JP2013128343A - Overcurrent protection circuit - Google Patents

Overcurrent protection circuit Download PDF

Info

Publication number
JP2013128343A
JP2013128343A JP2011276269A JP2011276269A JP2013128343A JP 2013128343 A JP2013128343 A JP 2013128343A JP 2011276269 A JP2011276269 A JP 2011276269A JP 2011276269 A JP2011276269 A JP 2011276269A JP 2013128343 A JP2013128343 A JP 2013128343A
Authority
JP
Japan
Prior art keywords
circuit
resistor
switch element
voltage
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011276269A
Other languages
Japanese (ja)
Inventor
Shigeyuki Fujii
滋之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2011276269A priority Critical patent/JP2013128343A/en
Publication of JP2013128343A publication Critical patent/JP2013128343A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an overcurrent protection circuit capable of blocking a current before a fuse blows at the time of overcurrent by easily simulating fuse characteristics without performing temperature estimation by square calculation.SOLUTION: An overcurrent protection circuit includes: a switch element 9 interposed between a power-supply device 20 and a load 8; branch circuits 10 and 11 passing a current according to a flowing current of the switch element 9 through a resistor 17; voltage detection means 2 detecting a voltage value related to a voltage across the resistor 17; and means 2 determining whether or not the detected voltage value is higher than a predetermined value. The overcurrent protection circuit turns off the switch element 9 when the detected voltage value is higher than the predetermined value. The overcurrent protection circuit further includes: an integration circuit having a second resistor 16 and a capacitor 18 and integrating a voltage across the resistor 17; and a series circuit connected in parallel to the second resistor 16 and in which a diode 13 forward-connected from the resistor 17 side, a reverse-connected Zener diode 14, and a third resistor 15 are connected. The voltage detection means 2 detects a voltage value across the capacitor 18.

Description

本発明は、電源装置及び負荷間に介装したスイッチ素子と、スイッチ素子に通流する電流に応じた電流を抵抗に通流させる分岐回路とを備え、抵抗の両端電圧に関連する電圧値を検出し、検出した電圧値が所定電圧値より高いときに、スイッチ素子をオフにする過電流保護回路に関するものである。   The present invention includes a switch element interposed between a power supply device and a load, and a branch circuit that allows a current corresponding to the current flowing through the switch element to flow through the resistor, and a voltage value related to the voltage across the resistor is obtained. The present invention relates to an overcurrent protection circuit that detects and turns off a switch element when the detected voltage value is higher than a predetermined voltage value.

車両に搭載された負荷を作動させる場合、スイッチ及びリレー等を使用してモータ又はランプ等を作動させることがある。この際、これらを接続する電線の電源側の最上流に、電線を保護する為のヒューズが設けられる。
このような場合、モータがロックして、大電流が通流することがあるが、そのような場合でも、ヒューズ及び電線が溶断しないようにする為、ロック電流に合わせて(ロック電流では溶断、発煙しないように)、ヒューズの容量及び電線の径が定められている。
When operating a load mounted on a vehicle, a motor, a lamp, or the like may be operated using a switch, a relay, or the like. At this time, a fuse for protecting the electric wire is provided in the uppermost stream on the power source side of the electric wire connecting them.
In such a case, the motor may lock and a large current may flow. Even in such a case, in order to prevent the fuse and the electric wire from fusing, it is necessary to match the lock current. The capacity of the fuse and the diameter of the electric wire are determined so as not to generate smoke.

特許文献1には、負荷に接続される電線を過熱から保護する過熱保護装置が開示されている。この過熱保護装置は、負荷電流に比例した大きさの第1信号、及び周期的に変化する第2信号を比較する比較手段と、電流値及び電流が流れた時間に応じた電荷を蓄積し、且つ電流が停止した場合には時間経過に伴ってその蓄積した電荷を放電する熱等価回路とを備えている。また、第1信号が第2信号を上回った場合に、負荷電流に比例する大きさの電流を熱等価回路に供給するスイッチング手段と、熱等価回路に生じる第1電圧と所定の閾値電圧を比較し、第1電圧が閾値電圧を上回った場合に、負荷への電力供給を停止する過熱遮断手段とを備えている。第2信号は、第1信号の大きさがn倍となった際に、第1信号が第2信号を上回る時間がn倍となる周期波形とされる。   Patent Document 1 discloses an overheat protection device that protects an electric wire connected to a load from overheating. The overheat protection device stores a charge according to a current value and a time when the current flows, a comparison unit that compares the first signal having a magnitude proportional to the load current and the second signal that periodically changes, In addition, there is provided a thermal equivalent circuit that discharges the accumulated electric charge with time when the current stops. In addition, when the first signal exceeds the second signal, the switching means for supplying a current having a magnitude proportional to the load current to the thermal equivalent circuit is compared with the first voltage generated in the thermal equivalent circuit and a predetermined threshold voltage. And an overheat cutoff means for stopping the power supply to the load when the first voltage exceeds the threshold voltage. The second signal has a periodic waveform in which the time during which the first signal exceeds the second signal is n times when the magnitude of the first signal is n times.

特許文献2には、電源と負荷との間に接続される半導体スイッチと、半導体スイッチと負荷との間の電線に流れる電流を検出する電流検出手段と、電流検出手段で検出した電流値から、大きさがその電流値の2乗に相当する2乗電流値を演算して出力する電流変換手段とを備える電源供給装置が開示されている。この電源供給装置は、また、その2乗電流値を入力して半導体スイッチの温度上昇の大きさに相当する温度上昇相当値又は温度に相当する温度相当値を出力する熱等価手段と、温度上昇相当値又は温度相当値が、半導体スイッチの限界温度に基づき設定される第1異常判定値を超えた場合に異常と判定する異常判定手段とを備えている。半導体スイッチ駆動手段は、異常判定手段により異常と判定された場合に半導体スイッチをオフ状態にする。   In Patent Document 2, a semiconductor switch connected between a power source and a load, a current detection unit that detects a current flowing in an electric wire between the semiconductor switch and the load, and a current value detected by the current detection unit, There is disclosed a power supply device including a current conversion unit that calculates and outputs a square current value whose magnitude corresponds to the square of the current value. The power supply device further includes a heat equivalent means for inputting the square current value and outputting a temperature rise equivalent value corresponding to the magnitude of the temperature rise of the semiconductor switch or a temperature equivalent value corresponding to the temperature, and a temperature rise And an abnormality determining unit that determines that an abnormality occurs when the equivalent value or the temperature equivalent value exceeds a first abnormality determination value that is set based on a limit temperature of the semiconductor switch. The semiconductor switch driving means turns off the semiconductor switch when it is determined as abnormal by the abnormality determining means.

特開2011−182544号公報JP 2011-182544 A 特開2009−142146号公報JP 2009-142146 A

前述したように、従来、電線は、ロック電流に合わせて、ヒューズの容量及び電線の径が定められているが、ロック電流に合わせている為、モータに定常的に流れる電流に比較して、余裕を持たせた容量及び径に定められている。その為、通流する電流値等からヒューズ及び電線等の温度を推定して、発煙及び溶断が起きる前に、電流を遮断するヒューズ機能等が考えられている。
例えば、通流する電流値をモニタリングしてヒューズ及び電線等の温度を推定し、発煙又は溶断前にリレー、スイッチ等で電流を遮断することにより、ヒューズ及び電線を保護する。
As described above, conventionally, the capacity of the fuse and the diameter of the electric wire are determined in accordance with the lock current, but since it is adjusted to the lock current, compared to the current that constantly flows to the motor, The capacity and diameter are set with a margin. For this reason, a fuse function or the like for cutting off the current before smoke and fusing occur by estimating the temperature of the fuse and the electric wire from the value of the flowing current and the like is considered.
For example, the current value flowing through is monitored to estimate the temperature of the fuse and the electric wire, etc., and the fuse and electric wire are protected by cutting off the current with a relay, switch or the like before smoking or blowing.

しかし、電線及びヒューズの温度を推定するには、電流値の2乗×時間のように、電流値の2乗を演算する必要があり、この2乗を実現する為には、マイクロコンピュータが必要であったり、回路規模が大きくなる等の問題がある。
例えば、前述した特許文献1に開示された発明では、マイクロコンピュータも2乗演算回路も使用せずに、2乗特性を近似した特性を実現しているが、三角波発生装置等の回路が必要である。また、特許文献2に開示された発明では、マイクロコンピュータは使用せずに、電線温度の推定を行っているが、2乗演算回路が必要である。
However, in order to estimate the temperature of the electric wire and fuse, it is necessary to calculate the square of the current value, such as the square of the current value × time, and a microcomputer is necessary to realize this square. And there are problems such as an increase in circuit scale.
For example, in the invention disclosed in Patent Document 1 described above, a characteristic that approximates the square characteristic is realized without using a microcomputer or a square arithmetic circuit, but a circuit such as a triangular wave generator is required. is there. In the invention disclosed in Patent Document 2, the electric wire temperature is estimated without using a microcomputer, but a square arithmetic circuit is required.

本発明は、上述したような事情に鑑みてなされたものであり、2乗演算を使用した温度推定を行うことなく、簡易的にヒューズ特性を模擬することにより、過電流時にヒューズが溶断する前に、電流を遮断することができる過電流保護回路を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and by simply simulating the fuse characteristics without performing temperature estimation using a square operation, the fuse is blown at the time of overcurrent. Another object of the present invention is to provide an overcurrent protection circuit capable of interrupting current.

第1発明に係る過電流保護回路は、電源装置及び負荷間に介装したスイッチ素子と、該スイッチ素子に通流する電流に応じた電流を抵抗に通流させる分岐回路と、該抵抗の両端電圧に関連する電圧値を検出する電圧検出手段と、該電圧検出手段が検出した電圧値が所定電圧値より高いか否かを判定する手段とを備え、該手段が所定電圧値より高いと判定したときに、前記スイッチ素子をオフにするように構成してある過電流保護回路において、第2抵抗及びコンデンサを有し、前記抵抗の両端電圧を積分する積分回路と、前記第2抵抗に並列に接続され、前記抵抗側から順接続されたダイオード、逆接続されたツェナーダイオード及び第3抵抗が接続された直列回路とを備え、前記電圧検出手段は、前記コンデンサの両端電圧値を検出するように構成してあることを特徴とする。   An overcurrent protection circuit according to a first aspect of the present invention includes a switch element interposed between a power supply device and a load, a branch circuit that allows a current corresponding to the current flowing through the switch element to flow through the resistor, and both ends of the resistor. A voltage detection unit that detects a voltage value related to the voltage; and a unit that determines whether or not the voltage value detected by the voltage detection unit is higher than a predetermined voltage value, and determines that the unit is higher than the predetermined voltage value. In the overcurrent protection circuit configured to turn off the switch element, an integration circuit having a second resistor and a capacitor, integrating the voltage across the resistor, and in parallel with the second resistor And a series circuit to which a diode connected in order from the resistor side, a Zener diode connected in reverse, and a third resistor are connected, and the voltage detecting means detects a voltage value across the capacitor. Characterized in that are configured to.

この過電流保護回路では、スイッチ素子が、電源装置及び負荷間に介装し、分岐回路が、スイッチ素子に通流する電流に応じた電流を抵抗に通流させる。電圧検出手段が、抵抗の両端電圧に関連する電圧値を検出し、判定する手段が、その検出した電圧値が所定電圧値より高いか否かを判定し、判定する手段が所定電圧値より高いと判定したときに、スイッチ素子をオフにする。第2抵抗及びコンデンサを有する積分回路が、抵抗の両端電圧を積分し、抵抗側から順接続されたダイオード、逆接続されたツェナーダイオード及び第3抵抗が接続された直列回路が、第2抵抗に並列に接続されている。電圧検出手段は、コンデンサの両端電圧値を検出する。   In this overcurrent protection circuit, the switch element is interposed between the power supply device and the load, and the branch circuit allows a current corresponding to the current flowing through the switch element to flow through the resistor. The voltage detection means detects a voltage value related to the voltage across the resistor and the determination means determines whether the detected voltage value is higher than a predetermined voltage value, and the determination means is higher than the predetermined voltage value. Is determined, the switch element is turned off. An integrating circuit having a second resistor and a capacitor integrates the voltage across the resistor, and a series circuit in which a diode connected in order from the resistor side, a Zener diode connected in reverse, and a third resistor are connected to the second resistor. Connected in parallel. The voltage detection means detects the voltage value across the capacitor.

第2発明に係る過電流保護回路は、前記分岐回路は、前記スイッチ素子及び負荷の直列回路に並列に接続されており、前記抵抗に直列に接続され、前記スイッチ素子と同一信号によりオン/オフされる第2スイッチ素子と、該第2スイッチ素子及び抵抗間に介装されオン抵抗が可変であるオン抵抗可変回路、並びに前記スイッチ素子の負荷側端子の電位及び前記第2スイッチ素子の抵抗側端子の電位の差を検出する電位差検出回路を有し、該電位差検出回路が検出した電位差に基づき前記オン抵抗可変回路のオン抵抗を増減制御することにより、前記負荷側端子の電位に前記抵抗側端子の電位を一致させる一致化回路とを備えることを特徴とする。   In the overcurrent protection circuit according to a second aspect of the invention, the branch circuit is connected in parallel to the series circuit of the switch element and the load, is connected in series to the resistor, and is turned on / off by the same signal as the switch element. Second switch element, an on-resistance variable circuit that is interposed between the second switch element and the resistor and has a variable on-resistance, and the potential of the load-side terminal of the switch element and the resistance side of the second switch element A potential difference detection circuit for detecting a potential difference between the terminals, and by increasing / decreasing the ON resistance of the ON resistance variable circuit based on the potential difference detected by the potential difference detection circuit, the potential of the load side terminal is increased to the resistance side And a matching circuit for matching the potentials of the terminals.

この過電流保護回路では、分岐回路は、スイッチ素子及び負荷の直列回路に並列に接続されており、第2スイッチ素子が、抵抗に直列に接続され、スイッチ素子と同一信号によりオン/オフされる。一致化回路は、オン抵抗が可変であるオン抵抗可変回路が、第2スイッチ素子及び抵抗間に介装され、電位差検出回路が、スイッチ素子の負荷側端子の電位及び第2スイッチ素子の抵抗側端子の電位の差を検出する。電位差検出回路が検出した電位差に基づきオン抵抗可変回路のオン抵抗を増減制御することにより、負荷側端子の電位に抵抗側端子の電位を一致させる。   In this overcurrent protection circuit, the branch circuit is connected in parallel to the series circuit of the switch element and the load, and the second switch element is connected in series to the resistor and is turned on / off by the same signal as the switch element. . In the matching circuit, an on-resistance variable circuit having a variable on-resistance is interposed between the second switch element and the resistor, and a potential difference detection circuit is configured to detect the potential of the load side terminal of the switch element and the resistance side of the second switch element. Detects the potential difference between terminals. The on-resistance of the variable on-resistance circuit is controlled to increase or decrease based on the potential difference detected by the potential difference detection circuit, so that the potential of the resistance-side terminal matches the potential of the load-side terminal.

本発明に係る過電流保護回路によれば、2乗演算を使用した温度推定を行うことなく、簡易的にヒューズ特性を模擬することにより、過電流時にヒューズが溶断する前に、電流を遮断することができる過電流保護回路を実現することができる。   According to the overcurrent protection circuit of the present invention, the current is interrupted before the fuse is blown at the time of overcurrent by simply simulating the fuse characteristics without performing temperature estimation using a square operation. It is possible to realize an overcurrent protection circuit that can be used.

本発明に係る過電流保護回路の実施の形態の構成を示すブロック図である。It is a block diagram which shows the structure of embodiment of the overcurrent protection circuit which concerns on this invention. ヒューズの溶断特性を示す特性図である。It is a characteristic view which shows the fusing characteristic of a fuse. ヒューズ溶断特性の例に対比させて、RCのみの積分回路、及び非線形回路Aを接続した積分回路の特性の例を示す特性図である。FIG. 6 is a characteristic diagram illustrating an example of characteristics of an integration circuit in which an RC-only integration circuit and a nonlinear circuit A are connected in comparison with an example of fuse blowing characteristics.

以下に、本発明をその実施の形態を示す図面に基づき説明する。
図1は、本発明に係る過電流保護回路の実施の形態の構成を示すブロック図である。
この過電流保護回路は、例えば負荷8である車両のパワーウィンドウモータに電源供給するものであり、ヒューズ7、NチャンネルMOS(Metal Oxide Semiconductor)型FET(Field Effect Transistor)9、電流センサ回路6、電流処理回路5、制御回路1、判定回路2及び定電圧源19を備えている。
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a block diagram showing a configuration of an embodiment of an overcurrent protection circuit according to the present invention.
This overcurrent protection circuit supplies power to, for example, a vehicle power window motor that is a load 8, and includes a fuse 7, an N-channel MOS (Metal Oxide Semiconductor) FET (Field Effect Transistor) 9, a current sensor circuit 6, A current processing circuit 5, a control circuit 1, a determination circuit 2, and a constant voltage source 19 are provided.

バッテリ(電源装置)20からの電源ラインには、ヒューズ7を通じてFET9のドレインが接続され、FET9のソース及び接地ライン間には負荷8が接続されている。
電源ラインには、また、ヒューズ7を通じてNチャンネルMOS型FET10のドレインが接続され、FET10のソースには、NチャンネルMOS型FET(オン抵抗可変回路)11のドレインが接続されている。FET11のソース及び接地ライン間に抵抗17が接続されている。
A drain of the FET 9 is connected to the power supply line from the battery (power supply device) 20 through the fuse 7, and a load 8 is connected between the source of the FET 9 and the ground line.
The power supply line is connected to the drain of an N-channel MOS FET 10 through a fuse 7, and the drain of an N-channel MOS FET (ON-resistance variable circuit) 11 is connected to the source of the FET 10. A resistor 17 is connected between the source of the FET 11 and the ground line.

FET11のゲートには、オペアンプ(電位差検出回路)12の出力端子が接続され、オペアンプ12の反転入力端子にはFET9のソースが、非反転入力端子にはFET10のソースがそれぞれ接続されている。オペアンプ12は、図示しない電源回路により電源が供給されている。
FET11及びオペアンプ12は、一致化回路を構成し、FET10,11及びオペアンプ12は、電流センサ回路6を構成している。
The output terminal of the operational amplifier (potential difference detection circuit) 12 is connected to the gate of the FET 11, the source of the FET 9 is connected to the inverting input terminal of the operational amplifier 12, and the source of the FET 10 is connected to the non-inverting input terminal. The operational amplifier 12 is supplied with power by a power circuit (not shown).
The FET 11 and the operational amplifier 12 constitute a matching circuit, and the FETs 10, 11 and the operational amplifier 12 constitute a current sensor circuit 6.

FET11のソース及び接地ライン間には、抵抗16及びコンデンサ18からなり、抵抗17の両端電圧を積分する積分回路が接続されている。積分回路の抵抗16には、FET11のソース側から、順接続されたダイオード13、逆接続されたツェナーダイオード14及び抵抗15が直列に接続された非線形回路Aが並列に接続されている。
抵抗16,17、コンデンサ18及び非線形回路Aは、電流処理回路5を構成している。
Between the source of the FET 11 and the ground line, an integrating circuit that includes a resistor 16 and a capacitor 18 and integrates the voltage across the resistor 17 is connected. A non-linear circuit A in which a forward-connected diode 13, a reverse-connected Zener diode 14, and a resistor 15 are connected in series is connected in parallel to the resistor 16 of the integrating circuit from the source side of the FET 11.
The resistors 16 and 17, the capacitor 18, and the non-linear circuit A constitute the current processing circuit 5.

積分回路のコンデンサ18の端子電圧(両端電圧)が判定回路(電圧検出手段、判定する手段)2に与えられ、判定回路2には、定電圧源19からの定電圧も与えられている。判定回路2は、定電圧値(所定電圧値)及びコンデンサ18の端子電圧値の高低を判定し、コンデンサ18の端子電圧値が定電圧値より高いと判定したときは、負荷8への電力供給の遮断を指示する遮断信号を、制御回路1へ与える。   A terminal voltage (a voltage between both ends) of the capacitor 18 of the integrating circuit is supplied to a determination circuit (voltage detection means, determination means) 2, and a constant voltage from a constant voltage source 19 is also supplied to the determination circuit 2. The determination circuit 2 determines whether the constant voltage value (predetermined voltage value) and the terminal voltage value of the capacitor 18 are high or low, and when determining that the terminal voltage value of the capacitor 18 is higher than the constant voltage value, supplies power to the load 8. The control circuit 1 is supplied with a shut-off signal instructing shut-off.

制御回路1は、外部からの制御信号に基づき、FET9,10を同一信号によりオン/オフ制御しており、判定回路2から遮断信号を与えられたときは、FET9,10をオフにする。制御回路1は、また、外部からの制御信号に基づき定められたデュ―ティ比により、FET9,10をPWM(Pulse Width Modulation)制御することも可能である。   The control circuit 1 performs on / off control of the FETs 9 and 10 with the same signal based on a control signal from the outside, and turns off the FETs 9 and 10 when a cutoff signal is given from the determination circuit 2. The control circuit 1 can also perform PWM (Pulse Width Modulation) control of the FETs 9 and 10 with a duty ratio determined based on a control signal from the outside.

以下に、このような構成の過電流保護回路の動作を説明する。
制御回路1は、外部から負荷8をオンにする制御信号を与えられると、FET9,10を同一信号によりオンにする。
オペアンプ12は、FET9,10の各ソースの電位差を検出し、FET10のソースの電位の方が高いときは、その電位差に応じた出力によりFET11のオン抵抗を減少させる。その結果、FET10、FET11及び電流処理回路5(分岐回路)に流れる電流が増加して、FET10の電圧降下により、FET10のソースの電位の方が低くなる。
The operation of the overcurrent protection circuit having such a configuration will be described below.
When receiving a control signal for turning on the load 8 from the outside, the control circuit 1 turns on the FETs 9 and 10 with the same signal.
The operational amplifier 12 detects the potential difference between the sources of the FETs 9 and 10, and when the potential of the source of the FET 10 is higher, the on-resistance of the FET 11 is reduced by an output corresponding to the potential difference. As a result, the current flowing through the FET 10, the FET 11, and the current processing circuit 5 (branch circuit) increases, and the potential of the source of the FET 10 becomes lower due to the voltage drop of the FET 10.

オペアンプ12は、FET10のソースの電位の方が低いときは、その電位差に応じた出力によりFET11のオン抵抗を増加させる。その結果、FET10、FET11及び電流処理回路5に流れる電流が減少して、FET10の電圧降下により、FET10のソースの電位の方が高くなる。
オペアンプ12がこの一連の動作を高速に繰返して収斂させることにより、FET10のソースの電位は、FET9のソースの電位に瞬時に略一致させられる。このとき、FET10のオン抵抗値と、FET11のオン抵抗値及び電流処理回路5の合成抵抗値の和との比は、FET9のオン抵抗値と負荷8の抵抗値との比と一致し、電流処理回路5に流れる電流Isは、負荷8に流れる電流ILに応じた電流となり、Is=IL/k(kは定数)となる。
When the potential of the source of the FET 10 is lower, the operational amplifier 12 increases the on-resistance of the FET 11 by an output corresponding to the potential difference. As a result, the current flowing through the FET 10, FET 11, and current processing circuit 5 decreases, and the potential of the source of the FET 10 becomes higher due to the voltage drop of the FET 10.
The operational amplifier 12 repeatedly converges this series of operations at high speed, so that the source potential of the FET 10 is instantaneously substantially matched with the source potential of the FET 9. At this time, the ratio of the on-resistance value of the FET 10 to the sum of the on-resistance value of the FET 11 and the combined resistance value of the current processing circuit 5 matches the ratio of the on-resistance value of the FET 9 and the resistance value of the load 8. The current Is flowing through the processing circuit 5 is a current corresponding to the current IL flowing through the load 8, and Is = IL / k (k is a constant).

図2は、ヒューズ7の溶断特性を示す特性図であり、ヒューズ溶断特性は、電流値毎のヒューズ7が溶断するときの継続通流時間(数/100秒〜数秒程度)を示している。ここでの電流値は、負荷8に流れる電流値ILであるが、分岐回路の抵抗17の両端電圧値で測定している。
ここで、図2に示すヒューズ溶断特性を、抵抗16及びコンデンサ18のように、R(抵抗)及びC(容量)のみによる積分回路で模擬させ、電流値をコンデンサ18の両端電圧値で測定してみる。この場合、時定数RCが比較的に大きければ、ヒューズ溶断特性が示す電流値(抵抗17の両端電圧値)に達する継続通流時間が長くなり過ぎ、その電流値が計測される前に、ヒューズ7が溶断することになる。
FIG. 2 is a characteristic diagram showing the fusing characteristics of the fuse 7, and the fuse fusing characteristics indicate the continuous flow time (several hundred seconds to several seconds) when the fuse 7 is blown for each current value. The current value here is the current value IL flowing through the load 8 and is measured by the voltage value across the resistor 17 of the branch circuit.
Here, the fuse blowing characteristics shown in FIG. 2 are simulated by an integration circuit using only R (resistance) and C (capacitance) like the resistor 16 and the capacitor 18, and the current value is measured by the voltage value across the capacitor 18. Try. In this case, if the time constant RC is relatively large, the continuous conduction time that reaches the current value (the voltage value across the resistor 17) indicated by the fuse blowing characteristic becomes too long, and the fuse value is measured before the current value is measured. 7 will blow out.

そこで、積分回路の時定数RCを比較的に小さくすると、ヒューズ溶断特性が示す電流値(抵抗17の両端電圧値)に達する継続通流時間が短くなり、ヒューズ7が溶断するよりかなり早く、その電流値が計測され、FET9,10がオフにされることになる。
以上から、この過電流保護回路では、電流値が小さいときは、上述した時定数RCが比較的に小さい積分回路の特性となり、電流値が所定値より大きいときは、抵抗16に並列に接続された非線形回路Aにより、コンデンサ18への充電を急速に進めて両端電圧が速く上昇する特性となる。
Therefore, if the time constant RC of the integrating circuit is made relatively small, the continuous conduction time to reach the current value (voltage value across the resistor 17) indicated by the fuse blowing characteristic is shortened, which is much earlier than the fuse 7 is blown. The current value is measured, and the FETs 9 and 10 are turned off.
From the above, in this overcurrent protection circuit, when the current value is small, the above-described time constant RC becomes a characteristic of an integration circuit that is relatively small, and when the current value is larger than a predetermined value, it is connected in parallel to the resistor 16. Due to the non-linear circuit A, the capacitor 18 is rapidly charged, and the voltage at both ends rises quickly.

これにより、電流処理回路5の特性(コンデンサ18の両端電圧で測定)は、図2におけるRC+A回路の特性となる。即ち、所要の電流値区間では、時定数RCが小さい積分回路より、ヒューズの溶断特性に近似させることができ、ヒューズが溶断するより早くFET9,10をオフにすることのできる特性が得られる。
ここで、図3において、溶断時間が長短2つのヒューズ溶断特性の例(min,max)に対比させて、RCのみの積分回路の特性の他の例(Aなし)、及び非線形回路Aを接続した時定数RCの大小2つの積分回路の特性の他の例(A有り)を示す。
Thereby, the characteristic of the current processing circuit 5 (measured by the voltage across the capacitor 18) becomes the characteristic of the RC + A circuit in FIG. That is, in the required current value section, an integration circuit having a small time constant RC can be approximated to the fusing characteristics of the fuse, and a characteristic that can turn off the FETs 9 and 10 earlier than the fusing of the fuse is obtained.
Here, in FIG. 3, another example of the characteristics of the RC-only integration circuit (without A) and the non-linear circuit A are connected in comparison with the example (min, max) of the fuse blowing characteristics with a short and long fusing time. Another example (with A) of the characteristics of the two integration circuits having large and small time constant RC is shown.

図2には、負荷8に実際に流れる動作電流(ロック電流)の例も示されており、この動作電流を遮断する為の電流値Ith付近で、ヒューズの溶断特性に最も近似するように、CR+A回路の特性を調整している。
定電圧源19は、電流値Ithに対応する分岐回路の電流値Ishに相当する定電圧値Vth(=Ish×抵抗17の抵抗値)を出力している。判定回路2は、与えられたコンデンサ18の端子電圧が定電圧値Vthより高いと判定したときは、負荷8への電力供給の遮断を指示する遮断信号を、制御回路1へ与える。
FIG. 2 also shows an example of the operating current (lock current) that actually flows through the load 8. In the vicinity of the current value Ith for interrupting the operating current, the closest to the fusing characteristics of the fuse is shown. The characteristics of the CR + A circuit are adjusted.
The constant voltage source 19 outputs a constant voltage value Vth (= Ish × resistance value of the resistor 17) corresponding to the current value Ish of the branch circuit corresponding to the current value Ith. When the determination circuit 2 determines that the supplied terminal voltage of the capacitor 18 is higher than the constant voltage value Vth, the determination circuit 2 supplies a cut-off signal instructing cut-off of power supply to the load 8 to the control circuit 1.

図2に示す動作電流の場合、電流値Ithより大きい期間がある為、コンデンサ18の端子電圧が定電圧値Vthに達するのは、図2に示す時間よりは早くなる。
制御回路1は、遮断信号を与えられると、FET9,10をオフにする。制御回路1は、FET9,10をオフにした後、ヒューズ7及び電線が冷却されるのに十分な時間が経過したときは、通常の制御動作に復帰する。
In the case of the operating current shown in FIG. 2, since there is a period longer than the current value Ith, the terminal voltage of the capacitor 18 reaches the constant voltage value Vth earlier than the time shown in FIG.
The control circuit 1 turns off the FETs 9 and 10 when given a cutoff signal. The control circuit 1 returns to the normal control operation when a sufficient time has passed to cool the fuse 7 and the electric wire after turning off the FETs 9 and 10.

1 制御回路
2 判定回路(電圧検出手段、判定する手段)
5 電流処理回路
6 電流センサ回路
7 ヒューズ
8 負荷
9,10 FET
11 FET(オン抵抗可変回路)
12 オペアンプ(電位差検出回路)
13 ダイオード
14 ツェナーダイオード
15,16,17 抵抗
18 コンデンサ
19 定電圧源
20 バッテリ(電源装置)
A 非線形回路
DESCRIPTION OF SYMBOLS 1 Control circuit 2 Determination circuit (Voltage detection means, determination means)
5 Current processing circuit 6 Current sensor circuit 7 Fuse 8 Load 9, 10 FET
11 FET (ON-resistance variable circuit)
12 Operational amplifier (potential difference detection circuit)
13 Diode 14 Zener Diode 15, 16, 17 Resistance 18 Capacitor 19 Constant Voltage Source 20 Battery (Power Supply Device)
A Non-linear circuit

Claims (2)

電源装置及び負荷間に介装したスイッチ素子と、該スイッチ素子に通流する電流に応じた電流を抵抗に通流させる分岐回路と、該抵抗の両端電圧に関連する電圧値を検出する電圧検出手段と、該電圧検出手段が検出した電圧値が所定電圧値より高いか否かを判定する手段とを備え、該手段が所定電圧値より高いと判定したときに、前記スイッチ素子をオフにするように構成してある過電流保護回路において、
第2抵抗及びコンデンサを有し、前記抵抗の両端電圧を積分する積分回路と、前記第2抵抗に並列に接続され、前記抵抗側から順接続されたダイオード、逆接続されたツェナーダイオード及び第3抵抗が接続された直列回路とを備え、前記電圧検出手段は、前記コンデンサの両端電圧値を検出するように構成してあることを特徴とする過電流保護回路。
A switch element interposed between the power supply device and the load, a branch circuit that allows a current corresponding to the current flowing through the switch element to flow through the resistor, and a voltage detection that detects a voltage value related to the voltage across the resistor And a means for determining whether or not the voltage value detected by the voltage detection means is higher than a predetermined voltage value, and when the means determines that the voltage value is higher than the predetermined voltage value, the switch element is turned off. In the overcurrent protection circuit configured as follows,
An integrating circuit having a second resistor and a capacitor, integrating the voltage across the resistor, a diode connected in parallel to the second resistor, forwardly connected from the resistor side, a reversely connected Zener diode, and a third An overcurrent protection circuit comprising: a series circuit to which a resistor is connected; and the voltage detection means is configured to detect a voltage value across the capacitor.
前記分岐回路は、前記スイッチ素子及び負荷の直列回路に並列に接続されており、前記抵抗に直列に接続され、前記スイッチ素子と同一信号によりオン/オフされる第2スイッチ素子と、該第2スイッチ素子及び抵抗間に介装されオン抵抗が可変であるオン抵抗可変回路、並びに前記スイッチ素子の負荷側端子の電位及び前記第2スイッチ素子の抵抗側端子の電位の差を検出する電位差検出回路を有し、該電位差検出回路が検出した電位差に基づき前記オン抵抗可変回路のオン抵抗を増減制御することにより、前記負荷側端子の電位に前記抵抗側端子の電位を一致させる一致化回路とを備える請求項1記載の過電流保護回路。   The branch circuit is connected in parallel to a series circuit of the switch element and the load, is connected in series to the resistor, and is turned on / off by the same signal as the switch element, and the second switch element An on-resistance variable circuit interposed between the switch element and the resistor and having a variable on-resistance, and a potential difference detection circuit that detects a difference between the potential of the load-side terminal of the switch element and the potential of the resistance-side terminal of the second switch element And a matching circuit for matching the potential of the resistance side terminal with the potential of the load side terminal by increasing / decreasing the on resistance of the variable resistance circuit based on the potential difference detected by the potential difference detection circuit. The overcurrent protection circuit according to claim 1.
JP2011276269A 2011-12-16 2011-12-16 Overcurrent protection circuit Pending JP2013128343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276269A JP2013128343A (en) 2011-12-16 2011-12-16 Overcurrent protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276269A JP2013128343A (en) 2011-12-16 2011-12-16 Overcurrent protection circuit

Publications (1)

Publication Number Publication Date
JP2013128343A true JP2013128343A (en) 2013-06-27

Family

ID=48778572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276269A Pending JP2013128343A (en) 2011-12-16 2011-12-16 Overcurrent protection circuit

Country Status (1)

Country Link
JP (1) JP2013128343A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901661A (en) * 2014-03-07 2015-09-09 易家居联网科技有限公司 Power transmission device with overload protection and energy-saving mechanism
JP2017188983A (en) * 2016-04-01 2017-10-12 古河電気工業株式会社 Electric power feeding device
JPWO2017122781A1 (en) * 2016-01-15 2018-05-31 株式会社オートネットワーク技術研究所 Power supply control device
JP2019522950A (en) * 2016-04-13 2019-08-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Device with two current monitors
CN114421447A (en) * 2022-01-11 2022-04-29 深圳怡化电脑股份有限公司 Load protection method and device, computer equipment and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380546A (en) * 1976-12-24 1978-07-17 Toshiba Corp Over current relay
JPH0396003A (en) * 1989-09-08 1991-04-22 Hitachi Ltd Controller for sound volume characteristic
JPH08275373A (en) * 1995-03-31 1996-10-18 Kokusan Denki Co Ltd Overcurrent protector
US20030231449A1 (en) * 2002-04-09 2003-12-18 Kim Cheon Yeon Circuit breaker for detecting overload
JP2005323489A (en) * 2004-04-08 2005-11-17 Yazaki Corp Protective circuit
JP2005341663A (en) * 2004-05-25 2005-12-08 Yazaki Corp Overcurrent detector
JP2011166872A (en) * 2010-02-05 2011-08-25 Yazaki Corp Device and system for protecting overcurrent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380546A (en) * 1976-12-24 1978-07-17 Toshiba Corp Over current relay
JPH0396003A (en) * 1989-09-08 1991-04-22 Hitachi Ltd Controller for sound volume characteristic
JPH08275373A (en) * 1995-03-31 1996-10-18 Kokusan Denki Co Ltd Overcurrent protector
US20030231449A1 (en) * 2002-04-09 2003-12-18 Kim Cheon Yeon Circuit breaker for detecting overload
JP2005323489A (en) * 2004-04-08 2005-11-17 Yazaki Corp Protective circuit
JP2005341663A (en) * 2004-05-25 2005-12-08 Yazaki Corp Overcurrent detector
JP2011166872A (en) * 2010-02-05 2011-08-25 Yazaki Corp Device and system for protecting overcurrent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901661A (en) * 2014-03-07 2015-09-09 易家居联网科技有限公司 Power transmission device with overload protection and energy-saving mechanism
JP2015188304A (en) * 2014-03-07 2015-10-29 易家居▲聯▼網科技有限公司Elifeconnection Co.,Ltd. Power transmission apparatus including overload protection and power-saving mechanism
US9720432B2 (en) 2014-03-07 2017-08-01 Elifeconnection Co., Ltd. Power transmission apparatus with over-loading protection and power-saving mechanism
JPWO2017122781A1 (en) * 2016-01-15 2018-05-31 株式会社オートネットワーク技術研究所 Power supply control device
JP2017188983A (en) * 2016-04-01 2017-10-12 古河電気工業株式会社 Electric power feeding device
JP2019522950A (en) * 2016-04-13 2019-08-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Device with two current monitors
US11031768B2 (en) 2016-04-13 2021-06-08 Hewlett-Packard Development Company, L.P. Devices including two current monitors
CN114421447A (en) * 2022-01-11 2022-04-29 深圳怡化电脑股份有限公司 Load protection method and device, computer equipment and storage medium
CN114421447B (en) * 2022-01-11 2024-05-10 深圳怡化电脑股份有限公司 Load protection method, load protection device, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
US8243407B2 (en) Semiconductor switch control device
JP4624400B2 (en) Electric wire protection method and electric wire protection device for vehicle
US10998712B2 (en) Power supply control apparatus having a wire protection unit
JP5323451B2 (en) Power supply device and power supply method
CN103904629B (en) Semiconductor devices and electronic control unit
US8436600B2 (en) Apparatus for detecting a state of operation of a power semiconductor device
KR20060051786A (en) Overcurrent detection method and detection circuit
JP5590031B2 (en) Power supply protection circuit and motor drive device including the same
JP2013128343A (en) Overcurrent protection circuit
JP2011085470A (en) Apparatus and method for current detection
JP5944729B2 (en) Protection device for energization circuit
US9270106B2 (en) Temperature protection device of electronic device
JP2015085738A (en) Control device of opening/closing body for vehicle, control method, opening/closing body for vehicle equipped with the control device
JP2019506834A (en) MOSFET relay protection device and method using signal detector and signal fuse
JP6439633B2 (en) Protective device
JP2004048498A (en) Circuit constant setting method for semiconductor protecting device and protecting device for semiconductor element using the same method
KR101155260B1 (en) Apparatus for controling dc motor
JP5776946B2 (en) Power supply control device
JP2012054804A (en) Protection device for load driving circuit
JP5097229B2 (en) Overheat protection device
JP7256008B2 (en) switching power supply
JP2010278866A (en) Protection device of semiconductor device
KR101731902B1 (en) A Logic block for an avalanche protection of a MOSFET switch
KR100625171B1 (en) A device for preventing overcurrent
KR200321222Y1 (en) A device for preventing overcurrent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150414