JP2013124536A - Breakwater structure - Google Patents

Breakwater structure Download PDF

Info

Publication number
JP2013124536A
JP2013124536A JP2011275734A JP2011275734A JP2013124536A JP 2013124536 A JP2013124536 A JP 2013124536A JP 2011275734 A JP2011275734 A JP 2011275734A JP 2011275734 A JP2011275734 A JP 2011275734A JP 2013124536 A JP2013124536 A JP 2013124536A
Authority
JP
Japan
Prior art keywords
wave
tsunami
external structure
breakwater
caisson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011275734A
Other languages
Japanese (ja)
Inventor
Tomohiro Bessho
友宏 別所
Kazuo Endo
和雄 遠藤
Kanae Ozawa
加苗 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2011275734A priority Critical patent/JP2013124536A/en
Publication of JP2013124536A publication Critical patent/JP2013124536A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Abstract

PROBLEM TO BE SOLVED: To provide an effective and appropriate breakwater structure capable of developing a breakwater function against large-scale tidal waves as persistently as possible.SOLUTION: The breakwater structure uses a levee body 15 constructed with a number of caissons 10 arranged neighboring one another for developing a breakwater function against large-scale tidal waves. The caissons each consist of a cylindrical external structure 11 and a cylindrical or circularly columnar internal structure 12 having a smaller diameter than it. The internal structure is arranged coaxially inside the external structure to secure a planarly annular wave absorbing space 13 therebetween. At least in the outer peripheral face of the external structure facing the sea side, a slit 14 is formed to cause the inflow of tidal waves through the wave absorbing space. The external structure and the internal structure are installed while being each supported by supporting piles 16 driven into a submarine ground, to hold their self-standing states while precluding the horizontal displacement against the wave power of assumed-scale tidal waves.

Description

本発明は、大規模な津波に対する防波施設としての防波構造物に関する。   The present invention relates to a wave preventing structure as a wave preventing facility against a large-scale tsunami.

津波に対する防波構造物としての防波堤や防潮堤、護岸構造物としては様々な構造、形態のものがあるが、たとえば特許文献1や特許文献2には消波機能を備えた消波ケーソンについての提案がある。   There are various structures and forms of breakwaters, seawalls, and revetment structures as wavebreak structures against tsunamis. For example, Patent Document 1 and Patent Document 2 describe a wave breaker caisson having a wave-dissipating function. I have a suggestion.

特開2002−275855号公報JP 2002-275855 A 特開2002−309540号公報JP 2002-309540 A

ところで、東日本大震災で発生した想定以上の津波によって従来の防波堤は損傷を受けて甚大な被害が生じたが、これは、津波が複数回にわたり繰り返し押し寄せてくるのに対し、従来の防波堤が第1波で損傷してしまい第2波以降の津波に対して本来の機能を発揮できなかったためと考えられる。   By the way, the conventional breakwater was damaged by the tsunami more than expected due to the Great East Japan Earthquake, and the damage was seriously caused. The tsunami was repeatedly pushed several times. It is thought that the original function was not able to be demonstrated with respect to the tsunami after the 2nd wave because it was damaged by the wave.

具体的には、たとえば図3に示すようなケーソン式の防波堤では、津波の第1波で個々のケーソン1が滑動して隣接のケーソン間に隙間を生じ、その隙間に強い水流が発生し、これによってさらにケーソン1の滑動やマウンド2の洗掘が助長され、ついにはケーソン1の傾斜や転倒といった状況に至ったと考えられる。   Specifically, for example, in a caisson-type breakwater as shown in FIG. 3, each caisson 1 slides in the first tsunami wave to create a gap between adjacent caisons, and a strong water flow is generated in the gap. This further facilitated the sliding of the caisson 1 and the scouring of the mound 2, and it was thought that the caisson 1 was finally tilted or overturned.

このことは特許文献1や特許文献2に示される消波ケーソンによる場合も同様であって、いずれにしても現状の防波構造物では想定規模を超える津波に対する防波機能は十分ではなく、それに対する対策が急務とされているのが実状である。   This also applies to the case of the wave-dissipating caisson shown in Patent Document 1 and Patent Document 2, and in any case, the current wave-breaking structure does not have a sufficient wave-breaking function against a tsunami exceeding the assumed scale. The actual situation is that urgent measures are required.

上記事情に鑑み、本発明は大規模な津波に対しても可及的に粘り強く防波機能を発揮し得る有効適切な防波構造物を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an effective and appropriate wave-breaking structure capable of exhibiting a wave-breaking function as strongly as possible even for a large-scale tsunami.

本発明は、多数のケーソンを隣接配置して構築してなる堤体によって大規模な津波に対する防波機能を備える防波構造物であって、前記ケーソンは、円筒状をなす外部構造体と、該外部構造体よりも小径の円筒状ないし円柱状をなす内部構造体とからなり、前記外部構造体をその軸線を上下方向としかつ頂部が少なくとも想定規模の津波の波高よりも高い位置となる状態で海底面に設置するとともに、該外部構造体の内部に前記内部構造体を同軸状態で配置して、それら外部構造体と内部構造体との間に平面視環状の消波空間を確保するとともに、前記外部構造体の少なくとも海側に面する外周面に前記消波空間に通じて津波を該消波空間内に流入させるためのスリットを形成し、前記外部構造体および前記内部構造体を海底地盤に打ち込んだ支持杭により滑動不能かつ転倒不能に支持して設置してなることを特徴とする。   The present invention is a wave-breaking structure having a wave-breaking function against a large-scale tsunami by a dam body constructed by arranging a number of caisons adjacent to each other, and the caisson includes a cylindrical external structure, A state in which the outer structure has an inner structure having a cylindrical or columnar shape having a smaller diameter than that of the outer structure, the axis of the outer structure being in the vertical direction, and the top is at a position higher than the wave height of at least an assumed scale tsunami In addition, the inner structure is coaxially arranged inside the outer structure to secure a ring-shaped wave-dissipating space in plan view between the outer structure and the inner structure. A slit for allowing a tsunami to flow into the wave-dissipating space through the wave-dissipating space is formed at least on an outer peripheral surface facing the sea side of the external structure, and the external structure and the internal structure are connected to the seabed. Drive into the ground And characterized by being installed sliding impossible and by inverting non supported by the support piles.

本発明の防波構造物は外部構造体および内部構造体からなる二重構造のケーソンを支持杭により支持して設置しているので、それらケーソンにより構築された堤体を越流するような大規模な津波を受けても個々のケーソン自体が滑動したり転倒して損傷を受けることはなく、しかもケーソンに到達した津波をスリットから消波空間内に流入させることで消波機能を発揮し得るものであり、したがって本発明の防波構造物は繰り返し押し寄せてくる津波に対して粘り強く防波機能を維持し得て確実に減災効果が得られるものである。   Since the breakwater structure of the present invention is installed by supporting a double-structured caisson composed of an external structure and an internal structure by a support pile, it is large enough to overflow a dam body constructed by these caissons. Even if a large tsunami is received, individual caissons themselves will not slide or fall and be damaged, and the tsunami that reaches the caisson will flow into the wave-dissipating space from the slits and can exhibit a wave-dissipating function. Therefore, the wave-breaking structure of the present invention can maintain the wave-breaking function with respect to the tsunami repeatedly rushing and can surely obtain a disaster-reducing effect.

本発明の実施形態である防波構造物の概略構成を示す側立面図である。It is a side elevation view which shows schematic structure of the wave-proof structure which is embodiment of this invention. 同、部分平面図である。FIG. 従来一般のケーソン式防波堤の津波による破壊メカニズムを示す図である。It is a figure which shows the destruction mechanism by the tsunami of the conventional common caisson type breakwater.

本発明の防波構造物の一実施形態を図1〜図2に示す。
これは大規模な津波に対する防波堤として設置されるもので、発生確率が100年に一度程度と想定される規模の津波(レベル1クラスの津波)に対してはもとより、1000年に一度程度と想定されるさらに大規模な津波(レベル2クラスの津波)が発生した場合においても破壊されてしまうことなく可及的に粘り強く防波機能を維持し得る構造とされたものである。
One Embodiment of the wave-proof structure of this invention is shown in FIGS.
This is installed as a breakwater against a large-scale tsunami, and is assumed to be about once every 1000 years, not only for tsunamis with a probability of occurring once every 100 years (level 1 class tsunami) Even when a larger tsunami (level 2 class tsunami) is generated, the structure is such that the wave-proof function can be maintained as firmly as possible without being destroyed.

具体的には、本実施形態の防波構造物は図2に示すように多数のケーソン10が隙間なく隣接配置されて接合されることによって構築された一連の堤体15を主体とするものであるが、各ケーソン10は中空二重構造の形態とされ、かつそれらのケーソン10が海底地盤に対して支持杭16により支持されて設置されたことを主眼とするものである。
なお、図示例の場合には、隣接するケーソン10どうしを確実に接合するために、双方の外部構造体11どうしの当接部に平坦面を形成してそれら平坦面どうし密着させた状態で接合するようにしているが、ケーソン10どうしの接合の形態は任意である。
Specifically, as shown in FIG. 2, the wavebreak structure of the present embodiment is mainly composed of a series of dam bodies 15 constructed by joining a plurality of caissons 10 arranged adjacent to each other without gaps. However, each caisson 10 is in the form of a hollow double structure, and the caisson 10 is mainly supported by the support pile 16 and installed on the seabed ground.
In the case of the illustrated example, in order to securely join adjacent caissons 10, a flat surface is formed at the contact portion between both external structures 11, and the flat surfaces are in close contact with each other. However, the form of joining of the caissons 10 is arbitrary.

本実施形態におけるケーソン10は、円筒状をなす外部構造体11と、その外部構造体11よりも小径の円柱状をなす内部構造体12とからなり、外部構造体11をその軸線を上下方向となるように縦置き姿勢としてその頂部が想定規模の津波(本実施形態では少なくともレベル1クラスの津波を想定している)が発生した際の波高よりも高い位置となる状態で海底面に設置したマウンド17上に配置するとともに、その外部構造体11の内部に内部構造体12を同軸状態で配置して、それら外部構造体11と内部構造体12との間に平面視環状の消波空間13を確保したものとなっている。   The caisson 10 in the present embodiment includes an external structure 11 having a cylindrical shape and an internal structure 12 having a columnar shape having a smaller diameter than that of the external structure 11, and the axis of the external structure 11 is set in the vertical direction. As a vertically placed posture, the top is installed on the bottom of the sea in a state that is higher than the wave height when a tsunami of the assumed scale (this embodiment assumes a tsunami of level 1 class at least) In addition to being disposed on the mound 17, the internal structure 12 is coaxially disposed inside the external structure 11, and the wave-dissipating space 13 having an annular shape in plan view is formed between the external structure 11 and the internal structure 12. Is ensured.

そして、外部構造体11の少なくとも海側に面する外周面には、その内側の消波空間13に通じる多数のスリット14が周方向に間隔をおいて形成されていて、ケーソン10全体により構築された一連の堤体15に到達した津波はそれらスリット14から各ケーソン10内の消波空間13内に流入可能とされている。   A large number of slits 14 communicating with the inner extinguishing space 13 are formed at intervals in the circumferential direction on at least the outer peripheral surface of the external structure 11 facing the sea side, and is constructed by the caisson 10 as a whole. The tsunami that has reached the series of levee bodies 15 can flow into the wave-dissipating space 13 in each caisson 10 from the slits 14.

さらに、従来一般的なケーソン式防波堤は各ケーソンをマウンド上に単に配置することで設置することが通常であるが、本実施形態では外部構造体11および内部構造体12をいずれもマウンド17上に単に配置するのみならず、図1に示すように海底地盤に打ち込んだ多数の支持杭16により堅固に支持して設置しており、これにより仮にレベル2クラスの津波を受けても各ケーソン10が波力に打ち負けて陸側に滑動したり転倒してしまうことが確実に防止されるようになっている。   Further, a conventional caisson type breakwater is usually installed by simply disposing each caisson on the mound, but in this embodiment, both the external structure 11 and the internal structure 12 are on the mound 17. As shown in FIG. 1, the caisson 10 is installed not only simply but also firmly supported by a large number of support piles 16 driven into the submarine ground. It is surely prevented from slid to the land side or toppling over the wave force.

上記構成のもとに本実施形態の防波構造物によれば、想定規模であるたとえばレベル1クラスの津波に対してはもとより、さらに大規模な津波(たとえばレベル2クラスの津波)に対しても容易に損傷を受けたり破壊されてしまうことなく優れた防波機能を粘り強く発揮し得るものである。
すなわち、本実施形態の防波構造物は上記のように各ケーソン10における外部構造体11および内部構造体12をいずれも支持杭16により支持して設置しているので、これらケーソン10により構築された一連の堤体15を越流するようなレベル2クラスの津波による大きな波力を受けても、また仮にマウンド17が洗掘されたような場合であっても、ケーソン10が直ちに滑動したり転倒して損傷したり破壊されてしまうことはなく、したがって繰り返し押し寄せてくる津波に対して粘り強く防波機能を維持し得て確実に減災効果が得られるものである。
According to the breakwater structure of the present embodiment based on the above-described configuration, not only for the assumed scale, for example, a level 1 class tsunami, but also for a larger tsunami (for example, a level 2 class tsunami). It is possible to perseverely exhibit an excellent wave preventing function without being easily damaged or destroyed.
That is, the wave-breaking structure of this embodiment is constructed with these caissons 10 because both the outer structure 11 and the inner structure 12 in each caisson 10 are supported by the support piles 16 as described above. The caisson 10 immediately slides even if it receives a large wave force from a level 2 class tsunami that overflows a series of levee bodies 15 or if the mound 17 is scoured. It will not be damaged or destroyed by overturning. Therefore, it can maintain a wave-proof function persistently against tsunamis that repeatedly push in, and a disaster reduction effect can be obtained with certainty.

しかも、ケーソン10に到達した津波は外部構造体11に形成されているスリット14から消波空間13内に流入し、各スリット14から消波空間13内に流入した波はその内部において衝突しかつ消波空間13内において左右に振り分けられて内部構造体12の周囲を回り込むようにして流れ、消波空間13の背面側(陸側)において両側からの流れが激しく衝突するから、消波空間13内においてそのような流れが生じることで津波エネルギーが効率的に減衰せしめられて確実に消波機能を発揮し得るものであり、これによる減災効果を十分に期待できるものである。   Moreover, the tsunami that has reached the caisson 10 flows into the wave-dissipating space 13 from the slits 14 formed in the external structure 11, and the waves that have flowed into the wave-dissipating spaces 13 from the slits 14 collide with each other. In the wave-dissipating space 13, the waves are distributed to the left and right and flow around the inner structure 12, and the flow from both sides collides violently on the back side (land side) of the wave-dissipating space 13. By generating such a flow in the inside, the tsunami energy can be effectively attenuated and the wave-absorbing function can be surely exhibited, and the disaster mitigation effect can be sufficiently expected.

以上で本発明の実施形態について説明したが、上記実施形態はあくまで好適な一例であって本発明は上記実施形態に限定されるものではなく、たとえば以下に列挙するような適宜の変形や応用が可能である。   Although the embodiment of the present invention has been described above, the above embodiment is merely a preferred example, and the present invention is not limited to the above embodiment. For example, appropriate modifications and applications as listed below are possible. Is possible.

ケーソン10を構成している外部構造体11および内部構造体12の構造は鋼製あるいは鉄筋コンクリート造とすることが現実的であるが、特に限定されるものではない。
また、内部構造体12は上記実施形態のように中実の円柱状とすることに限らず、所望強度が得られる場合には外部構造体11と同様に中空の円筒体としても良い。
いずれにしても、ケーソン10全体がレベル2クラスの津波にも耐え得るように外部構造体11および内部構造体12の構造やその形態、形状・寸法を設定することが好ましく、それらの仕様については津波の想定規模や要求される防波性能に応じて最適設計すれば良い。
Although it is realistic that the structure of the external structure 11 and the internal structure 12 constituting the caisson 10 is made of steel or reinforced concrete, it is not particularly limited.
Further, the internal structure 12 is not limited to a solid columnar shape as in the above embodiment, and may be a hollow cylinder similar to the external structure 11 when desired strength is obtained.
In any case, it is preferable to set the structure, form, shape, and dimensions of the external structure 11 and the internal structure 12 so that the entire caisson 10 can withstand a level 2 class tsunami. What is necessary is just to design optimally according to the assumed scale of a tsunami and the required wave prevention performance.

同様に、支持杭16についても鋼管杭やPC杭その他の任意の構造の杭を採用可能であるが、いずれにしても支持杭16はケーソン10を確実に支持してレベル2クラスの津波に対してもその滑動や転倒を防止し得るものであることが好ましく、それが可能なように支持杭16の構造や径寸法、所要本数、設置間隔、海底地盤への根入れ深さ等を最適設計すれば良い。   Similarly, steel piles, PC piles and other arbitrary structures can be used for the support piles 16, but in any case, the support piles 16 support the caisson 10 reliably and are resistant to level 2 class tsunamis. However, it is preferable to be able to prevent the sliding and overturning, so that the structure, diameter size, required number, installation interval, depth of penetration into the submarine ground, etc. are optimally designed so that this is possible. Just do it.

上記実施形態では外部構造体11の海側の外周面にのみスリット14を設けたが、スリット14の形成位置やその形状・寸法、その他の構成については任意であって、たとえば陸側も含めて外部構造体11の全周にわたってスリット14を形成することも考えられる。その場合、越流が生じるような大規模な津波の際には消波空間13に流入した津波が陸側のスリット14から流出することにはなるが、津波が単に堤体15上を越流する場合に比べて狭隘な消波空間13を通過する津波エネルギーを減衰させる効果が期待できる。   In the above embodiment, the slit 14 is provided only on the outer peripheral surface of the outer structure 11 on the sea side. However, the formation position of the slit 14, its shape and size, and other configurations are arbitrary, and include, for example, the land side. It is also conceivable to form the slits 14 over the entire circumference of the external structure 11. In that case, in the case of a large-scale tsunami that causes overflow, the tsunami that flows into the wave-dissipating space 13 flows out from the slit 14 on the land side, but the tsunami simply flows over the dam body 15. The effect of attenuating the tsunami energy passing through the narrow wave-dissipating space 13 can be expected.

また、内部構造体12も中空円筒状としてその外周面にもスリット14を形成することも考えられ、その場合においては外部構造体11と内部構造体12に設けるスリット14の位置関係を適切に設定することにより、ケーソン10内の消波空間13を単に環状とするのみならずさらに複雑な水流が生じるような消波空間13として消波効果をより高めることも考えられる。
さらには、ケーソン10の頂部にもスリット14や適宜の開口部を設けて、ケーソン10内に流入した波を上方に向けて噴出させることで津波エネルギーを上方に逃がすことも考えられる。
In addition, it is conceivable that the internal structure 12 is also formed in a hollow cylindrical shape and slits 14 are formed on the outer peripheral surface thereof. In this case, the positional relationship between the external structure 11 and the slits 14 provided in the internal structure 12 is appropriately set. By doing so, it is conceivable that the wave-dissipating space 13 in the caisson 10 is not only circular, but the wave-dissipating effect is further enhanced as the wave-dissipating space 13 in which a more complicated water flow occurs.
Furthermore, it is also conceivable that the tsunami energy is released upward by providing a slit 14 or an appropriate opening at the top of the caisson 10 and ejecting the wave flowing into the caisson 10 upward.

なお、上記実施形態は本発明の防波構造物を防波堤として沖合に設置する場合の一例であるが、本発明の防波構造物は防潮堤や護岸構造物として海岸部に設置することも勿論可能であるし、津波の想定規模も任意であることはいうまでもない。   In addition, although the said embodiment is an example in the case of installing the breakwater structure of this invention offshore as a breakwater, of course, the breakwater structure of this invention may be installed in a coast part as a tide wall or a breakwater structure. Needless to say, it is possible and the scale of the tsunami is arbitrary.

10 ケーソン
11 外部構造体
12 内部構造体
13 消波空間
14 スリット
15 堤体
16 支持杭
17 マウンド
DESCRIPTION OF SYMBOLS 10 Caisson 11 External structure 12 Internal structure 13 Wave-dissipating space 14 Slit 15 Bank body 16 Support pile 17 Mound

Claims (1)

多数のケーソンを隣接配置して構築してなる堤体によって大規模な津波に対する防波機能を備える防波構造物であって、
前記ケーソンは、円筒状をなす外部構造体と、該外部構造体よりも小径の円筒状ないし円柱状をなす内部構造体とからなり、
前記外部構造体をその軸線を上下方向としかつ頂部が少なくとも想定規模の津波の波高よりも高い位置となる状態で海底面に設置するとともに、該外部構造体の内部に前記内部構造体を同軸状態で配置して、それら外部構造体と内部構造体との間に平面視環状の消波空間を確保するとともに、前記外部構造体の少なくとも海側に面する外周面に前記消波空間に通じて津波を該消波空間内に流入させるためのスリットを形成し、
前記外部構造体および前記内部構造体を海底地盤に打ち込んだ支持杭により滑動不能かつ転倒不能に支持して設置してなることを特徴とする防波構造物。
It is a wave-breaking structure having a wave-breaking function against a large-scale tsunami by a dam body constructed by arranging a number of caisons adjacent to each other,
The caisson comprises a cylindrical outer structure and a cylindrical or columnar inner structure having a smaller diameter than the outer structure,
The external structure is installed on the sea bottom with the axis being the vertical direction and the top being at a position higher than the wave height of at least the assumed scale tsunami, and the internal structure is coaxial with the external structure To ensure a ring-shaped wave-dissipating space in plan view between the external structure and the internal structure, and at least an outer peripheral surface facing the sea side of the external structure leads to the wave-dissipating space. Forming a slit to allow the tsunami to flow into the wave-dissipating space,
A wave-proof structure characterized in that the outer structure and the inner structure are installed so as not to be slidable and toppling over by a support pile driven into the seabed ground.
JP2011275734A 2011-12-16 2011-12-16 Breakwater structure Pending JP2013124536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011275734A JP2013124536A (en) 2011-12-16 2011-12-16 Breakwater structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275734A JP2013124536A (en) 2011-12-16 2011-12-16 Breakwater structure

Publications (1)

Publication Number Publication Date
JP2013124536A true JP2013124536A (en) 2013-06-24

Family

ID=48775974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275734A Pending JP2013124536A (en) 2011-12-16 2011-12-16 Breakwater structure

Country Status (1)

Country Link
JP (1) JP2013124536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181331A (en) * 2012-03-01 2013-09-12 Shimizu Corp Breakwater structure
JP2016037755A (en) * 2014-08-07 2016-03-22 鹿島建設株式会社 Impact force suppressing structure body
KR102617371B1 (en) * 2022-11-30 2023-12-27 장준우 Flow reduction block

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181331A (en) * 2012-03-01 2013-09-12 Shimizu Corp Breakwater structure
JP2016037755A (en) * 2014-08-07 2016-03-22 鹿島建設株式会社 Impact force suppressing structure body
KR102617371B1 (en) * 2022-11-30 2023-12-27 장준우 Flow reduction block

Similar Documents

Publication Publication Date Title
JP2006342653A (en) Breakwater for tsunami
JP2013124536A (en) Breakwater structure
JP2013060769A (en) Breakwater for seismic sea wave
JP5664888B1 (en) Embankment rising when the water rises
JP2016211312A (en) Construction of hybrid tsunami embankment
JP6007388B2 (en) Fluid force reducing structure and method of constructing fluid force reducing structure
JP2008038451A (en) Wave protection structure
JP2015086675A (en) System for filling specified sea area with air bubbles in order to prevent and mitigate high tide and tsunami disasters
JP2009114636A (en) Wave dissipating structure
JP2017110385A (en) Breakwater toughening construction method
JP2013023874A (en) Breakwater water structure
JP5843689B2 (en) Tsunami, high wave defense dike
JP2013087546A (en) Breakwater structure
JP5322068B1 (en) Construction method of submarine
CN104912028A (en) Circular floating breakwater
JP5342048B1 (en) Offshore underwater breakwater
US10975537B1 (en) Wave-energy dissipation system
JP5949643B2 (en) Reinforcement structure of caisson type hybrid bank and method for constructing the reinforcement structure
JP2006249914A (en) Tidal wave breakwater
JP3170649U (en) Tsunami breakwater
JP5889102B2 (en) Tide structure
JP2013181331A (en) Breakwater structure
JP3181667U (en) Transmission type tsunami attenuation wall
JP2013092017A (en) Breakwater structure
JP2011006977A (en) Wave dissipating structure