcing material is placed in a mold and then made of, for example, a thermoplastic resin. In general, a fiber reinforced resin material in which a part of a cured non-continuous fiber resin material is reinforced with a continuous fiber reinforcing material is formed by charging the molten resin into a cavity and curing the molten resin. Is.

この「チャージ」には、プレヒートされた溶融樹脂の塊をキャビティに収容する方法や、溶融樹脂を射出成形する方法、連続繊維補強材のほかに短繊維や長繊維等の繊維材をキャビティに収容しておき、溶融樹脂を注入するトランスファー成形などが含まれる。そして、溶融樹脂の塊をキャビティに収容する方法においては、次いで非連続繊維樹脂材と連続繊維補強材をプレス成形し、非連続繊維樹脂材の内部に連続繊維補強材を埋設させるステップが続くことになる。   In this "charge", a method of containing a preheated molten resin mass in a cavity, a method of injection molding of a molten resin, and a fiber material such as short fiber or long fiber in addition to continuous fiber reinforcement are contained in the cavity. In addition, transfer molding in which a molten resin is injected is included. And in the method of accommodating the lump of molten resin in the cavity, the step of press-molding the non-continuous fiber resin material and the continuous fiber reinforcement material and then embedding the continuous fiber reinforcement material inside the non-continuous fiber resin material continues. become.

しかしながら、成形型のキャビティに連続繊維補強材を配し、該キャビティに溶融した非連続繊維樹脂材をチャージした際に、チャージの際の圧力によって連続繊維補強材が位置ずれすることが問題となっている。たとえば、チャージとして軟化した非連続繊維樹脂材をキャビティに収容する方法を取り挙げると、次のステップである非連続繊維樹脂材と連続繊維補強材のプレス成形に当たり、このプレス成形の際の圧力でキャビティに位置決めされた連続繊維補強材が移動して位置ずれしてしまい、非連続繊維樹脂材の所望位置に連続繊維補強材を埋設できないという問題である。   However, when a continuous fiber reinforcing material is arranged in the cavity of the mold and the melted discontinuous fiber resin material is charged, the continuous fiber reinforcing material is displaced due to the pressure during charging. ing. For example, taking a method of accommodating a non-continuous fiber resin material softened as a charge in a cavity, in the next step of press molding of a non-continuous fiber resin material and a continuous fiber reinforcing material, This is a problem that the continuous fiber reinforcing material positioned in the cavity moves and is displaced, and the continuous fiber reinforcing material cannot be embedded at a desired position of the discontinuous fiber resin material.

特開平7−9589号公報Japanese Patent Laid-Open No. 7-9589

本発明は上記する問題に鑑みてなされたものであり、非連続繊維樹脂材の一部を連続繊維補強材で補強してなる繊維強化樹脂材の製造方法に関し、その製造過程でキャビティに配された連続繊維補強材が非連続繊維樹脂材のチャージの際に位置ずれすることを効果的に防止できる繊維強化樹脂材の製造方法を提供することを目的とする   The present invention has been made in view of the above-described problems, and relates to a method for manufacturing a fiber reinforced resin material obtained by reinforcing a part of a discontinuous fiber resin material with a continuous fiber reinforcing material, and is disposed in a cavity during the manufacturing process. It is an object of the present invention to provide a method for producing a fiber reinforced resin material that can effectively prevent displacement of the continuous fiber reinforcing material when the discontinuous fiber resin material is charged.

前記目的を達成すべく、本発明による繊維強化樹脂材の製造方法は、上型と下型から構成される成形型であって、該上型にはキャビティ内で下型側に突出自在に可動部材が設けてある成形型を用意し、連続繊維補強材の上に突起材を配した姿勢で、かつ該突起材が前記可動部材に対応する位置に位置合わせされた姿勢で成形型のキャビティに連続繊維補強材と突起材を収容し、さらに溶融した非連続繊維樹脂材を少なくとも突起材の上にチャージし、上型と下型を近接させてプレス成形し、この際に、可動部材と突起材が非連続繊維樹脂材を貫通して相互に当接され、突起材を介して連続繊維補強材の不動姿勢を可動部材にて保証しながらさらにプレス成形されることで非連続繊維樹脂材の内部に突起材と連続繊維補強材が埋設され、非連続繊維樹脂材が硬化して非連続繊維樹脂材の一部を連続繊維補強材が補強してなる繊維強化樹脂材を製造するものである。   In order to achieve the above object, the method for producing a fiber reinforced resin material according to the present invention is a mold composed of an upper mold and a lower mold, and the upper mold is movable in a cavity so as to be able to project to the lower mold side. A mold having a member is prepared, and a protrusion is disposed on the continuous fiber reinforcement, and the protrusion is aligned with the movable member in a position corresponding to the movable member. Contain continuous fiber reinforcing material and projection material, charge at least the molten non-continuous fiber resin material onto the projection material, press the upper mold and lower mold close to each other, and move the movable member and projection The material passes through the discontinuous fiber resin material and is brought into contact with each other, and is further press-molded while guaranteeing the fixed posture of the continuous fiber reinforcing material with the movable member via the projection material, thereby allowing the discontinuous fiber resin material to Protruding material and continuous fiber reinforcement are buried inside, discontinuous And Wei resin material is cured a portion of the non-continuous fiber resin material is continuous fiber reinforcement is to produce a fiber-reinforced resin material made reinforced.

本発明の繊維強化樹脂材の製造方法は、短繊維や長繊維などがランダムに配合された非連続繊維樹脂材の適所を部分的に連続繊維が配合された連続繊維補強材で補強して繊維強化樹脂材を製造する方法に関し、成形型のキャビティに配された連続繊維補強材が該キャビティにチャージされた非連続繊維樹脂材の圧力(より具体的には、プレス成形の際の圧力)にて移動するのを簡易な構成で解消し、もって非連続繊維樹脂材の所望位置に精度よく連続繊維補強材が埋設された繊維強化樹脂材を製造することのできる製造方法である。   The method for producing a fiber-reinforced resin material according to the present invention is a method of reinforcing a non-continuous fiber resin material in which short fibers or long fibers are randomly blended with a continuous fiber reinforcing material in which continuous fibers are partially blended, and fibers. Regarding a method for producing a reinforced resin material, the continuous fiber reinforcing material disposed in the cavity of the mold is subjected to the pressure of the non-continuous fiber resin material charged in the cavity (more specifically, the pressure during press molding). Therefore, it is possible to manufacture a fiber reinforced resin material in which a continuous fiber reinforcing material is accurately embedded at a desired position of the discontinuous fiber resin material.

ここで、「チャージ」とは、非連続繊維樹脂材の塊やシート(予備加熱による予備腑形体)をその一部が連続繊維補強材の上方に配された突起材と接する姿勢でキャビティに配することを意味しており、次いで、上型と下型を型閉めしてプレス成形することにより、プレス成形された非連続繊維樹脂材内に連続繊維補強材が埋設されてなる繊維強化樹脂材が製造されるものである。   Here, “charge” means that a discontinuous fiber resin material lump or sheet (preliminary shaped body by preheating) is disposed in the cavity in such a manner that a part of the lump or sheet is in contact with the protruding material disposed above the continuous fiber reinforcing material. Next, a fiber reinforced resin material in which a continuous fiber reinforcing material is embedded in a press-molded discontinuous fiber resin material by press-molding by closing the upper mold and the lower mold Is manufactured.

また、本明細書において「連続繊維補強材」とは、連続繊維が熱可塑性樹脂等からなるマトリックス樹脂内に含有された補強材(プリプレグ材等)のことであり、たとえばJISで規定するように50mmを超える繊維材(連続繊維)がマトリックス樹脂内に一方向に配向された一方向材(UD材)であってもよいし、擬似等方材(多軸積層材や経糸および緯糸からなる織物など)であってもよい。さらに、「非連続繊維樹脂材」とは、連続繊維よりも繊維長の短い長繊維や更に短い短繊維が熱可塑性樹脂等からなるマトリックス樹脂内にランダムに含有された繊維部材やその材料、もしくは繊維材が含有されていないマトリックス樹脂のみからなる樹脂部材やその材料(意匠部材などが対象)を意味している。   In the present specification, the “continuous fiber reinforcing material” means a reinforcing material (prepreg material or the like) contained in a matrix resin in which continuous fibers are made of a thermoplastic resin or the like, for example, as defined by JIS. A fiber material (continuous fiber) exceeding 50 mm may be a unidirectional material (UD material) oriented in one direction in a matrix resin, or a pseudo-isotropic material (a woven fabric composed of multiaxial laminated materials, warps and wefts) Etc.). Furthermore, the “non-continuous fiber resin material” is a fiber member or material thereof in which long fibers shorter than continuous fibers or shorter fibers are randomly contained in a matrix resin made of a thermoplastic resin or the like, or It means a resin member made only of a matrix resin not containing a fiber material and its material (design members and the like are targets).

また、非連続繊維樹脂材を形成する樹脂が熱可塑性樹脂からなる場合に、マトリックス樹脂の軟化とは、熱可塑性樹脂がポリスチレン(PS)等の非結晶性プラスチックからなる場合はそのガラス転移点Tgで「軟化」することとなり、ナイロン(PA:ナイロン6、ナイロン66など)等の結晶性プラスチックの場合はその融点Tm付近で「溶融」することとなる。   In addition, when the resin forming the discontinuous fiber resin material is made of a thermoplastic resin, the softening of the matrix resin means that the glass transition point Tg when the thermoplastic resin is made of an amorphous plastic such as polystyrene (PS). In the case of crystalline plastics such as nylon (PA: nylon 6, nylon 66, etc.), it will "melt" near its melting point Tm.

たとえば、予備加熱されて軟化した(もしくは可塑化した)非連続繊維樹脂材と、予備加熱されておらず、したがって相対的に硬質の連続繊維補強材をキャビティに収容し、これらをプレス成形することにより、相対的に硬質の連続繊維補強材は軟化した非連続繊維樹脂材の内部に埋め込まれることになる。そして、この際に、非連続繊維樹脂材に比して相対的に硬質の連続繊維補強材の上で、かつ可動部材に対応する位置に同様に相対的に硬質の突起材を配しておき、プレス成形することで、相対的に硬質の突起材と連続繊維補強材が非連続繊維樹脂材の内部に埋め込まれることになる。   For example, preheated and softened (or plasticized) non-continuous fiber resin material and non-preheated and therefore relatively hard continuous fiber reinforcement is contained in a cavity and press-molded. Thus, the relatively hard continuous fiber reinforcing material is embedded in the softened discontinuous fiber resin material. At this time, a relatively hard projection material is similarly arranged on the continuous fiber reinforcing material that is relatively hard compared to the discontinuous fiber resin material and at a position corresponding to the movable member. By press molding, the relatively hard protrusion material and the continuous fiber reinforcing material are embedded in the discontinuous fiber resin material.

ここで、「可動部材」とは、上型に設けられた可動手段(ばね、シリンダ機構、ピストン機構など)の先端に固定され、キャビティ内で下型側に突出自在でかつ上型に開設された収容溝内に収容自在な部材であり、連続繊維補強材の上に配された突起材と当接してこの不動姿勢を保証するための部材(可動ピンなど)である。この可動部材は金属製やセラミック製のものなど、連続繊維補強材や非連続繊維樹脂材に比して硬質な素材から形成される。   Here, the “movable member” is fixed to the tip of movable means (spring, cylinder mechanism, piston mechanism, etc.) provided in the upper mold, can be protruded to the lower mold side in the cavity, and is opened in the upper mold. This is a member that can be accommodated in the accommodation groove, and is a member (movable pin or the like) that abuts against the projection material disposed on the continuous fiber reinforcing material to guarantee this immovable posture. The movable member is made of a material that is harder than a continuous fiber reinforcing material or a discontinuous fiber resin material, such as a metal or ceramic.

プレス成形により、所望形状のキャビティに応じた形状および寸法の非連続繊維樹脂材が成形され、この内部の適所に連続繊維補強材が埋設され、さらにその上に位置決めされた突起材も埋設される。   By press molding, a non-continuous fiber resin material having a shape and size corresponding to a cavity having a desired shape is formed, and a continuous fiber reinforcing material is embedded at an appropriate position inside this, and a protrusion material positioned thereon is also embedded. .

そして、完全プレスの際に可動部材は上型に開設された収容溝内に引き戻され、非連続繊維樹脂材から抜き取られる。   And in the case of complete press, a movable member is pulled back in the accommodation groove | channel opened in the upper mold | type, and is extracted from a discontinuous fiber resin material.

上記するように、本発明の製造方法は連続繊維補強材をその上に配した突起材とこの突起材を押圧する可動部材で連続繊維補強材を押し付けてその位置ずれを解消するものであり、連続繊維補強材の上に突起材を配すること、および上型にキャビティ内へ突出自在に可動部材を設けておくという簡易な製法改良にて実現できるものである。   As described above, the manufacturing method of the present invention is to eliminate the positional deviation by pressing the continuous fiber reinforcing material with the protruding material on which the continuous fiber reinforcing material is arranged and the movable member pressing the protruding material, This can be realized by a simple manufacturing method improvement in which a protruding material is disposed on the continuous fiber reinforcing material, and a movable member is provided on the upper die so as to protrude into the cavity.

また、好ましくは、突起材が接着性を有する樹脂から形成されていて、可動部材が当接した際に適度な接着力で双方が接着され、連続繊維補強材の不動姿勢保持をより一層保証するのがよい。接着性を有する突起材は下方の連続繊維補強材とも接着することができ、自身の位置ずれをも解消することができる。   Preferably, the projection material is formed of a resin having adhesiveness, and when the movable member comes into contact with each other, the both are bonded with an appropriate adhesive force, thereby further ensuring the holding posture of the continuous fiber reinforcing material. It is good. The projecting material having adhesiveness can be bonded to the continuous continuous fiber reinforcing material below, and the misalignment can be eliminated.

たとえば熱可塑性樹脂からなる非連続繊維樹脂材内に埋設される突起材は、接着性を有する熱可塑性樹脂等からなる形態、より好ましくは非連続繊維樹脂材と同素材の熱可塑性樹脂から形成されるのが双方の良好ななじみ、高い界面接着性の観点から望ましい。そして、さらに望ましくは、非連続繊維樹脂材、突起材のほか、連続繊維補強材も同素材の熱可塑性樹脂等から形成されるのがよい。   For example, the protrusion material embedded in the discontinuous fiber resin material made of thermoplastic resin is formed of a thermoplastic resin having adhesiveness, more preferably a thermoplastic resin of the same material as the discontinuous fiber resin material. It is desirable from the viewpoint of good compatibility between the two and high interfacial adhesion. More preferably, in addition to the non-continuous fiber resin material and the projection material, the continuous fiber reinforcing material may be formed of the same thermoplastic resin.

上記する本発明の製造方法を適用することにより、効率的に、非連続繊維樹脂材の所望部位に精緻に連続繊維補強材を埋設することができるため、ピラーやロッカー、床下フロアなどの軽量で強度が要求される車両の骨格構造部材は勿論のこと、ドアアウターパネルやフードなどの意匠性が要求される非構造部材などの量産に好適である。   By applying the manufacturing method of the present invention described above, the continuous fiber reinforcing material can be efficiently embedded in a desired portion of the non-continuous fiber resin material, so that the weight of pillars, lockers, underfloor floors, etc. can be reduced. It is suitable for mass production of non-structural members such as door outer panels and hoods as well as skeletal structural members of vehicles that require strength.

以上の説明から理解できるように、本発明の繊維強化樹脂材の製造方法によれば、成形型を構成する上型にはキャビティ内で下型側に突出自在に可動部材を設けておき、連続繊維補強材をその上に突起材を配した姿勢で、かつ突起材が可動部材に対応する位置に位置合わせされた姿勢で成形型のキャビティに収容し、非連続繊維樹脂材を少なくとも突起材の上にチャージしてプレス成形することにより、可動部材と突起材を非連続繊維樹脂材を貫通させて相互に当接させ、突起材を介して連続繊維補強材の不動姿勢を可動部材にて保証しながらさらにプレス成形されることで、連続繊維補強材の位置ずれを解消でき、もって、非連続繊維樹脂材の所望部位に精緻に連続繊維補強材が埋設された繊維強化樹脂材を製造することができる。   As can be understood from the above description, according to the method for manufacturing a fiber reinforced resin material of the present invention, a movable member is provided on the upper mold constituting the mold so as to protrude freely toward the lower mold within the cavity. The fiber reinforcing material is accommodated in the cavity of the molding die in a posture in which the protruding material is disposed on the fiber reinforcing material, and in a posture in which the protruding material is aligned with the position corresponding to the movable member, and the discontinuous fiber resin material is at least of the protruding material. By charging and pressing the upper part, the movable member and the protruding material are passed through the non-continuous fiber resin material and brought into contact with each other, and the stationary posture of the continuous fiber reinforcing material is guaranteed by the movable member through the protruding material. While being further press-molded, the position shift of the continuous fiber reinforcing material can be eliminated, and thus a fiber reinforced resin material in which the continuous fiber reinforcing material is precisely embedded in the desired part of the non-continuous fiber resin material is manufactured. Can do.

本発明の繊維強化樹脂材の製造方法を説明した模式図である。It is the schematic diagram explaining the manufacturing method of the fiber reinforced resin material of this invention. 連続繊維補強材の一実施の形態の斜視図である。It is a perspective view of one embodiment of a continuous fiber reinforcement. 図1に続いて繊維強化樹脂材の製造方法を説明した模式図である。It is the schematic diagram explaining the manufacturing method of the fiber reinforced resin material following FIG. (a)は突起材と非連続繊維樹脂材の接着性確認試験で用いた成形型を示す模式図であり、(b)は成形型にて繊維強化樹脂材が製作された状態を示す模式図である。(A) is a schematic diagram which shows the shaping | molding die used by the adhesiveness confirmation test of a projection material and a discontinuous fiber resin material, (b) is a schematic diagram which shows the state by which the fiber reinforced resin material was manufactured with the shaping | molding die. It is.

以下、図面を参照して本発明の繊維強化樹脂材の製造方法の実施の形態を説明する。なお、図示例は、製造される繊維強化樹脂材の形状、連続繊維補強材の埋設位置や基数に関しては多様な形態が存在し、成形型も製造される繊維強化樹脂材の形状寸法に応じたキャビティを有するものが適用される。   Hereinafter, an embodiment of a method for producing a fiber-reinforced resin material of the present invention will be described with reference to the drawings. In the illustrated example, there are various forms with respect to the shape of the fiber reinforced resin material to be manufactured, the embedment position and the number of bases of the continuous fiber reinforcing material, and the molding die also corresponds to the shape dimension of the fiber reinforced resin material to be manufactured. Those with cavities are applied.

(繊維強化樹脂材の製造方法)
図1,3はこの順で、本発明の繊維強化樹脂材の製造方法の一実施の形態を説明するフロー図となっている。
(Manufacturing method of fiber reinforced resin material)
FIGS. 1 and 3 are flowcharts illustrating an embodiment of the method for producing a fiber-reinforced resin material of the present invention in this order.

繊維強化樹脂材の製造方法に際し、まず、図1で示す成形型10を用意する。図示する成形型10はスライド自在の上型1と下型2から構成されており、図1はこれらが型開きした状態を示したものである。   In the manufacturing method of the fiber reinforced resin material, first, a mold 10 shown in FIG. 1 is prepared. The illustrated mold 10 includes a slidable upper mold 1 and a lower mold 2, and FIG. 1 shows a state in which these molds are opened.

下型2は凹溝2aを有し、上型1の凸部1aがここに嵌り込んでキャビティを形成し、このキャビティ内にチャージされたマトリックス樹脂が成形されるようになっている。   The lower die 2 has a concave groove 2a, and the convex portion 1a of the upper die 1 is fitted here to form a cavity, and a charged matrix resin is molded into the cavity.

本発明の製造方法では、上型1の凸部1aに可動機構の一つであるばね3を収容する収容溝1bを備え、ここに収容されたばね3の先端に硬質の可動部材4が固定されている。ばね3は、上型1と下型2を型閉めしながらプレス成形を完了した際(完全プレスの際)に、可動部材4が完全に収容溝1b内に収容されるようなばね定数を有し、また可動部材4の長さもこの状態を形成するような長さのものとなっている。なお、可動機構としては図示例のばね3以外にも、ピストン機構やシリンダユニット機構などを挙げることができる。   In the manufacturing method of the present invention, the convex portion 1a of the upper mold 1 is provided with a housing groove 1b for housing a spring 3 which is one of the movable mechanisms, and a rigid movable member 4 is fixed to the tip of the spring 3 housed therein. ing. The spring 3 has such a spring constant that the movable member 4 is completely accommodated in the accommodating groove 1b when the press molding is completed while the upper die 1 and the lower die 2 are closed (at the time of complete pressing). The length of the movable member 4 is also long enough to form this state. In addition, as a movable mechanism, a piston mechanism, a cylinder unit mechanism, etc. can be mentioned besides the spring 3 of the example of illustration.

キャビティを形成する下型2の凹溝2a内に、熱可塑性樹脂からなるマトリックス樹脂M1に連続繊維S1が含有されてなる連続繊維補強材J1を収容する。   A continuous fiber reinforcing material J1 in which a continuous fiber S1 is contained in a matrix resin M1 made of a thermoplastic resin is accommodated in the concave groove 2a of the lower mold 2 forming the cavity.

この連続繊維補強材J1を形成する熱可塑性樹脂からなるマトリックス樹脂M1としては、分子鎖が規則正しく配列された結晶領域の量の比率が高く、結晶化度の高い結晶性プラスチックである、ポリエチレン(PE)やポリプロピレン(PP)、ナイロン(PA:ナイロン6、ナイロン66など)、ポリアセタール(POM)、ポリエチレンテレフタレート(PET)や、結晶化度が極めて低いか、結晶化状態にならない非結晶性プラスチックである、ポリスチレン(PS)やポリ塩化ビニル(PVC)、ポリメタクリル酸メチル(PMMA)、ABS樹脂、熱可塑性エポキシなどのうちのいずれか一種を適用することができる。   As the matrix resin M1 made of a thermoplastic resin that forms the continuous fiber reinforcing material J1, polyethylene (PE), which is a crystalline plastic having a high ratio of crystal regions in which molecular chains are regularly arranged and having a high degree of crystallinity, is used. ), Polypropylene (PP), nylon (PA: nylon 6, nylon 66, etc.), polyacetal (POM), polyethylene terephthalate (PET) and other non-crystalline plastics that have very low crystallinity or do not crystallize. Any one of polystyrene (PS), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), ABS resin, thermoplastic epoxy and the like can be applied.

また、マトリックス樹脂M1内に含有される連続繊維S1としては、ボロンやアルミナ、炭化ケイ素、窒化ケイ素、ジルコニアなどのセラミック繊維や、ガラス繊維や炭素繊維といった無機繊維、銅や鋼、アルミニウム、ステンレス等の金属繊維、ポリアミドやポリエステルなどの有機繊維のいずれか一種もしくは2種以上の混合材を挙げることができる。   The continuous fiber S1 contained in the matrix resin M1 includes ceramic fibers such as boron, alumina, silicon carbide, silicon nitride, and zirconia, inorganic fibers such as glass fibers and carbon fibers, copper, steel, aluminum, and stainless steel. Any one or two or more mixed materials of metal fibers and organic fibers such as polyamide and polyester can be mentioned.

そして、連続繊維補強材J1は、連続繊維S1がマトリックス樹脂M1内に含有されてなるプリプレグ材等であり、JISで規定するように50mmを超える連続繊維S1が図示例のようにマトリックス樹脂M1内に一方向に配向された一方向材(UD材)であってもよいし、擬似等方材(多軸積層材や経糸および緯糸からなる織物など)であってもよい。   The continuous fiber reinforcing material J1 is a prepreg material or the like in which the continuous fiber S1 is contained in the matrix resin M1, and the continuous fiber S1 exceeding 50 mm is defined in the matrix resin M1 as shown in the JIS. Further, it may be a unidirectional material (UD material) oriented in one direction, or a pseudo-isotropic material (such as a multiaxial laminated material or a woven fabric made of warp and weft).

図1で示すように、成形型10を型開きして下型2の凹溝2a内の適所に連続繊維補強材J1を載置したら、その上に樹脂素材の突起材5を配設する。   As shown in FIG. 1, when the mold 10 is opened and the continuous fiber reinforcing material J1 is placed in a proper position in the concave groove 2a of the lower mold 2, a resin material projection 5 is disposed thereon.

この突起材5の配設位置は、その上方に位置する可動部材4と対応する位置(図中のX方向位置)であり、プレス成形の際に可動部材4が非連続繊維樹脂材J2’を貫通して突起材5の上面に到達するようになっている。   The position of the projection 5 is a position corresponding to the movable member 4 positioned above (position in the X direction in the figure), and the movable member 4 displaces the discontinuous fiber resin material J2 ′ during press molding. It penetrates and reaches the upper surface of the projection material 5.

連続繊維補強材J1の上に突起材5を配し、次いで、突起材5の上に予備加熱された非連続繊維樹脂材J2’の塊をチャージする。   The protruding material 5 is disposed on the continuous fiber reinforcing material J1, and then the lump of the discontinuous fiber resin material J2 'preheated on the protruding material 5 is charged.

図示例では、予備加熱されて軟化した非連続繊維樹脂材J2’の塊をキャビティC内に収容することが「チャージ」であり、このチャージ形態においては、その後に非連続繊維樹脂材J2’のプレス成形が続く。   In the illustrated example, the pre-heated and softened discontinuous fiber resin material J2 ′ is accommodated in the cavity C as “charge”. In this charge mode, the discontinuous fiber resin material J2 ′ Press molding continues.

ここで、非連続繊維樹脂材J2’も連続繊維補強材J1と同様に熱可塑性樹脂からなるマトリックス樹脂M2を有し、このマトリックス樹脂M2内に短繊維や長繊維などの繊維材S2がランダムに含有された材料からなる。   Here, the discontinuous fiber resin material J2 ′ also has a matrix resin M2 made of a thermoplastic resin like the continuous fiber reinforcement material J1, and fiber materials S2 such as short fibers and long fibers are randomly contained in the matrix resin M2. It consists of the contained material.

ここで、突起材5は、可動部材4と当接した際に相互に接着するように接着性の良好な熱可塑性樹脂から形成されるのが好ましく、望ましくは連続繊維補強材J1のマトリックス樹脂M1と軟化した非連続繊維樹脂材J2’のマトリックス樹脂M2とともに同素材の熱可塑性樹脂から形成されるのがよい。   Here, the projection material 5 is preferably formed of a thermoplastic resin having good adhesion so as to adhere to each other when it contacts the movable member 4, and desirably the matrix resin M1 of the continuous fiber reinforcing material J1. And the softened discontinuous fiber resin material J2 ′ and the matrix resin M2 are preferably formed from the same thermoplastic resin.

また、チャージされる非連続繊維樹脂材J2’は予備加熱にて溶融状態とされている一方で、先行して凹溝2a内に収容される連続繊維補強材J1は軟化しておらず、溶融状態の非連続繊維樹脂材J2’に比して相対的に硬質の状態となっているのがよい。プレス成形の際に非連続繊維樹脂材J2’がキャビティ形状に成形される過程でこの内部に可及的に当初の形状を保持しながら連続繊維補強材J1が埋設されるのが望ましいからである。   In addition, while the non-continuous fiber resin material J2 ′ to be charged is in a molten state by preheating, the continuous fiber reinforcing material J1 previously accommodated in the groove 2a is not softened and melted. It is good that it is in a relatively hard state as compared to the discontinuous fiber resin material J2 ′ in the state. This is because it is desirable that the continuous fiber reinforcing material J1 is embedded while maintaining the original shape as much as possible in the process of forming the discontinuous fiber resin material J2 ′ into a cavity shape during press molding. .

下型2の凹溝2aの適所に連続繊維補強材J1が収容され、その上に上方の可動部材4と対応するようにして突起材5を配し、突起材5の上に溶融状態の非連続繊維樹脂材J2’をチャージしたら、上型1を下型2側へスライドさせて(図1のY1方向)、上型1と下型2でキャビティ内の非連続繊維樹脂材J2’と連続繊維補強材J1をプレス成形する。   The continuous fiber reinforcing material J1 is accommodated in a suitable position in the concave groove 2a of the lower mold 2, and a protruding material 5 is disposed on the continuous fiber reinforcing material J1 so as to correspond to the upper movable member 4. When the continuous fiber resin material J2 ′ is charged, the upper mold 1 is slid to the lower mold 2 side (Y1 direction in FIG. 1), and the upper mold 1 and the lower mold 2 are continuous with the discontinuous fiber resin material J2 ′ in the cavity. The fiber reinforcing material J1 is press-molded.

図3で示すように、プレス成形の際には、可動部材4と突起材5がキャビティ形状に成形された非連続繊維樹脂材J2’を貫通して相互に当接され、突起材5を介して連続繊維補強材J1が可動部材4に不動姿勢を保証され、さらにプレス成形が継続されることで、成形された非連続繊維樹脂材J2’の内部に突起材5と連続繊維補強材J1が埋設される。   As shown in FIG. 3, at the time of press molding, the movable member 4 and the protruding material 5 penetrate each other through the discontinuous fiber resin material J2 ′ formed into a cavity shape, and the protruding material 5 is interposed therebetween. Thus, the continuous fiber reinforcing material J1 is guaranteed to be stationary by the movable member 4, and the press molding is continued, so that the protruding material 5 and the continuous fiber reinforcing material J1 are placed inside the molded non-continuous fiber resin material J2 ′. Buried.

このように、プレス成形の際に連続繊維補強材J1が突起材5を介して可動部材4で位置ずれを防止されることから、連続繊維補強材J1を非連続繊維樹脂材J2’内の所望位置に精緻に埋設することができる。   In this way, since the continuous fiber reinforcing material J1 is prevented from being displaced by the movable member 4 via the protruding material 5 during press molding, the continuous fiber reinforcing material J1 is desired in the discontinuous fiber resin material J2 ′. It can be embedded precisely in the position.

そして、図3で示す完全プレスの段階で可動部材4は上型1の収容溝1b内に完全に後退し(Y2方向)、この状態で溶融状態の非連続繊維樹脂材J2’が硬化することで(硬化した非連続繊維樹脂材J2の成形)、非連続繊維樹脂材J2の一部を連続繊維補強材J1が補強してなる繊維強化樹脂材Jが製造される。   Then, at the stage of complete pressing shown in FIG. 3, the movable member 4 is completely retracted into the receiving groove 1b of the upper mold 1 (Y2 direction), and the molten discontinuous fiber resin material J2 ′ is cured in this state. (Molding of the cured non-continuous fiber resin material J2), a fiber-reinforced resin material J is produced in which the continuous fiber reinforcing material J1 reinforces a part of the non-continuous fiber resin material J2.

繊維強化樹脂材Jでは、非連続繊維樹脂材J2と、その内部に埋設される連続繊維補強材J1および突起材5の素材樹脂が同素材の熱可塑性樹脂からなる場合に、相互のなじみや接着性が良好となり、高い製品一体性が保証できる。   In the fiber reinforced resin material J, when the material resin of the discontinuous fiber resin material J2 and the continuous fiber reinforcing material J1 and the projection material 5 embedded in the material is made of the same thermoplastic resin, mutual familiarity and adhesion And good product integrity can be guaranteed.

[突起材と非連続繊維樹脂材の接着性確認試験とその結果]
本発明者等は、図4で示す上型および下型からなる成形型を使用し、以下の素材および寸法の部材を使用して繊維強化樹脂材の試験体を製作し、試験体を構成する突起材と非連続繊維樹脂材の接着性を確認する試験をおこなった。
[Adhesion confirmation test of protrusion material and discontinuous fiber resin material and results]
The present inventors use a molding die composed of an upper die and a lower die shown in FIG. 4, and manufacture a test body of a fiber reinforced resin material using members of the following materials and dimensions to constitute the test body. A test was conducted to confirm the adhesion between the protrusion material and the discontinuous fiber resin material.

非連続繊維樹脂材として、寸法が106mm×106mm×4mm(厚み)の熱可塑性スタンパブルシート(PP/CF系でVf40%)を使用し、連続繊維補強材として、寸法が50mm×50mm×2mm(厚み)の熱可塑性連続繊維シート(PP/CF系でVf50%)(厚さ0.5mmの熱可塑性連続繊維シートを4枚積層し、熱プレスで製作したもの)を使用し、この連続繊維補強材に予めホットプレスで製作した寸法が20mm×20mm×2mm(厚み)の突起材を接着した。   As a non-continuous fiber resin material, a thermoplastic stampable sheet (Vf40% for PP / CF) with dimensions of 106mm x 106mm x 4mm (thickness) is used. As a continuous fiber reinforcement, the dimensions are 50mm x 50mm x 2mm ( Thickness) thermoplastic continuous fiber sheet (PP / CF type, Vf50%) (4 thermoplastic continuous fiber sheets with a thickness of 0.5 mm are laminated and manufactured by hot press). A protrusion material having a size of 20 mm × 20 mm × 2 mm (thickness) previously produced by hot pressing was bonded to the substrate.

一方、使用する成形型は、図4aで示すように直径15mmの鉄製のピンを上型の中央に開設された収容溝のばねの先端に固定し、ピンの先端が下型側へ5mm突出した状態の上型と、凹溝の直径が150mmの下型を用意した。   On the other hand, as shown in FIG. 4a, the mold used is an iron pin having a diameter of 15 mm fixed to the tip of the spring of the receiving groove formed in the center of the upper die, and the tip of the pin protrudes 5 mm toward the lower die side. We prepared an upper mold in the state and a lower mold with a groove diameter of 150 mm.

下型の凹溝内に突起材が上方に接着した熱可塑性連続繊維シートを収容し、成形型の温度を120℃に調整し、IRヒータにて内部温度が240℃まで予備加熱され、溶融状態の熱可塑性スタンパブルシートをチャージし、図4bで示すように上型を降下させて溶融状態の熱可塑性スタンパブルシートをプレス成形した。ここで、プレス荷重は450kN、プレス速度は3mm/sec、冷却時間は60secである。   A thermoplastic continuous fiber sheet with projection material bonded upwards is housed in the lower groove of the lower mold, the mold temperature is adjusted to 120 ° C, the internal temperature is preheated to 240 ° C with an IR heater, and the molten state The thermoplastic stampable sheet was charged and the upper mold was lowered as shown in FIG. 4b to press-mold the molten thermoplastic stampable sheet. Here, the press load is 450 kN, the press speed is 3 mm / sec, and the cooling time is 60 sec.

プレス成形され、熱可塑性スタンパブルシートが硬化してできた試験体を成形型から取り出し、熱可塑性連続繊維シートの埋設位置が初期位置±1mm以内であることが確認できた。   A test body formed by press molding and curing the thermoplastic stampable sheet was taken out of the mold, and it was confirmed that the embedded position of the thermoplastic continuous fiber sheet was within ± 1 mm of the initial position.

さらに、試験体の上面の段差が±0.2mm以内であり、外観的に平坦性が保証されていることが確認できた。   Furthermore, the step on the upper surface of the test specimen was within ± 0.2 mm, and it was confirmed that the flatness was ensured in appearance.

さらに、突起材と成形後の熱可塑性スタンパブルシートの界面に隙間がないことが目視で確認でき、さらに、この界面を含む所定領域を切り出して引張試験をおこない、界面の接着強度が20MPa以上であることが確認できた。   Furthermore, it can be visually confirmed that there is no gap at the interface between the projection material and the molded thermoplastic stampable sheet, and further, a predetermined region including this interface is cut out and a tensile test is performed, and the adhesive strength at the interface is 20 MPa or more. It was confirmed that there was.

本試験結果より、プレス成形にて非連続繊維樹脂材を成形しながら連続繊維補強材をその適所に埋設する製造方法で繊維強化樹脂材を製造するに当たり、本発明の製造方法を適用することで連続繊維補強材を精緻に所望位置に埋設することができ、もって製品品質の高い繊維強化樹脂材が製造できることが実証されている。   From the results of this test, when manufacturing a fiber reinforced resin material by a manufacturing method in which a continuous fiber reinforcing material is embedded in place while forming a discontinuous fiber resin material by press molding, the manufacturing method of the present invention is applied. It has been demonstrated that a continuous fiber reinforcing material can be precisely embedded at a desired position, and thus a fiber reinforced resin material with high product quality can be manufactured.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…上型、1a…凸部、1b…収容溝、2…下型、2a…凹溝、3…可動機構(ばね)、4…可動部材(可動ピン)、5…突起材、10…成形型、J…繊維強化樹脂材、J1…連続繊維補強材、J2…非連続繊維樹脂材、J2’…(予備加熱で軟化している)非連続繊維樹脂材、S1…連続繊維、S2…繊維材(短繊維、長繊維)、M1,M2…マトリックス樹脂(熱可塑性樹脂)   DESCRIPTION OF SYMBOLS 1 ... Upper mold | type, 1a ... Convex part, 1b ... Accommodating groove, 2 ... Lower mold, 2a ... Concave groove, 3 ... Movable mechanism (spring), 4 ... Movable member (movable pin), 5 ... Projection material, 10 ... Molding Mold, J: Fiber reinforced resin material, J1: Continuous fiber reinforcement material, J2: Non-continuous fiber resin material, J2 ': Non-continuous fiber resin material (softened by preheating), S1: Continuous fiber, S2: Fiber Material (short fiber, long fiber), M1, M2 ... Matrix resin (thermoplastic resin)

Claims (5)

上型と下型から構成される成形型であって、該上型にはキャビティ内で下型側に突出自在に可動部材が設けてある成形型を用意し、
連続繊維補強材の上に突起材を配した姿勢で、かつ該突起材が前記可動部材に対応する位置に位置合わせされた姿勢で成形型のキャビティに連続繊維補強材と突起材を収容し、さらに溶融した非連続繊維樹脂材を少なくとも突起材の上にチャージし、
上型と下型を近接させてプレス成形し、この際に、可動部材と突起材が非連続繊維樹脂材を貫通して相互に当接され、突起材を介して連続繊維補強材の不動姿勢を可動部材にて保証しながらさらにプレス成形されることで非連続繊維樹脂材の内部に突起材と連続繊維補強材が埋設され、非連続繊維樹脂材が硬化して非連続繊維樹脂材の一部を連続繊維補強材が補強してなる繊維強化樹脂材を製造する繊維強化樹脂材の製造方法。
A mold composed of an upper mold and a lower mold, and a mold having a movable member provided so as to protrude toward the lower mold in the cavity is prepared for the upper mold,
Containing the continuous fiber reinforcing material and the protruding material in the cavity of the molding die in a posture in which the protruding material is arranged on the continuous fiber reinforcing material, and in a posture in which the protruding material is aligned with the position corresponding to the movable member, Furthermore, the molten non-continuous fiber resin material is charged on at least the projection material,
The upper die and the lower die are pressed close to each other, and at this time, the movable member and the protruding material are in contact with each other through the non-continuous fiber resin material, and the continuous fiber reinforcing material does not move through the protruding material. As a result of further press molding with a movable member assured, the discontinuous fiber resin material is embedded inside the discontinuous fiber resin material, and the discontinuous fiber resin material is cured and the discontinuous fiber resin material is cured. The manufacturing method of the fiber reinforced resin material which manufactures the fiber reinforced resin material which a continuous fiber reinforcement material reinforces a part.
前記チャージは、予備加熱されて軟化した非連続繊維樹脂材の塊をキャビティに収容する方法である請求項1に記載の繊維強化樹脂材の製造方法。   The method for producing a fiber-reinforced resin material according to claim 1, wherein the charge is a method of accommodating a lump of discontinuous fiber resin material preheated and softened in a cavity. 前記上型のキャビティ側の領域には可動手段が設けてあり、該可動手段の先端に可動部材が留め付けてあり、前記突起材は接着性を有する樹脂から形成されていて、可動部材が突起材と当接した際に双方が接着するようになっている請求項1または2に記載の繊維強化樹脂材の製造方法。   A movable means is provided in the cavity side region of the upper mold, a movable member is fastened to the tip of the movable means, the projection material is formed of an adhesive resin, and the movable member projects. The method for producing a fiber-reinforced resin material according to claim 1 or 2, wherein both of them are bonded when contacted with the material. 前記突起材は前記非連続繊維補強材のマトリックス樹脂と同素材の樹脂から形成されている請求項1〜3のいずれかに記載の繊維強化樹脂材の製造方法。   The said protrusion material is a manufacturing method of the fiber reinforced resin material in any one of Claims 1-3 currently formed from the resin of the same material as the matrix resin of the said discontinuous fiber reinforcement material. 前記連続繊維補強材と非連続繊維樹脂材のマトリックス樹脂、および前記突起材がいずれも同素材の樹脂から形成されている請求項4に記載の繊維強化樹脂材の製造方法。   The method for producing a fiber-reinforced resin material according to claim 4, wherein the continuous fiber reinforcing material, the matrix resin of the discontinuous fiber resin material, and the protrusion material are both formed from the same material resin.
JP2011278164A 2011-12-20 2011-12-20 Method for manufacturing fiber-reinforced resin material Pending JP2013129064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278164A JP2013129064A (en) 2011-12-20 2011-12-20 Method for manufacturing fiber-reinforced resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278164A JP2013129064A (en) 2011-12-20 2011-12-20 Method for manufacturing fiber-reinforced resin material

Publications (1)

Publication Number Publication Date
JP2013129064A true JP2013129064A (en) 2013-07-04

Family

ID=48907071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278164A Pending JP2013129064A (en) 2011-12-20 2011-12-20 Method for manufacturing fiber-reinforced resin material

Country Status (1)

Country Link
JP (1) JP2013129064A (en)

Similar Documents

Publication Publication Date Title
US8871127B2 (en) Method of producing a fiber-reinforced resin member
US9073288B2 (en) Method of producing a fiber-reinforced plastic
CN107331802B (en) Battery case and method for manufacturing same
CN106457697B (en) Method for manufacturing the SMC components for being equipped with unidirectional fibre scrim
EP3042753B1 (en) Production method for fiber-reinforced components
JP2012071595A (en) Method of manufacturing composite molded object
US8771574B2 (en) Bonding of fibre-reinforced material with an injection-moulding material; component and apparatus for conduct of the process
EP3473399B1 (en) Production method and production device for thermoplastic resin composite material
JP5655746B2 (en) Manufacturing method of fiber reinforced resin material
CN106687271B (en) Method for producing a multi-shell composite component with an integrated reinforcing structure and multi-shell composite component produced therefrom
JP2012240276A (en) Fiber-reinforced resin material, and method of manufacturing the same
KR20180060504A (en) Door of vehicle and a method for producing the same
JP5712857B2 (en) Manufacturing method of fiber reinforced resin material
JP2013129064A (en) Method for manufacturing fiber-reinforced resin material
JP2012106490A (en) Method for manufacturing composite molding and device for manufacturing composite molding
KR101567949B1 (en) Method for manufacturing thermoplastic composite
JP6967130B2 (en) Formed type and formed type method
KR101826905B1 (en) Manufacturing apparatus and method for inner panel of vehicle door
EP2448739B1 (en) Process and mould for moulding structured sheets
EP3498448B1 (en) Molding method for composite material and intermediate member for composite material
KR20180077909A (en) Thermoplastic prepreg manufacturing method and complex materials forming product using the thermoplastic prepreg
CN105538592A (en) Preparation method for novel carbon fiber composite automobile parts
JP2013039673A (en) Device and method for molding and connecting two or more resin members