JP2013126924A - Method for manufacturing periodic table group 13 metal nitride semiconductor substrate - Google Patents

Method for manufacturing periodic table group 13 metal nitride semiconductor substrate Download PDF

Info

Publication number
JP2013126924A
JP2013126924A JP2011276144A JP2011276144A JP2013126924A JP 2013126924 A JP2013126924 A JP 2013126924A JP 2011276144 A JP2011276144 A JP 2011276144A JP 2011276144 A JP2011276144 A JP 2011276144A JP 2013126924 A JP2013126924 A JP 2013126924A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
liquid
substrate
periodic table
metal nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011276144A
Other languages
Japanese (ja)
Other versions
JP5887908B2 (en
Inventor
Masayuki Tashiro
雅之 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011276144A priority Critical patent/JP5887908B2/en
Publication of JP2013126924A publication Critical patent/JP2013126924A/en
Application granted granted Critical
Publication of JP5887908B2 publication Critical patent/JP5887908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing the periodic table group 13 metal nitride semiconductor substrate which does not occur watermark even if a cleaning step being used without occurring growth abnormality when performing LED epitaxial growth on a substrate.SOLUTION: After performing the cleaning step, a substrate and a liquid which exists on the substrate are mechanically separated (mechanical drying) to solve such problems without naturally evaporating the liquid, which exists on a surface of the substrate, i.e. the liquid is not agglutinated on the substrate.

Description

本発明は、周期表第13族金属窒化物半導体基板の製造方法に関し、特に研磨後に行う洗浄工程および乾燥工程に特徴を有する、周期表第13族金属窒化物半導体基板の製造方法に関する。   The present invention relates to a method for manufacturing a periodic table group 13 metal nitride semiconductor substrate, and more particularly to a method for manufacturing a periodic table group 13 metal nitride semiconductor substrate characterized by a cleaning step and a drying step performed after polishing.

窒化ガリウムに代表される周期表第13族金属窒化物半導体は、発光ダイオードおよびレーザーダイオード等の発光デバイスや高電子移動度トランジスタ(HEMT)及びヘテロ接合バイポーラトランジスタ(HBT)等の高周波および高出力の電子デバイスに適用される物質として有用である。そのため、結晶性が良くて表面が平坦な半導体基板を、なるべく個体差を小さくしながら再現性良く製造することが求められている。   Periodic table Group 13 metal nitride semiconductors typified by gallium nitride are used for light emitting devices such as light emitting diodes and laser diodes, high frequency and high output such as high electron mobility transistors (HEMT) and heterojunction bipolar transistors (HBT). It is useful as a substance applied to electronic devices. Therefore, it is required to manufacture a semiconductor substrate having good crystallinity and a flat surface with good reproducibility while reducing individual differences as much as possible.

周期表第13族金属窒化物半導体結晶は、有機金属気相成長法(MOCVD法)や分子線エピタキシ法(MBE法)あるいはハイドライド気相成長法(HVPE法)などの気相法や、液相エピタキシ(LPE)法などの液相法といった結晶成長の手法により、基板上に成長させる。
このような方法で得られた周期表第13族金属窒化物半導体結晶は、一般的に表面平坦性が良くないことから、そのままでは窒化物半導体基板として市場に流通させることはできない。そのため、通常結晶表面を研磨することが行われている。
また、研磨を施した基板は、通常、結晶表面を研磨した際に付着したワックスやスラリーを除去するために、基板を洗浄する洗浄工程を経る。
Periodic table Group 13 metal nitride semiconductor crystals can be obtained by vapor phase methods such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or hydride vapor deposition (HVPE), The substrate is grown on a substrate by a crystal growth method such as a liquid phase method such as an epitaxy (LPE) method.
Since the periodic table group 13 metal nitride semiconductor crystal obtained by such a method generally has poor surface flatness, it cannot be distributed to the market as it is as a nitride semiconductor substrate. Therefore, polishing of the crystal surface is usually performed.
Further, the polished substrate is usually subjected to a cleaning process for cleaning the substrate in order to remove wax and slurry adhering when the crystal surface is polished.

洗浄工程については、例えば特許文献1では、半導体基板の表面の不純物量を減少させるため、基板表面の原子オーダーでの凹凸を低減させることが提案されている。半導体基板の表面の不純物量を減少させるための方法としては、酸洗浄工程および酸混合アルカリ洗浄工程を含むものや、酸洗浄工程および希薄アルカリ洗浄工程を含むものや、更にリンス工程を含むもの、などが開示されている。   Regarding the cleaning process, for example, Patent Document 1 proposes to reduce the unevenness in the atomic order of the substrate surface in order to reduce the amount of impurities on the surface of the semiconductor substrate. As a method for reducing the amount of impurities on the surface of the semiconductor substrate, those including an acid cleaning step and an acid mixed alkali cleaning step, those including an acid cleaning step and a dilute alkali cleaning step, and further including a rinsing step, Etc. are disclosed.

一方、特許文献2では、純水洗浄により製造した基板上に作製した発光素子の特性は、有機洗浄を行った場合のウォーターマークのない部分に作製した発光素子の特性に比べて劣る傾向があることから、純水洗浄に変え、基板洗浄の最終工程で超純水による洗浄を実施することが提案されている。   On the other hand, in Patent Document 2, the characteristics of a light-emitting element manufactured on a substrate manufactured by pure water cleaning tend to be inferior to the characteristics of a light-emitting element manufactured in a portion without a watermark when organic cleaning is performed. Therefore, it has been proposed to perform cleaning with ultrapure water in the final step of substrate cleaning instead of pure water cleaning.

特許第4207976号公報Japanese Patent No. 4207976 特開2010−278357号公報JP 2010-278357 A

本発明者らは、特許文献に記載された方法も含め、様々な基板の洗浄方法を検討していたところ、洗浄工程で基板表面に付着している不純物を除去したとしても、または付着する不純物を抑制したとしても、洗浄工程から乾燥工程に至る過程において、基板表面に付着した液体が自然乾燥することで、液体と基板上の乾燥部分の境界に水シミ(ウォーターマーク)が発生することを見出した。
このようなウォーターマークが発生する理由は定かではないが、最終リンス中の不純物か、乾燥開始までの間に、基板上に存在する液体に付着した空気中の汚染物ではないかと
本発明者らは推定する。基板上の液体は自然乾燥で凝集され、同時に不純物も凝集される。本発明者らが、基板上の液体が乾燥したことにより生じたウォーターマークをSEMで確認したところ、付着物を確認することができた。
The present inventors have studied various substrate cleaning methods including the method described in the patent document. Even if the impurities adhering to the substrate surface are removed in the cleaning process, the impurities adhering to the substrate are removed. Even in the process from the cleaning process to the drying process, the liquid adhering to the substrate surface is naturally dried, and water spots (watermarks) are generated at the boundary between the liquid and the dried part on the substrate. I found it.
The reason for the occurrence of such a watermark is not clear, but the present inventors believe that it is an impurity in the final rinse or a contaminant in the air attached to the liquid existing on the substrate until the start of drying. Estimate. The liquid on the substrate is agglomerated by natural drying, and impurities are also agglomerated at the same time. When the present inventors confirmed with SEM the watermark generated by the liquid on the substrate being dried, the deposits could be confirmed.

ウォーターマークが存在する基板上にLEDエピタキシャル成長を実施した場合には、このウォーターマークに沿ってエピ荒れと呼ばれる成長異常が生じ、デバイス特性の悪化が懸念される。
本発明はこのような問題を解決するものであり、洗浄工程を経ても、ウォーターマークの存在しない周期表第13族金属窒化物半導体基板の製造方法を提供することを課題とする。
When LED epitaxial growth is performed on a substrate on which a watermark exists, a growth abnormality called epi-roughening occurs along the watermark, and there is a concern about deterioration of device characteristics.
The present invention solves such a problem, and an object of the present invention is to provide a method for producing a periodic table group 13 metal nitride semiconductor substrate having no watermark even after a cleaning process.

本発明者らは、上記課題を解決すべく鋭意検討し、基板の洗浄工程を経た後、基板表面に存在する液体の自然蒸発を低減し、すなわち基板上で液体を凝集させることなく、基板と基板上に存在する液体とを機械的に分離する(機械乾燥する)ことで上記課題を解決できることを見出し、本発明を完成させた。すなわち本発明は以下のとおりである。   The present inventors diligently studied to solve the above-mentioned problems, and after undergoing the substrate cleaning process, reduce the natural evaporation of the liquid present on the substrate surface, that is, without condensing the liquid on the substrate, The present invention has been completed by finding that the above-mentioned problems can be solved by mechanically separating (drying by mechanical drying) the liquid present on the substrate. That is, the present invention is as follows.

(1)周期表第13族金属窒化物半導体基板の表面を洗浄する洗浄工程、および該洗浄工程を経た半導体基板と該半導体基板に付着した液体とを機械的に分離する機械乾燥工程、
を含む周期表第13族金属窒化物半導体基板の製造方法であって、
前記洗浄工程を経た半導体基板は、該半導体基板に付着した液体の蒸発を抑制しつつ、次工程である機械乾燥工程に供されることを特徴とする、周期表第13族金属窒化物半導体基板の製造方法。
(2)前記洗浄工程を経た半導体基板は、半導体基板に付着した液体の蒸発を遅延させる液体に浸漬させた後、次工程である機械乾燥工程に供されることを特徴とする、(1)に記載の周期表第13族金属窒化物半導体基板の製造方法。
(3)前記半導体基板に付着した液体の蒸発を遅延させる液体は、蒸気圧が2.3kPa未満の化合物を含むことを特徴とする、(2)に記載の周期表第13族金属窒化物半導体基板の製造方法。
(4)前記半導体基板に付着した液体の蒸発を遅延させる液体は、過酸化水素を含むことを特徴とする(2)または(3)に記載の周期表第13族金属窒化物半導体基板の製造方法。
(1) A cleaning step for cleaning the surface of the periodic table group 13 metal nitride semiconductor substrate, and a mechanical drying step for mechanically separating the semiconductor substrate that has undergone the cleaning step and the liquid adhering to the semiconductor substrate;
A method for producing a periodic table group 13 metal nitride semiconductor substrate comprising:
The semiconductor substrate that has undergone the cleaning step is subjected to a mechanical drying step that is the next step while suppressing evaporation of the liquid adhering to the semiconductor substrate, and is a periodic table group 13 metal nitride semiconductor substrate Manufacturing method.
(2) The semiconductor substrate that has undergone the cleaning step is immersed in a liquid that delays evaporation of the liquid adhering to the semiconductor substrate, and then subjected to a mechanical drying step that is the next step. A method for producing a Group 13 metal nitride semiconductor substrate of the periodic table described in 1.
(3) The periodic table group 13 metal nitride semiconductor according to (2), wherein the liquid that delays evaporation of the liquid attached to the semiconductor substrate includes a compound having a vapor pressure of less than 2.3 kPa. A method for manufacturing a substrate.
(4) The periodic table group 13 metal nitride semiconductor substrate according to (2) or (3), wherein the liquid that delays evaporation of the liquid adhering to the semiconductor substrate contains hydrogen peroxide. Method.

本発明の周期表第13族金属窒化物半導体基板の製造方法によると、基板上にウォーターマークが存在せず、LEDエピタキシャル成長を実施してもエピ荒れが生じない、高品質な周期表第13族金属窒化物半導体基板を提供することができる。   According to the manufacturing method of the periodic table group 13 metal nitride semiconductor substrate of the present invention, there is no watermark on the substrate, and no epitaxial roughness occurs even when LED epitaxial growth is performed. A metal nitride semiconductor substrate can be provided.

本発明の窒化物半導体基板の製造方法について、以下詳細に説明する。構成要件の説明は、本発明の代表的な実施態様に基づきされることがあるが、本発明はそのような実施態様に限定されるものではない。   The method for manufacturing a nitride semiconductor substrate of the present invention will be described in detail below. The description of the constituent elements may be based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.

本発明において、周期表第13族金属窒化物半導体基板は、例えばGaxAlyIn1-x-yN結晶(式中0≦x≦1、0≦y≦1)で表され、具体的には窒化ガリウム、窒化アル
ミニウム、窒化インジウムまたはこれらの混晶があげられる。本発明の窒化物半導体基板は主面の面指数はとくに限定されず、極性面であるC面、非極性面であるA面、M面や、半極性面のいずれでもよい。
In the present invention, a Group 13 metal nitride semiconductor substrate Periodic Table, for example, is represented by Ga x Al y In 1-xy N crystal (wherein 0 ≦ x ≦ 1,0 ≦ y ≦ 1), specifically, Examples thereof include gallium nitride, aluminum nitride, indium nitride, and mixed crystals thereof. In the nitride semiconductor substrate of the present invention, the surface index of the main surface is not particularly limited, and may be any one of a polar C surface, a nonpolar A surface, an M surface, and a semipolar surface.

本発明の周期表第13族金属窒化物半導体基板の製造方法は、周期表第13族金属窒化
物半導体基板の表面を洗浄する洗浄工程、および該洗浄工程を経た半導体基板と該半導体基板に付着した液体とを機械的に分離する機械乾燥工程、を含む。
The manufacturing method of the periodic table group 13 metal nitride semiconductor substrate of the present invention includes a cleaning step for cleaning the surface of the periodic table group 13 metal nitride semiconductor substrate, a semiconductor substrate that has undergone the cleaning step, and an adhesion to the semiconductor substrate. A mechanical drying step for mechanically separating the liquid from the liquid.

<洗浄工程>
本発明の洗浄工程に供する周期表第13族金属窒化物半導体基板(以下、単に半導体基板ともいう。)は、公知の方法に従って準備されたものを用いることができ、特段限定されない。通常、アズグロウン結晶からスライス、研削・研磨などの形態加工を実施して得られたものを用いることができる。このように加工を実施して得られた半導体基板には、表面を研磨した際に使用したワックスの残留物やスラリーの残留物(砥粒、添加剤、不純物など)が付着しており、これらのワックスの残留物やスラリーの残留物を洗浄する必要がある。
<Washing process>
A periodic table group 13 metal nitride semiconductor substrate (hereinafter also simply referred to as a semiconductor substrate) used in the cleaning step of the present invention can be prepared according to a known method, and is not particularly limited. Usually, those obtained by performing morphological processing such as slicing, grinding and polishing from as-grown crystals can be used. In the semiconductor substrate obtained by processing in this way, wax residues and slurry residues (abrasive grains, additives, impurities, etc.) used when the surface is polished are attached. It is necessary to wash the wax residue and slurry residue.

本発明の洗浄工程では、半導体基板表面に付着したワックスの残留物やスラリーの残留物を洗浄することが可能であればその方法に特段の制限はない。洗浄で用いる洗浄剤は、半導体基板表面に付着したワックスの残留物やスラリーの残留物の種類に応じて適宜選択すればよく、例えばIPA(イソプロピルアルコール)などの有機溶剤や、界面活性剤、アンモニウム塩、フッ化水素、酸化剤などを含む水溶液などが挙げられる。   In the cleaning step of the present invention, there is no particular limitation on the method as long as it is possible to clean the wax residue and slurry residue adhering to the semiconductor substrate surface. The cleaning agent used for cleaning may be appropriately selected according to the type of wax residue or slurry residue adhering to the surface of the semiconductor substrate. For example, an organic solvent such as IPA (isopropyl alcohol), a surfactant, ammonium, etc. Examples thereof include an aqueous solution containing a salt, hydrogen fluoride, an oxidizing agent and the like.

また、本発明の洗浄工程において、これらの洗浄剤を用いた洗浄後には洗浄剤を除去するためにリンス工程を実施することが好ましい。リンス工程には、純度の高い液体を用いることが好ましく、純水を用いることが好ましい。純水としては、導電率が1μS/cm以下のものを用いることが好ましい。純水は純度が高ければ高いほど好ましいが、純度が高い純水はコストも比例して高くなる。   Further, in the cleaning step of the present invention, it is preferable to carry out a rinsing step in order to remove the cleaning agent after the cleaning using these cleaning agents. In the rinsing step, it is preferable to use a liquid with high purity, and it is preferable to use pure water. It is preferable to use pure water having a conductivity of 1 μS / cm or less. The higher the purity of pure water, the better. However, the purity of pure water with higher purity is proportionally higher.

<機械乾燥工程>
本発明の機械乾燥工程は、洗浄工程で洗浄した際に半導体基板表面に付着した液体を、自然乾燥ではなく、機械的に半導体基板から分離する乾燥工程である。
そして本発明は、上記洗浄工程を経た半導体基板を、半導体基板に付着した液体の蒸発を抑制した状態で機械乾燥工程に供することを特徴とするものである。
<Machine drying process>
The mechanical drying process of the present invention is a drying process in which the liquid adhering to the surface of the semiconductor substrate when cleaned in the cleaning process is mechanically separated from the semiconductor substrate instead of being naturally dried.
The present invention is characterized in that the semiconductor substrate that has undergone the above-described cleaning process is subjected to a mechanical drying process in a state where evaporation of a liquid adhering to the semiconductor substrate is suppressed.

上記説明したとおり、本発明者らは、洗浄工程で基板表面に付着している不純物を除去したとしても、または付着する不純物を抑制したとしても、洗浄工程から乾燥工程に至る過程において、基板表面に付着した液体が自然乾燥することで、液体と基板上の乾燥部分の境界に水シミ(ウォーターマーク)が発生することを見出した。
通常、洗浄工程において洗浄剤を除去するために、最後に純水リンスを実施することが多い。純水リンスを半導体基板に施した場合、23℃、1気圧、湿度50%のような通常の環境下においては、おおよそ30秒程度で純水の自然乾燥による凝集が始まる。そして、自然乾燥により凝集した純水と、基板表面の自然乾燥した部分との境界付近においては、純水中に存在する不純物や空気中の汚染物も凝集され、乾燥後にウォーターマークが生じる。
本発明では、洗浄工程において基板に付着した液体を乾燥させない状態、つまり液体が凝集しない状態で次工程である機械乾燥工程に供し、半導体基板から液体を機械的に分離することで、このようなウォーターマークの問題を解決したものである。
As described above, even if the impurities adhered to the substrate surface in the cleaning process are removed or the adhered impurities are suppressed, the present inventors have determined that the substrate surface in the process from the cleaning process to the drying process. It has been found that water stains (watermarks) are generated at the boundary between the liquid and the dried portion on the substrate when the liquid adhering to the substrate is naturally dried.
Usually, in order to remove the cleaning agent in the cleaning process, pure water rinsing is often performed at the end. When pure water rinsing is performed on a semiconductor substrate, agglomeration due to natural drying of pure water starts in about 30 seconds under a normal environment such as 23 ° C., 1 atm, and humidity 50%. In the vicinity of the boundary between the pure water aggregated by natural drying and the naturally dried portion of the substrate surface, impurities present in the pure water and contaminants in the air are also aggregated, resulting in a watermark after drying.
In the present invention, the liquid adhering to the substrate in the cleaning process is not dried, that is, the liquid is not aggregated, and is subjected to the subsequent mechanical drying process, and the liquid is mechanically separated from the semiconductor substrate. It solves the watermark problem.

本発明の機械乾燥工程で用いる乾燥方法は、自然乾燥などの液体の凝集を伴う乾燥方法ではなく、機械的に半導体基板と液体とを分離することによる乾燥方法である。本発明での乾燥方法は、乾燥機などを用いて機械的に乾燥する限り、特段限定されない。具体的には、遠心力を利用して半導体基板に付着した液滴を飛ばす方法や、吸引乾燥、エアブロー乾燥などが挙げられる。特に、遠心力を利用して半導体基板に付着した液滴を飛ばす方法を行うために、遠心力を利用したスピン乾燥機を用いることが、手順が簡便であり好まし
く例示できる。
The drying method used in the mechanical drying step of the present invention is not a drying method involving liquid aggregation such as natural drying, but a drying method by mechanically separating the semiconductor substrate and the liquid. The drying method in the present invention is not particularly limited as long as it is mechanically dried using a dryer or the like. Specific examples include a method of flying droplets attached to a semiconductor substrate using centrifugal force, suction drying, air blow drying, and the like. In particular, it is preferable to use a spin dryer using centrifugal force in order to carry out a method of flying droplets adhering to a semiconductor substrate using centrifugal force, and the procedure is simple and preferable.

上記スピン乾燥機を用いる場合には、半導体基板の大きさにより適宜回転速度、乾燥時間を設定すればよく、通常500〜3000rpmの回転速度で、3〜10分程度乾燥させればよい。   When the spin dryer is used, the rotation speed and the drying time may be set as appropriate depending on the size of the semiconductor substrate, and the drying is usually performed at a rotation speed of 500 to 3000 rpm for about 3 to 10 minutes.

本発明では、洗浄工程後の半導体基板について、半導体基板に付着した液体の蒸発を抑制した状態において、機械乾燥工程に供されることを特徴とするものであり、液体の蒸発の抑制手段については、このような状態が達成可能であれば特段限定されるものではない。具体的には、半導体基板に付着する液体が水である場合には、相対湿度100%の雰囲気下において洗浄工程から機械乾燥工程へ半導体基板を供することが挙げられ、その他、洗浄工程を経た半導体基板を、半導体基板に付着した液体の蒸発を遅延させる液体(以下、単に「遅延液体」と略することがある)に浸漬させた後、機械乾燥工程へ半導体基板を供することが挙げられる。   In the present invention, the semiconductor substrate after the cleaning process is subjected to a mechanical drying process in a state in which the evaporation of the liquid adhering to the semiconductor substrate is suppressed. As long as such a state can be achieved, there is no particular limitation. Specifically, when the liquid adhering to the semiconductor substrate is water, the semiconductor substrate may be provided from the cleaning process to the machine drying process in an atmosphere with a relative humidity of 100%. For example, the substrate is immersed in a liquid that delays evaporation of the liquid adhering to the semiconductor substrate (hereinafter sometimes simply referred to as “retarded liquid”), and then the semiconductor substrate is subjected to a mechanical drying process.

半導体基板に付着した液体の蒸発を遅延させる液体は、半導体基板に付着した液体が水の場合には、水よりも自然蒸発の速度が遅い液体を意味する。水の蒸発は水の蒸気圧と関係があり、水よりも蒸気圧が小さい化合物を含む液体は、水よりも蒸発速度を下げることが可能となり、蒸発を遅延させる液体として機能する。また、半導体基板に付着した液体が水の場合には、半導体基板を遅延液体に浸漬した際に、水の全てが遅延液体によって置換されていてもよいし、水の一部が遅延液体に置換されて、水と遅延液体の両方が半導体基板に付着していてもよい。
具体的には、水の蒸気圧は20℃において約2.3kPaであり、これよりも蒸気圧が小さい化合物を含む液体が、水よりも蒸発を遅延させる液体である。つまり、蒸気圧が2.3kPa未満の化合物を含む液体が好ましく、蒸気圧が2.0kPa以下の化合物を含む液体がより好ましく、蒸気圧が1.5kPa以下の化合物を含む液体がさらに好ましく、蒸気圧が1.0kPa以下の化合物を含む液体がよりさらに好ましく、蒸気圧が0.5kPa以下の化合物を含む液体が特に好ましい。水よりも蒸気圧が小さい化合物の例示としては、酢酸、過酸化水素などが挙げられ、特に過酸化水素が蒸発遅延に効果がある。また、半導体基板に付着した液体の蒸発を遅延させる液体そのものの蒸気圧としては、2.3kPa未満が好ましく、2.0kPa以下がより好ましい。なお、上述の水よりも蒸気圧が小さい化合物が、25℃、100kPaで液体である場合には、他の液体に含ませることなく、そのまま用いても良い。その場合には、蒸気圧が水よりも小さい化合物を含む液体とは、蒸気圧が水よりも小さい化合物そのものを意味する。
なお、蒸気圧を上記範囲にするために酢酸を用いる場合には、溶媒に溶かすことなくそのままの状態で用いることが好ましい。過酸化水素を用いる場合には、酢酸と同様に溶媒に溶かすことなく用いても良く、水溶液として用いる際には10重量%以上の濃度の水溶液にして用いるのが好ましく、18重量%以上の濃度の水溶液にして用いるのがより好ましい。また、安全性及び取り扱い性の観点から、80重量%以下の濃度の水溶液にして用いるのが好ましく、60重量%以下の濃度の水溶液にして用いるのがより好ましく、40
重量%以下の濃度の水溶液にして用いるのが特に好ましい。
The liquid that delays the evaporation of the liquid attached to the semiconductor substrate means a liquid having a slower natural evaporation rate than water when the liquid attached to the semiconductor substrate is water. The evaporation of water is related to the vapor pressure of water, and a liquid containing a compound having a vapor pressure lower than that of water can lower the evaporation rate than water and functions as a liquid that delays evaporation. When the liquid adhering to the semiconductor substrate is water, when the semiconductor substrate is immersed in the delay liquid, all of the water may be replaced with the delay liquid, or a part of the water is replaced with the delay liquid. In addition, both water and the retarding liquid may be attached to the semiconductor substrate.
Specifically, the vapor pressure of water is about 2.3 kPa at 20 ° C., and a liquid containing a compound having a lower vapor pressure is a liquid that delays evaporation than water. That is, a liquid containing a compound having a vapor pressure of less than 2.3 kPa is preferred, a liquid containing a compound having a vapor pressure of 2.0 kPa or less is more preferred, and a liquid containing a compound having a vapor pressure of 1.5 kPa or less is more preferred. A liquid containing a compound having a pressure of 1.0 kPa or less is more preferred, and a liquid containing a compound having a vapor pressure of 0.5 kPa or less is particularly preferred. Examples of compounds having a vapor pressure lower than that of water include acetic acid and hydrogen peroxide, and hydrogen peroxide is particularly effective for retarding evaporation. The vapor pressure of the liquid itself that delays the evaporation of the liquid adhering to the semiconductor substrate is preferably less than 2.3 kPa, and more preferably 2.0 kPa or less. In addition, when the above-mentioned compound whose vapor pressure is smaller than water is a liquid at 25 ° C. and 100 kPa, it may be used as it is without being included in another liquid. In that case, the liquid containing a compound having a vapor pressure smaller than that of water means the compound itself having a vapor pressure smaller than that of water.
In addition, when using acetic acid in order to make vapor pressure into the said range, it is preferable to use as it is, without melt | dissolving in a solvent. When hydrogen peroxide is used, it may be used without being dissolved in a solvent like acetic acid, and when used as an aqueous solution, it is preferably used as an aqueous solution having a concentration of 10% by weight or more, and a concentration of 18% by weight or more. It is more preferable to use it as an aqueous solution. From the viewpoint of safety and handleability, it is preferably used as an aqueous solution having a concentration of 80% by weight or less, more preferably used as an aqueous solution having a concentration of 60% by weight or less.
It is particularly preferable to use an aqueous solution having a concentration of not more than wt%.

また、半導体基板に付着した液体の蒸発を遅延させる液体は、機械乾燥工程で乾燥できるものである必要があるため、機械乾燥工程で半導体基板と分離可能なものである粘性を有するものである。具体的には20℃で1.5×10-3/Pa・s以下であるものが好ましく、1.4×10-3/Pa・s以下であることがより好ましく、1.3×10-3/Pa・s以下であることがさらに好ましく、1.2×10-3/Pa・s以下であることが特に好ましい。また、半導体基板に付着した液体の蒸発を遅延させる液体は、濡れ性が半導体基板に付着した液体と同じか、より接触角が小さいものが好ましい。 Further, the liquid that delays evaporation of the liquid adhering to the semiconductor substrate needs to be capable of being dried in the mechanical drying process, and thus has a viscosity that can be separated from the semiconductor substrate in the mechanical drying process. Specifically, it is preferably 1.5 × 10 −3 / Pa · s or less at 20 ° C., more preferably 1.4 × 10 −3 / Pa · s or less, and 1.3 × 10 − 3 / Pa · s or less is more preferable, and 1.2 × 10 −3 / Pa · s or less is particularly preferable. The liquid that delays the evaporation of the liquid attached to the semiconductor substrate is preferably the same as the liquid attached to the semiconductor substrate or has a smaller contact angle.

また、半導体基板に付着した液体の蒸発を遅延させる液体の濃度については、洗浄工程後、機械乾燥工程までの間に、エッジエクスクルージョン領域を除く半導体基板の表面に付着した液体の自然乾燥を抑制可能な範囲で、適宜調整できる。すなわち、洗浄工程後、機械乾燥工程までの時間とエッジエクスクルージョン領域を考慮して適宜調整できる。なお、エッジエクスクルージョン領域とは、半導体基板端部付近のデバイス作成に適さない領域である。   As for the concentration of the liquid that delays the evaporation of the liquid adhering to the semiconductor substrate, the liquid adhering to the surface of the semiconductor substrate excluding the edge exclusion region is naturally dried between the cleaning process and the mechanical drying process. It can be adjusted as appropriate within the range that can be suppressed. That is, after the cleaning process, the time until the machine drying process and the edge exclusion region can be appropriately adjusted. The edge exclusion region is a region that is not suitable for device creation near the edge of the semiconductor substrate.

本発明では、半導体基板に付着した液体の蒸発を抑制することで、半導体基板を成長させた際のエピ荒れを抑制するものである。従来、ウォーターマークの低減のためには、イソプロピルアルコールベーパー乾燥が用いられているが、この方法を用いた場合であっても、イソプロピルアルコール乾燥してウォーターマークが発生する場合がある。イソプロピルアルコールベーパー乾燥により乾燥させた場合と比較して、エピ荒れが抑制されていた場合には、本発明の製造方法を実施している可能性が高いと推定することができる。   In the present invention, by suppressing the evaporation of the liquid adhering to the semiconductor substrate, epi-roughening when the semiconductor substrate is grown is suppressed. Conventionally, isopropyl alcohol vapor drying has been used to reduce the watermark, but even when this method is used, the watermark may be generated by isopropyl alcohol drying. When epi-roughness is suppressed as compared with the case of drying by isopropyl alcohol vapor drying, it can be estimated that the production method of the present invention is highly likely to be performed.

以下、実施例と比較例を挙げて、本発明を更に詳細に説明するが、以下の実施例に示す具体的な形態にのみ限定的に解釈されることはない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, it is not limitedly interpreted only to the specific form shown in the following Examples.

<実施例1>
C軸方向に成長したアズグロウンGaN結晶を、(20−21)面を主面としてスライス法によって切断してウェハを得た。切断はスライスワイヤーをa軸と平行とし、Ga面からN面に向かって切断した。
次に得られたウェハを、120℃に加熱した水酸化カリウム水溶液に10分間浸漬し、表裏をエッチングしてスライスにより生じた表面の加工歪みを低減した。
<Example 1>
The as-grown GaN crystal grown in the C-axis direction was cut by a slicing method with the (20-21) plane as the main surface to obtain a wafer. The cutting was performed with the slice wire parallel to the a axis and from the Ga surface toward the N surface.
Next, the obtained wafer was immersed in an aqueous potassium hydroxide solution heated to 120 ° C. for 10 minutes, and the front and back surfaces were etched to reduce the processing distortion of the surface caused by slicing.

表裏をエッチングしたウェハは、(20−21)面を研磨するために、(20−2−1)面を研磨プレートにワックスで張り付けた。研磨は、平均径3μm、平均径1μm、平均径0.5μm、および平均径0.25μm、のダイヤモンド遊離砥粒を順番に用いて表面のラッピングを行い、ラッピング後、コロイダルシリカおよびスウェードパッドを用いてポリシングを20時間行った。   In order to polish the (20-21) surface, the (20-2-1) surface of the wafer whose front and back surfaces were etched was attached to a polishing plate with wax. Polishing is performed by sequentially wrapping the surface using diamond free abrasive grains having an average diameter of 3 μm, an average diameter of 1 μm, an average diameter of 0.5 μm, and an average diameter of 0.25 μm, and after the lapping, colloidal silica and a suede pad are used. Polishing was performed for 20 hours.

研磨終了後、研磨プレートを加熱してウェハを取り外し、洗浄するためのウェハカセットに入れた。沸騰したイソプロピルアルコール(IPA)にウェハカセットを10分間浸漬することでウェハ表面のワックスを取り除いた。次に、ウェハカセットからウェハを取り出し、スウェードと界面活性剤を用いてスクラブ洗浄を行った。
最後に、ウェハをウェハカセットに入れ、純水(導電率:0.1μS/cm)で5分間流水洗浄した後、フッ酸水溶液に3分間浸漬し、再度純水で5分間流水洗浄を行った。
After polishing, the polishing plate was heated to remove the wafer and put it in a wafer cassette for cleaning. Wax on the wafer surface was removed by immersing the wafer cassette in boiling isopropyl alcohol (IPA) for 10 minutes. Next, the wafer was taken out from the wafer cassette, and scrub cleaning was performed using suede and a surfactant.
Finally, the wafer was placed in a wafer cassette, washed with running pure water (conductivity: 0.1 μS / cm) for 5 minutes, then immersed in a hydrofluoric acid aqueous solution for 3 minutes, and washed again with running pure water for 5 minutes. .

洗浄後のウェハをウェハカセットに入れたまま、常温の30重量%過酸化水素水(蒸気圧:1.8kPa、20℃)に30秒以上浸漬した。過酸化水素水中のウェハカセットからウェハを真空吸着式のピンセットを用いて取り出し、表面に過酸化水素水が付着した状態でスピン乾燥機のトレーに18枚を並べてセットした。18枚のウェハのセットに要した時間は3分間であった。スピン乾燥機にセットした基板は、セットまでに要した時間の3分間、スピン乾燥機のトレーで放置されたが、スピン乾燥を実施する直前のウェハ表面は、目視観察で、自然乾燥領域がウェハ端部から1mm以内であり、全面濡れたままとなっていた。   The cleaned wafer was immersed in a 30 wt% hydrogen peroxide solution (vapor pressure: 1.8 kPa, 20 ° C.) at room temperature for 30 seconds or more while being put in the wafer cassette. The wafers were taken out from the wafer cassette in the hydrogen peroxide solution using vacuum suction type tweezers, and 18 sheets were set side by side on the tray of the spin dryer with the hydrogen peroxide solution adhering to the surface. The time required for setting the 18 wafers was 3 minutes. The substrate set in the spin dryer was left on the tray of the spin dryer for 3 minutes until setting, but the wafer surface immediately before the spin drying was visually observed, and the natural drying area was the wafer. It was within 1 mm from the end, and the entire surface remained wet.

スピン乾燥を4分間実施し、ウェハ上に存在する水滴を除去した。こうして得られたGaNウェハ上に、MOCVD法でGaN結晶を4μm成長させたが、エピモフォロジー荒れは観察できなかった。   Spin drying was performed for 4 minutes to remove water droplets present on the wafer. On the GaN wafer thus obtained, 4 μm of GaN crystal was grown by MOCVD, but no epimorphological roughness could be observed.

<実施例2>
洗浄後にウェハを浸漬した過酸化水素水の濃度を20重量%(蒸気圧:2.0kPa、20℃)とした以外は実施例1と同様にして、ウェハの加工・洗浄・乾燥を行なった。スピン乾燥機のトレー上での放置時間が4分間であったが、スピン乾燥を実施する直前のウェハ表面は、目視乾燥で、自然乾燥領域がウェハ端部から1mm以内であり、全面濡れたままとなっていた。
<Example 2>
The wafer was processed / cleaned / dried in the same manner as in Example 1 except that the concentration of the hydrogen peroxide solution in which the wafer was immersed after cleaning was 20 wt% (vapor pressure: 2.0 kPa, 20 ° C.). Although the standing time on the tray of the spin dryer was 4 minutes, the wafer surface immediately before the spin drying was visually dried and the natural drying area was within 1 mm from the edge of the wafer, and the entire surface remained wet. It was.

<実施例3>
洗浄後にウェハを浸漬した過酸化水素水の濃度を15重量%(蒸気圧:2.1kPa、20℃)とした以外は実施例1と同様にして、ウェハの加工・洗浄・乾燥を行った。スピン乾燥機のトレー上での放置時間が3分間であったが、スピン乾燥を実施する直前のウェハ表面は、目視乾燥で、自然乾燥領域がウェハ端部から約1mmであった。
<Example 3>
The wafer was processed, cleaned and dried in the same manner as in Example 1 except that the concentration of the hydrogen peroxide solution in which the wafer was immersed after cleaning was 15 wt% (vapor pressure: 2.1 kPa, 20 ° C.). Although the standing time on the tray of the spin dryer was 3 minutes, the wafer surface immediately before the spin drying was visually dried, and the natural drying area was about 1 mm from the edge of the wafer.

<実施例4>
洗浄後にウェハを浸漬した過酸化水素水を100%酢酸(蒸気圧:1.5kPa、20℃)とした以外は、実施例1と同様にして、ウェハの加工・洗浄・乾燥を行なった。スピン乾燥機のトレー上での放置時間が1分間であったが、スピン乾燥を実施する直前のウェハ表面は、目視乾燥で、自然乾燥領域がウェハ端部から約1mmであった。得られたGaNウェハ上に、MOCVD法でGaN結晶を4μm成長させたが、エピモフォロジー荒れは、ウェハ端部から約1mmの領域に限定された。
<Example 4>
The wafer was processed / cleaned / dried in the same manner as in Example 1 except that the hydrogen peroxide solution in which the wafer was immersed after cleaning was changed to 100% acetic acid (vapor pressure: 1.5 kPa, 20 ° C.). Although the standing time on the tray of the spin dryer was 1 minute, the wafer surface immediately before the spin drying was visually dried, and the natural drying area was about 1 mm from the edge of the wafer. On the obtained GaN wafer, 4 μm of GaN crystal was grown by MOCVD, but the epimorphological roughness was limited to an area of about 1 mm from the edge of the wafer.

<比較例1>
洗浄後にウェハを浸漬した過酸化水素水を純水(蒸気圧:2.3kPa、20℃)とした以外は実施例1と同様にして、ウェハの加工・洗浄・乾燥を行った。スピン乾燥機のトレー上での放置時間が30秒間でウェハの端部から1mm以上の範囲に自然乾燥領域が発生し、3分間ではウェハ端部から3mm以上の範囲に自然乾燥領域が発生した。得られたGaNウェハ上に、MOCVD法でGaN結晶を4μm成長させたが、エピモフォロジー荒れは、ウェハ端部から約3mm以上の領域で観察された。
<Comparative Example 1>
The wafer was processed, washed, and dried in the same manner as in Example 1 except that the hydrogen peroxide solution in which the wafer was immersed after cleaning was pure water (vapor pressure: 2.3 kPa, 20 ° C.). The natural drying region was generated in the range of 1 mm or more from the edge of the wafer in 30 seconds, and the natural drying region was generated in the range of 3 mm or more from the wafer edge in 3 minutes. On the obtained GaN wafer, 4 μm of GaN crystal was grown by MOCVD, but epimorphological roughness was observed in a region of about 3 mm or more from the edge of the wafer.

<比較例2>
洗浄後にウェハを浸漬した過酸化水素水を100%イソプロピルアルコール(蒸気圧:4.4kPa、20℃)とした以外は実施例1と同様にして、ウェハの加工・洗浄・乾燥を行った。スピン乾燥機のトレー上での放置時間が30秒間でウェハの端部から数mmの範囲に自然乾燥領域が発生し、1分間ではウェハの全面が自然乾燥した。得られたGaNウェハ上に、MOCVD法でGaN結晶を4μm成長させたが、エピモフォロジー荒れは、ウェハ全面に観察された。
<Comparative example 2>
The wafer was processed, cleaned and dried in the same manner as in Example 1 except that the hydrogen peroxide solution in which the wafer was immersed after cleaning was changed to 100% isopropyl alcohol (vapor pressure: 4.4 kPa, 20 ° C.). The standing time on the tray of the spin dryer was 30 seconds, and a natural drying region was generated in the range of several mm from the edge of the wafer. The entire surface of the wafer was naturally dried in 1 minute. A GaN crystal was grown to 4 μm by MOCVD on the obtained GaN wafer, but epimorphological roughness was observed on the entire surface of the wafer.

Claims (4)

周期表第13族金属窒化物半導体基板の表面を洗浄する洗浄工程、および該洗浄工程を経た半導体基板と該半導体基板に付着した液体とを機械的に分離する機械乾燥工程、
を含む周期表第13族金属窒化物半導体基板の製造方法であって、
前記洗浄工程を経た半導体基板は、該半導体基板に付着した液体の蒸発を抑制しつつ、次工程である機械乾燥工程に供されることを特徴とする、周期表第13族金属窒化物半導体基板の製造方法。
A cleaning step for cleaning the surface of the periodic table group 13 metal nitride semiconductor substrate, and a mechanical drying step for mechanically separating the semiconductor substrate that has undergone the cleaning step and the liquid adhering to the semiconductor substrate;
A method for producing a periodic table group 13 metal nitride semiconductor substrate comprising:
The semiconductor substrate that has undergone the cleaning step is subjected to a mechanical drying step that is the next step while suppressing evaporation of the liquid adhering to the semiconductor substrate, and is a periodic table group 13 metal nitride semiconductor substrate Manufacturing method.
前記洗浄工程を経た半導体基板は、半導体基板に付着した液体の蒸発を遅延させる液体に浸漬させた後、次工程である機械乾燥工程に供されることを特徴とする、請求項1に記載の周期表第13族金属窒化物半導体基板の製造方法。   2. The semiconductor substrate according to claim 1, wherein the semiconductor substrate that has undergone the cleaning process is immersed in a liquid that delays evaporation of the liquid adhering to the semiconductor substrate, and then subjected to a mechanical drying process that is a next process. A method for producing a periodic table group 13 metal nitride semiconductor substrate. 前記半導体基板に付着した液体の蒸発を遅延させる液体は、蒸気圧が2.3kPa未満の化合物を含むことを特徴とする、請求項2に記載の周期表第13族金属窒化物半導体基板の製造方法。   3. The periodic table group 13 metal nitride semiconductor substrate according to claim 2, wherein the liquid that delays evaporation of the liquid attached to the semiconductor substrate includes a compound having a vapor pressure of less than 2.3 kPa. Method. 前記半導体基板に付着した液体の蒸発を遅延させる液体は、過酸化水素を含むことを特徴とする、請求項2または3に記載の周期表第13族金属窒化物半導体基板の製造方法。   4. The method of manufacturing a periodic table group 13 metal nitride semiconductor substrate according to claim 2, wherein the liquid that delays evaporation of the liquid attached to the semiconductor substrate includes hydrogen peroxide.
JP2011276144A 2011-12-16 2011-12-16 Method for producing periodic table group 13 metal nitride semiconductor substrate Active JP5887908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276144A JP5887908B2 (en) 2011-12-16 2011-12-16 Method for producing periodic table group 13 metal nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276144A JP5887908B2 (en) 2011-12-16 2011-12-16 Method for producing periodic table group 13 metal nitride semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2013126924A true JP2013126924A (en) 2013-06-27
JP5887908B2 JP5887908B2 (en) 2016-03-16

Family

ID=48777687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276144A Active JP5887908B2 (en) 2011-12-16 2011-12-16 Method for producing periodic table group 13 metal nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP5887908B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018534608A (en) * 2015-09-24 2018-11-22 ズース マイクロテク フォトマスク エクイップメント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトSuss MicroTec Photomask Equipment GmbH & Co. KG Method of treating a substrate with an aqueous liquid medium exposed to ultraviolet light

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634617A (en) * 1986-06-24 1988-01-09 Mitsubishi Electric Corp Cleaning method
JP2010027853A (en) * 2008-07-18 2010-02-04 Sumitomo Electric Ind Ltd Method for manufacturing group iii-v compound semiconductor substrate, method for manufacturing epitaxial wafer, group iii-v compound semiconductor substrate, and epitaxial wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634617A (en) * 1986-06-24 1988-01-09 Mitsubishi Electric Corp Cleaning method
JP2010027853A (en) * 2008-07-18 2010-02-04 Sumitomo Electric Ind Ltd Method for manufacturing group iii-v compound semiconductor substrate, method for manufacturing epitaxial wafer, group iii-v compound semiconductor substrate, and epitaxial wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018534608A (en) * 2015-09-24 2018-11-22 ズース マイクロテク フォトマスク エクイップメント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトSuss MicroTec Photomask Equipment GmbH & Co. KG Method of treating a substrate with an aqueous liquid medium exposed to ultraviolet light

Also Published As

Publication number Publication date
JP5887908B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5896002B2 (en) Group III nitride semiconductor substrate and cleaning method thereof
US8691019B2 (en) Process for cleaning a compound semiconductor wafer
JP6144347B2 (en) Group III nitride wafer and production method thereof
JP2021015999A (en) Manufacturing method of compound semiconductor substrate for epitaxial growth, epitaxial growth method on compound semiconductor substrate, and compound semiconductor substrate
JP2007005472A (en) Surface processing method of substrate and manufacturing method of groups iii-v compound semiconductor
WO2018198718A1 (en) Semiconductor wafer, and method for polishing semiconductor wafer
JP5929599B2 (en) Group 13 nitride substrate and manufacturing method thereof
JP2008166393A (en) Method of manufacturing group iii nitride semiconductor light-emitting element
JP5887908B2 (en) Method for producing periodic table group 13 metal nitride semiconductor substrate
CN113195699B (en) Detergent composition and washing method using the same
JP2013211315A (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
TW201829742A (en) Wet etching surface treatment method and microporous silicon chip prepared by the same containing a hydrofluoric acid, a nitric acid, a buffer solution and water
US20060185688A1 (en) Semiconductor wafer cleaning method and wafer cleaned by same method
JP2002025954A (en) Grinding method of semiconductor crystal wafer
JP2003100671A (en) Semiconductor crystal wafer and method of polishing the same
JPH11347920A (en) Abrasive method for semi-conductor wafer
JP2014028720A (en) Group 13 element nitride substrate
JP6200273B2 (en) Manufacturing method of bonded wafer
JP2015126003A (en) Method of manufacturing compound semiconductor wafer
JP5641401B2 (en) Method for manufacturing group III nitride crystal substrate
JP2004281670A (en) Method of polishing group iii nitride crystal, and group iii nitride crystal and group iii nitride semiconductor device
KR101524930B1 (en) CLEANING SOLUTION FOR NITROGEN SURFACE OF GaN SUBSTRATE AND METHOD OF CLEANING NITROGEN SURFACE OF GaN SUBSTRATE USING THE SAME
JP2000208453A (en) Polishing method for semiconductor crystal wafer
JP2004087666A (en) Method for washing semiconductor wafer
TW202315991A (en) Method of cleaning and method of producing group iii nitride single crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5887908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350