JP2013127906A - Secondary battery and manufacturing method of the same - Google Patents

Secondary battery and manufacturing method of the same Download PDF

Info

Publication number
JP2013127906A
JP2013127906A JP2011276890A JP2011276890A JP2013127906A JP 2013127906 A JP2013127906 A JP 2013127906A JP 2011276890 A JP2011276890 A JP 2011276890A JP 2011276890 A JP2011276890 A JP 2011276890A JP 2013127906 A JP2013127906 A JP 2013127906A
Authority
JP
Japan
Prior art keywords
heat input
opening
secondary battery
laser light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011276890A
Other languages
Japanese (ja)
Other versions
JP5932323B2 (en
Inventor
Yoshitaka Kawada
義高 川田
Natsuki Toyoda
夏樹 豊田
Toshifumi Shimizu
俊文 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011276890A priority Critical patent/JP5932323B2/en
Publication of JP2013127906A publication Critical patent/JP2013127906A/en
Application granted granted Critical
Publication of JP5932323B2 publication Critical patent/JP5932323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the occurence of defects due to an electrolytic solution remaining near an opening, thereby achieving high quality and high reliability of a secondary battery.SOLUTION: A secondary battery comprises: a container; a heat input part 8; and a lid. The container has a wall part provided with an opening and houses an electrode body and an electrolytic solution. The heat input part comprises portions, provided on an outer surface of the wall surface along an edge of the opening and arranged in a direction that moves away from the opening, and is provided on the wall part. The lid is fixed to the wall part overlapping with the heat input part and closes the opening. The heat input part has: first portions 8c enclosing the opening; and a second portion 8d which encloses the opening at a position close to the edge compared to the first portions, the heat input being deeper than that of the first portion in the second portion 8d.

Description

本発明の実施形態は、二次電池及び二次電池の製造方法に関する。   Embodiments described herein relate generally to a secondary battery and a method for manufacturing the secondary battery.

近年、リチウムイオン電池に代表される二次電池では、車載用途を中心に各種用途が広がり、生産は拡大の一途をたどっている。二次電池を製造する際、金属ケース内に電池の構成部品を封入して製造する方法が採用される場合が多い。また、二次電池のスペース効率向上のため、従来の丸型ケースよりも、角型の電池ケースが採用されることが多くなってきている。丸型及び角型のどちらの電池ケースの場合においても、構造体を効率よく製造することができるレーザ溶接はリチウムイオン電池製造に多く用いられるようになってきている。   2. Description of the Related Art In recent years, secondary batteries represented by lithium ion batteries have been used for various purposes, mainly in-vehicle applications, and production has been steadily expanding. When manufacturing a secondary battery, a method of manufacturing a battery by enclosing the battery components in a metal case is often employed. In addition, in order to improve the space efficiency of the secondary battery, a rectangular battery case is increasingly employed rather than a conventional round case. In both cases of round and square battery cases, laser welding, which can efficiently produce a structure, has been widely used in lithium ion battery production.

リチウムイオン電池の製造工程において、レーザ溶接がよく用いられる工程は以下の三工程である。
1.アルミ缶本体とキャップ体とを接続するキャップシーム溶接
2.電解液を注液する注液口を塞ぐための封止溶接
3.複数のセルを電気的に並列または直列に接続するための部品溶接
In the manufacturing process of a lithium ion battery, laser welding is often used in the following three processes.
1. 1. Cap seam welding that connects the aluminum can body and the cap body. 2. Seal welding for closing the injection port for injecting the electrolyte. Component welding to connect multiple cells electrically in parallel or in series

特許第3585213号公報Japanese Patent No. 3585213

しかしながら、前述の工程のうち2の封止溶接工程は、電解液で汚染されやすい注液口周辺をレーザ溶接しなくてはならないため、技術的難度が高いことで知られている。注液口周辺に電解液が付着したままの状態で封口用の金属蓋を置いて溶接を行うと、電解液中に含まれる電解質または溶媒の影響により溶接欠陥が生じてしまう。また、吸引や拭き取りにより電解液を除去したうえで溶接を行っても、一定の割合で電解液起因とみられる接合不良が発生してしまう場合がある。   However, of the above-described processes, the second sealing welding process is known to have a high technical difficulty because the vicinity of the liquid injection port that is easily contaminated with the electrolyte must be laser welded. When welding is performed with a metal lid for sealing in a state where the electrolytic solution remains attached around the liquid injection port, a welding defect occurs due to the influence of the electrolyte or solvent contained in the electrolytic solution. Moreover, even if welding is performed after removing the electrolytic solution by suction or wiping, there may be a case where a bonding failure that appears to be caused by the electrolytic solution occurs at a certain rate.

実施形態に係る二次電池は、容器と、入熱部と、蓋と、を備えている。前記容器は、開口が設けられた壁部を有し、電極体と電解液とを収納している。前記入熱部は、前記壁部の外面で前記開口の縁に沿って設けられ前記開口から遠ざかる方向に並べられた部分を含み、前記壁部に設けられている。前記蓋は、前記入熱部に重ねられた状態で前記壁部に固定され、前記開口を塞いでいる。前記入熱部は、前記開口を囲んだ第1部分と、前記第1部分より前記縁の近くで前記開口を囲み前記第1部分より入熱の深さが深い第2部分と、を有している。   The secondary battery according to the embodiment includes a container, a heat input unit, and a lid. The said container has a wall part provided with opening and accommodates the electrode body and electrolyte solution. The heat input portion includes a portion provided along an edge of the opening on the outer surface of the wall portion and arranged in a direction away from the opening, and is provided on the wall portion. The lid is fixed to the wall portion in a state of being overlapped with the heat input portion, and closes the opening. The heat input section includes a first portion that surrounds the opening, and a second portion that surrounds the opening nearer the edge than the first portion and has a deeper heat input than the first portion. ing.

第1実施形態に係る二次電池の概略構成を示す外観斜視図である。It is an external appearance perspective view which shows schematic structure of the secondary battery which concerns on 1st Embodiment. 第1実施形態に係る二次電池が備える容器の封口蓋周辺を拡大して示す平面図である。It is a top view which expands and shows the sealing lid periphery of the container with which the secondary battery which concerns on 1st Embodiment is provided. 第1実施形態に係る図2のA1−A1線に沿った断面の概略を示す図である。It is a figure which shows the outline of the cross section along the A1-A1 line | wire of FIG. 2 which concerns on 1st Embodiment. 第1実施形態に係る二次電池の入熱部を示す平面図である。It is a top view which shows the heat input part of the secondary battery which concerns on 1st Embodiment. 第1実施形態に係る図2のA1−A1線に沿った断面の一部を示す図である。It is a figure which shows a part of cross section along the A1-A1 line | wire of FIG. 2 which concerns on 1st Embodiment. 第1実施形態に係る二次電池の製造工程の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing process of the secondary battery which concerns on 1st Embodiment. 第1実施形態に係る二次電池の製造工程中のレーザ照射を説明するための説明図である。It is explanatory drawing for demonstrating the laser irradiation in the manufacturing process of the secondary battery which concerns on 1st Embodiment. 第2実施形態に係る二次電池の入熱部を示す平面図である。It is a top view which shows the heat input part of the secondary battery which concerns on 2nd Embodiment. 第2実施形態の変形例に係る二次電池の入熱部を示す平面図である。It is a top view which shows the heat input part of the secondary battery which concerns on the modification of 2nd Embodiment.

以下、図面を参照して、実施形態について詳細に説明する。なお、以下の複数の実施形態には、同様の構成要素が含まれている。よって、以下では、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。   Hereinafter, embodiments will be described in detail with reference to the drawings. Note that similar components are included in the following embodiments. Therefore, in the following, common reference numerals are given to those similar components, and redundant description is omitted.

(第1実施形態)
図1に示すように、本実施形態に係る二次電池1は、電極体2と、電極体2を電解液と共に収容する容器3と、一対の正極端子4及び負極端子5とを備えている。二次電池1としては、例えば、リチウムイオン電池などの非水電解質二次電池が挙げられる。
(First embodiment)
As shown in FIG. 1, the secondary battery 1 according to the present embodiment includes an electrode body 2, a container 3 that houses the electrode body 2 together with an electrolytic solution, and a pair of a positive electrode terminal 4 and a negative electrode terminal 5. . Examples of the secondary battery 1 include a nonaqueous electrolyte secondary battery such as a lithium ion battery.

電極体2は、発電要素である正極シート及び負極シートがセパレータを介してスパイラス状に巻かれて形成されており、容器3内に電解液と共に収納されている。   The electrode body 2 is formed by winding a positive electrode sheet and a negative electrode sheet, which are power generation elements, in a spiral shape via a separator, and is housed in the container 3 together with an electrolytic solution.

容器3は、扁平な直方体形状の外装容器であり、例えば、アルミニウム又はアルミニウム合金などの金属により形成されている。容器3は、上端(図1中)が開口する一端開口の容器本体3aと、容器本体3aの開口を塞ぐ矩形板状の蓋体3bとを有しており、蓋体3bが容器本体3aに溶接されて液密に形成されている。蓋体3bは、壁部の一例である。   The container 3 is a flat rectangular parallelepiped exterior container, and is formed of a metal such as aluminum or an aluminum alloy, for example. The container 3 has a container body 3a having an opening at the upper end (in FIG. 1) and a rectangular plate-shaped lid 3b that closes the opening of the container body 3a. The lid 3b is attached to the container body 3a. It is welded and liquid-tight. The lid 3b is an example of a wall portion.

正極端子4は、蓋体3bの長手方向の一端部に設けられており、負極端子5は、蓋体3bの長手方向の他端部に設けられている。これらの正極端子4及び負極端子5は、電極体2の正極及び負極にそれぞれ接続されており、蓋体3bの上面から突出している。また、どちらか一方の端子、例えば正極端子4は、蓋体3bに電気的に接続されて容器3と同電位になっている。負極端子5は、蓋体3bを貫通して延伸しており、その負極端子5と蓋体3bとの間には、合成樹脂やガラスなどの絶縁体からなるシール材、例えばガスケット(図示せず)が設けられている。このシール材は、負極端子5と容器3との間を気密にシールすると共に電気的に絶縁している。   The positive terminal 4 is provided at one end in the longitudinal direction of the lid 3b, and the negative terminal 5 is provided at the other end in the longitudinal direction of the lid 3b. The positive electrode terminal 4 and the negative electrode terminal 5 are connected to the positive electrode and the negative electrode of the electrode body 2, respectively, and protrude from the upper surface of the lid 3b. Further, one of the terminals, for example, the positive electrode terminal 4 is electrically connected to the lid 3 b and has the same potential as the container 3. The negative electrode terminal 5 extends through the lid 3b, and between the negative electrode terminal 5 and the lid 3b, a sealing material made of an insulating material such as synthetic resin or glass, for example, a gasket (not shown). ) Is provided. This sealing material hermetically seals between the negative electrode terminal 5 and the container 3 and is electrically insulated.

蓋体3bの中央部には、例えば矩形状の安全弁6が設けられている。この安全弁6は、蓋体3bの一部を約半分程度の厚さに薄くして形成されており、その薄い部分の上面中央部には刻印が形成されている。安全弁6は、二次電池1の異常などにより容器3内にガスが発生して容器3の内圧が所定値以上に上昇した場合、開状態となって容器3内のガスを放出し、容器3の内圧を下げる。   For example, a rectangular safety valve 6 is provided at the center of the lid 3b. The safety valve 6 is formed by thinning a part of the lid 3b to about half the thickness, and a stamp is formed at the center of the upper surface of the thin part. When the gas is generated in the container 3 due to abnormality of the secondary battery 1 and the internal pressure of the container 3 rises to a predetermined value or more, the safety valve 6 is opened and releases the gas in the container 3. Reduce the internal pressure.

また、図1及び図2に示すように、蓋体3bには、注液口7が設けられている。注液口7は、開口の一例である。注液口7は、蓋体3bの板厚方向に蓋体3bを貫通した貫通孔である。注液口7は、一例として円形状に形成されている。この注液口7から容器3内に電解液が注入される。   Moreover, as shown in FIG.1 and FIG.2, the liquid injection port 7 is provided in the cover body 3b. The liquid injection port 7 is an example of an opening. The liquid injection port 7 is a through hole that penetrates the lid 3b in the thickness direction of the lid 3b. The liquid injection port 7 is formed in a circular shape as an example. An electrolytic solution is injected into the container 3 from the liquid injection port 7.

また、蓋体3bには、図2に示すように、入熱部8が設けられている。入熱部8は、注液口7を囲む略円環状に設けられている。入熱部8は、蓋体3bに光等により入熱がされた部分である。本実施形態では、一例として、入熱部8は、蓋体3bの外面3cへのレーザ光の照射によって設けられたものである。入熱部8は、蓋体3bの外面3cにおける注液口7を含む所定領域R1において、注液口7の周囲に設けられている。所定領域R1は、例えば、注液口7の中央を中心とする半径数mm程度の円領域であり、その半径は封口蓋9の半径より大きい。   Moreover, the heat input part 8 is provided in the cover body 3b, as shown in FIG. The heat input portion 8 is provided in a substantially annular shape surrounding the liquid injection port 7. The heat input portion 8 is a portion where heat is input to the lid 3b by light or the like. In the present embodiment, as an example, the heat input portion 8 is provided by irradiating the outer surface 3c of the lid 3b with laser light. The heat input portion 8 is provided around the liquid injection port 7 in a predetermined region R1 including the liquid injection port 7 on the outer surface 3c of the lid 3b. The predetermined region R <b> 1 is, for example, a circular region having a radius of about several millimeters with the center of the liquid injection port 7 as the center, and the radius is larger than the radius of the sealing lid 9.

入熱部8は、図3ないし図5に示すように、複数の溝部8aと、溝部8aから延びた複数の溶け込み部8b(図5)と、を有している。入熱部8は、注液口7を囲んだ螺旋状に設けられている。したがって、注液口7は、蓋体3bの外面3cで注液口7の縁7aに沿って設けられ注液口7から遠ざかる方向に並べられた部分である沿い部8cを複数含んでいる。各沿い部8cは、溝部8aと溶け込み部8bとを有している。なお、図4中の一点鎖線Xは、螺旋方向で隣合う沿い部8c同士の境界部の一例を示している。各沿い部8cの溝部8aは、相互に接続しており、螺旋状をなしている。また、各沿い部8cの溶け込み部8bは、相互に接続しており、螺旋状をなしている。   As shown in FIGS. 3 to 5, the heat input portion 8 has a plurality of groove portions 8 a and a plurality of penetration portions 8 b (FIG. 5) extending from the groove portions 8 a. The heat input section 8 is provided in a spiral shape surrounding the liquid injection port 7. Accordingly, the liquid injection port 7 includes a plurality of side portions 8 c that are provided along the edge 7 a of the liquid injection port 7 on the outer surface 3 c of the lid 3 b and are arranged in a direction away from the liquid injection port 7. Each side part 8c has a groove part 8a and a melted part 8b. In addition, the dashed-dotted line X in FIG. 4 has shown an example of the boundary part of the side parts 8c adjacent in the spiral direction. The groove portions 8a of the side portions 8c are connected to each other and have a spiral shape. Moreover, the penetration part 8b of each side part 8c is mutually connected, and has comprised helical form.

図5に示すように、複数の沿い部8cのうち最内周に位置した沿い部8cの入熱の深さL1は、他の沿い部8cの入熱の深さL2よりも深い。以後、複数の沿い部8cのうち最内周に位置した沿い部8cを、便宜上、最内周沿い部8dとも呼ぶ。ここで、本実施形態では、一例として、最内周沿い部8dの外周側に位置する沿い部8cが、注液口7を囲んだ第1部分に相当し、最内周沿い部8dが、第1部分より注液口7の縁7aの近くで注液口7を囲み第1部分より入熱の深さが深い第2部分に相当する。このように、入熱の深さが異なるのは、最内周沿い部8dが設けられた際の蓋体3bの外面3cの単位面積当たりのレーザ光による入熱量が、最内周沿い部8dの外周側に位置する沿い部8cが設けられた際の外面3cの単位面積当たりのレーザ光による入熱量よりも多かったためである。ここで、最内周沿い部8dは、入熱部8において、注液口7の縁7aの最も近くに位置している部分である。即ち、本実施形態では、入熱部8では、第2部分が注液口7の縁7aの最も近くに位置している。   As shown in FIG. 5, the heat input depth L1 of the side portion 8c located at the innermost periphery among the plurality of side portions 8c is deeper than the heat input depth L2 of the other side portions 8c. Hereinafter, the side part 8c located on the innermost periphery among the plurality of side parts 8c is also referred to as the innermost peripheral part 8d for convenience. Here, in the present embodiment, as an example, the side portion 8c located on the outer peripheral side of the innermost peripheral portion 8d corresponds to the first portion surrounding the liquid injection port 7, and the innermost peripheral portion 8d is It corresponds to a second part that surrounds the liquid injection port 7 near the edge 7a of the liquid injection port 7 from the first part and has a deeper heat input than the first part. Thus, the depth of heat input differs because the amount of heat input by the laser light per unit area of the outer surface 3c of the lid 3b when the innermost peripheral portion 8d is provided is the innermost peripheral portion 8d. This is because the amount of heat input by the laser light per unit area of the outer surface 3c when the side portion 8c located on the outer peripheral side of the outer surface 3c is provided is larger. Here, the innermost peripheral portion 8 d is a portion that is located closest to the edge 7 a of the liquid injection port 7 in the heat input portion 8. In other words, in the present embodiment, in the heat input portion 8, the second portion is located closest to the edge 7 a of the liquid injection port 7.

図3や図4に示すように、入熱部8は、注液口7の縁7aから離間している。つまり、入熱部8と注液口7の縁7aとの間には、レーザ光の照射がなされなかった領域である非照射領域R2が存在する。非照射領域R2は、略平坦状をなしている。なお、図4や後述する第2実施形態の図8,図9では、非照射領域R2にハッチングを付与している。   As shown in FIGS. 3 and 4, the heat input section 8 is separated from the edge 7 a of the liquid injection port 7. That is, a non-irradiation region R <b> 2 that is a region where the laser beam is not irradiated exists between the heat input portion 8 and the edge 7 a of the liquid injection port 7. The non-irradiation region R2 has a substantially flat shape. In FIG. 4 and FIGS. 8 and 9 of the second embodiment to be described later, hatching is given to the non-irradiation region R2.

図5に示すように、入熱部8の注液口7側の縁(内縁)8eから注液口7の縁7aまでの距離W1は、入熱部8における沿い部8cの注液口7から遠ざかる方向に沿った幅W2の0.5倍〜10倍の長さであることが好適である。   As shown in FIG. 5, the distance W <b> 1 from the edge (inner edge) 8 e on the liquid inlet 7 side of the heat input portion 8 to the edge 7 a of the liquid inlet 7 is the liquid inlet 7 of the side portion 8 c in the heat input portion 8. It is preferable that the length is 0.5 to 10 times the width W2 along the direction away from the distance.

ここで、上述の通り、入熱部8は、蓋体3b上の注液口7周囲の所定領域R1にレーザ光が螺旋状に照射されることによって、設けられている。このとき、金属が溶ける出力のレーザ光が照射される。図4に示すように、レーザ照射の始点P1は、注液口7の縁7aから離間した位置であり、レーザ光は内から外に向かって螺旋状に照射され、レーザ照射の終点P2は所定領域R1の外縁上の位置となる。このとき、レーザ照射の始点P1に対応する溝部8aの始端は当初半円の円弧形状であるが、その始点P1に隣接する溝部8aが形成されるとその溝部8aが始点P1に重なるため、最初の形状が崩れて半円の円弧より短い扇形の円弧形状となっている。一方、レーザ照射の終点P2に対応する溝部8aの終端は最外周に位置するため、始端と異なり半円の円弧形状となっている。   Here, as described above, the heat input section 8 is provided by irradiating the laser beam spirally onto the predetermined region R1 around the liquid injection port 7 on the lid 3b. At this time, the laser beam with an output that melts the metal is irradiated. As shown in FIG. 4, the laser irradiation start point P1 is a position away from the edge 7a of the liquid injection port 7, the laser beam is irradiated spirally from the inside to the outside, and the laser irradiation end point P2 is a predetermined value. This is a position on the outer edge of the region R1. At this time, the starting end of the groove 8a corresponding to the laser irradiation start point P1 is initially a semicircular arc, but when the groove 8a adjacent to the start point P1 is formed, the groove 8a overlaps the start point P1, The shape of the crumbled shape has a fan-shaped arc shape shorter than the semicircular arc. On the other hand, since the end of the groove 8a corresponding to the end point P2 of laser irradiation is located on the outermost periphery, it has a semicircular arc shape unlike the start end.

蓋体3bには、注液口7を塞ぐ封口蓋9が、一例としてレーザ溶接によって固定されている。封口蓋9は、蓋の一例である。封口蓋9は、例えば、アルミニウム又はアルミニウム合金などの金属により形成されており、入熱部8(溝部8a)に重ねられて蓋体3bに固定されている。封口蓋9は、例えば円形状に形成されており、その半径が注液口7の半径より大きく所定領域R1の半径より小さく形成されている。   As an example, a sealing lid 9 that closes the liquid injection port 7 is fixed to the lid 3b by laser welding. The sealing lid 9 is an example of a lid. The sealing lid 9 is made of, for example, a metal such as aluminum or an aluminum alloy, and is overlapped with the heat input portion 8 (groove portion 8a) and fixed to the lid 3b. The sealing lid 9 is formed in a circular shape, for example, and has a radius larger than the radius of the liquid injection port 7 and smaller than the radius of the predetermined region R1.

ここで、封口蓋9は、入熱部8の外縁8fの注液口7側で、蓋体3bに溶接されている。外縁8fは、入熱部8における注液口7から最も離れた部分である。したがって、入熱部8の外縁8fの内周側に、溶接痕10が存在する。そして、蓋体3bの外面3cからの最内周沿い部8dの入熱の深さL1よりも、封口蓋9と蓋体3bとの溶接における外面3cから封口蓋9への入熱の深さL3の方が深くなっている。したがって、本実施形態では、外面3cからの最内周沿い部8dの入熱の深さL1よりも、封口蓋9と蓋体3bとの溶接における封口蓋9の外面9aからの入熱の深さL4の方が深くなっている。   Here, the sealing lid 9 is welded to the lid 3 b on the liquid inlet 7 side of the outer edge 8 f of the heat input portion 8. The outer edge 8 f is a portion farthest from the liquid injection port 7 in the heat input portion 8. Therefore, the welding mark 10 exists on the inner peripheral side of the outer edge 8 f of the heat input portion 8. Then, the depth of heat input from the outer surface 3c to the sealing lid 9 in the welding of the sealing lid 9 and the lid body 3b, rather than the depth L1 of heat input of the innermost peripheral portion 8d from the outer surface 3c of the lid body 3b. L3 is deeper. Therefore, in this embodiment, the depth of heat input from the outer surface 9a of the sealing lid 9 in the welding of the sealing lid 9 and the lid body 3b, rather than the depth L1 of heat input from the outermost surface 3c along the innermost periphery 8d. L4 is deeper.

次に、二次電池1の製造方法について説明する。   Next, a method for manufacturing the secondary battery 1 will be described.

図6に示すように、まず、電解液注入装置(図示せず)を用いて容器3内に注液口7から電解液を注入する(ステップS1)。その後、電解液が注液された容器3をレーザ照射装置20(図7参照)に供給する(ステップS2)。   As shown in FIG. 6, first, an electrolytic solution is injected into the container 3 from the injection port 7 using an electrolytic solution injection device (not shown) (step S1). Thereafter, the container 3 filled with the electrolyte is supplied to the laser irradiation device 20 (see FIG. 7) (step S2).

次いで、電解液が注液された容器3の周囲雰囲気を減圧状態にする(ステップS3)。なお、容器3の全体あるいは封口蓋9が位置する上部のみが密閉空間、すなわちレーザ照射装置20のチャンバ内に閉じ込められている。チャンバ内の密閉空間の雰囲気は、例えば、N雰囲気で20kPaに減圧される。 Next, the ambient atmosphere of the container 3 into which the electrolytic solution has been injected is brought into a reduced pressure state (step S3). Note that the entire container 3 or only the upper part where the sealing lid 9 is located is confined in a sealed space, that is, the chamber of the laser irradiation apparatus 20. The atmosphere of the sealed space in the chamber is reduced to 20 kPa, for example, in an N 2 atmosphere.

ステップS3による減圧後、レーザ照射装置20を用いて、容器3の注液口7の周囲(前述の所定領域R1)にレーザ光を照射し、容器3の蓋体3bの外面3cの所定領域R1に入熱部8を形成する(ステップS4)。   After depressurization in step S3, the laser irradiation device 20 is used to irradiate the periphery of the liquid injection port 7 of the container 3 (the above-described predetermined region R1) with laser light, and the predetermined region R1 of the outer surface 3c of the lid 3b of the container 3 The heat input part 8 is formed in (Step S4).

ここで、図7に示すように、レーザ照射装置20は、レーザ光を照射するレーザ照射部21と、レーザ照射部を制御する制御装置22と、を有する。制御装置22は、一例として、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を有するコンピュータである。制御装置22では、ROMに記憶されたプログラムに従ってCPUがレーザ照射部21を制御する。   Here, as illustrated in FIG. 7, the laser irradiation device 20 includes a laser irradiation unit 21 that irradiates laser light, and a control device 22 that controls the laser irradiation unit. For example, the control device 22 is a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). In the control device 22, the CPU controls the laser irradiation unit 21 in accordance with a program stored in the ROM.

ステップS4で、レーザ照射装置20は、制御装置22によって制御されたレーザ照射部21が、蓋体3b上の所定領域R1に金属が溶ける出力のレーザ光を螺旋状に内から外に向かって照射する。レーザ照射部21は、レーザ光の照射を、注液口7の縁7aから離間した位置から開始する。これにより、注液口7の縁7aから離間した螺旋状の入熱部8が設けられる。このように設けられた入熱部8は、蓋体3bの外面3cで注液口7の縁7aに沿って設けられ注液口7から遠ざかる方向に並べられた沿い部8cを含む。   In step S4, in the laser irradiation device 20, the laser irradiation unit 21 controlled by the control device 22 irradiates an output laser beam in which the metal melts in the predetermined region R1 on the lid 3b spirally from the inside to the outside. To do. The laser irradiation unit 21 starts irradiation with laser light from a position away from the edge 7 a of the liquid injection port 7. Thereby, the helical heat input part 8 spaced apart from the edge 7a of the liquid injection port 7 is provided. The heat input portion 8 provided in this way includes a side portion 8c provided along the edge 7a of the liquid injection port 7 on the outer surface 3c of the lid 3b and arranged in a direction away from the liquid injection port 7.

このとき、レーザ照射装置20は、最内周沿い部8dを設ける際の蓋体3bの外面3cの単位面積当たりのレーザ光による入熱量が、最内周沿い部8dの外周側に位置する沿い部8cを設ける際の外面3cの単位面積当たりのレーザ光による入熱量よりも多くなるようにレーザ光を照射する。   At this time, in the laser irradiation device 20, the amount of heat input by the laser light per unit area of the outer surface 3c of the lid 3b when the innermost peripheral portion 8d is provided is along the outer peripheral side of the innermost peripheral portion 8d. Laser light is irradiated so as to be larger than the amount of heat input by the laser light per unit area of the outer surface 3c when the portion 8c is provided.

一例として、レーザ照射装置20は、最内周沿い部8d(第2部分)を設ける際のレーザ光の走査速度(線速度)を、最内周沿い部8dの外周側に位置する沿い部8c(第1部分)を設ける際のレーザ光の走査速度よりも遅くする。例えば、最内周沿い部8dの外周側に位置する沿い部8cを設ける際のレーザ光の走査速度は、最内周沿い部8dを設ける際のレーザ光の走査速度の5倍〜20倍の範囲内であり、好適には、5倍〜10倍の範囲内である。なお、レーザ光の走査速度同士の倍率は、上記の値に限定されるものでなく、上記の値以外のものであってもよい。また、最内周沿い部8dの外周側に位置する沿い部8cが設ける際のレーザ光の走査速度は、一例として、10mm/s〜500mm/sの範囲内である。なお、レーザ光の走査速度は、上記の値に限定されるものでなく、上記の値以外のものであってもよい。   As an example, the laser irradiation apparatus 20 sets the scanning speed (linear velocity) of the laser light when providing the innermost peripheral portion 8d (second portion) along the inner peripheral portion 8d along the outer peripheral portion 8d. It is slower than the scanning speed of the laser beam when providing the (first portion). For example, the scanning speed of the laser beam when providing the side portion 8c located on the outer peripheral side of the innermost peripheral portion 8d is 5 to 20 times the scanning speed of the laser beam when the innermost peripheral portion 8d is provided. Within the range, and preferably within the range of 5 to 10 times. The magnification between the scanning speeds of the laser beams is not limited to the above value, and may be other than the above value. Moreover, the scanning speed of the laser beam when the side portion 8c located on the outer peripheral side of the innermost peripheral portion 8d is provided is, for example, in a range of 10 mm / s to 500 mm / s. The scanning speed of the laser beam is not limited to the above value, and may be other than the above value.

別の一例として、レーザ照射装置20は、最内周沿い部8d(第2部分)を設ける際のレーザ光照射出力を、最内周沿い部8dの外周側に位置する沿い部8c(第1部分)を設ける際のレーザ光照射出力よりも高くする。   As another example, the laser irradiation apparatus 20 uses the laser beam irradiation output when providing the innermost peripheral portion 8d (second portion) along the outer portion 8c (first portion) of the innermost peripheral portion 8d. Higher than the laser beam irradiation output when the portion is provided.

ここで、レーザ照射装置20における入熱部8を設ける際のレーザ光照射出力は、一例として、300W〜3000Wの範囲内であり、最内周沿い部8d以外の沿い部8cを形成する際の際のレーザ光照射出力は、好適には700W〜800Wの範囲内である。なお、レーザ光照射出力は、上記の値に限定されるものでなく、上記の値以外のものであってもよい。また、レーザ照射装置20が入熱部8を設ける際のレーザ光の波長は、一例として、800nm〜1300nmの範囲内である。なお、レーザ光の波長は、上記の値に限定されるものでなく、上記の値以外のものであってもよい。   Here, the laser beam irradiation output when providing the heat input section 8 in the laser irradiation apparatus 20 is, for example, in the range of 300 W to 3000 W, and when forming the side portions 8 c other than the innermost peripheral portion 8 d. The laser light irradiation output at this time is preferably in the range of 700 W to 800 W. The laser beam irradiation output is not limited to the above value, and may be other than the above value. Moreover, the wavelength of the laser beam when the laser irradiation apparatus 20 provides the heat input part 8 is in the range of 800 nm to 1300 nm as an example. The wavelength of the laser beam is not limited to the above value, and may be other than the above value.

このようにしてレーザ光を照射すると、レーザ光により金属が溶融するときの熱によって、注液口7の周囲に付着した電解液が蒸発して除去される。この付着した電解液を除去せず、後工程で蓋体3bに封口蓋9をレーザ溶接した場合には、穴あきなどの溶接欠陥が頻発してしまう。   When the laser beam is irradiated in this manner, the electrolyte adhering around the liquid injection port 7 is evaporated and removed by heat generated when the metal is melted by the laser beam. If the attached electrolytic solution is not removed and the sealing lid 9 is laser welded to the lid 3b in a later process, welding defects such as perforations frequently occur.

なお、レーザ照射装置20は、一例として、あらかじめ注液口7の周囲(所定領域R1を含む領域)を撮影した画像データから注液口7を抽出し、その抽出した注液口7を画像処理して座標を特定し、得られた座標値を基準にレーザ照射位置を補正しながら、金属が溶融する出力のレーザ光を注液口7まわりに集光し、螺旋状に走査して照射する。   As an example, the laser irradiation apparatus 20 extracts the liquid injection port 7 from image data obtained by photographing the periphery of the liquid injection port 7 (an area including the predetermined region R1) in advance, and the extracted liquid injection port 7 is subjected to image processing. The coordinates are specified, and the laser irradiation position is corrected on the basis of the obtained coordinate values, and the laser beam of the output in which the metal melts is collected around the liquid injection port 7 and irradiated by scanning spirally. .

このレーザ光を走査する走査方式としては、ガルバノスキャナなどのスキャナを用いて走査する方法を用いることが高速にレーザ光を走査することができるため望ましい。ただし、容器3のワーク本体を回転させる方法や、光学系をロボットなどの移動機構を用いて移動させる方法を用いてもよい。   As a scanning method for scanning with this laser beam, it is desirable to use a scanning method using a scanner such as a galvano scanner because the laser beam can be scanned at high speed. However, a method of rotating the work body of the container 3 or a method of moving the optical system using a moving mechanism such as a robot may be used.

なお、入熱部8を形成する前に、容器3の注液口7の周囲にあふれた電解液を吸収体により吸収するようにしてもよい。この場合には、注液口7の周囲に付着した電解液の除去をより確実に行うことが可能となる。また、注液口7の上端がテーパ状に形成されている場合には、そのテーパ部分から入熱部8を形成するようにしてもよい。   In addition, before forming the heat input part 8, you may make it absorb the electrolyte solution which overflowed around the injection hole 7 of the container 3 with an absorber. In this case, it is possible to more reliably remove the electrolytic solution adhering to the periphery of the liquid injection port 7. Further, when the upper end of the liquid injection port 7 is formed in a tapered shape, the heat input portion 8 may be formed from the tapered portion.

次に、ステップS4による入熱部8の形成後、ロボットなどの載置装置(図示せず)により、注液口7を塞ぐ位置で入熱部8に封口蓋9を重ねる(ステップS5)。   Next, after the heat input part 8 is formed in step S4, the sealing lid 9 is placed on the heat input part 8 at a position where the liquid injection port 7 is closed by a mounting device (not shown) such as a robot (step S5).

次に、前述の減圧状態で、容器3の蓋体3bに封口蓋9をレーザ溶接して固定する(ステップS6)。ステップS6では、レーザ照射装置20は、レーザ照射部21を用いて、封口蓋9の蓋体3bと反対側に位置する外面(表面)9aに、前述の入熱部8形成用のレーザ出力より高い金属が溶ける出力(例えば入熱部8形成用のレーザ出力の2倍程度)のレーザ光を円環状に照射する。これにより、レーザ光が注液口7の縁7aに沿う円環状に照射され、封口蓋9が蓋体3bに溶接される。   Next, the sealing lid 9 is laser-welded and fixed to the lid 3b of the container 3 in the aforementioned reduced pressure state (step S6). In step S <b> 6, the laser irradiation device 20 uses the laser irradiation unit 21 to apply the laser output for forming the heat input unit 8 on the outer surface (surface) 9 a located on the opposite side of the lid 3 b of the sealing lid 9. Laser light having an output that melts high metal (for example, about twice the laser output for forming the heat input portion 8) is irradiated in an annular shape. Thereby, a laser beam is irradiated in the annular | circular shape along the edge 7a of the injection hole 7, and the sealing lid | cover 9 is welded to the cover body 3b.

このレーザ溶接により、図2に示すように、封口蓋9と蓋体3bとを相互に固定する溶接痕(溶接部)10が円環状に、入熱部8の外縁8f(所定領域R1の外縁)よりも内側、すなわち注液口7側に存在することになる。このとき、封口蓋9は、その外縁の全てが入熱部8の外縁8f(所定領域R1の外縁)よりも内側、すなわち注液口7側に収まるように配置されている。   As shown in FIG. 2, by this laser welding, a welding mark (welding portion) 10 for fixing the sealing lid 9 and the lid 3b to each other is formed in an annular shape, and the outer edge 8f of the heat input portion 8 (the outer edge of the predetermined region R1). ), That is, on the liquid injection port 7 side. At this time, the sealing lid 9 is disposed so that all of the outer edges thereof are inside the outer edge 8f of the heat input portion 8 (the outer edge of the predetermined region R1), that is, the liquid injection port 7 side.

なお、前述の封口蓋9の溶接では、封口蓋9を溶接する際に、前述の入熱部8の形成と同様、容器3の全体又は封口蓋9が位置する上部のみを密閉空間に閉じ込め、その密閉空間内を減圧雰囲気にする。このとき、排気速度が高い場合や到達真空度が高い場合などには、注液口7から多量の電解液が漏洩するため、一例として、減圧雰囲気を10kPaから30kPaの範囲に制御することが好適であり、例えば20kPaの圧力を目標値として排気系を制御する。その後、減圧雰囲気中で、前述のように、封口蓋9上にレーザ光を円環状に走査して溶接を行うが、このレーザ光を走査する走査方式としては、前述の溝部8aの形成と同様、ガルバノスキャナなどのスキャナを用いて走査する方法を用いることが高速にレーザ光を走査することができるため望ましい。ただし、走査速度によっては、容器3のワーク本体を回転させる方法や、光学系をロボットなどの移動機構を用いて移動させる方法を用いてもよい。   In the welding of the sealing lid 9 described above, when the sealing lid 9 is welded, the entire container 3 or only the upper part where the sealing lid 9 is located is confined in a sealed space when the sealing lid 9 is welded. The sealed space is made into a reduced pressure atmosphere. At this time, when the exhaust speed is high or when the ultimate vacuum is high, a large amount of electrolyte leaks from the injection port 7, and as an example, the reduced pressure atmosphere is preferably controlled in the range of 10 kPa to 30 kPa. For example, the exhaust system is controlled with a pressure of 20 kPa as a target value. Thereafter, welding is performed by scanning the laser beam on the sealing lid 9 in an annular atmosphere in a reduced pressure atmosphere as described above. The scanning method for scanning this laser beam is the same as the formation of the groove 8a described above. It is desirable to use a scanning method using a scanner such as a galvano scanner because the laser beam can be scanned at high speed. However, depending on the scanning speed, a method of rotating the work body of the container 3 or a method of moving the optical system using a moving mechanism such as a robot may be used.

最後に、出荷テストなどの所定の検査を行う(ステップS7)。   Finally, a predetermined inspection such as a shipping test is performed (step S7).

以上説明したように、本実施形態では、電解液が注入された容器3の蓋体3bの外面3cへのレーザ光の照射によって、蓋体3bの外面3cで注液口7の縁7aに沿っていて注液口7から遠ざかる方向に並んだ沿い部8d、を含む入熱部8を、蓋体3bに設ける。そして、注液口7を塞ぐ位置で入熱部8に封口蓋9を重ねて当該封口蓋9をレーザ溶接によって蓋体3bに固定する。したがって、注液口7の周囲に残留した電解液を、入熱部8を形成する際のレーザ照射による熱により蒸発させて除去することができる。そして、その電解液の除去後に封口蓋9が容器3に溶接されることになる。これにより、注液口7近傍に残留した電解液起因の欠陥発生を抑止して注液口7封止溶接の品質を向上させ、二次電池1の高品質及び高信頼性を実現することができる。また、高い歩留りで二次電池1を製造することも可能となる。   As described above, in this embodiment, the outer surface 3c of the lid 3b is irradiated with the laser beam on the outer surface 3c of the lid 3b of the container 3 into which the electrolytic solution has been injected, along the edge 7a of the liquid injection port 7. The heat input part 8 including the side part 8d aligned in the direction away from the liquid injection port 7 is provided in the lid 3b. And the sealing lid 9 is piled up on the heat input part 8 in the position which plugs the liquid injection port 7, and the said sealing lid 9 is fixed to the cover body 3b by laser welding. Therefore, the electrolytic solution remaining around the liquid injection port 7 can be removed by evaporation by heat generated by laser irradiation when forming the heat input portion 8. And the sealing lid | cover 9 is welded to the container 3 after the removal of the electrolyte solution. As a result, the occurrence of defects caused by the electrolyte remaining in the vicinity of the injection port 7 can be suppressed to improve the quality of the injection port 7 sealing welding, and the high quality and high reliability of the secondary battery 1 can be realized. it can. In addition, the secondary battery 1 can be manufactured with a high yield.

また、本実施形態では、入熱部8の最内周沿い部8dを設ける際の外面3cの単位面積当たりのレーザ光による入熱量が、最内周沿い部8dの外周側に位置する沿い部8cが設けられた際の外面3cの単位面積当たりのレーザ光による入熱量よりも多い。これにより、入熱部8では、最内周沿い部8dの入熱の深さが、最内周沿い部8dの外周側に位置する沿い部8cの入熱の深さよりも深くなる。これにより、例えば、最内周沿い部8dの注液口7側(例えば、非照射領域R2)に残留した電解液をより確実に蒸発させて除去することができる。これにより、本実施形態では、最内周沿い部8dの入熱量を他の沿い部8cと同じとして場合に比べて、電解液起因の欠陥発生率を1/50に減らすことができた。   In the present embodiment, the amount of heat input by the laser beam per unit area of the outer surface 3c when the innermost peripheral portion 8d of the heat input portion 8 is provided is along the outer peripheral side of the innermost peripheral portion 8d. More than the amount of heat input by the laser beam per unit area of the outer surface 3c when 8c is provided. Thereby, in the heat input part 8, the depth of the heat input of the innermost peripheral part 8d becomes deeper than the depth of the heat input of the along part 8c located on the outer peripheral side of the innermost peripheral part 8d. Thereby, for example, the electrolyte remaining on the liquid injection port 7 side (for example, the non-irradiation region R2) of the innermost peripheral portion 8d can be more reliably evaporated and removed. Thereby, in this embodiment, compared with the case where the amount of heat input of the innermost peripheral part 8d is made the same as the other along part 8c, the defect generation rate due to the electrolytic solution could be reduced to 1/50.

また、本実施形態では、入熱部8が注液口7の縁7aから離間しており、入熱部8と注液口7の縁7aとの間に、非照射領域R2が存在する。したがって、入熱部8を形成する際に、レーザ光が注液口7から容器3内へ入ること抑制して、容器3内に異常が発生することを抑制することができる。このとき、本実施形態では、入熱部8の注液口7側の縁(内縁)8eから注液口7の縁7aまでの距離W1は、入熱部8における沿い部8cの注液口7から遠ざかる方向に沿った幅W2の0.5倍〜10倍の長さであることが好適である。これにより、入熱部8を形成する際に、レーザ光が注液口7から容器3内へ入ることをより抑制することができる。   Moreover, in this embodiment, the heat input part 8 is separated from the edge 7a of the liquid injection port 7, and the non-irradiation region R2 exists between the heat input part 8 and the edge 7a of the liquid injection port 7. Therefore, when forming the heat input part 8, it can suppress that a laser beam enters into the container 3 from the liquid injection port 7, and it can suppress that abnormality arises in the container 3. FIG. At this time, in this embodiment, the distance W1 from the edge (inner edge) 8e on the liquid injection port 7 side of the heat input unit 8 to the edge 7a of the liquid injection port 7 is the liquid injection port of the side portion 8c in the heat input unit 8. It is preferable that the length is 0.5 to 10 times the width W2 along the direction away from 7. Thereby, when forming the heat input part 8, it can suppress more that a laser beam enters into the container 3 from the liquid injection port 7. FIG.

また、本実施形態では、一例として、最内周沿い部8dの外周側に位置する沿い部8cを設ける際のレーザ光の走査速度は、最内周沿い部8dを設ける際のレーザ光の走査速度の5倍〜20倍の範囲内であり、好適には、5倍〜10倍の範囲内である。また、最内周沿い部8dの外周側に位置する沿い部8cが設ける際のレーザ光の走査速度は、一例として、10mm/s〜500mm/sの範囲内である。これにより、蓋体3bを破損させることなく、良好に入熱部8を形成して、注液口7の周囲に付着した電解液を除去することができる。レーザ光の走査速度は、速度計測装置で計測可能である。   In the present embodiment, as an example, the scanning speed of the laser beam when providing the side portion 8c located on the outer peripheral side of the innermost peripheral portion 8d is the laser beam scanning speed when the innermost peripheral portion 8d is provided. It is in the range of 5 to 20 times the speed, and preferably in the range of 5 to 10 times. Moreover, the scanning speed of the laser beam when the side portion 8c located on the outer peripheral side of the innermost peripheral portion 8d is provided is, for example, in a range of 10 mm / s to 500 mm / s. Thereby, the heat input part 8 can be satisfactorily formed without damaging the lid 3b, and the electrolytic solution adhering around the liquid injection port 7 can be removed. The scanning speed of the laser beam can be measured with a speed measuring device.

また、本実施形態では、レーザ照射装置20における入熱部8を設ける際のレーザ光照射出力が、一例として、300W〜3000Wの範囲内であり、最内周沿い部8d以外の沿い部8cを形成する際の際のレーザ光照射出力は、好適には700W〜800Wの範囲内である。これにより、蓋体3bを破損させることなく、良好に入熱部8を形成して、注液口7の周囲に付着した電解液を除去することができる。レーザ光照射出力は、レーザ光照射出力計測装置で計測可能である。   Moreover, in this embodiment, the laser beam irradiation output at the time of providing the heat input part 8 in the laser irradiation apparatus 20 is in the range of 300 W to 3000 W as an example, and the side part 8 c other than the innermost peripheral part 8 d The laser beam irradiation output at the time of forming is preferably in the range of 700 W to 800 W. Thereby, the heat input part 8 can be satisfactorily formed without damaging the lid 3b, and the electrolytic solution adhering around the liquid injection port 7 can be removed. The laser beam irradiation output can be measured by a laser beam irradiation output measuring device.

また、本実施形態では、レーザ照射装置20が入熱部8を設ける際のレーザ光の波長は、一例として、800nm〜1300nmの範囲内である。上記の範囲内の波長のレーザ光を用いることにより、蓋体3bを破損させることなく、良好に入熱部8を形成して、注液口7の周囲に付着した電解液を除去することができる。レーザ光の波長は、レーザ波長計測装置で計測可能である。   Moreover, in this embodiment, the wavelength of the laser beam when the laser irradiation apparatus 20 provides the heat input part 8 is in the range of 800 nm to 1300 nm as an example. By using a laser beam having a wavelength within the above range, the heat input portion 8 can be formed satisfactorily without damaging the lid 3b, and the electrolytic solution adhering to the periphery of the liquid injection port 7 can be removed. it can. The wavelength of the laser beam can be measured with a laser wavelength measuring device.

また、注液口7の周囲に残留した電解液は各溝部8aに入り込むため、広範囲に拡がる電解液溜りの発生が抑止されるので、残留した電解液が後工程のレーザ溶接に影響を与えることが抑えられる。このため、注液口7近傍に残留した電解液起因の欠陥発生をより確実に抑止し、注液口7封止溶接の品質をより向上させることができる。   In addition, since the electrolyte remaining around the liquid injection port 7 enters each groove 8a, the occurrence of an electrolyte pool spreading over a wide range is suppressed, so that the remaining electrolyte affects the laser welding in the subsequent process. Is suppressed. For this reason, it is possible to more reliably suppress the occurrence of defects due to the electrolyte remaining in the vicinity of the liquid injection port 7 and to further improve the quality of the liquid injection port 7 sealing welding.

また、注液口7の周囲の所定領域R1にレーザ光を注液口7の外縁に沿わして螺旋状に照射し、入熱部8を形成することから、入熱部8を比較的に短時間で形成することが可能となるので、二次電池1の製造時間を短縮することができる。   Further, since the laser beam is irradiated spirally along the outer edge of the liquid injection port 7 to the predetermined region R1 around the liquid injection port 7 to form the heat input unit 8, the heat input unit 8 is made relatively Since it can be formed in a short time, the manufacturing time of the secondary battery 1 can be shortened.

また、注液口7を中心として内から外に複数の沿い部8cを順次形成することから、外から内に順次形成する場合に比べより確実に、残留した電解液を注液口7の周囲から除去することが可能となる。これにより、注液口7近傍に残留した電解液起因の欠陥発生をより確実に抑止することができる。   Further, since the plurality of side portions 8c are sequentially formed from the inside to the outside with the liquid injection port 7 as the center, the remaining electrolytic solution is more reliably surrounded by the periphery of the liquid injection port 7 as compared with the case of sequentially forming from the outside to the inside. It becomes possible to remove from. Thereby, generation | occurrence | production of the defect resulting from the electrolyte solution which remained in the injection hole 7 vicinity can be suppressed more reliably.

ここで、所定領域R1に対して内から外へのレーザ光照射を行った場合には、注液口7の周囲に残留した電解液は内から外に向かって移動するような現象が生じ、所定領域R1の外、すなわち容器3に対する封口蓋9のレーザ溶接に関与しない領域まで移動する。一方、所定領域R1に対して外から内へのレーザ光照射を行った場合には、注液口7の周囲に残留した電解液は外から内に向かって移動するような現象が生じ、容器3に対する封口蓋9のレーザ溶接に関与する領域、すなわち注液口7の近傍に集まってきて結合し、大きな滴を形成するため、レーザ光が作用し難くなってくる。したがって、内から外へのレーザ光照射を行った方が、残留した電解液をより確実に注液口7の周囲から除去することが可能であり、注液口7近傍に残留した電解液起因の欠陥発生をより確実に抑止することができる。   Here, when laser irradiation is performed from the inside to the outside for the predetermined region R1, a phenomenon occurs in which the electrolytic solution remaining around the liquid injection port 7 moves from the inside to the outside, It moves to a region outside the predetermined region R1, that is, a region not involved in laser welding of the sealing lid 9 to the container 3. On the other hand, when laser irradiation is performed on the predetermined region R1 from the outside to the inside, a phenomenon occurs in which the electrolytic solution remaining around the liquid injection port 7 moves from the outside to the inside. Since the laser beam gathers in the vicinity of the liquid injection port 7 in the region related to the laser welding of the sealing lid 9 with respect to 3 and forms a large droplet, the laser beam becomes difficult to act. Therefore, it is possible to remove the remaining electrolytic solution from the periphery of the injection port 7 more reliably when the laser beam is irradiated from the inside to the outside. It is possible to more reliably suppress the occurrence of defects.

なお、内から外へのレーザ光照射により電解液を内から外に追い出すが、その電解液が残ることがある(例えば、入熱部8に沿って戻ってきたりする)。そこで、電解液を所定領域R1の外まで十分に追い出したところで、入熱部8の外縁(所定領域R1の外縁)よりも内側で溶接を行うことにより、溶接不良の発生頻度をさらに低くすることができる。また、残留した電解液の中には、蓋体3bの入熱部8上に封口蓋9を重ねたときに毛細現象により内側に戻ってくる電解液があるが、径方向には複数の壁(各溝部8aによる壁)があって周方向にその電解液は吸収されるので、内奥まで到達し難い。   In addition, although electrolyte solution is driven out from the inside by laser beam irradiation from the inside to the outside, the electrolyte solution may remain (for example, return along the heat input portion 8). Therefore, when the electrolyte is sufficiently expelled to the outside of the predetermined region R1, welding is performed on the inner side of the outer edge of the heat input portion 8 (the outer edge of the predetermined region R1), thereby further reducing the occurrence frequency of welding failure. Can do. Further, among the remaining electrolyte, there is an electrolyte that returns to the inside due to a capillary phenomenon when the sealing lid 9 is overlaid on the heat input portion 8 of the lid 3b. Since there is a (wall by each groove 8a) and the electrolyte is absorbed in the circumferential direction, it is difficult to reach the inner depth.

(第2実施形態)
図8に示すように、本実施形態では、入熱部8の複数の沿い部8cのうち最内周に位置した最内周沿い部8d(第2部分)が、環状、詳しくは略円環状に設けられている。最内周沿い部8d以外の入熱部8の他の部分は、螺旋状に設けられている。最内周沿い部8d以外の入熱部8の他の部分は、入熱部8の一部の一例である。
(Second Embodiment)
As shown in FIG. 8, in the present embodiment, the innermost peripheral portion 8d (second portion) located at the innermost periphery among the plurality of adjacent portions 8c of the heat input portion 8 is annular, and more specifically, substantially circular. Is provided. Other portions of the heat input portion 8 other than the innermost peripheral portion 8d are provided in a spiral shape. The other part of the heat input part 8 other than the innermost peripheral part 8 d is an example of a part of the heat input part 8.

本実施形態では、最内周沿い部8dと、最内周沿い部8dの外周側で最内周沿い部8dの隣に位置する沿い部8cとは、レーザ光の連続照射によって形成されており、それらが有する溝部8a同士が接続されている。なお、変形例として、最内周沿い部8dと、最内周沿い部8dの外周側で最内周沿い部8dの隣に位置する沿い部8cとで、レーザ光の照射を分割して行ってもよい。この場合、図9に示すように、最内周沿い部8dの溝部8aと、最内周沿い部8dの外周側で最内周沿い部8dの隣に位置する沿い部8cの溝部8aとは、非連続となる。   In the present embodiment, the innermost peripheral portion 8d and the alongside portion 8c located adjacent to the innermost peripheral portion 8d on the outer peripheral side of the innermost peripheral portion 8d are formed by continuous irradiation of laser light. And the groove parts 8a which they have are connected. As a modification, the laser beam irradiation is divided between the innermost peripheral portion 8d and the outer peripheral portion 8d on the outer peripheral side of the innermost peripheral portion 8d and adjacent to the innermost peripheral portion 8d. May be. In this case, as shown in FIG. 9, the groove portion 8a of the innermost peripheral portion 8d and the groove portion 8a of the alongside portion 8c located adjacent to the innermost peripheral portion 8d on the outer peripheral side of the innermost peripheral portion 8d are , Discontinuous.

ここで、環状の最内周沿い部8dを形成する際、最内周沿い部8dを形成する軌跡に沿ったレーザ光の照射は、一回でもよいし繰り返し(複数回)行ってもよい。   Here, when the annular innermost peripheral portion 8d is formed, the laser light irradiation along the locus forming the innermost peripheral portion 8d may be performed once or repeatedly (multiple times).

以上説明した本実施形態でも、注液口7の周囲に残留した電解液を入熱部8を形成する際のレーザ照射による熱により蒸発させて除去することができる。   Also in the present embodiment described above, the electrolytic solution remaining around the liquid injection port 7 can be removed by being evaporated by the heat generated by laser irradiation when the heat input portion 8 is formed.

以上説明した各実施形態によれば、注液口7近傍に残留した電解液起因の欠陥発生を抑止して注液口7封止溶接の品質を向上させ、二次電池1の高品質及び高信頼性を実現することができる。   According to each embodiment described above, defects caused by the electrolytic solution remaining in the vicinity of the injection port 7 are suppressed to improve the quality of the injection port 7 sealing welding, and the high quality and high quality of the secondary battery 1 are achieved. Reliability can be realized.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、入熱部8の第2の部分は、最内周の外側に設けられていてもよい。また、入熱部8の各沿い部8cは、それぞれ環状に形成されていてもよい。また、入熱部8の沿い部8cのピッチを、入熱部8外周側に比べて内周側を狭くしてもよい。   For example, the second portion of the heat input unit 8 may be provided outside the innermost periphery. Moreover, each side part 8c of the heat input part 8 may be formed in an annular shape. Moreover, you may narrow the inner peripheral side of the pitch of the side part 8c of the heat input part 8 compared with the heat input part 8 outer peripheral side.

1…二次電池、2…電極体、3…容器、3b…蓋体、3c…外面、7…注液口、7a…縁、8…入熱部、8c…沿い部、8d…最内周沿い部、8f…外縁、9…封口蓋、20…レーザ照射装置。   DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 2 ... Electrode body, 3 ... Container, 3b ... Cover body, 3c ... Outer surface, 7 ... Liquid injection port, 7a ... Edge, 8 ... Heat input part, 8c ... Along part, 8d ... Innermost circumference Side part, 8f ... outer edge, 9 ... sealing lid, 20 ... laser irradiation apparatus.

Claims (20)

開口が設けられた壁部を有し、電極体と電解液とを収納した容器と、
前記壁部の外面で前記開口の縁に沿って設けられ前記開口から遠ざかる方向に並べられた部分を含み、前記壁部に設けられた入熱部と、
前記入熱部に重ねられた状態で前記壁部に固定され、前記開口を塞いだ蓋と、
を備え、
前記入熱部は、前記開口を囲んだ第1部分と、前記第1部分より前記縁の近くで前記開口を囲み前記第1部分より入熱の深さが深い第2部分と、を有した二次電池。
A container having a wall portion provided with an opening and containing an electrode body and an electrolyte;
A heat input portion provided on the wall portion, including a portion provided along an edge of the opening on the outer surface of the wall portion and arranged in a direction away from the opening;
A lid that is fixed to the wall portion in a state of being superimposed on the heat input portion, and that covers the opening;
With
The heat input part has a first part surrounding the opening, and a second part surrounding the opening near the edge than the first part and having a deeper heat input than the first part. Secondary battery.
前記入熱部は、前記縁から離間した請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the heat input portion is separated from the edge. 前記入熱部では、前記第2部分が前記縁の最も近くに位置された請求項1または2に記載の二次電池。   The secondary battery according to claim 1, wherein, in the heat input portion, the second portion is positioned closest to the edge. 前記入熱部は、螺旋状に設けられた請求項1ないし3のいずれか一項に記載の二次電池。   The secondary battery according to claim 1, wherein the heat input portion is provided in a spiral shape. 前記第2部分は、環状に設けられた請求項1ないし3のいずれか一項に記載の二次電池。   The secondary battery according to claim 1, wherein the second portion is provided in a ring shape. 前記入熱部の一部は、螺旋状に設けられた請求項5に記載の二次電池。   The secondary battery according to claim 5, wherein a part of the heat input portion is provided in a spiral shape. 前記蓋は、前記入熱部における前記開口から最も離れた部分の前記開口側で前記壁部に溶接されており、
前記外面からの前記第2部分の入熱の深さよりも前記溶接における前記外面から前記壁部への入熱の深さの方が深い請求項1ないし6のいずれか一項に記載の二次電池。
The lid is welded to the wall portion on the opening side of the portion farthest from the opening in the heat input portion,
The secondary according to any one of claims 1 to 6, wherein a depth of heat input from the outer surface to the wall portion in the welding is deeper than a depth of heat input of the second portion from the outer surface. battery.
前記入熱部の前記開口側の縁から前記開口の前記縁までの距離は、前記入熱部の前記並べられた部分の前記開口から遠ざかる方向に沿った幅の0.5倍〜10倍の長さである請求項2に記載の二次電池。   The distance from the opening-side edge of the heat input portion to the edge of the opening is 0.5 times to 10 times the width along the direction away from the openings of the arranged portions of the heat input portions. The secondary battery according to claim 2, which is a length. 前記入熱部は、前記外面へのレーザ光の照射によって設けられた請求項1ないし8のいずれか一項に記載の二次電池。   The secondary battery according to claim 1, wherein the heat input portion is provided by irradiating the outer surface with a laser beam. 開口が設けられた壁部を有し、電極体と電解液とを収納した容器と、
前記壁部の外面で前記開口の縁に沿って設けられ前記開口から遠ざかる方向に並べられた部分を含み、レーザ光の照射によって前記壁部に設けられた入熱部と、
前記入熱部に重ねられた状態で前記壁部に固定され、前記開口を塞いだ蓋と、
を備え、
前記入熱部は、前記開口を囲んだ第1部分と、前記第1部分より前記縁の近くで前記開口を囲んだ第2部分と、を有し、
前記第2部分が設けられた際の前記外面の単位面積当たりの前記レーザ光による入熱量が、前記第1部分が設けられた際の前記外面の単位面積当たりの前記レーザ光による入熱量よりも多い二次電池。
A container having a wall portion provided with an opening and containing an electrode body and an electrolyte;
Including a portion arranged along the edge of the opening on the outer surface of the wall and arranged in a direction away from the opening;
A lid that is fixed to the wall portion in a state of being superimposed on the heat input portion, and that covers the opening;
With
The heat input portion has a first portion surrounding the opening, and a second portion surrounding the opening closer to the edge than the first portion,
The amount of heat input by the laser light per unit area of the outer surface when the second portion is provided is greater than the amount of heat input by the laser light per unit area of the outer surface when the first portion is provided. Many secondary batteries.
前記第2部分が設けられた際の前記レーザ光の走査速度が、前記第1部分が設けられた際の前記レーザ光の走査速度よりも遅い請求項9または10に記載の二次電池。   The secondary battery according to claim 9 or 10, wherein a scanning speed of the laser light when the second portion is provided is slower than a scanning speed of the laser light when the first portion is provided. 前記第1部分が設けられた際の前記レーザ光の走査速度は、前記第2部分が設けられた際の前記レーザ光の走査速度の5倍〜20倍の範囲内である請求項9ないし11のいずれか一項に記載の二次電池。   The scanning speed of the laser beam when the first part is provided is in a range of 5 to 20 times the scanning speed of the laser beam when the second part is provided. The secondary battery as described in any one of. 前記第2部分が設けられた際の前記レーザ光の走査速度は、10mm/s〜500mm/sの範囲内である請求項9ないし12のいずれか一項に記載の二次電池。   The secondary battery according to claim 9, wherein a scanning speed of the laser beam when the second portion is provided is in a range of 10 mm / s to 500 mm / s. 前記レーザ光を照射するレーザ照射装置における前記第2部分を設けた際のレーザ光照射出力が、前記第1部分を設けた際の前記レーザ照射装置のレーザ光照射出力よりも高い請求項9または10に記載の二次電池。   The laser light irradiation output when the second part is provided in the laser irradiation apparatus that irradiates the laser light is higher than the laser light irradiation output of the laser irradiation apparatus when the first part is provided. The secondary battery according to 10. 前記レーザ光を照射するレーザ照射装置における前記入熱部を設けた際のレーザ光照射出力が、300W〜3000Wの範囲内である請求項9ないし14のいずれか一項に記載の二次電池。   The secondary battery according to any one of claims 9 to 14, wherein a laser light irradiation output when the heat input portion is provided in the laser irradiation apparatus that irradiates the laser light is in a range of 300W to 3000W. 前記入熱部が設けられた際の前記レーザ光の波長が800nm〜1300nmの範囲内である請求項9ないし15のいずれか一項に記載の二次電池。   The secondary battery according to any one of claims 9 to 15, wherein a wavelength of the laser beam when the heat input portion is provided is in a range of 800 nm to 1300 nm. 開口が設けられた壁部を有し電解液が注入された容器の前記壁部の外面へのレーザ光の照射によって、前記壁部の外面で前記開口の縁に沿っていて前記開口から遠ざかる方向に並んだ部分、を含む入熱部を、前記壁部に設ける工程と、
前記開口を塞ぐ位置で前記入熱部に蓋を重ねて当該蓋を前記壁部に固定する工程と、
を含み、
前記入熱部は、前記開口を囲んだ第1部分と、前記第1部分より前記縁の近くで前記開口を囲み前記第1部分より入熱の深さが深い第2部分と、を有し、
前記第2部分を設ける際の前記外面の単位面積当たりの前記レーザ光による入熱量が、前記第1部分を設ける際の前記外面の単位面積当たりの前記レーザ光による入熱量よりも多い二次電池の製造方法。
Direction of moving away from the opening along the edge of the opening on the outer surface of the wall portion by irradiating the outer surface of the wall portion of the container having the wall portion provided with the opening and into which the electrolyte is injected. A step of providing, on the wall, a heat input portion including a portion arranged in
A step of stacking a lid on the heat input portion at a position closing the opening and fixing the lid to the wall portion;
Including
The heat input section includes a first portion that surrounds the opening, and a second portion that surrounds the opening nearer the edge than the first portion and has a deeper heat input than the first portion. ,
A secondary battery in which the amount of heat input by the laser light per unit area of the outer surface when providing the second portion is greater than the amount of heat input by the laser light per unit area of the outer surface when providing the first portion. Manufacturing method.
前記第2部分が設けられた際の前記レーザ光の走査速度が、前記第1部分が設けられた際の前記レーザ光の走査速度よりも遅い請求項17に記載の二次電池の製造方法。   The method of manufacturing a secondary battery according to claim 17, wherein a scanning speed of the laser light when the second portion is provided is slower than a scanning speed of the laser light when the first portion is provided. 前記第1部分が設けられた際の前記レーザ光の走査速度は、前記第2部分が設けられた際の前記レーザ光の走査速度の5倍〜20倍の範囲内である請求項17または18に記載の二次電池の製造方法。   The scanning speed of the laser beam when the first portion is provided is in the range of 5 to 20 times the scanning speed of the laser beam when the second portion is provided. The manufacturing method of the secondary battery as described in any one of. 前記レーザ光を照射するレーザ照射装置における前記第2部分を設けた際のレーザ光照射出力が、前記第1部分を設けた際の前記レーザ照射装置のレーザ光照射出力よりも高い請求項17に記載の二次電池の製造方法。   The laser light irradiation output when the second part is provided in the laser irradiation apparatus that irradiates the laser light is higher than the laser light irradiation output of the laser irradiation apparatus when the first part is provided. The manufacturing method of the secondary battery as described.
JP2011276890A 2011-12-19 2011-12-19 Secondary battery and method for manufacturing secondary battery Active JP5932323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276890A JP5932323B2 (en) 2011-12-19 2011-12-19 Secondary battery and method for manufacturing secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276890A JP5932323B2 (en) 2011-12-19 2011-12-19 Secondary battery and method for manufacturing secondary battery

Publications (2)

Publication Number Publication Date
JP2013127906A true JP2013127906A (en) 2013-06-27
JP5932323B2 JP5932323B2 (en) 2016-06-08

Family

ID=48778332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276890A Active JP5932323B2 (en) 2011-12-19 2011-12-19 Secondary battery and method for manufacturing secondary battery

Country Status (1)

Country Link
JP (1) JP5932323B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169255A (en) * 2011-01-25 2012-09-06 Toshiba Corp Secondary battery and method for manufacturing secondary battery
JP2015047625A (en) * 2013-09-03 2015-03-16 日本アビオニクス株式会社 Laser spot weld method and laser spot weld device
WO2016206756A1 (en) 2015-06-26 2016-12-29 Toyota Motor Europe Nv/Sa Systems and methods for laser welding
JPWO2019131828A1 (en) * 2017-12-28 2020-11-19 株式会社フジクラ Welded structure and wiring board with metal pieces
WO2024164255A1 (en) * 2023-02-09 2024-08-15 深圳海润新能源科技有限公司 End cap assembly, energy storage device and electric device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587072B2 (en) * 2017-10-30 2019-10-09 パナソニックIpマネジメント株式会社 Welded structure of metal member and welding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021437A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Manufacture of sealed battery
JP2001057207A (en) * 1999-08-18 2001-02-27 Nec Mobile Energy Kk Sealed type battery and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021437A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Manufacture of sealed battery
JP2001057207A (en) * 1999-08-18 2001-02-27 Nec Mobile Energy Kk Sealed type battery and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169255A (en) * 2011-01-25 2012-09-06 Toshiba Corp Secondary battery and method for manufacturing secondary battery
JP2015047625A (en) * 2013-09-03 2015-03-16 日本アビオニクス株式会社 Laser spot weld method and laser spot weld device
WO2016206756A1 (en) 2015-06-26 2016-12-29 Toyota Motor Europe Nv/Sa Systems and methods for laser welding
JPWO2019131828A1 (en) * 2017-12-28 2020-11-19 株式会社フジクラ Welded structure and wiring board with metal pieces
CN113618237A (en) * 2017-12-28 2021-11-09 株式会社藤仓 Soldering structure, wiring board with metal sheet, and soldering method
US11597038B2 (en) 2017-12-28 2023-03-07 Fujikura Ltd. Welding structure, wiring board with metal piece, and welding method
CN113618237B (en) * 2017-12-28 2023-09-22 株式会社藤仓 Soldering structure, wiring board with metal sheet, and soldering method
WO2024164255A1 (en) * 2023-02-09 2024-08-15 深圳海润新能源科技有限公司 End cap assembly, energy storage device and electric device

Also Published As

Publication number Publication date
JP5932323B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5940284B2 (en) Secondary battery and method for manufacturing secondary battery
JP6045783B2 (en) Secondary battery and method for manufacturing secondary battery
JP5932323B2 (en) Secondary battery and method for manufacturing secondary battery
JP6015373B2 (en) Manufacturing method of sealed container
JP6117927B2 (en) Secondary battery
KR101605652B1 (en) Battery
JP5884692B2 (en) Laser welding method
JP5974531B2 (en) Manufacturing method of sealed battery
JP6217979B2 (en) Manufacturing method of sealed battery
JP2013140682A (en) Secondary battery and secondary battery manufacturing method
JP2019175613A (en) Battery and housing member
JP6105986B2 (en) Power storage device and method for manufacturing power storage device
US20180294446A1 (en) Electric storage device and method for manufacturing the same
JP6031958B2 (en) Sealed container and method for manufacturing sealed container
JP2000231908A (en) Sealed battery and its sealing method
JP2007207448A (en) Manufacturing method of sealed battery
JP5084136B2 (en) Manufacturing method of sealed battery
US9748554B2 (en) Electric storage device and method for manufacturing electric storage device
JP6373590B2 (en) Battery and battery manufacturing method
JPH08315786A (en) Manufacture of square sealed battery
JP2015219981A (en) Method of manufacturing hermetically sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R151 Written notification of patent or utility model registration

Ref document number: 5932323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151