JP2013124858A - Pressing load setting method for tire uniformity measurement - Google Patents

Pressing load setting method for tire uniformity measurement Download PDF

Info

Publication number
JP2013124858A
JP2013124858A JP2011271812A JP2011271812A JP2013124858A JP 2013124858 A JP2013124858 A JP 2013124858A JP 2011271812 A JP2011271812 A JP 2011271812A JP 2011271812 A JP2011271812 A JP 2011271812A JP 2013124858 A JP2013124858 A JP 2013124858A
Authority
JP
Japan
Prior art keywords
load
tire
value
stop
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011271812A
Other languages
Japanese (ja)
Other versions
JP5758283B2 (en
Inventor
Naohiro Sugiyama
直大 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011271812A priority Critical patent/JP5758283B2/en
Publication of JP2013124858A publication Critical patent/JP2013124858A/en
Application granted granted Critical
Publication of JP5758283B2 publication Critical patent/JP5758283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pressing load setting method for tire uniformity measurement with which a pressing load can be set speedily to a target load value with high accuracy while using a dynamic longitudinal blade constant for each tire.SOLUTION: A pressing load setting method for tire uniformity measurement includes a dynamic longitudinal blade constant calculation step of calculating a dynamic longitudinal blade constant (k) of a tire by dividing an increase amount of a pressing load (p) with a moving amount (d) of relative movement of a rotor and the tire, a deceleration stop moving amount estimation step of estimating a deceleration stop moving amount (δ), a load increase amount calculation step of calculating a load increase amount ΔP from a move stopping command to stop by multiplying the deceleration stop moving amount (δ) by the dynamic longitudinal blade constant (k), a stop command load value calculation step of calculating a stop command load value Ps in issuing a command to stop the relative movement by subtracting the load increase amount ΔP from the target load value P, and a stop command step of issuing a command to stop the relative movement by detecting the time when the pressing load (p) reaches the stop command load value Ps through the relative movement.

Description

本発明は、回転体をタイヤに押圧して荷重を加えた状態で回転してタイヤユニフォミティを測定する方法に関する。   The present invention relates to a method for measuring tire uniformity by rotating a rotating body against a tire and applying a load.

タイヤユニフォミティを測定する方法については、従来種々提案されている(例えば、特許文献1等参照)。   Various methods for measuring tire uniformity have been proposed in the past (see, for example, Patent Document 1).

特開平2006−105775号公報JP 2006-105775 A

同特許文献1にも記載あるように、回転体をタイヤに押圧して荷重を加えた状態で回転してタイヤユニフォミティを測定する。
タイヤユニフォミティを正確に測定するためには、タイヤ種ごとに所定の押圧荷重で回転体がタイヤを押圧していなければならない。
As described in Patent Document 1, the tire uniformity is measured by rotating the rotating body against the tire and rotating it with a load applied.
In order to accurately measure the tire uniformity, the rotating body must press the tire with a predetermined pressing load for each tire type.

回転体は、比較的に重い重量物であり、この重量物である回転体をモータ等の駆動源の駆動により移動してタイヤを押圧するので、移動中に押圧荷重を監視して所定の目標荷重値となった時に移動停止指令を出して駆動源の駆動を停止したとしても回転体が実際に停止するまでにタイムラグがあり、その間に慣性により移動して押圧荷重が所定の押圧荷重を越えてしまうため、所定の押圧荷重に精度良く設定することが必ずしも容易ではない。   The rotating body is a relatively heavy object, and the rotating object, which is a heavy object, is moved by driving a drive source such as a motor to press the tire. Even if the movement stop command is issued when the load value is reached and the driving of the drive source is stopped, there is a time lag until the rotating body actually stops, and during that time it moves due to inertia and the pressing load exceeds the predetermined pressing load. Therefore, it is not always easy to accurately set the predetermined pressing load.

移動停止指令後の移動量を推定し、タイヤ種ごとに予め決められた縦バネ定数を推定移動量に乗算して求めた荷重増加量を目標荷重値から減算することで、停止指令荷重値を求めておけば、回転体の移動で押圧荷重が停止指令荷重値になったときに、移動を停止する指令を出すことで、概ね目標荷重値で回転体を停止して所定の押圧荷重に設定することが可能である。   Estimate the amount of movement after the movement stop command, and subtract the load increase obtained by multiplying the estimated movement amount by the vertical spring constant determined in advance for each tire type from the target load value. If calculated, when the pressing load reaches the stop command load value due to the movement of the rotating body, a command to stop the movement is issued, so that the rotating body is stopped approximately at the target load value and set to the predetermined pressing load. Is possible.

しかし、ここで用いられていた縦バネ定数は静的縦バネ定数であり、押圧荷重を加えている状態での動的縦バネ定数ではないので、精度良く目標荷重値で回転体を停止させることは容易ではない。
よって、従来は、さらに微調整制御を1回さらには複数回繰り返し行わなければならい場合があった。
However, the longitudinal spring constant used here is a static longitudinal spring constant, not a dynamic longitudinal spring constant in a state where a pressing load is applied, so that the rotating body can be accurately stopped at the target load value. Is not easy.
Therefore, in the past, there have been cases where fine adjustment control has to be repeated once or even several times.

本発明は、かかる点に鑑みなされたもので、その目的とする処は、タイヤユニフォミティ測定に供されるタイヤごとに算出した動的縦バネ定数を用いて精度良く目標荷重値で回転体とタイヤの相対移動を停止させ、目標荷重値に高い精度で速やかに設定することができるタイヤユニフォミティ測定の押圧荷重設定方法を供する点にある。   The present invention has been made in view of the above points, and the object of the present invention is that a rotating body and a tire are accurately obtained with a target load value using a dynamic longitudinal spring constant calculated for each tire to be used for tire uniformity measurement. This is to provide a pressing load setting method of tire uniformity measurement that can be set to the target load value quickly with high accuracy.

上記目的を達成するために、請求項1記載の発明は、
軸支されたタイヤに回転体が押圧され回転してタイヤユニフォミティ測定を行うための所定の目標荷重値Pに押圧荷重を設定する押圧荷重設定方法において、
前記回転体と前記タイヤが相対移動して互いに接して押圧荷重が増加する過程での相対移動の移動量dと押圧荷重pを測定する測定工程と、
前記移動量dで前記押圧荷重pの増加量を除算して該タイヤの動的縦バネ定数kを算出する動的縦バネ定数算出工程と、
前記タイヤと前記回転体の相対移動の停止指令から減速して停止するまでの減速停止移動量δを推定する減速停止移動量推定工程と、
前記減速停止移動量δに前記動的縦バネ定数kを乗算して相対移動の停止指令から停止するまでの荷重増加量ΔPを算出する荷重増加量算出工程と、
前記荷重増加量ΔPを前記目標荷重値Pから減算して前記相対移動を停止させる指令を出す時の停止指令荷重値Psを算出する停止指令荷重値算出工程と、
前記回転体と前記タイヤの相対移動による押圧荷重pが前記停止指令荷重値Psに達したときを検知して前記相対移動を停止する指令を出す停止指令工程とを備えることを特徴とするタイヤユニフォミティ測定の押圧荷重設定方法である。
In order to achieve the above object, the invention according to claim 1
In a pressing load setting method for setting a pressing load to a predetermined target load value P for rotating and rotating a rotating body against a pivotally supported tire to perform tire uniformity measurement,
A measuring step of measuring a moving amount d and a pressing load p of the relative movement in a process in which the rotating body and the tire move relative to each other and contact with each other to increase the pressing load;
A dynamic longitudinal spring constant calculating step of calculating the dynamic longitudinal spring constant k of the tire by dividing the increase amount of the pressing load p by the movement amount d;
A decelerating stop moving amount estimating step for estimating a decelerating stop moving amount δ from decelerating and stopping from a stop command of relative movement of the tire and the rotating body;
A load increase amount calculating step of multiplying the deceleration stop moving amount δ by the dynamic vertical spring constant k to calculate a load increase amount ΔP from a relative movement stop command to stopping;
A stop command load value calculating step of calculating a stop command load value Ps when issuing a command to stop the relative movement by subtracting the load increase amount ΔP from the target load value P;
And a stop command step for detecting when the pressing load p due to the relative movement between the rotating body and the tire has reached the stop command load value Ps and issuing a command to stop the relative movement. It is a pressing load setting method of measurement.

請求項2記載の発明は、
請求項1記載のタイヤユニフォミティ測定の押圧荷重設定方法において、
前記動的縦バネ定数算出工程は、
前記目標荷重値Pより小さい所定の荷重監視開始閾値P1から所定の荷重監視終了閾値P2までの所定の荷重増加期間に動的縦バネ定数kを算出し、
前記荷重監視終了閾値P2が想定される前記停止指令荷重値Psよりも小さい値であることを特徴とする。
The invention according to claim 2
In the method for setting the pressing load for tire uniformity measurement according to claim 1,
The dynamic longitudinal spring constant calculation step includes
A dynamic longitudinal spring constant k is calculated in a predetermined load increase period from a predetermined load monitoring start threshold value P1 smaller than the target load value P to a predetermined load monitoring end threshold value P2,
The load monitoring end threshold value P2 is smaller than the assumed stop command load value Ps.

請求項3記載の発明は、
請求項1または請求項2記載のタイヤユニフォミティ測定の押圧荷重設定方法において、
前記減速停止移動量推定工程は、
被測定タイヤのタイヤ種についての予め設定された減速度aに基づいて減速停止移動量δを推定することを特徴とする。
The invention described in claim 3
In the method of setting a pressing load for tire uniformity measurement according to claim 1 or claim 2,
The deceleration stop movement amount estimation step includes:
The deceleration stop moving amount δ is estimated based on a preset deceleration a for the tire type of the measured tire.

請求項4記載の発明は、
請求項1ないし請求項3のいずれかの項記載のタイヤユニフォミティ測定の押圧荷重設定方法において、
前記停止指令工程の後に、
相対移動を停止した状態のタイヤを少なくとも1周回転して押圧荷重の荷重平均値Paを測定する荷重平均値測定工程と、
前記荷重平均値Paが許容範囲内にあるか否かを判別する判別工程と、
前記判別工程で前記荷重平均値Paが許容範囲内にないと判別されたときは、前記動的縦バネ定数kを用いて位置調整量eを算出する位置調整量算出工程と、
前記位置調整量eだけ相対移動して微調整を行う微調整工程とを備えることを特徴とする。
The invention according to claim 4
In the method of setting a pressing load for tire uniformity measurement according to any one of claims 1 to 3,
After the stop command step,
A load average value measuring step of measuring the load average value Pa of the pressing load by rotating the tire in a state where the relative movement is stopped at least once;
A determination step of determining whether or not the load average value Pa is within an allowable range;
A position adjustment amount calculation step of calculating a position adjustment amount e using the dynamic longitudinal spring constant k when it is determined in the determination step that the load average value Pa is not within an allowable range;
And a fine adjustment step of performing fine adjustment by relatively moving the position adjustment amount e.

請求項5記載の発明は、
請求項4記載のタイヤユニフォミティ測定の押圧荷重設定方法において、
前記位置調整量算出工程は、
前記目標荷重値Pと前記荷重平均値Paとの差を前記縦バネ定数kで除算して前記位置調整量eを算出することを特徴とする。
The invention according to claim 5
In the pressing load setting method of tire uniformity measurement according to claim 4,
The position adjustment amount calculation step includes:
The position adjustment amount e is calculated by dividing the difference between the target load value P and the load average value Pa by the longitudinal spring constant k.

請求項1記載のタイヤユニフォミティ測定の押圧荷重設定方法によれば、測定工程で回転体とタイヤの相対移動の移動量dと押圧荷重pを測定し、押圧荷重pの増加の割合を移動量dで除算することで動的縦バネ定数kを求め、この動的縦バネ定数kを減速停止移動量δに乗算して荷重増加量ΔPを算出し、目標荷重値Pから荷重増加量ΔPを減算して停止指令荷重値Psを求めているので、押圧荷重pが停止指令荷重値Psに達したとき相対移動を停止する指令を出すことで、精度良く目標荷重値Pで相対移動を停止させ、目標荷重値に高い精度で速やかに設定することができ、高精度のタイヤユニフォミティ測定に速やかに入ることができる。   According to the method of setting a pressing load for tire uniformity measurement according to claim 1, the moving amount d and the pressing load p of the relative movement between the rotating body and the tire are measured in the measuring step, and the rate of increase of the pressing load p is determined as the moving amount d. The dynamic vertical spring constant k is obtained by dividing by, and the dynamic vertical spring constant k is multiplied by the deceleration stop movement amount δ to calculate the load increase amount ΔP, and the load increase amount ΔP is subtracted from the target load value P. Since the stop command load value Ps is obtained, by issuing a command to stop the relative movement when the pressing load p reaches the stop command load value Ps, the relative movement is accurately stopped at the target load value P. The target load value can be quickly set with high accuracy, and high-precision tire uniformity measurement can be quickly entered.

請求項2記載のタイヤユニフォミティ測定の押圧荷重設定方法によれば、目標荷重値Pより小さい所定の荷重監視開始閾値P1から想定される停止指令荷重値Psよりも小さい値である所定の荷重監視終了閾値P2までの所定の荷重増加期間に動的縦バネ定数kを算出するので、荷重増加が安定した精度の良い動的縦バネ定数kを算出できるとともに、動的縦バネ定数kから停止指令荷重値Psを算出して余裕を持って停止制御をすることができる。   According to the method for setting the pressure load for tire uniformity measurement according to claim 2, the predetermined load monitoring end that is smaller than the stop command load value Ps assumed from the predetermined load monitoring start threshold value P1 smaller than the target load value P. Since the dynamic longitudinal spring constant k is calculated during a predetermined load increase period up to the threshold value P2, the dynamic longitudinal spring constant k can be calculated accurately with a stable load increase, and the stop command load can be calculated from the dynamic longitudinal spring constant k. The stop control can be performed with a margin by calculating the value Ps.

請求項3記載のタイヤユニフォミティ測定の押圧荷重設定方法によれば、タイヤ種ごとに減速停止移動量δを求めることが可能で、被測定タイヤのタイヤ種についての予め設定された減速度aに基づいて減速停止移動量δを推定することができる。   According to the method of setting a pressing load for tire uniformity measurement according to claim 3, it is possible to determine the deceleration stop movement amount δ for each tire type, and based on a preset deceleration a for the tire type of the tire to be measured. Thus, the deceleration stop movement amount δ can be estimated.

請求項4記載のタイヤユニフォミティ測定の押圧荷重設定方法によれば、前記停止指令工程の後に、相対移動を停止した状態のタイヤを少なくとも1周回転して押圧荷重の荷重平均値Paを測定する荷重平均値測定工程と、荷重平均値Paが許容範囲内にあるか否かを判別する判別工程と、判別工程で荷重平均値Paが許容範囲内にないと判別されたときは、前記動的縦バネ定数kを用いて位置調整量eを算出する位置調整量算出工程と、位置調整量eだけ相対移動して微調整を行う微調整工程とを備えるので、停止指令工程の後(粗調整制御後)に、判別工程で荷重平均値Paが許容範囲内にあると判別されたときは、微調整工程を実行する必要はなく押圧荷重設定を終了し、判別工程で荷重平均値Paが許容範囲内にないと判別されたときも先の押圧荷重設定(粗調整制御)で算出された動的縦バネ定数kを用いて位置調整量eを精度良く算出することができ、高精度の位置調整量eだけ相対移動して微調整を行うため、再度微調整を行うことは概ねなく押圧荷重設定を終了することができ、目標荷重値に高い精度で速やかに設定することができる。   According to the method for setting a pressing load for tire uniformity measurement according to claim 4, after the stop command step, the load in which the relative movement is stopped is rotated at least once and the load average value Pa of the pressing load is measured. When the average value measuring step, the determining step for determining whether or not the load average value Pa is within the allowable range, and the determination step determining that the load average value Pa is not within the allowable range, Since the position adjustment amount calculating step for calculating the position adjustment amount e using the spring constant k and the fine adjustment step for performing the fine adjustment by relatively moving by the position adjustment amount e are provided after the stop command step (coarse adjustment control). After), when it is determined in the determination step that the load average value Pa is within the allowable range, it is not necessary to perform the fine adjustment step, and the pressing load setting is completed, and the load average value Pa is within the allowable range in the determination step. It was determined that it was not within In addition, the position adjustment amount e can be accurately calculated using the dynamic longitudinal spring constant k calculated in the previous pressing load setting (coarse adjustment control). Since the adjustment is performed, fine adjustment is not performed again and the setting of the pressing load can be completed, and the target load value can be quickly set with high accuracy.

請求項5記載のタイヤユニフォミティ測定の押圧荷重設定方法によれば、目標荷重値Pと荷重平均値Paとの差を前記縦バネ定数kで除算して位置調整量eを算出するので、算出される位置調整量eの精度は高い。   According to the method for setting the pressing load for tire uniformity measurement according to claim 5, the position adjustment amount e is calculated by dividing the difference between the target load value P and the load average value Pa by the longitudinal spring constant k. The accuracy of the position adjustment amount e is high.

タイヤユニフォミティ測定装置の要部のみを抽出した要部斜視図である。It is the principal part perspective view which extracted only the principal part of the tire uniformity measuring apparatus. ロードロールの移動に伴う押圧荷重の上昇変化を示したグラフである。It is the graph which showed the raise change of the press load accompanying the movement of a load roll. 本押圧荷重設定制御の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of this press load setting control.

以下、本発明に係る一実施の形態について図1ないし図3に基づいて説明する。
図1は、タイヤユニフォミティ測定装置1の要部のみを抽出して図示した要部斜視図である。
タイヤ2は、水平姿勢の状態で上下のリム3,4に上下ビード部をそれぞれ保持されて挟持されており、上下リム3,4から上下に同軸に延出するリム軸3a,4aを中心に回転可能であり、図示されない電動モータにリム軸3a,4aが回転駆動され、タイヤ2は上下リム3,4を介して回転する。
Hereinafter, an embodiment according to the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view of a main part in which only a main part of the tire uniformity measuring device 1 is extracted and illustrated.
The tire 2 is sandwiched between upper and lower rims 3 and 4 with upper and lower bead portions held in a horizontal posture, and centered on rim shafts 3 a and 4 a that extend coaxially from the upper and lower rims 3 and 4. The rim shafts 3 a and 4 a are driven to rotate by an electric motor (not shown), and the tire 2 rotates via the upper and lower rims 3 and 4.

一方、上記タイヤ2と並んで扁平円柱状の回転体であるロードロール10が、水平姿勢でリム軸3a,4aと平行で上下方向に指向した中心支軸11に回転自在に軸支されている。
中心支軸11は、図示されないが、ロードロール10を挟んだ上下を軸受されており、軸受された状態で中心支軸11がタイヤ2側のリム軸3a,4aに対して接近・離反するように移動することができ、図示されない位置センサが移動量dを測定することができる。
なお、タイヤ2を移動してロードロール10に押圧するようにしてもよい。
On the other hand, a road roll 10 which is a flat columnar rotating body along with the tire 2 is rotatably supported by a central support shaft 11 which is parallel to the rim shafts 3a and 4a and oriented in the vertical direction in a horizontal posture. .
Although not shown in the figure, the center support shaft 11 is vertically supported with the load roll 10 interposed therebetween, and the center support shaft 11 approaches and separates from the rim shafts 3a and 4a on the tire 2 side in the state of being supported. A position sensor (not shown) can measure the movement amount d.
The tire 2 may be moved and pressed against the road roll 10.

また、ロードロール10の中心支軸11の軸受部には図示されないロードセルが備えつけられ、ロードロール10をタイヤ2に押圧したときの押圧荷重pを測定することができる。
なお、タイヤ2を支持するリム軸3a,4aの軸受部にロードセルを備えてロードロール10による押圧荷重pを測定してもよい。
ロードロール10はタイヤ2が接する外周面にシボ加工が施され、タイヤ2に押圧した状態で、タイヤ2が回転したときは、押圧面で滑りを生じることなくロードロール10は回転させられる。
In addition, a load cell (not shown) is provided on the bearing portion of the center support shaft 11 of the load roll 10, and the pressing load p when the load roll 10 is pressed against the tire 2 can be measured.
Note that a load cell may be provided in the bearing portions of the rim shafts 3a and 4a that support the tire 2, and the pressing load p by the load roll 10 may be measured.
When the tire 2 is rotated in a state where the outer peripheral surface with which the tire 2 is in contact is pressed and pressed against the tire 2, the road roll 10 is rotated without causing slippage on the pressing surface.

ロードロール10の移動およびタイヤ2の回転は、図示されない制御装置により駆動制御される。
制御装置には、前記移動量dや押圧荷重pなどの測定された情報が入力され、演算処理されて、ロードロール10の移動制御、タイヤ2の回転制御がなされ、タイヤユニフォミティ測定がなされる。
The movement of the road roll 10 and the rotation of the tire 2 are driven and controlled by a control device (not shown).
Measured information such as the moving distance d and the pressing load p is input to the control device, and is subjected to calculation processing to control the movement of the road roll 10 and the rotation of the tire 2 and to measure the tire uniformity.

タイヤの半径方向の力の変動の大きさRFV(Radial Force Variation)やタイヤの横方向(軸方向)の力の変動の大きさLFV(Lateral Force Variation)などのタイヤユニフォミティは、ロードロール10によるタイヤ2への押圧をタイヤ種ごとに決められた所定の押圧荷重に正確に設定された状態で、タイヤ2を回転して測定される。   Tire uniformity such as the magnitude of radial force variation (RFV) and the lateral force (axial direction) of tire force LFV (Lateral Force Variation) The tire 2 is measured by rotating the tire 2 in a state where the pressure to 2 is accurately set to a predetermined pressing load determined for each tire type.

このタイヤユニフォミティの測定を精度良く行うためには、ロードロール10によるタイヤ2への押圧荷重が高い精度で所定の押圧荷重に設定される必要がある。
そこで、本実施の形態に係るタイヤユニフォミティ測定の押圧荷重設定方法は、制御装置が、図3に示すフローチャートに示した制御手順に従って制御するものである。
In order to accurately measure the tire uniformity, it is necessary to set the pressing load on the tire 2 by the road roll 10 to a predetermined pressing load with high accuracy.
Therefore, in the tire load uniformity measurement pressing load setting method according to the present embodiment, the control device performs control according to the control procedure shown in the flowchart shown in FIG.

この押圧荷重設定制御に入る直前においては、ロードロール10はタイヤ2から離れた所定位置にある。
図3のフローチャートを参照して、ステップ1で、タイヤユニフォミティ測定のために所定の押圧荷重に設定する制御に入る荷重制御指令の有無を判断し、荷重制御指令がないときは本制御ルーチンを抜け本制御は実行せず、荷重制御指令があると、ステップ2に進み、微調制御フラグFに「1」が立っているか否かを判別し、「1」が立っておらず「0」であれば、ステップ3に進み粗調制御に入り、「1」が立っていれば、ステップ21に飛び微調制御に入る。
Immediately before entering the pressing load setting control, the road roll 10 is at a predetermined position away from the tire 2.
Referring to the flowchart of FIG. 3, in step 1, it is determined whether or not there is a load control command that enters control for setting a predetermined pressing load for tire uniformity measurement. If there is no load control command, the present control routine is exited. If this control is not executed and there is a load control command, the process proceeds to step 2 to determine whether or not the fine adjustment control flag F is “1”. If “1” is not set and “0” is set. For example, the process proceeds to step 3 to enter coarse adjustment control. If “1” is set, the process jumps to step 21 to enter fine adjustment control.

当初、微調制御フラグFは「0」となっており、ステップ2からステップ3に進み粗調制御に入いると、ロードロール10をタイヤ2に向けて移動する。
そして、ステップ4でロードロール10の移動量dと押圧荷重pを読込み、押圧荷重pの変化を監視する。
Initially, the fine adjustment control flag F is “0”. When the process proceeds from step 2 to step 3 and coarse adjustment control is entered, the road roll 10 is moved toward the tire 2.
In step 4, the moving amount d and the pressing load p of the load roll 10 are read, and the change of the pressing load p is monitored.

図2には、ロードロール10が移動してタイヤ2に接し、押圧荷重が発生してからの押圧荷重pの上昇変化を示したグラフである。
ロードロール10の移動は、移動開始直後と移動停止直前を除き、概ね定速度である。
そして、タイヤ2はロードロール10に押圧されて弾性変形するが、ロードロール10がタイヤ2に接した当初のバネ力は小さく押圧荷重pの上昇も緩やかであり、その後、傾斜が急になって上昇し、ロードロール10の移動を停止することによりタイヤ種ごとに決められた目標荷重値Pに落ち着く。
FIG. 2 is a graph showing an increase in the pressing load p after the load roll 10 moves and contacts the tire 2 and a pressing load is generated.
The load roll 10 moves at a substantially constant speed except immediately after the start of movement and immediately before the movement is stopped.
The tire 2 is elastically deformed by being pressed by the road roll 10, but the initial spring force when the road roll 10 is in contact with the tire 2 is small, and the increase in the pressing load p is slow, and thereafter the slope becomes steep. By rising and stopping the movement of the road roll 10, the target load value P determined for each tire type is settled.

この押圧荷重pの上昇が急となる所定の荷重監視開始閾値P1から目標荷重値Pより約2〜3割低い所定の荷重監視終了閾値P2までの所定の荷重増加期間に荷重の変化を監視して、これをもとに動的縦バネ定数kを算出するようにしている。
なお、荷重監視終了閾値P2は、後にステップ12で算出される停止指令荷重値Psよりも小さい値となるように想定される停止指令荷重値Psよりも十分小さい値である。
The change in load is monitored during a predetermined load increase period from a predetermined load monitoring start threshold value P1 at which the increase of the pressing load p becomes steep to a predetermined load monitoring end threshold value P2 that is approximately 20 to 30% lower than the target load value P. Based on this, the dynamic longitudinal spring constant k is calculated.
The load monitoring end threshold value P2 is a value sufficiently smaller than the stop command load value Ps assumed to be smaller than the stop command load value Ps calculated in step 12 later.

すなわち、図3のフローチャートで、粗調制御に入り、ステップ3でロードロール10が移動し、ステップ4でロードロール10の移動量dと押圧荷重pが読込まれると、ステップ5で押圧荷重pが荷重監視開始閾値P1に達したか否かを判別しており、押圧荷重pが荷重監視開始閾値P1に至らない間は本制御ルーチンを抜けステップ1に戻り、荷重監視開始閾値P1に達すると、ステップ6に進み、荷重監視終了フラグGに「1」が立っているか否かを判別し、「1」が立っておらず「0」であれば、ステップ7に進み、「1」が立っていれば、ステップ14に飛ぶ。   That is, in the flowchart of FIG. 3, coarse control is entered, the load roll 10 moves in step 3, and when the moving amount d and the pressure load p of the load roll 10 are read in step 4, the pressure load p is read in step 5. Is determined whether or not the load monitoring start threshold value P1 has been reached. While the pressing load p does not reach the load monitoring start threshold value P1, this control routine is exited and the process returns to step 1 and when the load monitoring start threshold value P1 is reached. The process proceeds to step 6 to determine whether or not “1” is set in the load monitoring end flag G. If “1” is not set and “0”, the process proceeds to step 7 and “1” is set. If so, jump to step 14.

荷重監視終了フラグGが「0」でステップ7に進むと、動的縦バネ定数kが計算可能か否かを判別している。
動的縦バネ定数kは、移動量dで押圧荷重pの増加量を除算して算出するので、所定の荷重増加期間内で安定した状態にあって平均的な移動量で押圧荷重pの平均的な増加量が求められるようになったときに、動的縦バネ定数kが計算可能となる。
When the load monitoring end flag G is “0” and the process proceeds to step 7, it is determined whether or not the dynamic longitudinal spring constant k can be calculated.
Since the dynamic longitudinal spring constant k is calculated by dividing the increase amount of the pressing load p by the moving amount d, the average of the pressing load p with the average moving amount in a stable state within a predetermined load increasing period. The dynamic longitudinal spring constant k can be calculated when a specific increase amount is required.

したがって、動的縦バネ定数kが計算可能となるまではステップ7からステップ9に飛び、動的縦バネ定数kが計算可能となるとステップ8に進んで平均的な移動量で押圧荷重pの平均的な増加量を除算して動的縦バネ定数kを算出し、ステップ9に進む。   Therefore, the process jumps from Step 7 to Step 9 until the dynamic longitudinal spring constant k can be calculated, and when the dynamic longitudinal spring constant k can be calculated, the process proceeds to Step 8 and the average of the pressing load p with an average moving amount is obtained. The dynamic longitudinal spring constant k is calculated by dividing the general increase amount, and the process proceeds to step 9.

ステップ9では、押圧荷重pが荷重監視終了閾値P2に達したか否かを判別しており、押圧荷重pが荷重監視終了閾値P2に達しない間は本制御ルーチンを抜けステップ1に戻り、押圧荷重pの変化の監視を続け、荷重監視終了閾値P2に達したときに、ステップ10に進んで、ステップ10〜12の工程で、先の動的縦バネ定数kに基づきロードロール10の移動停止のための制御値(停止指令荷重値Ps)を算出してステップ13で荷重監視終了フラグGに「1」を立て、ステップ14に進む。   In step 9, it is determined whether or not the pressing load p has reached the load monitoring end threshold value P2. While the pressing load p does not reach the load monitoring end threshold value P2, this control routine is exited and the process returns to step 1 to press the pressing load p. Monitoring of the change of the load p is continued, and when the load monitoring end threshold value P2 is reached, the process proceeds to step 10 and the movement of the load roll 10 is stopped based on the dynamic longitudinal spring constant k in the steps 10 to 12. A control value (stop command load value Ps) is calculated, and “1” is set to the load monitoring end flag G in step 13, and the process proceeds to step 14.

したがって、押圧荷重pが荷重監視終了閾値P2に達し、停止指令荷重値Psが算出された後は、荷重監視終了フラグGに「1」が立ち(ステップ13)、以後ステップ6からステップ7〜13を越えてステップ14に飛ぶことになる。   Therefore, after the pressing load p reaches the load monitoring end threshold value P2 and the stop command load value Ps is calculated, “1” is set in the load monitoring end flag G (step 13), and from step 6 to steps 7 to 13 thereafter. Will be skipped to step 14.

停止指令荷重値Psを算出する最初の工程であるステップ10では、停止指令からロードロール10が減速して停止するまでの減速停止移動量δを推定する。
タイヤ種ごとに目標荷重値Pは決められており、停止指令が発せられたときのロードロール10の移動速度等は分かっているので、タイヤ種ごとに減速停止するときの減速度aや減速停止する時間tが予め設定されて記憶されている。
したがって、被測定タイヤのタイヤ種をもとに減速度aと減速停止時間tを抽出し、減速度aと減速停止時間tから減速停止移動量δを演算(δ=a・t/2)して推定することができる。
In step 10, which is the first step of calculating the stop command load value Ps, a deceleration stop moving amount δ from the stop command until the load roll 10 decelerates and stops is estimated.
Since the target load value P is determined for each tire type and the moving speed of the load roll 10 is known when a stop command is issued, the deceleration a and deceleration stop when decelerating and stopping for each tire type are known. The time t to be set is preset and stored.
Therefore, to extract the deceleration a and the deceleration stopping time t based on the tire type of the measured tire, calculating a deceleration stop movement amount [delta] from the deceleration a and the deceleration stop time t (δ = a · t 2 /2) And can be estimated.

次のステップ11では、減速停止移動量δにステップ8で算出した動的縦バネ定数kを乗算して、停止指令からロードロール10が停止するまでの荷重増加量ΔP(=k・δ)を算出し、次のステップ12で、この荷重増加量ΔPを目標荷重値Pから減算することで、停止指令荷重値Ps(=P−ΔP)を算出する。
停止指令荷重値Psを算出したところで、荷重監視終了フラグGに「1」を立てる(ステップ13)。
In the next step 11, the amount of increase in load ΔP (= k · δ) from the stop command until the load roll 10 stops is multiplied by multiplying the deceleration stop moving amount δ by the dynamic longitudinal spring constant k calculated in step 8. In step 12, the load increase amount ΔP is subtracted from the target load value P to calculate a stop command load value Ps (= P−ΔP).
When the stop command load value Ps is calculated, “1” is set to the load monitoring end flag G (step 13).

ステップ14では、押圧荷重pがステップ12で算出された停止指令荷重値Psに達するか否かを判別し、押圧荷重pが停止指令荷重値Psに達すれば本制御ルーチンを抜けステップ1に戻るので、押圧荷重pが荷重監視終了閾値P2を越えて停止指令荷重値Psに達するまでは、ステップ6からステップ14に飛んで、押圧荷重pが停止指令荷重値Psに達するのを待つことになる。   In step 14, it is determined whether or not the pressing load p reaches the stop command load value Ps calculated in step 12. If the pressing load p reaches the stop command load value Ps, the present control routine is exited and the process returns to step 1. Until the pressing load p exceeds the load monitoring end threshold value P2 and reaches the stop command load value Ps, the process jumps from Step 6 to Step 14 and waits for the pressing load p to reach the stop command load value Ps.

そして、押圧荷重pが停止指令荷重値Psに達したとき、ステップ15に進んでロードロール10の移動停止指令を出力し、粗調制御を終了し、次いで、荷重監視終了フラグGを「0」とし(ステップ16)、さらに微調制御フラグFに「1」を立て(ステップ17)、ステップ1に戻ることになる。   When the pressing load p reaches the stop command load value Ps, the process proceeds to step 15 to output a movement stop command for the load roll 10 and finish the coarse adjustment control. Then, the load monitoring end flag G is set to “0”. (Step 16), the fine control flag F is set to “1” (step 17), and the process returns to step 1.

移動量dおよび押圧荷重pの増加量から求めた被測定タイヤ2特有の縦バネ定数kに基づいて停止指令からロードロール10が停止するまでの荷重増加量ΔPを算出しているので、荷重増加量ΔPは被測定タイヤ2の荷重増加量ΔPであって、この推定荷重増加量ΔPを目標荷重値Pから減算した停止指令荷重値Psも被測定タイヤ2の特有の高い精度の停止指令荷重値Psである。   Since the load increase amount ΔP until the load roll 10 stops is calculated from the stop command based on the vertical spring constant k specific to the measured tire 2 obtained from the increase amount of the movement amount d and the pressing load p, the load increase The amount ΔP is the load increase amount ΔP of the tire 2 to be measured, and the stop command load value Ps obtained by subtracting the estimated load increase amount ΔP from the target load value P is also a stop command load value with high accuracy peculiar to the tire 2 to be measured. Ps.

この被測定タイヤ2にとって最適な停止指令荷重値Psに押圧荷重pが達したときに、ロードロール10の移動停止指令を出すことで、ロードロール10が実際に停止したときの押圧荷重pが目標荷重値Pに極めて近い高い精度の粗調制御がなされる。   When the pressing load p reaches the optimum stop command load value Ps for the tire 2 to be measured, by issuing a movement stop command for the load roll 10, the pressing load p when the load roll 10 is actually stopped is set as the target. Coarse tone control with high accuracy very close to the load value P is performed.

図2を参照して、押圧荷重pが停止指令荷重値Psに達してロードロール10の移動停止指令が出ても、ロードロール10の慣性により実際に停止するまでの間移動して押圧荷重pも増加しており、被測定タイヤ2の固有の動的縦バネ定数kに基づいた押圧荷重pで停止するが、この停止したときの押圧荷重pが目標荷重値Pに極めて近いことになる。   Referring to FIG. 2, even if the pressing load p reaches the stop command load value Ps and a movement stop command for the load roll 10 is issued, the load is moved until it actually stops due to the inertia of the load roll 10. However, the pressure load p when stopped is very close to the target load value P. However, the pressure load p is very close to the target load value P.

以上のように、粗調制御が行われてロードロール10の移動停止指令が出た後、図3のフローチャートを参照して、微調制御フラグFに「1」が立っているので、ステップ2からステップ21に飛び、微調制御に入る。
まず、ステップ21でロードロール10が回転され、複数回転角度での押圧荷重pを順次読込み(ステップ22)、ステップ23で読み込んだ複数の押圧荷重pの平均である荷重平均値Paを算出する。
As described above, since the coarse adjustment control is performed and the movement stop command for the load roll 10 is issued, the fine adjustment control flag F is set to “1” with reference to the flowchart of FIG. Step 21 is entered and fine control is entered.
First, in step 21, the load roll 10 is rotated, the pressing loads p at a plurality of rotation angles are sequentially read (step 22), and a load average value Pa that is an average of the plurality of pressing loads p read in step 23 is calculated.

ロードロール10は少なくとも1周回転して各回転角度での押圧荷重pの平均値(荷重平均値Pa)を算出する。
そして、次のステップ24で荷重平均値Paが許容範囲にあるか、すなわち荷重平均値Paと目標荷重値Pとの差(|P−Pa|)が所定微小値ε以下であるかを判別し、荷重平均値Paが許容範囲内にあれば(|P−Pa|≦ε)、ステップ27に飛んで微調制御を終了して荷重制御指令を解除し、微調制御フラグFを「0」にし(ステップ28)、本押圧荷重設定制御は終了し、新たにステップ1に戻る。
The load roll 10 rotates at least once and calculates an average value (load average value Pa) of the pressing load p at each rotation angle.
Then, in the next step 24, it is determined whether or not the load average value Pa is within an allowable range, that is, whether or not the difference (| P−Pa |) between the load average value Pa and the target load value P is equal to or smaller than a predetermined minute value ε. If the load average value Pa is within the allowable range (| P−Pa | ≦ ε), the process jumps to step 27 to end the fine control, cancel the load control command, and set the fine control flag F to “0” ( Step 28), the final pressing load setting control ends, and the process returns to Step 1 anew.

しかし、ステップ24で荷重平均値Paが許容範囲内にない(|P−Pa|>ε)と判別されたときは、ステップ25に進んで、目標荷重値Pから荷重平均値Paを減算した差(P−Pa)を先の粗調制御におけるステップ8で算出した動的縦バネ定数kで除算して位置調整量e(=(P−Pa)/k)を算出し、次のステップ26でロードロール10を位置調整量eだけ移動して微調整を行い、本制御ルーチンを抜け、ステップ1に戻る。   However, if it is determined in step 24 that the load average value Pa is not within the allowable range (| P−Pa |> ε), the process proceeds to step 25 where the difference obtained by subtracting the load average value Pa from the target load value P is determined. The position adjustment amount e (= (P−Pa) / k) is calculated by dividing (P−Pa) by the dynamic longitudinal spring constant k calculated in step 8 in the previous coarse adjustment control. Fine adjustment is performed by moving the load roll 10 by the position adjustment amount e, the control routine is exited, and the process returns to step 1.

微調整を行ったときは、微調制御フラグFは「1」が立ったままなので、ステップ2からステップ21に飛んで、再度ロードロール10を回転し、複数回転角度での押圧荷重pを読込み(ステップ22)、荷重平均値Paを算出して(ステップ23)、ステップ24で荷重平均値Paが許容範囲内にあるか否かを判定する。
荷重平均値Paが許容範囲内にあれば、ステップ27に飛んで本荷重制御は終了するが、荷重平均値Paが許容範囲内になければ、ステップ25,26に進んで再度微調整を行うことになり、荷重平均値Paが許容範囲内になるまで繰り返し微調整が行われる。
When the fine adjustment is performed, the fine adjustment control flag F remains “1”, so the flow jumps from step 2 to step 21 to rotate the load roll 10 again and read the pressing load p at a plurality of rotation angles ( In step 22), the load average value Pa is calculated (step 23), and in step 24, it is determined whether or not the load average value Pa is within the allowable range.
If the load average value Pa is within the allowable range, the process jumps to step 27 and the present load control is terminated. If the load average value Pa is not within the allowable range, the flow proceeds to steps 25 and 26 and fine adjustment is performed again. Thus, fine adjustment is repeatedly performed until the load average value Pa is within the allowable range.

本押圧荷重設定制御は、粗調制御の段階で、被測定タイヤ2にとって最適な停止指令荷重値Psに基づきロードロール10の移動停止指令が出され、目標荷重値Pに極めて近い押圧荷重pで精度良く停止させることができるので、微調制御に入っても荷重平均値Paが許容範囲内にあって、実際の微調整を行わずにすむか、あるいは微調整も略1回で終了することができる。   In this pressing load setting control, at the stage of coarse adjustment control, a movement stop command for the load roll 10 is issued based on the stop command load value Ps optimum for the tire 2 to be measured, and the pressing load p is very close to the target load value P. Since it can be stopped with high accuracy, even if fine control is entered, the load average value Pa is within the allowable range, and it is not necessary to perform actual fine adjustment, or fine adjustment can be completed almost once. it can.

このように、押圧荷重設定制御において微調整の回数が0回ないし1回ですむので、押圧荷重設定制御がタイヤユニフォミティ測定のサイクルタイムに影響を与えることがなく、タイヤユニフォミティ測定に速やかに移行することができる。   In this way, since the number of fine adjustments in the pressing load setting control is 0 to 1 time, the pressing load setting control does not affect the cycle time of the tire uniformity measurement, and promptly shifts to the tire uniformity measurement. be able to.

1…タイヤユニフォミティ測定装置、2…タイヤ、3,4…リム、3a,4a…リム軸、10…ロードロール、11…中心支軸。   DESCRIPTION OF SYMBOLS 1 ... Tire uniformity measuring apparatus, 2 ... Tire, 3, 4 ... Rim, 3a, 4a ... Rim axis | shaft, 10 ... Road roll, 11 ... Center spindle

Claims (5)

軸支されたタイヤに回転体が押圧され回転してタイヤユニフォミティ測定を行うための所定の目標荷重値Pに押圧荷重を設定する押圧荷重設定方法において、
前記回転体と前記タイヤが相対移動して互いに接して押圧荷重が増加する過程での前記相対移動の移動量dと押圧荷重pを測定する測定工程と、
前記移動量dで前記押圧荷重pの増加量を除算して該タイヤの動的縦バネ定数kを算出する動的縦バネ定数算出工程と、
前記タイヤと前記回転体の前記相対移動の停止指令から減速して停止するまでの減速停止移動量δを推定する減速停止移動量推定工程と、
前記減速停止移動量δに前記動的縦バネ定数kを乗算して相対移動の停止指令から停止するまでの荷重増加量ΔPを算出する荷重増加量算出工程と、
前記荷重増加量ΔPを前記目標荷重値Pから減算して前記相対移動を停止させる指令を出す時の停止指令荷重値Psを算出する停止指令荷重値算出工程と、
前記回転体と前記タイヤの前記相対移動による押圧荷重pが前記停止指令荷重値Psに達したときを検知して前記相対移動を停止する指令を出す停止指令工程とを備えることを特徴とするタイヤユニフォミティ測定の押圧荷重設定方法。
In a pressing load setting method for setting a pressing load to a predetermined target load value P for rotating and rotating a rotating body against a pivotally supported tire to perform tire uniformity measurement,
A measuring step for measuring the moving amount d and the pressing load p of the relative movement in a process in which the rotating body and the tire move relative to each other and contact with each other to increase the pressing load;
A dynamic longitudinal spring constant calculating step of calculating the dynamic longitudinal spring constant k of the tire by dividing the increase amount of the pressing load p by the movement amount d;
A decelerating stop moving amount estimating step for estimating a decelerating stop moving amount δ from decelerating and stopping from the relative movement stop command of the tire and the rotating body;
A load increase amount calculating step of multiplying the deceleration stop moving amount δ by the dynamic vertical spring constant k to calculate a load increase amount ΔP from a relative movement stop command to stopping;
A stop command load value calculating step of calculating a stop command load value Ps when issuing a command to stop the relative movement by subtracting the load increase amount ΔP from the target load value P;
And a stop command step for detecting when the pressing load p due to the relative movement of the rotating body and the tire has reached the stop command load value Ps and issuing a command to stop the relative movement. How to set the pressing load for uniformity measurement.
前記動的縦バネ定数算出工程は、
前記目標荷重値Pより小さい所定の荷重監視開始閾値P1から所定の荷重監視終了閾値P2までの所定の荷重増加期間に動的縦バネ定数kを算出し、
前記荷重監視終了閾値P2が想定される前記停止指令荷重値Psよりも小さい値であることを特徴とする請求項1記載のタイヤユニフォミティ測定の押圧荷重設定方法。
The dynamic longitudinal spring constant calculation step includes
A dynamic longitudinal spring constant k is calculated in a predetermined load increase period from a predetermined load monitoring start threshold value P1 smaller than the target load value P to a predetermined load monitoring end threshold value P2,
2. The method for setting a pressing load for tire uniformity measurement according to claim 1, wherein the load monitoring end threshold value P2 is smaller than the assumed stop command load value Ps.
前記減速停止移動量推定工程は、
被測定タイヤのタイヤ種についての予め設定された減速度aに基づいて減速停止移動量δを推定することを特徴とする請求項1または請求項2記載のタイヤユニフォミティ測定の押圧荷重設定方法。
The deceleration stop movement amount estimation step includes:
3. The method for setting a pressing load for tire uniformity measurement according to claim 1, wherein the deceleration stop movement amount δ is estimated based on a preset deceleration a for the tire type of the measured tire.
前記停止指令工程の後に、
相対移動を停止した状態のタイヤを少なくとも1周回転して押圧荷重の荷重平均値Paを測定する荷重平均値測定工程と、
前記荷重平均値Paが許容範囲内にあるか否かを判別する判別工程と、
前記判別工程で前記荷重平均値Paが許容範囲内にないと判別されたときは、前記動的縦バネ定数kを用いて位置調整量eを算出する位置調整量算出工程と、
前記位置調整量eだけ相対移動して微調整を行う微調整工程とを備えることを特徴とする請求項1ないし請求項3のいずれかの項記載のタイヤユニフォミティ測定の押圧荷重設定方法。
After the stop command step,
A load average value measuring step of measuring the load average value Pa of the pressing load by rotating the tire in a state where the relative movement is stopped at least once;
A determination step of determining whether or not the load average value Pa is within an allowable range;
A position adjustment amount calculation step of calculating a position adjustment amount e using the dynamic longitudinal spring constant k when it is determined in the determination step that the load average value Pa is not within an allowable range;
4. The method for setting a pressing load for tire uniformity measurement according to any one of claims 1 to 3, further comprising a fine adjustment step of performing a fine adjustment by relatively moving the position adjustment amount e.
前記位置調整量算出工程は、
前記目標荷重値Pと前記荷重平均値Paとの差を前記縦バネ定数kで除算して前記位置調整量eを算出することを特徴とする請求項4記載のタイヤユニフォミティ測定の押圧荷重設定方法。
The position adjustment amount calculation step includes:
5. The method for setting a pressing load for tire uniformity measurement according to claim 4, wherein the position adjustment amount e is calculated by dividing a difference between the target load value P and the load average value Pa by the longitudinal spring constant k. .
JP2011271812A 2011-12-13 2011-12-13 Setting method of pressure load for tire uniformity measurement Expired - Fee Related JP5758283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271812A JP5758283B2 (en) 2011-12-13 2011-12-13 Setting method of pressure load for tire uniformity measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271812A JP5758283B2 (en) 2011-12-13 2011-12-13 Setting method of pressure load for tire uniformity measurement

Publications (2)

Publication Number Publication Date
JP2013124858A true JP2013124858A (en) 2013-06-24
JP5758283B2 JP5758283B2 (en) 2015-08-05

Family

ID=48776203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271812A Expired - Fee Related JP5758283B2 (en) 2011-12-13 2011-12-13 Setting method of pressure load for tire uniformity measurement

Country Status (1)

Country Link
JP (1) JP5758283B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885804B1 (en) * 2014-10-09 2016-03-16 株式会社神戸製鋼所 Method of creating load estimation model in tire uniformity testing machine
WO2016056433A1 (en) * 2014-10-09 2016-04-14 株式会社神戸製鋼所 Method for estimating load model in tyre uniformity tester
DE102016100414A1 (en) 2015-02-26 2016-09-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) PRESS RELEASE ADJUSTMENT METHOD OF A TIRE TEST MACHINE
CN112326270A (en) * 2020-10-15 2021-02-05 北京朗胜峰测控科技有限公司 Tire uniformity test load force control method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948095A (en) * 1975-04-30 1976-04-06 The Goodyear Tire & Rubber Company Force variation testing of tires
JPH10206289A (en) * 1997-01-21 1998-08-07 Sumitomo Rubber Ind Ltd Tire-uniformity measuring apparatus
JP2004299673A (en) * 2003-03-31 2004-10-28 Goodyear Tire & Rubber Co:The Apparatus and method of measuring tire balance by force variation measuring machine
JP2006118979A (en) * 2004-10-21 2006-05-11 Bridgestone Corp Tire uniformity measurement method and apparatus
JP2007248294A (en) * 2006-03-16 2007-09-27 Yokohama Rubber Co Ltd:The Tire performance measurement system and tire performance measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948095A (en) * 1975-04-30 1976-04-06 The Goodyear Tire & Rubber Company Force variation testing of tires
JPH10206289A (en) * 1997-01-21 1998-08-07 Sumitomo Rubber Ind Ltd Tire-uniformity measuring apparatus
JP2004299673A (en) * 2003-03-31 2004-10-28 Goodyear Tire & Rubber Co:The Apparatus and method of measuring tire balance by force variation measuring machine
JP2006118979A (en) * 2004-10-21 2006-05-11 Bridgestone Corp Tire uniformity measurement method and apparatus
JP2007248294A (en) * 2006-03-16 2007-09-27 Yokohama Rubber Co Ltd:The Tire performance measurement system and tire performance measurement method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076634A (en) * 2014-10-09 2017-08-18 株式会社神户制钢所 The preparation method that model is inferred in load in tyre uniformity testing machine
EP3205999A4 (en) * 2014-10-09 2018-06-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for estimating load model in tyre uniformity tester
WO2016056432A1 (en) * 2014-10-09 2016-04-14 株式会社神戸製鋼所 Method for generating load estimation model in tyre uniformity tester
JP2016080353A (en) * 2014-10-09 2016-05-16 株式会社神戸製鋼所 Method for estimating load model in tire uniformity testing device
CN106796154A (en) * 2014-10-09 2017-05-31 株式会社神户制钢所 The estimating method of the load module in tyre uniformity testing machine
US10520396B2 (en) 2014-10-09 2019-12-31 Kobe Steel, Ltd. Method for estimating load model in tire uniformity tester
WO2016056433A1 (en) * 2014-10-09 2016-04-14 株式会社神戸製鋼所 Method for estimating load model in tyre uniformity tester
TWI588463B (en) * 2014-10-09 2017-06-21 神戶製鋼所股份有限公司 Estimation method of load model among tire uniformity tester
US10473556B2 (en) * 2014-10-09 2019-11-12 Kobe Steel, Ltd. Method for generating load estimation model in tire uniformity tester
JP5885804B1 (en) * 2014-10-09 2016-03-16 株式会社神戸製鋼所 Method of creating load estimation model in tire uniformity testing machine
DE102016100414A1 (en) 2015-02-26 2016-09-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) PRESS RELEASE ADJUSTMENT METHOD OF A TIRE TEST MACHINE
US9880074B2 (en) 2015-02-26 2018-01-30 Kobe Steel, Ltd. Pressing load setting method of tire testing machine
CN105928718A (en) * 2015-02-26 2016-09-07 株式会社神户制钢所 Pressing Load Setting Method Of Tire Testing Machine
JP2016156786A (en) * 2015-02-26 2016-09-01 株式会社神戸製鋼所 Pressing load setting method for tyre testing machine
CN112326270A (en) * 2020-10-15 2021-02-05 北京朗胜峰测控科技有限公司 Tire uniformity test load force control method and device

Also Published As

Publication number Publication date
JP5758283B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP6412437B2 (en) Tire rolling resistance prediction method and tire rolling resistance prediction apparatus
JP5758283B2 (en) Setting method of pressure load for tire uniformity measurement
TWI395936B (en) Driving control method of tire testing machine and tire testing machine
EP2793013B1 (en) Automotive shop service apparatus having means for determining the rolling resistance coefficient of a tyre
JP6282198B2 (en) Tire uniformity testing machine and tire uniformity measuring method
WO2015111276A1 (en) Tire rolling-resistance testing method and testing device
EP2536578A1 (en) Tire changer and method of measuring force variations
EP2745986B1 (en) Burnishing device and burnishing method using it
JP2011127953A (en) Tire testing device
JP4781944B2 (en) Tire test method and tire test apparatus
JP5179999B2 (en) Tire tester drive control method and tire tester
JP2013543798A (en) A method of correcting the contour of a wheel shaft on an underfloor wheel lathe
JP4897835B2 (en) How to test a tire
JP2006308320A (en) Tire compound measuring device
JP5462723B2 (en) Evaluation method of braking performance on tires on ice
JP4379371B2 (en) Manufacturing method of ring member
US9880074B2 (en) Pressing load setting method of tire testing machine
JP6468651B2 (en) Estimating tire performance values
KR101922481B1 (en) A compensation processing apparatus for a surface status of a vechicl brake disk
EP3205999B1 (en) Use of a method for estimating load model in a tyre uniformity tester
JP2012132699A (en) Dynamometer
JP2019211316A (en) Test method for tire rolling resistance
JP2013083477A (en) Tire uniformity testing device and tire uniformity testing method
JP2014006102A5 (en) Shape measuring device, control method and program for shape measuring device
JP2023065142A (en) Cornering characteristic evaluation method and flat belt testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R150 Certificate of patent or registration of utility model

Ref document number: 5758283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees