JP2013124761A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2013124761A
JP2013124761A JP2011275708A JP2011275708A JP2013124761A JP 2013124761 A JP2013124761 A JP 2013124761A JP 2011275708 A JP2011275708 A JP 2011275708A JP 2011275708 A JP2011275708 A JP 2011275708A JP 2013124761 A JP2013124761 A JP 2013124761A
Authority
JP
Japan
Prior art keywords
outer ring
rolling
rolling bearing
inner ring
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011275708A
Other languages
Japanese (ja)
Other versions
JP6035732B2 (en
Inventor
Hayato Ikeda
隼人 池田
Susumu Tanaka
進 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011275708A priority Critical patent/JP6035732B2/en
Publication of JP2013124761A publication Critical patent/JP2013124761A/en
Application granted granted Critical
Publication of JP6035732B2 publication Critical patent/JP6035732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/63Gears with belts and pulleys

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a rolling bearing in which damage, such as early exfoliation, is unlikely to occur on an outer ring track 6, an inner ring track 7, and the raceway surfaces of rolling elements 8, 8 constituting rolling contact parts, and which is capable of suppressing a creep phenomenon between an outer ring 4 and a counterpart member.SOLUTION: In the rolling bearing comprising an outer ring having an outer ring track on the inner circumferential surface, an inner ring having an inner ring track on the outer circumferential surface, and a plurality of rolling elements rotatably provided between the outer ring track and the inner ring track, and used by internally fitting and supporting the outer ring on a fixed portion and externally fitting and supporting the inner ring on a rotating portion, if the minimum thickness of the portion where the outer ring track is provided at the center part in the axial direction of the outer ring is h, and the diameter of each of the rolling elements is Da, 0.4Da≤h≤0.8Da is satisfied and the width of the outer ring is 1.2 Da or more, and to the outer circumference of the outer ring, an elastic body is attached.

Description

本発明は、転がり軸受に関し、特に、クリープ現象の発生を抑制でき、自動車のベルト式無段変速機の回転軸の支持に好適な転がり軸受に関する。   The present invention relates to a rolling bearing, and more particularly to a rolling bearing that can suppress the occurrence of a creep phenomenon and is suitable for supporting a rotating shaft of a belt type continuously variable transmission of an automobile.

自動車用の自動変速機用の変速ユニットとしてベルト式無段変速機が、例えば実公平8−30526号公報等に記載されている様に、従来から各種考えられ、その一部は実際に使用されている。図2は、この様なベルト式無段変速機の基本構造を略示している。このベルト式無段変速機は、互いに平行に配置された入力側回転軸1と出力側回転軸2とを有する。これら各回転軸1、2は、特許請求の範囲に記載した固定の部分である、図示しない変速機ケースの内側に、それぞれ1対ずつの転がり軸受3、3により、回転自在に支持している。   Various types of belt-type continuously variable transmissions have been conventionally considered as transmission units for automatic transmissions for automobiles, as described in, for example, Japanese Utility Model Publication No. 8-30526, and some of them are actually used. ing. FIG. 2 schematically shows the basic structure of such a belt type continuously variable transmission. This belt-type continuously variable transmission has an input side rotating shaft 1 and an output side rotating shaft 2 arranged in parallel to each other. Each of these rotary shafts 1 and 2 is rotatably supported by a pair of rolling bearings 3 and 3 respectively inside a transmission case (not shown) which is a fixed portion described in the claims. .

これら各転がり軸受3、3はそれぞれ、図3に詳示する様に、互いに同心に設けられた外輪4と内輪5とを有する。このうちの外輪4は、内周面に外輪軌道6を、内輪5は外周面に内輪軌道7を、それぞれ有する。そして、これら外輪軌道6と内輪軌道7との間に複数の転動体8、8を、保持器9により保持した状態で、転動自在に設けている。それぞれがこの様に構成される、上記各転がり軸受3、3は、それぞれの外輪4を上記変速機ケースの一部に内嵌固定し、それぞれの内輪5を上記入力側回転軸1又は上記出力側回転軸2に外嵌固定している。そして、この構成により、これら両回転軸1、2を上記変速機ケースの内側に、回転自在に支持している。尚、上記各転がり軸受3、3として従来は、外輪4、内輪5、各転動体8、8を、一般的な軸受鋼2種(SUJ2)により造ったものを使用していた。   Each of these rolling bearings 3 and 3 has an outer ring 4 and an inner ring 5 provided concentrically with each other, as shown in detail in FIG. Of these, the outer ring 4 has an outer ring raceway 6 on the inner peripheral surface, and the inner ring 5 has an inner ring raceway 7 on the outer peripheral surface. A plurality of rolling elements 8, 8 are provided between the outer ring raceway 6 and the inner ring raceway 7 so as to roll freely while being held by a cage 9. Each of the rolling bearings 3 and 3 configured as described above has the outer ring 4 fitted and fixed to a part of the transmission case, and the inner ring 5 is connected to the input side rotary shaft 1 or the output. The side rotary shaft 2 is externally fitted and fixed. And by this structure, these both rotating shafts 1 and 2 are rotatably supported inside the said transmission case. Conventionally, as the rolling bearings 3 and 3, the outer ring 4, the inner ring 5 and the rolling elements 8 and 8 made of two types of general bearing steel (SUJ2) have been used.

上記両回転軸1、2のうちの入力側回転軸1は、エンジン等の駆動源10により、トルクコンバータ或は電磁クラッチ等の発進クラッチ11を介して回転駆動される。又、上記入力側回転軸1の中間部で1対の転がり軸受3、3の間に位置する部分に駆動側プーリ12を設け、この駆動側プーリ12と上記入力側回転軸1とが同期して回転する様にしている。この駆動側プーリ12を構成する1対の駆動側プーリ板13a、13b同士の間隔は、駆動側アクチュエータ14で一方(図2の左方)の駆動側プーリ板13aを軸方向に変位させる事により調節自在である。即ち、上記駆動側プーリ12の溝幅は、上記駆動側アクチュエータ14により拡縮自在である。   Of the rotary shafts 1 and 2, the input-side rotary shaft 1 is rotationally driven by a driving source 10 such as an engine via a starting clutch 11 such as a torque converter or an electromagnetic clutch. In addition, a driving pulley 12 is provided at a portion located between the pair of rolling bearings 3 and 3 in the intermediate portion of the input side rotating shaft 1, and the driving pulley 12 and the input side rotating shaft 1 are synchronized. To rotate. The distance between the pair of drive side pulley plates 13a and 13b constituting the drive side pulley 12 is determined by displacing one drive side pulley plate 13a (left side in FIG. 2) in the axial direction by the drive side actuator 14. It is adjustable. That is, the groove width of the driving pulley 12 can be expanded and contracted by the driving actuator 14.

一方、上記出力側回転軸2の中間部で1対の転がり軸受3、3の間に位置する部分に従動側プーリ15を設け、この従動側プーリ15と上記出力側回転軸2とが同期して回転する様にしている。この従動側プーリ15を構成する1対の従動側プーリ板16a、16b同士の間隔は、従動側アクチュエータ17で一方(図2の右方)の従動側プーリ板16aを軸方向に変位させる事により調節自在である。即ち、上記従動側プーリ15の溝幅は、上記従動側アクチュエータ17により拡縮自在である。そして、この従動側プーリ15と上記駆動側プーリ12とに、無端ベルト18を掛け渡している。この無端ベルト18としては、金属製のものを使用している。   On the other hand, a driven pulley 15 is provided in a middle portion of the output side rotating shaft 2 between a pair of rolling bearings 3 and 3, and the driven pulley 15 and the output side rotating shaft 2 are synchronized. To rotate. The distance between the pair of driven pulley plates 16a and 16b constituting the driven pulley 15 is determined by displacing one (right side in FIG. 2) driven pulley plate 16a in the axial direction by the driven actuator 17. It is adjustable. That is, the groove width of the driven pulley 15 can be expanded and contracted by the driven actuator 17. An endless belt 18 is stretched between the driven pulley 15 and the driving pulley 12. As the endless belt 18, a metal belt is used.

上述の様に構成するベルト式無段変速機では、前記駆動源10から上記発進クラッチ11を介して上記入力側回転軸1に伝達された動力は、上記駆動側プーリ12から上記無端ベルト18を介して、上記従動側プーリ15に伝達される。尚、この無端ベルト18として従来から、押し付け方向に動力を伝達するものと、引っ張り方向に動力を伝達するものとが知られている。何れにしても、上記従動側プーリ15に伝達された動力は、上記出力側回転軸2から減速歯車列19、デファレンシャルギヤ20を介して駆動輪21、21に伝達される。上記入力側回転軸1と出力側回転軸2との間の変速比を変える場合には、上記両プーリ12、15の溝幅を互いに関連させつつ拡縮する。   In the belt-type continuously variable transmission configured as described above, the power transmitted from the drive source 10 to the input-side rotary shaft 1 via the start clutch 11 is transmitted from the drive-side pulley 12 to the endless belt 18. Via the driven pulley 15. Conventionally, as the endless belt 18, one that transmits power in the pressing direction and one that transmits power in the pulling direction are known. In any case, the power transmitted to the driven pulley 15 is transmitted from the output side rotating shaft 2 to the drive wheels 21 and 21 via the reduction gear train 19 and the differential gear 20. When changing the gear ratio between the input-side rotating shaft 1 and the output-side rotating shaft 2, the groove widths of the pulleys 12 and 15 are expanded and contracted while being associated with each other.

例えば、上記入力側回転軸1と出力側回転軸2との間の減速比を大きくする場合には、上記駆動側プーリ12の溝幅を大きくすると共に、上記従動側プーリ15の溝幅を小さくする。この結果、上記無端ベルト18の一部でこれら両プーリ12、15に掛け渡された部分の径が、上記駆動側プーリ12部分で小さく、上記従動側プーリ15部分で大きくなり、上記入力側回転軸1と出力側回転軸2との間で減速が行なわれる。反対に上記入力側回転軸1と出力側回転軸2との間の増速比を大きく(減速比を小さく)する場合には、上記駆動側プーリ12の溝幅を小さくすると共に、上記従動側プーリ15の溝幅を大きくする。この結果、上記無端ベルト18の一部でこれら両プーリ12、15に掛け渡された部分の径が、上記駆動側プーリ12部分で大きく、上記従動側プーリ15部分で小さくなり、上記入力側回転軸1と出力側回転軸2との間で増速が行なわれる。   For example, when the reduction ratio between the input-side rotating shaft 1 and the output-side rotating shaft 2 is increased, the groove width of the driving pulley 12 is increased and the groove width of the driven pulley 15 is decreased. To do. As a result, the diameter of the part of the endless belt 18 that spans the pulleys 12 and 15 is small at the driving pulley 12 part and large at the driven pulley 15 part, and the input side rotation Deceleration is performed between the shaft 1 and the output side rotating shaft 2. On the other hand, when increasing the speed increasing ratio between the input side rotating shaft 1 and the output side rotating shaft 2 (decreasing the speed reducing ratio), the groove width of the driving pulley 12 is decreased and the driven side is also decreased. The groove width of the pulley 15 is increased. As a result, the diameter of the portion of the endless belt 18 that spans the pulleys 12 and 15 is larger at the driving pulley 12 portion and smaller at the driven pulley 15 portion, and the input side rotation The speed is increased between the shaft 1 and the output side rotating shaft 2.

上述の様に構成され作用するベルト式無段変速機の運転時には、各可動部に潤滑油を供給して、これら各可動部を潤滑する。ベルト式無段変速機の場合に使用する潤滑油としては、CVTフルード(ATF兼用油を含む)を使用している。この理由は、金属製の無端ベルト18と駆動側、従動側両プーリ12、15との摩擦係合部の摩擦係数を増大し、且つ、安定させる為である。そして、上記CVTフルードを300ml/min以上の流量で上記摩擦部に循環させ、この摩擦部を潤滑している。又、上記CVTフルードの一部は、前記各転がり軸受3、3の内部を(例えば20ml/min以上の流量で)通過して、これら各転がり軸受3、3の転がり接触部を潤滑する。従って、これら各転がり軸受3、3の内部に、上記無端ベルト18と上記両プーリ12、15との摩擦に伴って発生する摩耗紛や、前記減速歯車列19部分での摩擦に伴って発生したギア紛等の異物が、CVTフルードに混入した状態で入り込む可能性が高い。この様な異物は、上記各転がり軸受3、3の転がり接触部を損傷して、その耐久性を低下させる原因となる。   During operation of the belt-type continuously variable transmission constructed and operated as described above, lubricating oil is supplied to each movable part to lubricate each movable part. CVT fluid (including ATF oil) is used as the lubricating oil used in the belt type continuously variable transmission. The reason for this is to increase and stabilize the friction coefficient of the friction engagement portion between the metal endless belt 18 and both the drive side and driven side pulleys 12 and 15. The CVT fluid is circulated through the friction part at a flow rate of 300 ml / min or more to lubricate the friction part. A part of the CVT fluid passes through the rolling bearings 3 and 3 (for example, at a flow rate of 20 ml / min or more) to lubricate the rolling contact portions of the rolling bearings 3 and 3. Therefore, the wear particles generated due to the friction between the endless belt 18 and the pulleys 12 and 15 and the friction at the reduction gear train 19 are generated inside the rolling bearings 3 and 3. There is a high possibility that foreign matters such as gear dust will enter the CVT fluid. Such foreign matters damage the rolling contact portions of the respective rolling bearings 3 and 3 and cause the durability to be lowered.

この為従来は、上記各転がり軸受3
、3 の軸受サイズを大きくし、或は各転動体8、8の直径Daを大きくする等により、上記各転がり軸受3、3の基本動定格荷重を大きくし、これら各転がり軸受3、3の寿命に余裕を持たせていた。ところが、この様に基本動定格荷重を確保すべく上記各転動体8、8の直径Daを大きくすると、上記ベルト式無段変速機の小型軽量化を図る為には、前記外輪4の肉厚T
を小さく(薄く)する必要がある。しかも、この外輪4 を固定する前記変速機ケースの剛性が低い場合に、この様に外輪4の肉厚Tを小さくすると、この外輪4が弾性変形し易くなると共に、この変形に伴ってこの外輪4
に過大な曲げ応力が加わり、上記各転がり軸受3、3の寿命が低下する可能性がある。
Therefore, conventionally, each of the above rolling bearings 3
3 or the diameter Da of each of the rolling elements 8 and 8 is increased to increase the basic dynamic load rating of each of the rolling bearings 3 and 3. It had a margin in life. However, if the diameter Da of each of the rolling elements 8 and 8 is increased in order to ensure the basic dynamic load rating, the thickness of the outer ring 4 can be reduced in order to reduce the size and weight of the belt-type continuously variable transmission. T
Must be small (thin). Moreover, when the transmission case for fixing the outer ring 4 has low rigidity, if the thickness T of the outer ring 4 is reduced in this way, the outer ring 4 is easily elastically deformed, and the outer ring 4 is easily deformed. 4
Excessive bending stress may be applied to the rolling bearings 3, and the life of the rolling bearings 3 and 3 may be reduced.

また、このような曲げ応力が繰り返し負荷されると、外輪4の外径面が玉の通過周期に応じて波打ち状に弾性変形し、転がり軸受3,3の外輪4と前記変速機ケースとの間にクリープ現象が発生しやすくなり、直接的に転がり軸受の寿命を低下させなくとも、クリープ現象に伴い発生した摩耗粉の影響により、上記転がり軸受3,3の寿命が低下したり、ケース自体が摩耗して、半径方向のガタ等が大きくなり、ベルトの寿命が低下したり、ギアの噛み合い制度が低下することによってベルトのノイズやギア音が発生する場合がある。   When such bending stress is repeatedly applied, the outer diameter surface of the outer ring 4 is elastically deformed in a wavy shape according to the passing period of the balls, and the outer ring 4 of the rolling bearings 3 and 3 and the transmission case are Creep phenomenon is likely to occur in the meantime, and even if the life of the rolling bearing is not directly reduced, the life of the rolling bearings 3 and 3 may be reduced due to the influence of wear powder generated by the creep phenomenon, or the case itself The belt wears out and the play in the radial direction becomes large, so that the life of the belt is reduced and the gear meshing system is lowered.

また、一般に前記外輪4と前記変速機ケースは隙間嵌めで使用されるが、図2の軸受3のように、ベルト張力方向と異なる別の外部荷重(ギヤ反力等)が作用するような場合ではレイアウトによっては、それぞれの荷重が打ち消しあい、軸受に作用する荷重が極めて小さく、無負荷に近い状態となる場合も考えられる。この場合、軸受の動摩擦によって外輪が引きずられて、回転し、荷重変動に応じてクリープが加速し同様の不具合を生じる可能性がある。   In general, the outer ring 4 and the transmission case are used with a clearance fit, but when a different external load (gear reaction force, etc.) acts differently from the belt tension direction as in the bearing 3 of FIG. However, depending on the layout, the respective loads may cancel each other out, and the load acting on the bearing may be extremely small, resulting in a state close to no load. In this case, the outer ring may be dragged and rotated by the dynamic friction of the bearing, and creep may be accelerated according to the load fluctuation, resulting in a similar problem.

実公平8−30526号公報No. 8-30526

本発明は、この様な事情に鑑みて、アルミニウム合金製の様に、剛性の低い変速機ケースに外輪を固定し、且つ、特に2方向以上の複合荷重が作用する場合において、外輪4と変速機ケースとの間のクリープ現象を効果的に抑制でき、長期にわたって耐久性を保持する転がり軸受を実現すべく発明したものである。   In view of such circumstances, the present invention fixes the outer ring 4 to the outer ring 4 in the case where the outer ring is fixed to a transmission case with low rigidity, such as made of an aluminum alloy, and particularly when a composite load of two or more directions is applied. The invention was invented to realize a rolling bearing capable of effectively suppressing the creep phenomenon between the machine case and maintaining durability over a long period of time.

本発明の転がり軸受は、外輪と、内輪と、複数個の転動体とを備える。このうちの外輪は、内周面に外輪軌道を有する。又、上記内輪は、外周面に内輪軌道を有する。又、上記各転動体は、上記外輪軌道と内輪軌道との間に転動自在に設けられている。そして、上記外輪外周の少なくとも一部には弾性体が取り付けられている。さらに、本発明の転がり軸受に於いては、上記外輪の軸方向中央部で上記外輪軌道を設けた部分の最小肉厚(径方向に関する厚さ)をhとし、上記各転動体の直径をDaとした場合に、0.4Da≦h≦0.8Da、より好ましくは0.4Da≦h≦0.6Daを満たし、外輪の幅に関しては1.2Da以上である。   The rolling bearing of the present invention includes an outer ring, an inner ring, and a plurality of rolling elements. Of these, the outer ring has an outer ring raceway on the inner peripheral surface. The inner ring has an inner ring raceway on the outer peripheral surface. Each rolling element is provided between the outer ring raceway and the inner ring raceway so as to roll freely. An elastic body is attached to at least a part of the outer ring outer periphery. Furthermore, in the rolling bearing of the present invention, h is the minimum thickness (thickness in the radial direction) of the portion where the outer ring raceway is provided at the axial center of the outer ring, and the diameter of each rolling element is Da. In this case, 0.4 Da ≦ h ≦ 0.8 Da, more preferably 0.4 Da ≦ h ≦ 0.6 Da is satisfied, and the width of the outer ring is 1.2 Da or more.

上述の様に構成する本発明の転がり軸受を、例えばベルト式無段変速機用転がり軸受として使用の場合には、粘度の低いCVTフルードを使用し、しかも、剛性の低い変速機ケースに組み込む場合でも、耐クリープ性と剥離寿命を十分に確保する事が可能になる。即ち、例えばアルミニウム合金製の様に、剛性の低い変速機ケースに外輪を固定する場合でも、外輪が弾性変形したり、この変形に伴って、外輪に過大な応力が加わる事を防止できる。この為、粘度の低いCVTフルードを使用する事や、転がり軸受の内部に潤滑油を多量に(例えば20ml/min)を大きく上回る程)流通させない事により、外輪軌道及び内輪軌道と各転動体の転動面との転がり接触部に介在させる油膜の強度を確保しにくい場合でも、この転がり接触部で金属接触の発生を防止して、剥離寿命を十分に確保する事が可能になる。従って、必要とする耐久性を確保する為に、上記転がり軸受を大型化する必要がなくなり、入力側回転軸及び出力側回転軸の回転支持部を小型且つ軽量に構成できると共に、回転抵抗の低減を図れる。この結果、ベルト式無段変速機の小型・軽量化及び伝達効率の向上を図れる。   When the rolling bearing of the present invention configured as described above is used as a rolling bearing for a belt-type continuously variable transmission, for example, a CVT fluid having a low viscosity is used, and it is incorporated in a transmission case having low rigidity. However, it is possible to ensure sufficient creep resistance and peeling life. In other words, even when the outer ring is fixed to a transmission case having low rigidity, such as an aluminum alloy, it is possible to prevent the outer ring from being elastically deformed and from being subjected to excessive stress due to this deformation. For this reason, by using a CVT fluid with low viscosity and not allowing a large amount of lubricating oil to flow through the rolling bearing (for example, much higher than 20 ml / min), the outer ring raceway and the inner ring raceway and each rolling element Even when it is difficult to secure the strength of the oil film interposed between the rolling contact portion and the rolling contact surface, it is possible to prevent the occurrence of metal contact at the rolling contact portion and sufficiently ensure the peeling life. Therefore, it is not necessary to increase the size of the rolling bearing in order to ensure the required durability, and the rotation support portion of the input side rotation shaft and the output side rotation shaft can be configured to be small and light, and the rotation resistance can be reduced. Can be planned. As a result, the belt type continuously variable transmission can be reduced in size and weight, and transmission efficiency can be improved.

さらに、外輪外径面が玉の通過周期に応じて波打ち状に弾性変形するのを抑制し、且つ、外輪外径面に装着された弾性体が軸受外輪と変速機ケースの間に介在することになるため、2方向以上の荷重が打ち消しあい、無負荷に近い状態となった場合においても軸受外輪と変速機ケースとの間で発生するクリープを抑制することができる。   Further, the outer ring outer diameter surface is prevented from elastically deforming in a wavy shape according to the ball passing cycle, and an elastic body mounted on the outer ring outer diameter surface is interposed between the bearing outer ring and the transmission case. Therefore, even when loads in two or more directions cancel each other and a state close to no load is reached, creep that occurs between the bearing outer ring and the transmission case can be suppressed.

また、所定の外輪幅とすることによって、変速機ケースとの接触面積も大きくなり、接触荷重が大きい場合においても、好適にクリープ現象を抑制することができる。   Further, by setting the predetermined outer ring width, the contact area with the transmission case is increased, and the creep phenomenon can be suitably suppressed even when the contact load is large.

本発明の実施の形態の1例を示す、図3と同様の断面図。Sectional drawing similar to FIG. 3 which shows an example of embodiment of this invention. 本発明の対象となる転がり軸受を備えたベルト式無段変速機を組み込んだ車両の駆動系の略断面図。1 is a schematic cross-sectional view of a vehicle drive system incorporating a belt-type continuously variable transmission including a rolling bearing that is a subject of the present invention. 転がり軸受を取り出して示す拡大断面図。The expanded sectional view which takes out and shows a rolling bearing.

図1は、本発明の実施の形態の1例を示している。尚、本発明の特徴は、ベルト式無段変速装置用の入力側、出力側両回転軸1、2(図2参照)を支持する為の転がり軸受3a
の構造を工夫し、変速機ケースの剛性が低い場合でも、この転がり軸受3aの耐久性を十分に確保する点にある。その他の部分の構造及び作用は、前述の図3 に示した構造を含めて、従来から知られているベルト式無段変速機用転がり軸受と同様であるので、同等部分には同一符号を付して、重複する説明を省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。
FIG. 1 shows an example of an embodiment of the present invention. The present invention is characterized by a rolling bearing 3a for supporting both the input side and output side rotary shafts 1 and 2 (see FIG. 2) for a belt type continuously variable transmission.
Thus, even when the rigidity of the transmission case is low, the durability of the rolling bearing 3a is sufficiently ensured. The structure and operation of the other parts, including the structure shown in FIG. 3 described above, are the same as those of conventionally known rolling bearings for belt-type continuously variable transmissions. Thus, the overlapping description is omitted or simplified, and the following description will focus on the features of the present invention.

本例の場合は、外輪4aの軸方向中央部で外輪軌道6を設けた部分の(径方向に関する)最小肉厚をhとし、各転動体8、8の直径をDaとした場合に、0.4Da≦h≦0.8Da、より好ましくは0.4Da≦h≦0.6Daを満たす様に、上記外輪4aの寸法を規制している。又、上記外輪4a及び内輪5の軸方向に関する幅Wを、1.2Da≦W≦2.5Daを満たす範囲に規制している。この様な本例の転がり軸受3aの場合には、粘度の低いCVTフルードを使用し、しかも、剛性の低い変速機ケースに組み込む場合でも、剥離寿命を十分に確保する事が可能になる。   In the case of this example, when the minimum thickness (with respect to the radial direction) of the portion where the outer ring raceway 6 is provided at the axial center of the outer ring 4a is h and the diameter of each rolling element 8, 8 is Da, 0 The dimension of the outer ring 4a is regulated so as to satisfy 4 Da ≦ h ≦ 0.8 Da, more preferably 0.4 Da ≦ h ≦ 0.6 Da. Further, the width W in the axial direction of the outer ring 4a and the inner ring 5 is restricted to a range satisfying 1.2 Da ≦ W ≦ 2.5 Da. In the case of such a rolling bearing 3a of this example, it is possible to ensure a sufficient peeling life even when a CVT fluid having a low viscosity is used and it is incorporated in a transmission case having low rigidity.

即ち、アルミニウム合金の如く、軽量ではあるが剛性の低い変速機ケースに上記外輪4aを固定する場合でも、この外輪4aの肉厚hを徒に大きく(厚く)する事なく、この外輪4aが弾性変形したり、この変形に伴ってこの外輪4aに過大な応力が加わる事を防止できる。この為、粘度の低いCVTフルードを使用したり、上記転がり軸受3aの内部に潤滑油を多量に(例えば20ml/minを大きく上回る程)流通させない事で、外輪軌道6及び内輪軌道7と各転動体8、8の転動面との転がり接触部に介在させる油膜の強度を確保しにくい場合でも、この転がり接触部で金属接触が発生する事を防止して、剥離寿命を十分に確保する事が可能になる。入力側回転軸1
及び出力側回転軸2 の回転支持部を小型且つ軽量に構成できると共に、回転抵抗の低減を図れる。この結果、ベルト式無段変速機の小型・軽量化及び伝達効率の向上を図れる。そのうえ、外輪4aと変速機ケースとの間でのクリープ現象も抑制されるため、信頼性が大幅に改善できる。
That is, even when the outer ring 4a is fixed to a lightweight but low-rigidity transmission case such as an aluminum alloy, the outer ring 4a is elastic without increasing the thickness h of the outer ring 4a. It can be prevented that the outer ring 4a is deformed or excessive stress is applied to the outer ring 4a. For this reason, the outer ring raceway 6 and the inner ring raceway 7 are connected to each rolling contact by using CVT fluid having a low viscosity and not allowing a large amount of lubricating oil to flow through the rolling bearing 3a (for example, much higher than 20 ml / min). Even when it is difficult to secure the strength of the oil film interposed between the rolling contact surfaces of the moving bodies 8 and 8, it is possible to prevent the metal contact from occurring at the rolling contact portions and ensure a sufficient peeling life. Is possible. Input side rotating shaft 1
In addition, the rotation support portion of the output side rotating shaft 2 can be made small and light, and the rotation resistance can be reduced. As a result, the belt type continuously variable transmission can be reduced in size and weight, and transmission efficiency can be improved. In addition, since the creep phenomenon between the outer ring 4a and the transmission case is also suppressed, the reliability can be greatly improved.

尚、上記外輪4aの最小肉厚hが0.8Daを超える場合には、上記転がり軸受3aに転動体8、8を組み込みにくくなる。即ち、この転がり軸受3aを自動組立装置で組み立てる場合、通常最後に組み込む転動体8は、上記外輪4aを弾性変形させた状態で組み込む。この為、上記最小肉厚hが0.8Daを超える場合には、上記外輪4aを弾性変形させる為に必要な荷重が大きくなり、上記外輪4aや転動体8、8に損傷が生じ易くなり、自動組立装置で組み立てる事ができなくなる可能性がある。一方、上記最小肉厚hが0.4Daよりも小さい場合には、上記外輪4aを固定する変速機ケースの剛性が低い場合に、この外輪4aが弾性変形し易くなり、上記外輪軌道6や内輪軌道7、各転動体8、8の転動面に早期剥離が生じ、クリープ耐久性が低下する場合がある。   When the minimum thickness h of the outer ring 4a exceeds 0.8 Da, it is difficult to incorporate the rolling elements 8 and 8 into the rolling bearing 3a. That is, when the rolling bearing 3a is assembled by an automatic assembling apparatus, the rolling element 8 to be assembled last is usually assembled with the outer ring 4a elastically deformed. For this reason, when the minimum thickness h exceeds 0.8 Da, a load necessary for elastically deforming the outer ring 4a increases, and the outer ring 4a and the rolling elements 8, 8 are likely to be damaged, It may not be possible to assemble with automatic assembly equipment. On the other hand, when the minimum thickness h is less than 0.4 Da, the outer ring 4a is easily elastically deformed when the rigidity of the transmission case for fixing the outer ring 4a is low, and the outer ring raceway 6 and the inner ring There is a case where early peeling occurs on the raceway 7 and the rolling surfaces of the rolling elements 8 and 8 and the creep durability is lowered.

又、上記外輪4a及び内輪5の軸方向に関する幅Wは、これら外輪4a及び内輪5の弾性変形を防止する点や変速機ケースとの接触面積の増大の観点からは、大きいほど好ましい。ところが、上記幅Wを大きくすると、これら外輪4a及び内輪5の質量も大きくなる。即ち、上記幅Wが2.5Daを超える場合には、上記外輪4a及び内輪5の質量が大きくなり過ぎて、ベルト式無段変速機の伝達効率が低下する可能性がある。一方、上記幅Wが1.2Daよりも小さい場合には、上記外輪4a及び内輪5の剛性が低下して、これら外輪4a及び内輪5が弾性変形し易くなる可能性がある。従って、上記幅Wは、1.2Da以上で2.5Da以下の範囲に収める事が好ましい。   The width W in the axial direction of the outer ring 4a and the inner ring 5 is preferably as large as possible from the viewpoint of preventing elastic deformation of the outer ring 4a and the inner ring 5 and increasing the contact area with the transmission case. However, when the width W is increased, the mass of the outer ring 4a and the inner ring 5 is also increased. That is, when the width W exceeds 2.5 Da, the mass of the outer ring 4a and the inner ring 5 becomes too large, and the transmission efficiency of the belt type continuously variable transmission may be reduced. On the other hand, when the width W is smaller than 1.2 Da, the rigidity of the outer ring 4a and the inner ring 5 is lowered, and the outer ring 4a and the inner ring 5 may be easily elastically deformed. Therefore, the width W is preferably within a range of 1.2 Da to 2.5 Da.

又、本例の場合、上記外輪4の内周面と内輪5の外周面との間で複数の転動体8、8を設置した部分の両端開口部に、シール部材を設けていない。但し、駆動側、従動側各プーリ12、15や無端ベルト18(図2
参照)の摩耗紛等、異物が多く侵入する可能性が大きい場合は、転がり軸受の軸方向寸法が許す限り、上記シール部材を設ける事が好ましい。この様なシール部材としては、TMシールの他、金属板製で非接触型のもの、接触型或は非接触型のニトリルシールやアクリルシール又はフッ素シール等を、使用温度を勘案して選択使用できる。
Further, in the case of this example, no seal member is provided at both end openings of the portion where the plurality of rolling elements 8 are installed between the inner peripheral surface of the outer ring 4 and the outer peripheral surface of the inner ring 5. However, the drive side and driven side pulleys 12 and 15 and the endless belt 18 (FIG. 2).
In the case where there is a large possibility that a large amount of foreign matter, such as wear powder, see), the seal member is preferably provided as long as the axial dimension of the rolling bearing permits. As such a seal member, in addition to the TM seal, a metal plate non-contact type, contact type or non-contact type nitrile seal, acrylic seal or fluorine seal is selected and used in consideration of the operating temperature. it can.

又、上記各転動体8、8を転動自在に保持する保持器9の構造及び材質に関しては、特に限定しないが、使用時の回転速度が特に早い場合には、合成樹脂製の冠型保持器を使用する事が、保持器と転動体との間の摩擦を低減すると共に、硬い摩耗粉の発生を抑えて長寿命化を図る面からは好ましい。   Further, the structure and material of the cage 9 that holds the rolling elements 8 and 8 so as to freely roll are not particularly limited. However, when the rotational speed during use is particularly fast, the crown-type holding made of synthetic resin is used. The use of a cage is preferable from the viewpoint of reducing the friction between the cage and the rolling element and suppressing the generation of hard wear powder and extending the life.

更に、本例の場合、転がり軸受3aを構成する外輪4a、内輪5、転動体8、8を、それぞれ残留オーステナイト量γRが5〜15容量%である軸受鋼2種(SUJ2)により構成している。但し、ベルト式無段変速機内部に存在し、CVTフルードに混入して上記転がり軸受3aの転動体8、8の設置空間を通過する異物の量が多い場合には、外輪4a、内輪5、転動体8、8を構成する鋼材を浸炭処理若しくは浸炭窒化処理する事が好ましい。この様な処理により、上記外輪4a、内輪5、転動体8、8の表面の残留オーステナイト量を20〜45容量%とすると共に、この表面の硬度をHRC62〜67程度にすれば、上記異物によるこの表面の損傷を防止して、上記転がり軸受3aの耐久性向上を図れる。更に、この転がり軸受3aの使用温度が150℃以上に達する場合には、上記外輪4a、内輪5、転動体8、8に、残留オーステナイト量を0〜5%
程度に抑える、寸法安定化処理を施す事が好ましい。この場合に、前記シール部材として、耐熱性ゴムを備えたものを使用する事も好ましい。
Further, in the case of this example, the outer ring 4a, the inner ring 5, and the rolling elements 8 and 8 constituting the rolling bearing 3a are each composed of two types of bearing steel (SUJ2) having a retained austenite amount γR of 5 to 15% by volume. Yes. However, if there is a large amount of foreign matter that is present in the belt type continuously variable transmission and mixed in the CVT fluid and passes through the installation space of the rolling elements 8, 8 of the rolling bearing 3a, the outer ring 4a, the inner ring 5, It is preferable that the steel material constituting the rolling elements 8 and 8 is subjected to carburizing treatment or carbonitriding treatment. By such treatment, the amount of retained austenite on the surfaces of the outer ring 4a, inner ring 5, and rolling elements 8 and 8 is set to 20 to 45% by volume, and the hardness of the surface is set to about HRC 62 to 67. This surface damage can be prevented, and the durability of the rolling bearing 3a can be improved. Further, when the operating temperature of the rolling bearing 3a reaches 150 ° C. or more, the amount of retained austenite is set to 0 to 5% in the outer ring 4a, the inner ring 5 and the rolling elements 8 and 8.
It is preferable to carry out a dimensional stabilization treatment that suppresses the degree. In this case, it is also preferable to use a seal member provided with a heat resistant rubber.

又、転がり軸受3aが、図示の様な単列深溝型玉軸受の場合に限らず、アンギュラ型等の他の型式の玉軸受、更には円筒ころ軸受や円すいころ軸受、ニードル軸受等、他の軸受の場合でも、同様の作用・効果を得られる。   Further, the rolling bearing 3a is not limited to the single row deep groove type ball bearing as shown in the figure, and other types of ball bearings such as an angular type, as well as other types such as a cylindrical roller bearing, a tapered roller bearing, a needle bearing, etc. Even in the case of a bearing, similar actions and effects can be obtained.

更に、本例の場合、外輪4aの外周に溝31を形成し、Oリング32をはめ込んでいる。この溝31とOリング32の関係は、変速機ケースに外輪4aがはめ込まれてOリングが潰された場合のOリングのつぶし率(Oリング直径の変化率)が10〜35%であり、かつ、その場合の溝31の全容積に対してOリングが占める体積である充填率が60〜95%となるように設定されている。   Furthermore, in this example, a groove 31 is formed on the outer periphery of the outer ring 4a, and an O-ring 32 is fitted. The relationship between the groove 31 and the O-ring 32 is that the crushing rate of the O-ring (change rate of the O-ring diameter) when the outer ring 4a is fitted into the transmission case and the O-ring is crushed is 10 to 35%. And the filling rate which is the volume which an O-ring occupies with respect to the total volume of the groove | channel 31 in that case is set so that it may become 60 to 95%.

Oリング32は、ゴム等に代表される弾性体(ニトリルゴム、アクリルゴム、フッ素ゴム等)であることが好ましい。また、Oリングの断面形状も上記つぶし率と充填率が維持できれば任意に選定できる。また、図1に示した形態では溝31を2つ設けたが、軸受外径サイズが大きい程、弾性体とケースの接触面積が大きくなり、耐クリープ力が向上するため、仕様条件によっては、1つもしくは3つ以上設けてもよい。   The O-ring 32 is preferably an elastic body represented by rubber or the like (nitrile rubber, acrylic rubber, fluorine rubber, or the like). Further, the cross-sectional shape of the O-ring can be arbitrarily selected as long as the crushing rate and the filling rate can be maintained. In the embodiment shown in FIG. 1, two grooves 31 are provided. However, the larger the outer diameter of the bearing, the larger the contact area between the elastic body and the case, and the creep resistance is improved. One or three or more may be provided.

このOリングの効果により、外輪4aと変速機ケースとの間の接触荷重が小さい状況で転がり軸受3aが回転しても、変速機ケースと外輪4aとの間でのクリープ現象の発生を抑制でき、2方向の変動荷重条件においても広範囲にクリープを防止することが可能となる。   Due to the effect of the O-ring, even if the rolling bearing 3a rotates in a situation where the contact load between the outer ring 4a and the transmission case is small, the occurrence of creep phenomenon between the transmission case and the outer ring 4a can be suppressed. Creep can be prevented over a wide range even under variable load conditions in two directions.

本発明の転がり軸受は、耐久性と耐クリープ性にすぐれており、自動車のベルト式変速機のプーリ軸支持用の軸受の他、各種機械要素に好適に使用できる。   The rolling bearing of the present invention is excellent in durability and creep resistance, and can be suitably used for various machine elements in addition to a bearing for supporting a pulley shaft of an automobile belt-type transmission.

1 入力側回転軸
2 出力側回転軸
3、3a 転がり軸受
4、4a 外輪
5 内輪
6 外輪軌道
7 内輪軌道
8 転動体
9 保持器
10 駆動源
11 発進クラッチ
12 駆動側プーリ
13a、13b 駆動側プーリ板
14 駆動側アクチュエータ
15 従動側プーリ
16a、16b 従動側プーリ板
17 従動側アクチュエータ
18 無端ベルト
19 減速歯車列
20 デファレンシャルギヤ
21 駆動輪
DESCRIPTION OF SYMBOLS 1 Input side rotating shaft 2 Output side rotating shaft 3, 3a Rolling bearing 4, 4a Outer ring 5 Inner ring 6 Outer ring raceway 7 Inner ring raceway 8 Rolling element 9 Cage 10 Drive source 11 Starting clutch 12 Drive side pulleys 13a, 13b Drive side pulley plate 14 Drive side actuator 15 Drive side pulleys 16a and 16b Drive side pulley plate 17 Drive side actuator 18 Endless belt 19 Reduction gear train 20 Differential gear 21 Drive wheel

Claims (4)

内周面に外輪軌道を有する外輪と、外周面に内輪軌道を有する内輪と、これら外輪軌道と内輪軌道との間に転動自在に設けられた複数個の転動体とを備え、上記外輪を固定の部分に内嵌支持し、上記内輪を回転する部分に外嵌支持して使用する転がり軸受に於いて、上記外輪の軸方向中央部で上記外輪軌道を設けた部分の最小肉厚をhとし、上記各転動体の直径をDaとした場合に、0.4Da≦h≦0.8Daを満たし、かつ、上記外輪外周には弾性体が少なくとも1つ以上装着されていることを特徴とする転がり軸受。   An outer ring having an outer ring raceway on an inner peripheral surface, an inner ring having an inner ring raceway on an outer peripheral surface, and a plurality of rolling elements provided between the outer ring raceway and the inner ring raceway so as to be freely rollable. In a rolling bearing that is supported by internal fitting on a fixed part and supported by external fitting on a part that rotates the inner ring, the minimum thickness of the part provided with the outer ring raceway at the axial center of the outer ring is h. When the diameter of each rolling element is Da, 0.4 Da ≦ h ≦ 0.8 Da is satisfied, and at least one elastic body is mounted on the outer periphery of the outer ring. Rolling bearing. 上記外輪が内嵌支持される固定の部分と、外輪との嵌めあいが隙間ばめであることを特徴とする請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the fit between the fixed portion on which the outer ring is fitted and supported and the outer ring is a clearance fit. 上記外輪が内嵌支持される固定の部分に、外輪が固定された状態において、上記弾性体のつぶし率が10〜35%であり、かつ、充填率が60〜95%であることを特徴とする請求項1又は2に記載の転がり軸受。   In the state where the outer ring is fixed to the fixed portion where the outer ring is fitted and supported, the crushing rate of the elastic body is 10 to 35%, and the filling rate is 60 to 95%. The rolling bearing according to claim 1 or 2. 2方向以上の複合荷重が作用する支持として用いられる請求項1、2、3記載の転がり軸受とその支持方法。   The rolling bearing according to claim 1, used as a support on which a composite load in two or more directions acts, and a method for supporting the rolling bearing.
JP2011275708A 2011-12-16 2011-12-16 Rolling bearing Active JP6035732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011275708A JP6035732B2 (en) 2011-12-16 2011-12-16 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275708A JP6035732B2 (en) 2011-12-16 2011-12-16 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2013124761A true JP2013124761A (en) 2013-06-24
JP6035732B2 JP6035732B2 (en) 2016-11-30

Family

ID=48776135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275708A Active JP6035732B2 (en) 2011-12-16 2011-12-16 Rolling bearing

Country Status (1)

Country Link
JP (1) JP6035732B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215061A (en) * 2014-05-12 2015-12-03 日本精工株式会社 Rolling bearing
JP2016056920A (en) * 2014-09-11 2016-04-21 日本精工株式会社 Rolling bearing
CN109753723A (en) * 2019-01-02 2019-05-14 太原理工大学 A kind of radial antifriction bearing fatigue life calculation method
CN110073120A (en) * 2017-03-31 2019-07-30 株式会社Ihi Bearing construction and motor compressor
JP2020041585A (en) * 2018-09-10 2020-03-19 ミネベアミツミ株式会社 Rolling bearing
CN113646551A (en) * 2019-03-15 2021-11-12 Ntn株式会社 Rolling bearing
US20230047216A1 (en) * 2021-08-11 2023-02-16 Aktiebolaget Skf Deep groove ball bearing and applications thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965604A (en) * 1995-08-24 1997-03-07 Kokusan Denki Co Ltd Rotary electric machine
JP2004052966A (en) * 2002-07-23 2004-02-19 Nsk Ltd Roller bearing for belt type continuously variable transmission
JP2005321006A (en) * 2004-05-07 2005-11-17 Nsk Ltd Rolling bearing device
JP2006132709A (en) * 2004-11-08 2006-05-25 Nsk Ltd Rolling bearing with sensor
JP2006234097A (en) * 2005-02-25 2006-09-07 Nsk Ltd Creep prevention device and rolling bearing
JP2006329368A (en) * 2005-05-27 2006-12-07 Nsk Ltd Bearing for resin pulley
JP2008256136A (en) * 2007-04-06 2008-10-23 Nsk Ltd Rolling bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965604A (en) * 1995-08-24 1997-03-07 Kokusan Denki Co Ltd Rotary electric machine
JP2004052966A (en) * 2002-07-23 2004-02-19 Nsk Ltd Roller bearing for belt type continuously variable transmission
JP2005321006A (en) * 2004-05-07 2005-11-17 Nsk Ltd Rolling bearing device
JP2006132709A (en) * 2004-11-08 2006-05-25 Nsk Ltd Rolling bearing with sensor
JP2006234097A (en) * 2005-02-25 2006-09-07 Nsk Ltd Creep prevention device and rolling bearing
JP2006329368A (en) * 2005-05-27 2006-12-07 Nsk Ltd Bearing for resin pulley
JP2008256136A (en) * 2007-04-06 2008-10-23 Nsk Ltd Rolling bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215061A (en) * 2014-05-12 2015-12-03 日本精工株式会社 Rolling bearing
JP2016056920A (en) * 2014-09-11 2016-04-21 日本精工株式会社 Rolling bearing
CN110073120A (en) * 2017-03-31 2019-07-30 株式会社Ihi Bearing construction and motor compressor
JP2020041585A (en) * 2018-09-10 2020-03-19 ミネベアミツミ株式会社 Rolling bearing
JP7136637B2 (en) 2018-09-10 2022-09-13 ミネベアミツミ株式会社 rolling bearing
CN109753723A (en) * 2019-01-02 2019-05-14 太原理工大学 A kind of radial antifriction bearing fatigue life calculation method
CN113646551A (en) * 2019-03-15 2021-11-12 Ntn株式会社 Rolling bearing
US20230047216A1 (en) * 2021-08-11 2023-02-16 Aktiebolaget Skf Deep groove ball bearing and applications thereof
US11859661B2 (en) * 2021-08-11 2024-01-02 Aktiebolaget Skf Deep groove ball bearing and applications thereof

Also Published As

Publication number Publication date
JP6035732B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6035732B2 (en) Rolling bearing
US9482323B2 (en) Friction roller reducer and drive unit for electric automobile
KR101271788B1 (en) Pulley support structure for belt-drive continuously variable transmission and belt-drive continuously variable transmission
KR20040091062A (en) Rotation support device for compressor pulley
US20190219102A1 (en) Sealed bearing
WO2016143786A1 (en) Sealed bearing
JP2008106923A (en) Planetary-roller-type transmission
JP4786482B2 (en) Tapered roller bearing
CN100445585C (en) Rolling bearing
JP2017219058A (en) Bearing with seal
JP2004183765A (en) Rolling bearing for belt-type continuously variable transmission
JP4569470B2 (en) Roller bearing for belt type continuously variable transmission
JP4114422B2 (en) Rolling bearing for belt type continuously variable transmission
JP2002286044A (en) Transmission and rolling bearing with sealing plate therefor
JP5428217B2 (en) Radial needle roller bearings
JP2012193792A (en) Friction roller type reduction gear and electric vehicle drive unit
JP2012193793A (en) Friction roller type reduction gear and electric vehicle drive unit
JP2006138447A (en) Rolling bearing
JP2012197930A (en) Friction roller type reduction gear and electric vehicle drive system
JP5212075B2 (en) Toroidal continuously variable transmission
JP2006242314A (en) Toroidal continuously variable transmission
JP2003336703A (en) Roller bearing for belt-type continuously variable transmission
JP2018071720A (en) Corrugated holder and ball bearing
JP2006105259A (en) Rolling bearing
JP2009204089A (en) Cage for needle roller bearing, and needle roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6035732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150