JP2013128940A - CONTINUOUS CASTING METHOD OF Si-CONTAINING STEEL - Google Patents

CONTINUOUS CASTING METHOD OF Si-CONTAINING STEEL Download PDF

Info

Publication number
JP2013128940A
JP2013128940A JP2011278414A JP2011278414A JP2013128940A JP 2013128940 A JP2013128940 A JP 2013128940A JP 2011278414 A JP2011278414 A JP 2011278414A JP 2011278414 A JP2011278414 A JP 2011278414A JP 2013128940 A JP2013128940 A JP 2013128940A
Authority
JP
Japan
Prior art keywords
mass
slab
continuous casting
secondary cooling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011278414A
Other languages
Japanese (ja)
Other versions
JP5854214B2 (en
JP2013128940A5 (en
Inventor
Yoichi Ito
陽一 伊藤
Seiji Nabeshima
誠司 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011278414A priority Critical patent/JP5854214B2/en
Publication of JP2013128940A publication Critical patent/JP2013128940A/en
Publication of JP2013128940A5 publication Critical patent/JP2013128940A5/ja
Application granted granted Critical
Publication of JP5854214B2 publication Critical patent/JP5854214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method that can effectively prevent surface cracking of a continuously cast slab in Si-containing steel.SOLUTION: The continuous casting method of the Si-containing steel containing Si at 0.5 mass% or more includes setting the specific water amount SW of secondary cooling water when the surface temperature of the cast slab is in a temperature range from 1,177°C to Tobtained by the following expression (3), to at most a value of SWobtained by the following expressions (1)-(3) to carry out casting: (1) SW=(T/1177)×SW; (2) SW=1.6×V; and (3) T=1177-(940×Cu+9,450×Sn+10,928×Sb)/3; wherein SWis an upper limit value (l/kg) of the secondary cooling specific water amount of Si-containing steel; SWis the secondary cooling specific water amount (l/kg) of ordinary steel; Tis a lower limit temperature (°C) at which internal oxidation scale with a depth of 150 μm or more is formed; Vis a casting speed (m/min), and symbols of elements are the contents (mass%) of the elements.

Description

本発明は、Si含有鋼の連続鋳造方法に関し、具体的には、Siを0.5mass%以上含有する鋼の連続鋳造鋳片に発生する表面割れを防止する連続鋳造方法に関するものである。   The present invention relates to a method for continuously casting Si-containing steel, and more particularly, to a continuous casting method for preventing surface cracks occurring in a continuous cast slab of steel containing 0.5 mass% or more of Si.

近年、自動車を初め、各種鉄鋼製品の軽量化や安全性の向上を目的として、強度を高めた高張度鋼が広い分野で使用されるようになってきている。鋼を高強度化する方法には種々の方法があるが、SiやMn等の強化元素を添加して固溶強化する方法が一般に用いられている。   In recent years, high-tensile steel with increased strength has been used in a wide range of fields for the purpose of reducing the weight and improving safety of various steel products including automobiles. There are various methods for increasing the strength of steel, but a method of solid solution strengthening by adding a strengthening element such as Si or Mn is generally used.

従来、鋼に添加されるSiの含有量は、電磁鋼板のような場合を除き、一般に0.3mass%程度以下である。というのは、一般熱延鋼板や一般冷延鋼板では、Si含有量が増大すると、スケールに起因した表面欠陥や、亜鉛めっきにおけるめっきムラ、付着不良等のめっき不良を起こし易くなるからである。そのため、上記鋼板では、Si含有量が0.1mass%以下のものが主体であった。しかし、近年では、上記高強度化に対する要求の高まりに対応し、Siを0.5mass%以上添加した鋼が多く製造されるようになってきている。   Conventionally, the content of Si added to steel is generally about 0.3 mass% or less, except in the case of electromagnetic steel sheets. This is because, in general hot-rolled steel sheets and general cold-rolled steel sheets, when the Si content is increased, surface defects due to scale, plating unevenness in zinc plating, adhesion defects, and the like are likely to occur. Therefore, the steel sheet mainly has a Si content of 0.1 mass% or less. However, in recent years, many steels added with 0.5 mass% or more of Si have been manufactured in response to the increasing demand for higher strength.

一方、近年では、省資源、省エネルギーの観点から、鉄資源の回収やリサイクルが積極的に進められている。それに伴って、従来、連続鋳造における鋳片(スラブ)の表面割れや、熱延工程での表面割れ等を防止する観点から、使用が制限されていたCuやSn等を多量に含む鉄スクラップの再利用が望まれるようになってきている。   On the other hand, in recent years, recovery and recycling of iron resources have been actively promoted from the viewpoint of resource saving and energy saving. Accordingly, from the viewpoint of preventing surface cracks in slabs in continuous casting and surface cracks in the hot rolling process, iron scrap containing a large amount of Cu, Sn, etc., which has been restricted in use. Reuse is increasingly desired.

一般に、連続鋳造スラブの表面割れは、鋼の高温延性が低下する脆化温度域に相当する、鋳造鋳型から出たスラブが曲げや曲げ戻し(矯正)を受ける箇所において、オシレーションマークに沿って発生することが知られている。そこで、スラブの表面割れ対策としては、上記脆化温度域でのスラブの曲げや矯正を避けて鋳造することが行われている。   In general, surface cracks in continuous cast slabs correspond to the embrittlement temperature range where the hot ductility of steel decreases, and the slabs from the casting mold are bent and unbent (corrected) along the oscillation mark. It is known to occur. Therefore, as a countermeasure for surface cracking of the slab, casting is performed while avoiding bending and correction of the slab in the above embrittlement temperature range.

なお、スラブの表面割れを引き起こす原因としては、上記CuやSn等の不純物元素の他に、以下のようなものが知られており、それぞれの原因に応じた対策がとられている。
1)C含有量が0.08〜0.12mass%の亜包晶と呼ばれる範囲は、不均一凝固によって粗大な粒径のオーステナイトが生成し易く、表面割れが発生し易いため、上記C範囲を除外した成分設計を行う。
2)Nb,V,Al,Nなどを高濃度に含有する鋼は、Nb(C,N)、V(C,N)、AlNなどの炭窒化物の析出によって粒界が脆化するため、(a)脆化温度域を避けてスラブの曲げや矯正を行うよう二次冷却する、(b)Ti,Caなどの元素を添加してNを固定する、例えば、Tiについては化学量論的にTi/Nで3.3以上の量を添加する。
In addition to the impurity elements such as Cu and Sn as described above, the following are known as causes for causing the surface crack of the slab, and measures are taken according to the respective causes.
1) The range referred to as a subperitectic crystal having a C content of 0.08 to 0.12 mass% is likely to generate austenite having a coarse particle diameter due to non-uniform solidification, and surface cracks are likely to occur. Design excluded ingredients.
2) Since steel containing Nb, V, Al, N, etc. at a high concentration, grain boundaries become brittle due to precipitation of carbonitrides such as Nb (C, N), V (C, N), AlN, etc. (A) Secondary cooling to bend and straighten the slab while avoiding the embrittlement temperature range, (b) Add N elements such as Ti and Ca to fix N, for example, Ti is stoichiometric An amount of 3.3 or more is added to Ti / N.

上述した対策に加えて、近年における鋳片表面温度を制御する二次冷却技術の進歩によって、スラブの表面割れは大幅に低減されてきた。しかし、最近、上述した従来公知の割れとは発生機構が異なると思われる表面割れが増加する傾向にある。その一つとして、高張力鋼板を代表とする、Siを0.5mass%以上含有する鋼の連続鋳造鋳片(スラブ)における表面割れがある。Siは、1200℃以上での熱間延性を低下することはあっても、スラブの曲げや矯正が行われる700〜1000℃の温度範囲では、延性に大きな悪影響を及ぼすことはない。したがって、Si含有鋼におけるスラブ表面割れは、従来から知られている鋳片の表面割れとは、発生メカニズムが異なるものと考えられる。   In addition to the above-described measures, surface cracks in the slab have been greatly reduced due to recent advances in secondary cooling technology for controlling the slab surface temperature. However, recently, there is a tendency for surface cracks, which are considered to have different generation mechanisms, to increase from the previously known cracks described above. As one of them, there is a surface crack in a continuous cast slab (slab) of steel containing 0.5 mass% or more of Si, which is typified by a high-tensile steel plate. Although Si may reduce the hot ductility at 1200 ° C. or higher, Si does not have a significant adverse effect on the ductility in the temperature range of 700 to 1000 ° C. where slab bending and straightening are performed. Therefore, it is considered that the generation mechanism of the slab surface crack in the Si-containing steel is different from the conventionally known slab surface crack.

なお、特許文献1には、スケールの生成が鋳片の表面割れに及ぼす影響が開示されている。しかし、この技術は、Ni含有鋼における、Ni酸化物とFeSiOスケールの酸化状況により形成されるサブスケールの形成を問題としており、Niを含有しない鋼ではサブスケールが生成されないことから、本発明におけるスラブ表面割れとは状況を異にする。 Patent Document 1 discloses the influence of scale generation on the surface crack of a slab. However, this technique has a problem with the formation of subscale formed by the oxidation state of Ni oxide and Fe 2 SiO 4 scale in Ni-containing steel, and subscale is not generated in steel not containing Ni. The situation differs from the slab surface crack in the present invention.

特許第3456498号公報Japanese Patent No. 3456498

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、Si含有鋼における連続鋳造鋳片の表面割れを効果的に防止することができる連続鋳造方法を提案することにある。   This invention is made | formed in view of the said problem which a prior art has, The objective is to propose the continuous casting method which can prevent effectively the surface crack of the continuous cast slab in Si containing steel. There is.

発明者らは、Si含有鋼における連続鋳造鋳片の表面割れを防止するべく、その発生原因と対策について鋭意検討を重ねた。その結果、Siを0.5mass%以上含有する連続鋳造鋳片では、鋳片表面に形成される酸化スケールは、0.5mass%未満のときのFeOを主体とした平坦な形態から、FeSiO(ファイアライト)を主体とした凹凸の激しい形態に変化すること、また、Siの他に低融点金属であるCu,SnおよびSbを含有する場合には、上記FeSiOを主体とした酸化スケールの形成が促進されて凝固組織の粒界に沿って鋳片内部にまで入り込み、凹凸がより激しくなること、そして、粒界に沿って鋳片内部に入り込んだ酸化スケールは、二次冷却時の熱応力で鋳片の表面割れを引き起こすこと、したがって、鋳片の表面割れを防止するためには、二次冷却時の鋳片表面に発生する熱応力を低減してやるか、あるいはさらに、鋳片表面に形成される酸化スケールを何らかの手段で除去してやればよいことを見出し、本発明を開発するに至った。 The inventors have conducted intensive studies on the cause and countermeasures for the occurrence of surface cracks in a continuous cast slab of Si-containing steel. As a result, in the continuous cast slab containing Si by 0.5 mass% or more, the oxide scale formed on the slab surface is Fe 2 SiO from a flat form mainly composed of FeO when less than 0.5 mass%. 4 (firelight) is mainly used to change the shape of the projections and depressions, and when Si, Cu, Sn and Sb, which are low melting point metals, are contained in addition to Si, the above-mentioned Fe 2 SiO 4 is mainly used. Oxide scale formation is promoted to enter the inside of the slab along the grain boundary of the solidified structure, and the unevenness becomes more severe, and the oxide scale that has entered the inside of the slab along the grain boundary is secondary cooled. In order to cause surface cracking of the slab due to thermal stress at the time, and therefore to prevent surface cracking of the slab, the thermal stress generated on the surface of the slab during secondary cooling is reduced or further The inventors have found that the oxide scale formed on the surface of the slab may be removed by some means, and have developed the present invention.

すなわち、本発明は、Siを0.5mass%以上含有するSi含有鋼の連続鋳造方法において、鋳片の表面温度が1177℃〜下記(3)式で求められるTscの温度区間における二次冷却水の比水量SWを、下記(1)〜(3);
SWmax=(Tsc/1177)0.5×SW ・・・・・(1)
SW=1.6×V 0.2 ・・・・・(2)
sc=1177−(940×Cu+9450×Sn+10928×Sb)}/3
・・・・・(3)
(ここで、SWmax:Si含有鋼の二次冷却比水量の上限値(l/kg)、SW:普通鋼の二次冷却比水量(l/kg)、Tsc:150μm以上の深さの粒界酸化スケールが形成される下限温度(℃)、V:鋳造速度(m/min)、元素記号:その元素の含有量(mass%)、ただし、Cu:0.1mass%超えは0.1mass%、Sn:0.1mass%超えは0.1mass%、Sb:0.05mass%超えは0.05mass%)
で求められるSWmaxの値以下として鋳造することを特徴とするSi含有鋼の連続鋳造方法である。
That is, according to the present invention, in the continuous casting method of Si-containing steel containing 0.5 mass% or more of Si, the secondary cooling is performed in the temperature range of T sc where the surface temperature of the slab is calculated from 1177 ° C. to the following formula (3). Specific water amount SW of water is the following (1) to (3);
SW max = (T sc / 1177) 0.5 × SW 0 (1)
SW 0 = 1.6 × V c 0.2 (2)
T sc = 1177− (940 × Cu + 9450 × Sn + 10928 × Sb)} / 3
(3)
(Where SW max : upper limit value of secondary cooling specific water amount of Si-containing steel (l / kg), SW 0 : secondary cooling specific water amount of ordinary steel (l / kg), T sc : depth of 150 μm or more Lower limit temperature (° C.) at which a grain boundary oxide scale is formed, V c : casting speed (m / min), element symbol: content of the element (mass%), Cu: exceeding 0.1 mass% is 0 0.1 mass%, Sn: 0.1 mass% exceeding 0.1 mass%, Sb: 0.05 mass% exceeding 0.05 mass%)
This is a continuous casting method for Si-containing steel, characterized in that casting is performed at a value equal to or lower than the value of SW max obtained in step (1).

本発明のSi含有鋼の連続鋳造方法は、鋳片の表面温度が1177℃〜上記(3)式で求められるTscの温度区間における二次冷却水の衝突圧を20kPa以上として鋳片表面の酸化スケールを除去することを特徴とする。 In the continuous casting method of the Si-containing steel of the present invention, the surface temperature of the slab is 1177 ° C. to the collision temperature of the secondary cooling water in the temperature range of T sc obtained by the above equation (3) is 20 kPa or more. It is characterized by removing oxide scale.

また、本発明のSi含有鋼の連続鋳造方法は、垂直曲げ型連鋳機で連続鋳造する場合には、垂直部における二次冷却水の衝突圧を20kPa以上、湾曲型連鋳機で連続鋳造する場合には、湾曲部から矯正部における二次冷却水の衝突圧を20kPa以上、として鋳片表面の酸化スケールを除去することを特徴とする。   Further, in the continuous casting method of the Si-containing steel of the present invention, when continuous casting is performed with a vertical bending type continuous casting machine, the collision pressure of secondary cooling water in the vertical portion is 20 kPa or more, and continuous casting with a curved type continuous casting machine. In this case, the impact pressure of the secondary cooling water in the correction part from the curved part is set to 20 kPa or more, and the oxide scale on the slab surface is removed.

また、本発明のSi含有鋼の連続鋳造方法は、上記二次冷却水の衝突圧の制御に代えて、または、上記二次冷却水の衝突圧の制御に加えてさらに、機械的手段を用いて鋳片表面の酸化スケールを除去することを特徴とする。   Further, the continuous casting method of the Si-containing steel of the present invention uses mechanical means instead of controlling the collision pressure of the secondary cooling water or in addition to controlling the collision pressure of the secondary cooling water. And removing oxidized scale on the surface of the slab.

また、本発明のSi含有鋼の連続鋳造方法における上記Si含有鋼は、Cu:0.01〜0.1mass%、Sn:0.01〜0.1mass%およびSb:0.001〜0.05mass%のうちの少なくとも1種以上を含有することを特徴とする。   Moreover, the said Si containing steel in the continuous casting method of Si containing steel of this invention is Cu: 0.01-0.1mass%, Sn: 0.01-0.1mass%, and Sb: 0.001-0.05mass. % Of at least 1% or more.

本発明によれば、高Si含有鋼の連続鋳造鋳片表面に形成されるFeSiOを主体とする凹凸の激しい酸化スケールに起因した鋳片の表面割れを防止することができるので、高速鋳造が可能となり、生産性の向上を達成できるだけでなく、スラブの表面手入等による歩止り低下や、熱エネルギーロスなしに次工程へスラブを直送することが可能となる。さらに、本発明の技術は、今後、開発への要求がより高まると考えられる高張力鋼にも有効であるので、産業上、奏する効果は大である。 According to the present invention, it is possible to prevent the surface crack of the slab caused by the highly uneven oxide scale mainly composed of Fe 2 SiO 4 formed on the surface of the continuous cast slab of high Si content steel. Not only can casting be achieved and productivity can be improved, but also the slab can be sent directly to the next process without lowering the yield due to surface maintenance of the slab and the loss of thermal energy. Furthermore, since the technology of the present invention is also effective for high-tensile steel, which is expected to have higher demands for development in the future, the effect exerted industrially is great.

Si含有量と酸化スケール/地鉄界面の凹凸量との関係を示すグラフである。It is a graph which shows the relationship between Si content and the unevenness | corrugation amount of an oxide scale / base metal interface. 熱伝達率、スケール剥離性を評価する実験装置の模式図である。It is a schematic diagram of the experimental apparatus which evaluates a heat transfer rate and scale peelability. Si含有量が、冷却水量と熱伝達率の関係に及ぼす影響を示すグラフである。It is a graph which shows the influence which Si content has on the relationship between the amount of cooling water and a heat transfer coefficient. 冷却水の衝突圧とスケール残存量との関係を示すグラフである。It is a graph which shows the relationship between the collision pressure of a cooling water, and a scale residual amount.

上述したように、Si含有鋼の連続鋳造鋳片(スラブ)の表面に発生する割れは、従来公知の表面割れの発生メカニズムとは異なる。そこで、発明者らは、まず、スラブ表面に形成される酸化スケールに及ぼすSiの含有量の影響に着目し、下記の調査を行った。
C:0.10mass%、Mn:1.8mass%、P:0.015mass%、S:0.007mass%、Al:0.025mass%およびN:0.004mass%を含有し、Siの含有量を0mass%、0.05mass%、0.3mass%、0.5mass%、1.0mass%および2.0mass%に変化させた鋼を20kg大気溶解炉で溶製し、鋳型に注湯し、鋼塊とした。なお、上記鋼のCu,SnおよびSbの含有量は、Cu:0.02mass%、Sn:0.02mass%、Sb:0.001mass%で一定とした。
As described above, the crack generated on the surface of the continuous cast slab (slab) of Si-containing steel is different from the conventionally known surface crack generation mechanism. Therefore, the inventors first conducted the following investigation focusing on the influence of the Si content on the oxide scale formed on the slab surface.
C: 0.10 mass%, Mn: 1.8 mass%, P: 0.015 mass%, S: 0.007 mass%, Al: 0.025 mass% and N: 0.004 mass%, and Si content Steel changed to 0 mass%, 0.05 mass%, 0.3 mass%, 0.5 mass%, 1.0 mass% and 2.0 mass% was melted in a 20 kg atmospheric melting furnace, poured into a mold, and steel ingot It was. In addition, content of Cu, Sn, and Sb of the said steel was made constant at Cu: 0.02 mass%, Sn: 0.02 mass%, and Sb: 0.001 mass%.

次いで、上記鋼塊から、表面に形成された酸化スケールを含む試験片を採取し、鋼塊表層部断面をEPMAで観察した。その結果、Si:0.5mass%を境に表面に形成されたスケールの性状が大きく変化する、すなわち、Siが0.5mass%未満では、鋼塊表面が平坦な酸化スケールで覆われているのに対して、0.5mass%以上では、図1に模式的に示したように、酸化スケールが鋼塊内部にクサビ状に入り組んだ凹凸の激しいものに変化していた。   Next, a test piece including an oxide scale formed on the surface was collected from the steel ingot, and the cross section of the steel ingot surface layer was observed with EPMA. As a result, the property of the scale formed on the surface with Si: 0.5 mass% as a boundary changes greatly. That is, when Si is less than 0.5 mass%, the steel ingot surface is covered with a flat oxide scale. On the other hand, at 0.5 mass% or more, as schematically shown in FIG. 1, the oxide scale was changed to a rugged structure in which the scale was wedged inside the steel ingot.

また、上記鋼塊表面に形成された酸化スケールを、EPMAで定性分析した結果、Siが0.5mass%未満では、FeOを主体としたスケールの一部にFeSiO(ファイアライト)が観察されるのに対して、Siが0.5mass%以上では、酸化スケールと地鉄との界面からFeSiOがクサビ状に入り組んで、凹凸の激しい形態を呈するようになることがわかった。 In addition, as a result of qualitative analysis of the oxide scale formed on the surface of the steel ingot with EPMA, Fe 2 SiO 4 (firelight) was observed in a part of the scale mainly composed of FeO when Si was less than 0.5 mass%. On the other hand, when Si was 0.5 mass% or more, it was found that Fe 2 SiO 4 entered the wedge shape from the interface between the oxide scale and the ground iron, resulting in a form with severe irregularities.

次いで、発明者らは、上記と同じ、C:0.10mass%、Mn:1.8mass%、P:0.015mass%、S:0.007mass%、Al:0.025mass%およびN:0.004mass%を含有する鋼に、さらにCu,Sn,Sb,Nb,Ti,Caなどの各種成分を添加した鋼を、前述した実験と同様にして溶製し、鋳造して20kgの鋼塊とし、前述した実験と同様にして鋼塊の表面に生成した酸化スケールを調査し、酸化スケールの性状に及ぼす添加元素の影響を調査した。   Next, the inventors have the same C: 0.10 mass%, Mn: 1.8 mass%, P: 0.015 mass%, S: 0.007 mass%, Al: 0.025 mass%, and N: 0.00. Steel containing 004 mass% and further added with various components such as Cu, Sn, Sb, Nb, Ti, and Ca are melted in the same manner as in the above-described experiment, cast into a 20 kg steel ingot, In the same manner as in the experiment described above, the oxide scale formed on the surface of the steel ingot was investigated, and the influence of the additive element on the properties of the oxide scale was investigated.

その結果、Si含有量が単に0.5mass%以上となるだけでは、粒界に沿って発達した酸化スケールが部分的に観察されるが、その程度はそれほど大きくないが、Cu,SnおよびSbなどの低融点金属を添加した場合には、酸化スケールが凝固組織の粒界に沿って鋳片内部に深く入り込み、凹凸がさらに激しい酸化スケール(以降、この酸化スケールを「粒界酸化スケール」ともいう。)となること、および、この粒界酸化スケールがスケールと地鉄の界面から150μm以上内部(深さ)まで形成された鋼塊では、機械的な歪の付与がなくても、鋳造後の鋼塊冷却時の熱応力によって、鋼塊表面から内部に粒界に沿って微細な割れが進展していることが明らかとなった。   As a result, when the Si content is merely 0.5 mass% or more, an oxide scale developed along the grain boundary is partially observed, but the degree is not so large, but Cu, Sn, Sb, etc. When the low melting point metal is added, the oxide scale penetrates deeply into the slab along the grain boundary of the solidified structure and the unevenness is more severe (hereinafter, this oxide scale is also referred to as “grain boundary oxide scale”). In the steel ingot in which this grain boundary oxide scale is formed from the interface between the scale and the base iron to the inside (depth) of 150 μm or more, even after no mechanical strain is applied, It became clear that fine cracks progressed along the grain boundary from the surface of the steel ingot to the inside due to the thermal stress at the time of steel ingot cooling.

なお、ファイアライトの生成に関しては、過去に幾つかの調査報告があり、例えば、深川智機らの研究(「Si添加熱延鋼板の高圧水によるデスケーリング性に及ぼす鋼中Sの影響」,鉄と鋼,81(1995),No.5,p.559)によれば、Si含有量の増大とともにファイアライトを主体とするスケールが生成すること、また、秦野正治らの研究(「Cu,Sn含有鋼の表面赤熱脆性に及ぼす水蒸気の影響」,鉄と鋼,89(2003),No.6,p.659)によれば、水蒸気雰囲気がスケール生成に大きく影響することが述べられている。しかし、上記いずれの文献にも、Si含有鋼における酸化スケールに及ぼすCu,Sn,Sbの効果については記載がない。   Regarding the generation of firelight, there have been some research reports in the past, such as a study by Fukakawa Tomoki et al. ("Effect of S in steel on descaling property of high-pressure water of Si-added hot-rolled steel sheet", According to Iron and Steel, 81 (1995), No. 5, p. 559), a scale mainly composed of firelite is generated with an increase in Si content, and a study by Masano Kanno (“Cu, According to “Effect of water vapor on surface red hot brittleness of Sn-containing steel”, Iron and Steel, 89 (2003), No. 6, p.659), it is stated that the water vapor atmosphere greatly affects the scale formation. . However, none of the above documents describes the effects of Cu, Sn, and Sb on the oxide scale in Si-containing steel.

そこで、発明者らは、低融点金属であるCu,SnおよびSbを含有する場合に、FeSiOが粒界に沿って鋳片内部に入り込み、凹凸が激しくなる理由についてさらに調査した。その結果、FeSiOは、状態図上では、共晶点である1177℃までは液相で存在し、それ以下の温度では固体として存在するが、鋳片表面に形成される酸化スケール中に含まれる液相がFeSiOのみである場合には、酸化スケールは鋳片表面に平坦に形成される。すなわち、鋳片表面温度が、液相としてFeSiOのみが存在する1177℃以上では、液相粒界酸化スケールはほとんど成長しない。 Therefore, the inventors further investigated the reason why Fe 2 SiO 4 enters the inside of the slab along the grain boundary when the low melting point metals Cu, Sn, and Sb are contained, and the unevenness becomes severe. As a result, on the phase diagram, Fe 2 SiO 4 exists in the liquid phase up to the eutectic point of 1177 ° C. and exists as a solid at temperatures lower than that, but in the oxide scale formed on the surface of the slab. When the liquid phase contained in the material is only Fe 2 SiO 4 , the oxide scale is formed flat on the surface of the slab. That is, when the slab surface temperature is 1177 ° C. or higher where only Fe 2 SiO 4 exists as a liquid phase, the liquid phase grain boundary oxide scale hardly grows.

しかし、鋳片の表面温度が1177℃以下となると、鋼中に低融点金属であるCu,Sn,Sbを含有している場合には、これらの元素が酸化スケールと地鉄との界面に液体状態で存在するようになり、この低融点の液体が、凝固組織の粒界酸化を促進して粒界に沿って鋳片内部に入り込み、凹凸の激しい粒界酸化スケールを形成することが明らかとなった。ここで、Cu,SnおよびSb各元素の融点Tmpは、Tmp(Cu):1083℃、Tmp(Sn):232℃およびTmp(Sb):630.6℃である。 However, when the surface temperature of the slab becomes 1177 ° C. or less, when the steel contains Cu, Sn, Sb, which are low melting point metals, these elements are liquid at the interface between the oxide scale and the ground iron. It is clear that this low melting point liquid promotes the grain boundary oxidation of the solidified structure and enters the inside of the slab along the grain boundary to form a grain boundary oxidation scale with severe irregularities. became. Here, Cu, melting point T mp of Sn and Sb each element, T mp (Cu): 1083 ℃, T mp (Sn): 232 ℃ and T mp (Sb): a 630.6 ° C..

そこで、発明者らは、上記低融点金属であるCu,SnおよびSbの含有量と、各元素が粒界酸化スケールの形成を促進する効果との関係について調査した結果、含有量にほぼ比例して大きくなるが、Cuは0.1mass%、Snは0.1mass%およびSbは0.05mass%を超えると、その効果はほぼ飽和することが確認された。
すなわち、ここで、鋼中のCu含有量(mass%)を[Cu],Sn含有量(mass%)を[Sn]およびSb含有量(mass%)を[Sb]、および、上記効果が飽和する含有量をそれぞれ、[Cu]cri、[Sn]criおよび[Sb]criと表わすと、Cu,SnおよびSbの各元素の粒界酸化スケールを形成する効果は、Cu:0.1mass%以下、Sn:0.1mass%以下、Sb:0.05mass%以下であれば、それぞれ、([Cu]/[Cu]cri)=([Cu]/0.1),([Sn]/[Sn]cri)=([Sn]/0.1)および([Sb]/[Sb]cri)=([Sb]/0.05)にほぼ比例する。ただし、Cu:0.1mass%超え、Sn:0.1mass%超えおよびSb:0.05mass%超えでは上記効果が飽和するので、その場合には、[Cu]、[Sn]および[Sb]は、それぞれ0.1mass%、0.1mass%および0.05mass%として計算する。
Therefore, the inventors investigated the relationship between the content of the low melting point metals Cu, Sn, and Sb and the effect of each element promoting the formation of grain boundary oxide scale. As a result, the inventors were almost proportional to the content. However, when Cu exceeds 0.1 mass%, Sn exceeds 0.1 mass%, and Sb exceeds 0.05 mass%, it was confirmed that the effect is almost saturated.
That is, here, the Cu content (mass%) in the steel is [Cu], the Sn content (mass%) is [Sn], the Sb content (mass%) is [Sb], and the above effect is saturated. When the contents to be expressed are [Cu] cri , [Sn] cri and [Sb] cri , the effect of forming the grain boundary oxidation scale of each element of Cu, Sn and Sb is Cu: 0.1 mass% or less , Sn: 0.1 mass% or less, Sb: 0.05 mass% or less, ([Cu] / [Cu] cri ) = ([Cu] /0.1), ([Sn] / [Sn), respectively ] Cri ) = ([Sn] /0.1) and ([Sb] / [Sb] cri ) = ([Sb] /0.05). However, the above effects are saturated when Cu exceeds 0.1 mass%, Sn exceeds 0.1 mass%, and Sb exceeds 0.05 mass%. In this case, [Cu], [Sn] and [Sb] Are calculated as 0.1 mass%, 0.1 mass%, and 0.05 mass%, respectively.

また、発明者らは、上記低融点金属であるCu,SnおよびSbによって粒界酸化スケールの形成が促進される温度範囲について調査した結果、各元素の融点と密接に関係しており、各元素の融点に至るまで粒界酸化スケールの形成を促進し続けること、すなわち、各元素が粒界酸化スケールの形成を促進する温度範囲は、Cuは(1177℃〜Tmp(Cu))=1177〜1083℃、Snは(1177℃〜Tmp(Sn))=1177〜232℃およびSbは(1177℃〜Tmp(Sb))=1177〜630.6℃の温度範囲であることがわかった。 Further, as a result of investigating the temperature range in which the formation of grain boundary oxide scale is promoted by the low melting point metals Cu, Sn and Sb, the inventors are closely related to the melting point of each element. The temperature range in which the formation of the grain boundary oxide scale is continued until the melting point is reached, that is, the temperature range in which each element promotes the formation of the grain boundary oxide scale is Cu (1177 ° C. to T mp (Cu)) = 1177 to It was found that 1083 ° C., Sn (1177 ° C. to T mp (Sn)) = 1177 to 232 ° C. and Sb (1177 ° C. to T mp (Sb)) = 1177 to 630.6 ° C.

そこで、発明者らはさらに、Cu,SnおよびSbの各元素が複合して含有する場合において、表面割れを引き起こす150μm以上の深さの粒界酸化スケールが形成される下限温度Tscについて、Cu,SnおよびSb各元素の含有量[Cu],[Sn]および[Sb]と、FeSiOの融点Tmp(FeSiO)ならびに、Cu,SnおよびSb各元素の融点Tmp(Cu),Tmp(Sb)およびTmp(Sn)との間の関係式を試行錯誤的に検討した結果、下限温度Tscは、下記(3)式で表すことができることを見出した。

sc=Tmp(FeSiO)−{(Tmp(FeSiO)−Tmp(Cu))×([Cu]/[Cu]cri)+(Tmp(FeSiO)−Tmp(Sn))×([Sn]/[Sn]cri)+(Tmp(FeSiO)−Tmp(Sb))×([Sb]/[Sb]cri)}/3
=1177−(940×[Cu]+9450×[Sn]+10928×[Sb])/3
・・・(3)
因みに、Cu:0.1mass%、Sn:0.1mass%およびSb:0.05mass%を含有するときの下限温度Tscは約650℃である。
Therefore, the inventors further describe the lower limit temperature T sc at which a grain boundary oxide scale having a depth of 150 μm or more that causes surface cracking is formed when Cu, Sn, and Sb are contained in combination. , Sn and Sb elements content [Cu], [Sn] and [Sb], Fe 2 SiO 4 melting point T mp (Fe 2 SiO 4 ), and Cu, Sn and Sb element melting points T mp ( As a result of examining the relational expression between Cu), T mp (Sb) and T mp (Sn) by trial and error, it was found that the lower limit temperature T sc can be expressed by the following expression (3).
Serial T sc = T mp (Fe 2 SiO 4) - {(T mp (Fe 2 SiO 4) -T mp (Cu)) × ([Cu] / [Cu] cri) + (T mp (Fe 2 SiO 4 ) -T mp (Sn)) × ([Sn] / [Sn] cri) + (T mp (Fe 2 SiO 4) -T mp (Sb)) × ([Sb] / [Sb] cri)} / 3
= 1177− (940 × [Cu] + 9450 × [Sn] + 10928 × [Sb]) / 3
... (3)
Incidentally, the lower limit temperature T sc when Cu: 0.1 mass%, Sn: 0.1 mass%, and Sb: 0.05 mass% is about 650 ° C.

上記のように、鋳片表面から内部に、粒界に沿って形成される粒界酸化スケールの生成メカニズムが明らかになった。そこで、発明者らは、さらに、上記粒界酸化スケールに起因する鋳片の表面割れを防止する方法について検討した。
上述したように、Si含有鋼の連続鋳造鋳片の表面割れは、上記粒界酸化スケールがある深さ以上(150μm以上)になると、鋳片冷却時の熱応力によって発生するものと考えられる。しかし、連続鋳造鋳片表面へのFeSiO(ファイライト)を主体とした酸化スケールの形成を防止することは実質上不可能である。そこで、鋳片の表面割れを防止する方法としては、粒界酸化スケールが形成される温度域において、鋳片表面に発生する熱応力を極力緩和してやること、および、鋳片表面に形成される酸化スケールを何らかの手段で除去し、粒界酸化スケールに成長するのを防止すること、が有効であると考えられる。
As described above, the generation mechanism of the grain boundary oxide scale formed along the grain boundary from the slab surface to the inside has been clarified. Therefore, the inventors further examined a method for preventing the surface crack of the slab caused by the grain boundary oxide scale.
As described above, it is considered that the surface crack of the continuous cast slab of Si-containing steel occurs due to thermal stress during cooling of the slab when the grain boundary oxide scale is greater than a certain depth (150 μm or greater). However, it is virtually impossible to prevent the formation of an oxide scale mainly composed of Fe 2 SiO 4 (Phlite) on the surface of the continuous cast slab. Therefore, as a method of preventing the surface crack of the slab, the thermal stress generated on the surface of the slab is relaxed as much as possible in the temperature range where the grain boundary oxide scale is formed, and the oxidation formed on the surface of the slab It is considered effective to remove the scale by some means and prevent it from growing to a grain boundary oxide scale.

そこで、まず、鋳片表面に発生する熱応力を緩和してやる方法について検討した。
上述したように、FeSiOスケールの共晶温度:1177℃〜Tscの温度区間では、鋳片表面に凹凸の激しい酸化スケールが形成される。この酸化スケールは、密着性が高いため、密着性の低い酸化スケールが形成される場合と比較して熱伝達率が高くなり、その分、鋳型から出た鋳片の表面は、水スプレーによる二次冷却により強冷却されることになる。
Therefore, first, a method for relaxing the thermal stress generated on the surface of the slab was examined.
As described above, in the temperature range of the eutectic temperature of Fe 2 SiO 4 scale: 1177 ° C. to T sc, an oxide scale with severe irregularities is formed on the surface of the slab. Since this oxide scale has high adhesion, the heat transfer rate is higher than that when an oxide scale with low adhesion is formed. It is strongly cooled by the next cooling.

一方、凹凸の激しい粒界酸化スケールは、鋳片全体にわたって均一に形成されないため、酸化スケールの厚さは、場所によるムラが大きくなる。その結果、二次冷却が強冷却されることと相俟って、冷却ムラが大きくなり、鋳片表面の局部的温度差に起因する熱応力によって、表面割れが促進されるものと考えられる。   On the other hand, the grain boundary oxide scale with severe irregularities is not uniformly formed over the entire slab, and therefore, the thickness of the oxide scale varies greatly depending on the location. As a result, coupled with the strong cooling of the secondary cooling, the cooling unevenness is increased, and it is considered that the surface cracking is promoted by the thermal stress caused by the local temperature difference on the surface of the slab.

そこで、Siを1.0mass%含有する高Si含有鋼と、Siを0.25mass%含有する普通鋼について、図2に示した実験装置を用い、鋳片表面の二次冷却を模して、水スプレーの冷却水量と、粒界酸化スケールが形成され続ける1200〜600℃の温度区間の熱伝達率の平均値との関係を調査し、その結果を図3に示した。図3から、Siを1.0mass%含有する高Si含有鋼は、Si含有量が0.25mass%の普通鋼と比較して、同一水量でも熱伝達率が大きいこと、また、普通鋼と同じ熱伝達率が得られる水量は、普通鋼の水量の約80%である、つまり、普通鋼と同じ冷却条件とするには、冷却水量を約20%低減できることが確認された。
なお、このように高Si含有鋼の熱伝達率が高くなる理由は、酸化スケールの密着性が高いことに加えて、沸騰曲線において膜沸騰領域から遷移沸騰領域に変化する極小熱流束点(MHF点)が、強冷却した場合には、高温度側に移行することも影響していると考えられる。
Therefore, for the high Si content steel containing 1.0 mass% of Si and the normal steel containing 0.25 mass% of Si, using the experimental apparatus shown in FIG. 2, imitating secondary cooling of the slab surface, The relationship between the amount of cooling water in the water spray and the average value of the heat transfer coefficient in the temperature range of 1200 to 600 ° C. at which the grain boundary oxide scale continues to be formed was investigated, and the result is shown in FIG. From FIG. 3, the high Si content steel containing 1.0 mass% of Si has a larger heat transfer coefficient even with the same amount of water than the ordinary steel with Si content of 0.25 mass%. It was confirmed that the amount of water with which the heat transfer coefficient can be obtained is about 80% of the amount of water in ordinary steel, that is, the amount of cooling water can be reduced by about 20% in order to achieve the same cooling conditions as in ordinary steel.
In addition, the reason why the heat transfer coefficient of the high Si content steel is increased is that, in addition to the high adhesion of the oxide scale, the minimum heat flux point (MHF) that changes from the film boiling region to the transition boiling region in the boiling curve. However, in the case of strong cooling, it is considered that shifting to a higher temperature side also has an effect.

そこで、発明者らは、Si以外に、Cu,SnおよびSbの添加量を種々に変えた鋼について、上記と同様にして、普通鋼と同じ熱伝達率が得られる冷却水量を調査した。その結果、Si含有鋼において、普通鋼と同じ熱伝達率が得られる冷却水量SWは、Cu,SnおよびSbの含有量に応じて変化し、普通鋼の冷却水量SWを基準とした場合、SWに(Tsc/1177)0.5を乗じた下記(1)式;
SW(l/kg)=(Tsc/1177)0.5×SW(l/kg) ・・・(1)
で近似的に得られることを見出した。
ここで、普通鋼の冷却水量SWは、一般に下記(2)式;
SW(l/kg)=1.6×V 0.2 ・・・・・(2)
(ここで、V:鋳造速度(m/min)
で与えられる。
Therefore, the inventors investigated the amount of cooling water that can obtain the same heat transfer coefficient as that of ordinary steel in the same manner as described above for steels in which the addition amount of Cu, Sn, and Sb was changed in addition to Si. As a result, in the Si-containing steel, the cooling water amount SW at which the same heat transfer coefficient as that of the ordinary steel is changed according to the contents of Cu, Sn and Sb, and when the cooling water amount SW 0 of the ordinary steel is used as a reference, The following formula (1) obtained by multiplying SW 0 by (T sc / 1177) 0.5 ;
SW (l / kg) = (T sc / 1177) 0.5 × SW 0 (l / kg) (1)
And found that it can be obtained approximately.
Here, the cooling water amount SW 0 of ordinary steel is generally expressed by the following equation (2):
SW 0 (l / kg) = 1.6 × V c 0.2 (2)
(Where V c : casting speed (m / min)
Given in.

そして、上記の結果を基に実験を重ねた結果、Si含有鋼の連続鋳造においては、普通鋼と同じ冷却条件以下となるよう、すなわち、鋳片の表面温度が1177℃〜Tscの温度範囲における二次冷却時の冷却水量を、上記(1)式で与えられる冷却水量SW以下となるように低減して鋳造する、すなわち、上記(1)式で得られるSWを二次冷却比水量の上限値SWmaxとして鋳造することで、Si含有鋼の鋳片表面に発生する熱応力を緩和し、鋳片表面の割れを防止し得ることを見出した。 And as a result of repeating experiments based on the above results, in the continuous casting of Si-containing steel, the surface temperature of the slab is in a temperature range of 1177 ° C. to T sc so as to be equal to or less than the same cooling condition as ordinary steel. The cooling water amount at the time of secondary cooling in is reduced and cast so as to be equal to or less than the cooling water amount SW given by the above equation (1), that is, the SW obtained by the above equation (1) is converted into the secondary cooling specific water amount. It has been found that by casting as the upper limit SW max , the thermal stress generated on the surface of the slab of Si-containing steel can be relaxed and cracking of the surface of the slab can be prevented.

なお、鋳片表面の応力を低減する観点からは、連続鋳造機において鋳片に曲げあるいは曲げ戻し(矯正)により歪を付与する部分、例えば、垂直曲げ型連鋳機では、垂直部から湾曲部に移行する区間、湾曲型連鋳機では、湾曲部から矯正部に移行する区間おける二次冷却の水量は、特に厳格に管理することが望ましい。   From the viewpoint of reducing the stress on the surface of the slab, from a continuous casting machine, a portion of the continuous slab that is distorted by bending or unbending (correcting), for example, in a vertical bending type continuous casting machine, a vertical portion to a curved portion In the section where the transition is made to the bending type continuous casting machine, it is desirable that the amount of secondary cooling water in the section where the transition is made from the bending portion to the correction portion is particularly strictly controlled.

次に、発明者らは、連続鋳造鋳片表面に形成された酸化スケールを除去し、粒界酸化スケールに成長するのを防止することで鋳片の表面割れを防止する方法について検討した。
図2に示した装置を用い、Si:1.0mass%、Cu:0.05mass%、Sn:0.1mass%およびSb:0.001mass%を含有する鋼試料を、プロパンガスのバーナーで1250℃に加熱して試料表面に酸化スケールを形成させた後、鋳片の二次冷却を模擬し、スプレーノズルから噴射される冷却水の衝突圧を0〜40kPaの範囲で変化させたときのスケール残存量(厚さ)を調査し、その結果を図4に示した。
Next, the inventors examined a method for preventing surface cracking of the slab by removing the oxide scale formed on the surface of the continuous cast slab and preventing it from growing to a grain boundary oxide scale.
Using the apparatus shown in FIG. 2, a steel sample containing Si: 1.0 mass%, Cu: 0.05 mass%, Sn: 0.1 mass%, and Sb: 0.001 mass% was heated at 1250 ° C. with a propane gas burner. After forming an oxide scale on the surface of the sample by simulating secondary cooling of the slab, the scale remains when the collision pressure of the cooling water sprayed from the spray nozzle is changed in the range of 0 to 40 kPa The amount (thickness) was investigated, and the result is shown in FIG.

図4から、ノズルから噴射される冷却水の衝突圧を20kPa以上とすることで、スケール厚を50μm以下に低減(除去)できることがわかる。そこで、本発明では、粒界酸化スケールが形成される鋳片の表面温度が1177℃〜Tscの温度範囲における二次冷却水の衝突圧を20kPa以上とすることが好ましい。 FIG. 4 shows that the scale thickness can be reduced (removed) to 50 μm or less by setting the collision pressure of the cooling water sprayed from the nozzle to 20 kPa or more. Therefore, in the present invention, it is preferable that the collision pressure of the secondary cooling water is 20 kPa or more when the surface temperature of the slab where the grain boundary oxide scale is formed is 1177 ° C. to T sc .

なお、上記1177℃〜Tscの温度範囲は、Cu,SnおよびSbの含有量によって変化する。そこで、大まかな目安として、二次冷却水の衝突圧を20kPa以上とする部分としては、例えば、垂直曲げ型連鋳機で連続鋳造する場合には、垂直部から湾曲部に移行するまでの区間、湾曲型連鋳機で連続鋳造する場合には、湾曲部から矯正部に移行するまでの区間とするのが好ましい。 The temperature range of 1177 ° C. to T sc varies depending on the contents of Cu, Sn, and Sb. Therefore, as a rough guideline, as the portion where the collision pressure of the secondary cooling water is 20 kPa or more, for example, in the case of continuous casting with a vertical bending type continuous caster, the interval from the vertical portion to the curved portion In the case of continuous casting with a curved continuous casting machine, it is preferable to use a section from the curved portion to the correction portion.

また、酸化スケールを除去する手段としては、上記のように二次冷却水の衝突圧を高める方法の他に、例えば、突起を有するロールで除去する方法や、ブラシロールでスケールを剥ぎ取る方法等の機械的手段を用いてもよい。   Further, as a means for removing the oxide scale, in addition to the method of increasing the collision pressure of the secondary cooling water as described above, for example, a method of removing with a roll having protrusions, a method of peeling off the scale with a brush roll, etc. The following mechanical means may be used.

なお、上記説明では、本発明の連続鋳造方法を対象とする鋼種として、Siを0.5mass%以上含有し、さらに、Cu,SnおよびSbのいずれか1種以上を含有する鋼について説明してきたが、Siを2mass%以上と多量に含有する電磁鋼板用等の鋼の連続鋳造方法に対しても有効である。   In the above description, steel containing 0.5 mass% or more of Si and further containing any one or more of Cu, Sn, and Sb has been described as a steel type for the continuous casting method of the present invention. However, it is also effective for a continuous casting method of steel such as for electrical steel sheets containing Si in a large amount of 2 mass% or more.

C:0.10mass%、Si:1.0mass%、Mn:1.8mass%、P:0.015mass%、S:0.007mass%、Al:0.025mass%およびN:0.0040mass%を含有し、さらに、Cu,SnおよびSbの含有量を表1に示したように変化させた鋼を溶製し、湾曲型連続鋳造機で鋳込速度:1.0m/minで鋳造して幅:1500mm×厚さ:215mmの鋳片(No.1〜28)とした。この際、連続鋳造における鋳片の二次冷却は、水スプレー方式で行い、冷却水の比水量および衝突圧は表1に示したように変化させた。また、参考例として、Si:0.25mass%としたこと以外は、上記と同様にして鋳片(No.29〜34)を製造した。
斯くして得た鋳造後の鋳片は、その後、スカーフィング設備でスラブ表面を2mm削った後、浸透液試験(PT)を行って、表面割れの有無を調査し、割れのないものを○、か微かに割れが確認されたものを△、明らかな割れが確認されたものを×と評価した。
C: 0.10 mass%, Si: 1.0 mass%, Mn: 1.8 mass%, P: 0.015 mass%, S: 0.007 mass%, Al: 0.025 mass%, and N: 0.0040 mass% Further, a steel whose contents of Cu, Sn and Sb are changed as shown in Table 1 is melted and cast by a curved continuous casting machine at a casting speed of 1.0 m / min. 1500 mm × thickness: 215 mm slab (No. 1-28). At this time, the secondary cooling of the slab in the continuous casting was performed by a water spray method, and the specific amount of cooling water and the collision pressure were changed as shown in Table 1. As a reference example, cast pieces (Nos. 29 to 34) were produced in the same manner as described above except that Si: 0.25 mass% was used.
The cast slab thus obtained was then subjected to a penetrant test (PT) after cutting the surface of the slab by 2 mm with a scarfing equipment, and examined for the presence of surface cracks. A case where a slight crack was confirmed was evaluated as Δ, and a case where a clear crack was confirmed was evaluated as ×.

Figure 2013128940
Figure 2013128940

Figure 2013128940
Figure 2013128940

上記表面割れ有無の調査結果を表1に併記した。表1から、Siを0.25mass%しか含有していない鋳片(No.29〜34の参考例)では、二次冷却の比水量SWが本発明のSWmax以上でも表面割れの発生は認められていない。
一方、Siを1.0mass%含有する鋳片では、粒界酸化に起因した表面割れを考慮して二次冷却の比水量SWを本発明のSWmax以下に低減した本発明例の鋳片(No.12〜24)では、表面割れの発生は認められていない。特に、二次冷却の比水量SWを適正範囲とした上で、さらに、冷却水の衝突圧を20kPaとしたNo.23,24では、スラブ表面性状は非常に良好(◎で表示)であった。
これに対して、粒界酸化に起因した表面割れを考慮せず、低Siの普通鋼と同様、SWmaxを超える比水量SWで二次冷却した比較例の鋳片(No.1〜11)、および、本発明の温度範囲(1177℃〜Tsc)で二次冷却の比水量SWをSWmax以下に低減しなかったNo.25,26では、いずれの鋳片表面にも割れの発生が認められた。また、No.27,28から、粒界酸化に起因した表面割れを考慮した二次冷却をしない場合には、二次冷却水の衝突圧を高めただけでは、スラブ表面割れを防止することができないことがわかる。
Table 1 shows the results of the investigation on the presence or absence of surface cracks. From Table 1, in the slab containing only 0.25 mass% of Si (reference examples of No. 29 to 34), the occurrence of surface cracks was recognized even when the specific water amount SW of the secondary cooling was higher than the SW max of the present invention. It is not done.
On the other hand, in the slab containing 1.0 mass% of Si, the slab of the example of the present invention in which the specific water amount SW of the secondary cooling is reduced to the SW max or less of the present invention in consideration of the surface crack caused by grain boundary oxidation ( In Nos. 12 to 24), the occurrence of surface cracks is not observed. In particular, after setting the specific water amount SW of the secondary cooling to an appropriate range, the cooling water collision pressure was 20 kPa. In Nos. 23 and 24, the slab surface properties were very good (indicated by ◎).
In contrast, without considering the surface cracks due to intergranular oxidation, as with ordinary steel low Si, the comparative example in which the secondary cooling at a ratio water SW exceeding SW max slab (No.1~11) In the temperature range (1177 ° C. to T sc ) of the present invention, the secondary cooling specific water amount SW was not reduced below SW max . In 25 and 26, the occurrence of cracks was observed on the surface of any slab. No. 27 and 28, it is understood that when the secondary cooling is not performed in consideration of the surface crack caused by the grain boundary oxidation, the slab surface crack cannot be prevented only by increasing the collision pressure of the secondary cooling water. .

また、表面割れの発生が認められた鋳片からサンプルを採取し、割れ発生個所の断面組織をEPMAで観察したところ、上記割れは、粒界酸化したスケールから鋳片内部に進展しており、粒界酸化の著しい箇所が冷却時の熱応力で割れに発展したものと推定された。これらの結果から、高Si鋼の連続鋳造による鋳片製造においては、従来、考慮していなかった酸化スケールに起因する表面割れを考慮した二次冷却を行う必要があることが確認された。   In addition, a sample was taken from the slab where the occurrence of surface cracks was observed, and when the cross-sectional structure of the crack occurrence site was observed with EPMA, the cracks developed from the grain boundary oxidized scale into the slab, It was estimated that the part where the grain boundary oxidation was remarkable developed into cracks due to the thermal stress during cooling. From these results, it was confirmed that in the slab production by continuous casting of high-Si steel, it is necessary to perform secondary cooling in consideration of surface cracks caused by oxide scale, which has not been considered in the past.

本発明の技術は、連続鋳造鋳片の表面割れ防止技術に関するものであるが、これに限定されるものではなく、例えば、連続鋳造、熱間圧延工程でのスケール制御や、スケール制御を介した冷却速度制御にも展開することができる。   The technique of the present invention relates to a technique for preventing surface cracking of a continuous cast slab, but is not limited to this. For example, the scale control in a continuous casting or hot rolling process, or via scale control. It can also be applied to cooling rate control.

Claims (5)

Siを0.5mass%以上含有するSi含有鋼の連続鋳造方法において、
鋳片の表面温度が1177℃〜下記(3)式で求められるTscの温度区間における二次冷却水の比水量SWを、下記(1)〜(3)式で求められるSWmaxの値以下として鋳造することを特徴とするSi含有鋼の連続鋳造方法。

SWmax=(Tsc/1177)0.5×SW ・・・・・(1)
SW=1.6×V 0.2 ・・・・・(2)
sc=1177−(940×Cu+9450×Sn+10928×Sb)}/3
・・・・・(3)
(ここで、SWmax:Si含有鋼の二次冷却比水量の上限値(l/kg)、SW:普通鋼の二次冷却比水量(l/kg)、Tsc:150μm以上の深さの粒界酸化スケールが形成される下限温度(℃)、V:鋳造速度(m/min)、元素記号:その元素の含有量(mass%)、ただし、Cu:0.1mass%超えは0.1mass%、Sn:0.1mass%超えは0.1mass%、Sb:0.05mass%超えは0.05mass%)
In the continuous casting method of Si-containing steel containing 0.5 mass% or more of Si,
The specific water amount SW of the secondary cooling water in the temperature range of T sc obtained by the surface temperature of the slab from 1177 ° C. to the following equation (3) is equal to or less than the value of SW max obtained by the following equations (1) to (3). A continuous casting method of Si-containing steel, characterized in that
SW max = (T sc / 1177) 0.5 × SW 0 (1)
SW 0 = 1.6 × V c 0.2 (2)
T sc = 1177− (940 × Cu + 9450 × Sn + 10928 × Sb)} / 3
(3)
(Where SW max : upper limit value of secondary cooling specific water amount of Si-containing steel (l / kg), SW 0 : secondary cooling specific water amount of ordinary steel (l / kg), T sc : depth of 150 μm or more Lower limit temperature (° C.) at which a grain boundary oxide scale is formed, V c : casting speed (m / min), element symbol: content of the element (mass%), Cu: exceeding 0.1 mass% is 0 0.1 mass%, Sn: 0.1 mass% exceeding 0.1 mass%, Sb: 0.05 mass% exceeding 0.05 mass%)
鋳片の表面温度が1177℃〜上記(3)式で求められるTscの温度区間における二次冷却水の衝突圧を20kPa以上として鋳片表面の酸化スケールを除去することを特徴とする請求項1に記載のSi含有鋼の連続鋳造方法。 The surface temperature of the slab is from 1177 ° C. to T sc obtained in the above equation (3), and the impact pressure of the secondary cooling water is set to 20 kPa or more to remove the oxide scale on the surface of the slab. The continuous casting method of Si-containing steel according to 1. 垂直曲げ型連鋳機で連続鋳造する場合には、垂直部における二次冷却水の衝突圧を20kPa以上、湾曲型連鋳機で連続鋳造する場合には、湾曲部から矯正部における二次冷却水の衝突圧を20kPa以上、として鋳片表面の酸化スケールを除去することを特徴とする請求項1に記載のSi含有鋼の連続鋳造方法。 When continuously casting with a vertical bending type continuous casting machine, the impact pressure of the secondary cooling water in the vertical part is 20 kPa or more. When continuously casting with a curved type continuous casting machine, secondary cooling is performed from the curved part to the correction part. The continuous casting method for Si-containing steel according to claim 1, wherein the oxide scale on the surface of the slab is removed with a water collision pressure of 20 kPa or more. 上記二次冷却水の衝突圧の制御に代えて、または、上記二次冷却水の衝突圧の制御に加えてさらに、機械的手段を用いて鋳片表面の酸化スケールを除去することを特徴とする請求項2または3に記載のSi含有鋼の連続鋳造方法。 In place of controlling the collision pressure of the secondary cooling water, or in addition to controlling the collision pressure of the secondary cooling water, the mechanical scale is used to remove the oxide scale on the surface of the slab. The continuous casting method of Si-containing steel according to claim 2 or 3. 上記Si含有鋼は、Cu:0.01〜0.1mass%、Sn:0.01〜0.1mass%およびSb:0.001〜0.05mass%のうちの少なくとも1種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載のSi含有鋼の連続鋳造方法。 The Si-containing steel contains at least one of Cu: 0.01 to 0.1 mass%, Sn: 0.01 to 0.1 mass%, and Sb: 0.001 to 0.05 mass%. The continuous casting method for Si-containing steel according to any one of claims 1 to 4.
JP2011278414A 2011-12-20 2011-12-20 Method for continuous casting of Si-containing steel Expired - Fee Related JP5854214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278414A JP5854214B2 (en) 2011-12-20 2011-12-20 Method for continuous casting of Si-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278414A JP5854214B2 (en) 2011-12-20 2011-12-20 Method for continuous casting of Si-containing steel

Publications (3)

Publication Number Publication Date
JP2013128940A true JP2013128940A (en) 2013-07-04
JP2013128940A5 JP2013128940A5 (en) 2014-12-25
JP5854214B2 JP5854214B2 (en) 2016-02-09

Family

ID=48906975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278414A Expired - Fee Related JP5854214B2 (en) 2011-12-20 2011-12-20 Method for continuous casting of Si-containing steel

Country Status (1)

Country Link
JP (1) JP5854214B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314609A (en) * 1976-07-27 1978-02-09 Nippon Steel Corp Production of nondirectional electromagnetic steel sheet free from ridging
JPH0825001A (en) * 1994-07-07 1996-01-30 Nippon Steel Corp Production of thin cast slab having good scale peelability
JP3456498B2 (en) * 1994-06-23 2003-10-14 住友金属工業株式会社 Method for preventing surface cracking during continuous casting of Ni-containing steel
JP2008264827A (en) * 2007-04-19 2008-11-06 Kobe Steel Ltd Method for improving central segregation of spring steel in continuous casting
JP2010082637A (en) * 2008-09-30 2010-04-15 Jfe Steel Corp Secondary cooling method in continuous casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314609A (en) * 1976-07-27 1978-02-09 Nippon Steel Corp Production of nondirectional electromagnetic steel sheet free from ridging
JP3456498B2 (en) * 1994-06-23 2003-10-14 住友金属工業株式会社 Method for preventing surface cracking during continuous casting of Ni-containing steel
JPH0825001A (en) * 1994-07-07 1996-01-30 Nippon Steel Corp Production of thin cast slab having good scale peelability
JP2008264827A (en) * 2007-04-19 2008-11-06 Kobe Steel Ltd Method for improving central segregation of spring steel in continuous casting
JP2010082637A (en) * 2008-09-30 2010-04-15 Jfe Steel Corp Secondary cooling method in continuous casting

Also Published As

Publication number Publication date
JP5854214B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
EP3505651B1 (en) Toothed rack steel plate having thickness of 177.8 mm and manufactured by continuous casting billet and manufacturing method therefor
JP5928654B2 (en) Thick and high toughness high strength steel sheet and method for producing the same
JP5979338B1 (en) Thick, high toughness, high strength steel plate with excellent material uniformity and method for manufacturing the same
CN107208212B (en) Thick-walled high-toughness high-strength steel plate and method for producing same
JP5838708B2 (en) Steel sheet with excellent surface properties and method for producing the same
WO2015001705A1 (en) Method of manufacturing hot press member
WO2010008019A1 (en) Continuously cast slab and process for production of same
JP4702254B2 (en) Thick steel plate for laser cutting and its manufacturing method
JP2007160341A (en) Machine and method for continuously casting steel
JP4514137B2 (en) Method for preventing rolling surface flaw of Ni-containing steel
JP6417977B2 (en) Steel plate blank
JP6509187B2 (en) High strength cold rolled steel sheet excellent in bending workability and manufacturing method thereof
JP6245139B2 (en) Thick steel plate for sour welded steel pipe excellent in scale peel resistance, method for producing the same, and welded steel pipe
JP6205911B2 (en) Steel plate blank, laser cutting steel plate and laser cutting steel plate manufacturing method
JP2014008513A (en) Method for manufacturing continuously cast slab and method for manufacturing high strength cold-rolled steel sheet
JP5854214B2 (en) Method for continuous casting of Si-containing steel
JP2002194431A (en) Method for producing continuous casting-made extra- thick steel plate
JP6024401B2 (en) Manufacturing method of thick steel plate with excellent surface quality
WO2016162906A1 (en) Method for manufacturing slab using continuous casting machine
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet
JP2005139509A (en) High tensile strength steel having excellent weld heat affected zone toughness, and its production method
JP5527645B2 (en) Steel plate manufacturing method
JP3399838B2 (en) Manufacturing method of hot rolled alloy material
JP6443424B2 (en) Method for producing Ni-containing steel
JP6515292B2 (en) Method of manufacturing high strength steel plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5854214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees